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Abstract

Chemical composition and, therefore, several physical properties, such as refrac-
tive index or density, of an aerosol system may be distributed in one particle size. The
effect of these particles of the same size but different properties, so-called mized par-
ticles, on aerosol dynamics can be important. Several aspects of the number-property
distribution; effect on aerosol dynamics and importance, definition, state of the art
of the measurement technique, available data, and numerical schemes are discussed
and further research directions are discussed.

The moving sectional method is extended to simulate multicomponent aerosol
dynamics resulting from condensation/ evaporation processes. This method uses a
Lagrangian approach in which section boundaries and component masses in a sec-
tion vary according to the characteristics of condensation/ evaporation rates while
conserving number concentration in a section throughout the simulation. Simulation
of model problems for which new analytical solutions have been obtained shows ex-
cellent agreement with the analytical solutions. Limitations and applicability of the
sectional method are discussed.

A technique for direct numerical solution of the multicomponent aerosol general
dynamic equation is developed and tested. The method obtains the aerosol size-
composition distribution without the need to make any a priori assumptions about
the nature of the distribution. Numerical solutions are compared with analytical
solutions for model problems of pure condensation/evaporation, pure coagulation,
and simultaneous condensation and coagulation. The advantages, applicability, and
the limitations of the approach are discussed.

An analysis of the tandem differential mobility analyzer (TDMA) is pror-sed in
which the conditioner between the two DMAs is simulated by the multicomponent
aerosol general dynamic equation (GDE). The use of the TDMA to separate an ex-
ternally mixed aerosol is illustrated by simulating the data of Liu et al. (1978).

Numerical issues in grid-based photochemical air quality models are reviewed.

Numerical schemes for advection and chemical kinetics in gas-phase and for dynamics
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in aerosol-phase are compared.
Finally, a numerical code is developed based on direct numerical solution of the

multicomponent aerosol general dynamic equation.
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Chapter I

THE NUMBER-PROPERTY DISTRIBUTION
OF AN AEROSOL



1. INTRODUCTION

Aerosols that consist of more than one chemical component frequently exhibit
variations of composition among particles of the same size. These variations may
play an important role in multicomponent aerosol dynamics and apparent aerosol
properties. Heintzenberg and Covert (1) reviewed the importance of the properties
of individual airborne particles at a given size on the chemical and physical processes
occurring in the atmosphere. Due to the wide variation of the atmospheric sources
and transport routes (2), it is natural that atmospheric aerosols consist of various
chemical compounds with overlapping distributions.

A frequently cited property, for example, that shows the importance of the number-
property distribution is hygroscopicity (3). Consider particles of the same size consist-
ing of two chemical compounds; one is hygroscopic while the other is non-hygroscopic.
After humidification, an aerosol system of pure hygroscopic particles and pure non-
hygroscopic particles (the right side of Figure 1) will develop into two particle sizes
while a system in which individual particles are the equal mixture of two compounds
(the left side of Figure 1) will give only one particle size.

Another important example are the optical property differences. In the case of
particles of the same size consisting of light absorbing and non-absorbing chemical
compounds, as shown in Figure 2, the amount of light absorbed by an aerosol system
consisting of pure light absorbing particles and pure non-absorbing particles can be
different from that by an aerosol system consisting of particles in which two com-
pounds are equally mixed in each particle (1). The dependence of optical properties
on the number-size distribution has been recognized, as has been the variation of
optical properties with the average chemical composition. But these dependencies
could not explain the difference of optical property between two sets of particles of
the same size range and the same average chemical composition.

Finally, another well known property variation of particles of the same size is
the charge distribution; the distribution of electrical charges among particles of the

same size has been recognized very early and certain distributions were proposed,



for example, the Boltzmann and the Fuchs distribution. This charge distribution is
important in several areas; particle removal by means of electrical methods (4) and
classification of the number-size distribution by electric mobility (5).

Historically, the first quantity measured from an aerosol sample was the total
concentrations; for example, the mass concentration of total suspended particulate
(TSP) was used for regulatory purposes (6). With the development of measurement
techniques, the importance of the number-size distribution was recognized. All aerosol
properties are dependent on the size of particles, directly or indirectly. The so-called
PM-10, for example, particulate matter up to the nominal aerodynamic diameter of 10
pm with a 50 % cutoff efficiency, is now used instead of the TSP (6-8) for regulatory
purpose in most countries. Even the vapor pressure of a chemical species over a
curved surface of an aerosol is different from that over the bulk flat surface and varies
with the particle size, and subsequently condensation/evaporation rates also vary (9).
Furthermore, it was recognized that chemical composition and morphology of particles
also play important roles in aerosol dynamics and apparent properties determination.
At first, only average compositions were measured as with the total concentration,
usually by the wet analyses (10), but with the development of number-size distribution
measurements, average compositions at each size range were accessible. However, it
was soon recognized that average composition and the number-size distribution do
not explain atmospheric aerosol measurement data accurately. Hidy (11) presented
a brief history of atmospheric aerosol characterization.

One way of looking at property variation is the concept of mixed particles, a mix-
ture of several chemical species, or properties in particles of the same size (3). One
extreme case is internally mixed particles in which all particles have the same com-
position, or property. The other extreme is externally mixed particles in which all
particles consist of pure species or properties and are present in appropriate numbers.
In addition, there is, naturally, a distribution of possible intermediate situations (12).
The concept of mixed particles has been used to consider atmospheric aerosol prob-

lems. For example, the mixedness of particles is thought to be linked to the age of



aerosols and the relative degree of gas-to-particle conversion and coagulation.

An important and difficult problem has been how to measure or to recognize
the number-property distribution. Research efforts have resulted in a few measure-
ment methods that can measure chemical/physical property variation of same size
particles. One class of methods measures properties of individual particles directly.
Direct measurement of individual particles provides elemental analysis (quantitative
or qualitative), particle size, and in some methods, particle morphology and is the
most convincing proof that property variation exists, and a huge improvement of the
measurement techniques has been achieved. It, however, is still far from for the rou-
tine analysis and has several limitations to be overcome. Another class of methods
exploits the property differences (usually the difference of one property) to measure
property variation. The difference of a property can be used to detect and/or separate
mixed particles by either using a series of instruments which are operated by different

rinciples or inducing changes of the distribution according to the property differ-
ence. While methods based on this principle are powerful tools to study a property
difference, it is hard to recognize the difference of several properties by using these
methods.

If the number of interesting properties or chemical species becomes large and the
interaction between them becomes complicated, it is difficult, if not impossible, to
measure, understand, and exploit the number-property distributions experimentally.
In that case, numerical simulation is the only viable option to study the number-
property distribution. As with the development of the measurement methods, nu-
merical routines have started from the prediction of the total quantities based on
the assumed number-size distribution with adjustable parameters. Then, the simu-
lation of the number-size distribution of the single component aerosol system based
on the aerosol general dynamic equation (GDE) followed. There has been consid-
erable progress in developing multicomponent aerosol dynamics simulators recently
and now a few numerical routines are available for simulating multicomponent aerosol

dynamics.



There are several general references (4,9,13-16) that deal with aspects of the
aerosol system, but few deal with the number-property distribution extensively. There-
fore, this review can be regarded as an introduction to the number-property distribu-
tion, especially the number-chemical composition distribution, in the aerosol system.
The goals of this review are: (1) to discuss definitions representing property variation
of particles of the same size; (2) to discuss the mixedness of particles; (3) to sum-
marize the state of the art of measurement methods and measurement data; (4) to
summarize the state of the art of numerical routines for simulating multicomponent

aerosol dynamics; and (5) to identify future research needs on property variation.

2. DEFINITION

2.1 Definition of a Distribution.

There are a spectrum of ways to define a distribution of a multicomponent aerosol
system. The simplest one is the number distribution on a one-dimensional domain
and the most complicated one is the number distribution on the multidimensional
domain. Other distributions, such as surface area, mass, or volume, are all based on
the number distribution and can be derived easily from.

The number distribution on the one-dimensional domain can be described as

dN{z, :
n(z,t) or % (1)

where z is the independent variable in mathematical terms or the property of inter-
est in physical terms, and n(z,t) is the distribution function at a time ¢ such that
n(z,t)dr = dN(z,t) is the number concentration of particles having z in the range
[z,z + dz].

Any property that is of interest can be used as the independent variable to describe
the behavior of the aerosol system. For example, the refractive index of the particles
may be used as the independent variable if the optical effect is important or the

amount of water in the particles can be used if the water content is of prime concern.



But the most widely used and arguably the most important one is the size: diameter,
volume, or mass, of an aerosol (usually simply called the size distribution) since
practically all aerosol properties depend strongly on particle size.

This representation is the simplest one to describe the aerosol system and still is
the most widely used one since it is important, easy to implement, and requires the
least computational burden compared to other definitions. Also, important quantities,
total concentrations and mean values, are easily calculated from the so-called moment
relations;

o0
M, = / w(z)n(z,t)dz (2
—o0
where w(z) is the weight function. Thus, the total quantities are integral propertic~
of the number-size distribution. Some examples of the moment relations based on
the number-size distribution are shown in Table I.

The one-dimensional domain representation is valid, trivially, if an aerosol consi~t~
of a single component and is of spherical shape. It is also valid for the multicompo-
nent aerosol system if only one property is of interest and used as the independent
variable; particle size is an example. The number-size distribution is widely used for
classification of particles experimentally and numerically since, still, most data are
obtained by instruments that can resolve only particle size.

The limitation of this approach using the number distribution on the one-dimension-
al domain for the multicomponent aerosol system is self-evident. For a fixed value of
one property, there may be distribution or variation of other properties. Moreover, if
the effects of other properties are not negligible, this approach cannot fully describe
the system.

A definition that accounts for composition variations on the one-dimensional do-
main was developed in the so-called multicomponent sectional representation (17)
In this definition, a one-dimensional domain, particle mass or volume, is divided into
a finite number of sections in each of which the total mass distribution is assumed to

be uniform, as are the mean mass fractions of each component in the section. With



some derivation, the total number concentration distribution and the components’
mean mass fraction distributions are obtained on the particle size domain.

This definition has several advantages: (1) it can describe mass concentration for
each component on the particle size domain; and (2) the computational requirements
are tractable since it uses a one-dimensional domain. This definition can describe
variation of each component mass concentration with the particle size with only a
small increase of the computational requirement to that of the number distribution on
the one-dimensional domain. This definition is suitable for describing the number-size
‘distribution measurement with chemical analysis for the each size range. Numerical
routines based on this definition have been applied to several areas which will be
discussed later.

The sectional representation is strictly valid if all particles in the one size range
have the same compositions. Such internally mixed particles may exist for well-
aged atmospheric particles since coagulation mixes particles of different sizes and
compositions and averages out the differences. But, usually, this representation is
only an extreme case of the general aerosol system. Thus, this definition has one
serious limitation; namely, only the mean mass fractions of each component in the
section are known, composition variations in the section are not considered (17).
Therefore, actually all particles in one section are calculated as having the same
compositions, i.e., are regarded as internally mixed particles.

The most general form of the distribution is the number distribution on the mul-

tidimensional domain;

ey Tt
n(z1,z2,...,T5,t) or ON(zq,22,...,%,,1) 5

a$18$2 . 33:3

where z; is the i-th property of interest and n or e ddN is the number density

T3...dT,
distribution function such that n(z,,z,,...,z,,t)dz1dz;...dzs is the number con-
centration of particles having properties in the range [z;,z; + dz;], ¢ = 1,s. The
number and the choice of the independent variables are arbitrary as long as these are

independent.



An obvious choice of the independent variables is the chemical composition of the

aerosol (18),

BN(ml,mg, NN ,ms,t)
ceeymg,t !
n(mlam23 , M ) or 0m16m2- ..am, ( )

where m; is the mass of the i-th component and s is the number of the species. The
distribution on the chemical composition domain can explain many aerosol properties
which cannot be fully explained by the definitions based on the one-dimensional
domain.

Another choice is the particles size together with other properties. For example,
a number-chemical composition distribution can be expressed as

8N(m1,m2, cee, M1, M,t)
amlamz S Bm,-laM

—
(3]
~——

n(my,mq,...,ms_1,M,t) or

where M is the total mass of a particle, M = 3°7_; m;. Also, properties other than
the chemical composition can be used without loss of generality as long as the vari-
ables are linearly independent. This kind of expression can be used for the general
multicomponent aerosol system but is usually used for cases of one property varia-
tion in particles of the same size, in practice, since to choose multiple properties that
are linearly independent is difficult both theoretically and experimentally. See, for
example, Heintzenberg and Covert (1) for number distribution on size-one property
domains. This kind of three-dimensional representation is practically useful to study
the property of interest, but is not satisfactory if there are more than one interesting
properties.

So far, it is implicitly assumed that particles are spherical. Particles of the same
chemical composition may have different morphology depending on several variations,
such as, source, generation method, and the age of particles. An approach to consider
irregular or non-spherical particles is to use the so-called dynamic shape factor. The
dynamic shape factor is defined as the ratio of the drag force on a particle to that
on the particle’s volume equivalent sphere (13,15). The value of the dynamic shape
factor is 1 if the particle is spherical and increases with the increase of the aspect ratio.

Several measurement and prediction show that the dynamic shape factor varies with



the physical properties and shape of particles (13,19-22). A recently developed fractal
concept is also a promising approach to describe the morphological effect and has been
applied to the analysis of aerosol dynamics (23,24). For non-spherical particles the

distribution function can be expressed as
n(ml,m'Z""ama,X?t) (6)

where x accounts for the morphological effect. Though the morphological effect may
be important to aerosol dynamics, however, usually it has no direct relation with the
chemical composition variation effect. Since our main interest is on mixed particles
and their effects on aerosol dynamics, the morphological effect will not be treated
here and particles are assumed to be spherical.

Note that the simpler definitions based on the one-dimensional domain are in
fact the moments of the multidimensional distribution. For example, let the num-
ber distribution of the spherical particles be n(m;,mq,...,m,_1, M,t). Then the
mass concentration of the :-th component in the I[-th section in the component mass
concentration-size distribution, ¢;;, can be represented as

M,

M M
gig = . /0 /0 m;n(my,ma,...,ms_1, M,t)dmidm,...dm,_1dM (7)
-1

where M;_; and M, are the lower and the upper limits of the {-th section, respectively.
Also the number distribution on the one-dimensional domain, n(M,t), can be given

as

n(M,t)=/0 .../Ooon(ml,mg,...,ms_l,M,t)dmldmg...dms_l. (8)

Also, the total number concentration, N, is expressed
[o o] [ee}
N= / / n(mi,ma, ... me—1, M, t)dmydms . . . dm,_ dM. 9)
0 0

Therefore, the simpler definitions can be regarded as the integrated properties
of the multidimensional definition. Similarly, average, bulk, or apparent properties

can be derived from the number-chemical composition distribution. For example, the
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average density of particles in a certain size range, p;, can be calculated as

p,=(2/0 /0 pin(my, ma, . .. my, t)dmidms . .. dm,)/N (10)
i=1

where p; is the density of ¢:-th component.

One disadvantage of this definition is that it requires very large experimental and
computational burdens. A related problem arises if chemical compositions are used as
the independent variables since experimental data are seldom comprehensive enough
to be described by it. On the contrary, integrated properties of an aerosol on a small
size range, such as extinction coeflicient or density, are easier to measure than the in-
dividual particles’ chemical composition. Thus, an interesting and important problem
is whether the easily measurable average properties can be used as the independent
variables instead of chemical composition.

Let n'(z1,22,...,2s-1, M, t) be the number distribution based on the multidimen-
sional domain where z; is the i-th average property. Then the relation between

n'(z1,22,...,2s-1, M,t) and n(my, my,...,m,,t) is

n(my,ma,...,mg,t) = Jn’(zl,z;;, ey 2s-1, M, ) (11)

8(21,22,. . ,ZS_I,M)

d(mq, ma,...,my)

J =

(12)

where J is the Jacobian (determinant).

From this relation, two problems emerge; (1) whether the correlation between z;
and m; can be obtained; and (2) whether the relation of Eq. (11) is unique if the
correlation exists, in other words, whether the relation is well-posed.

Average properties are integral properties as Jaenicke (25) pointed out,
o0 o0

2; =/ / wi(my, ma,...,ms t)n(my, my,...,ms, t)dmidms,...dm; (13)
0 0

where w; is the weighting function of the i-th average property, z;. At first, the
correlation between the single particle property (essentially the weighting function)

and chemical composition should be obtained which may be obtained theoretically
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or/and experimentally. Specifically, each particle’s chemical composition and spe-
cific property can be measured individually for a large number of particles and then
the empirical correlation or parameters of a theoretical correlation can be obtained.
Ouimette and Flagan (26), for example, derived the correlation between extinction
coefficient and composition variation. They derived single particle extinction coeffi-
cient for several cases and correlated the theoretical analysis with the measurement
data. In general, however, to obtain the necessary correlations is a formidable task.
Furthermore, as Frie 'ander pointed out (27), the average property measurement may
provide excessive information compared to the individual particle analysis.

Even if the correlation between single particle property and chemical composition
is obtained, another difficulty arises in the integration in Eq. (13) since the equation
contains the number distribution based on the chemical composition domain wlici
1s to be calculated, so the system is an implicit one.

The above mentioned difficulties are related to the problem of obtaining the cor-
relation between average property and chemical composition. Another question is
whether Eq. (11) is well-posed, i.e., whether for a given number-average property
distribution there is a unique number-chemical composition distribution.

In general, Eq. (11) is not well-posed and there may be no number-chemical com-
position distribution or multiple distributions that satisfies it. If there are multiple
distributions, to obtain the appropriate one is another problem that is called the
inversion problem. Some inversion schemes have been proposed and used in aerosol
classification (28,29). The problem of correlating relative easily measurable integral
properties with the number-chemical composition distribution has not been studied

extensively and further research is warranted.

2.2 Mixed Particles
In many cases, we are interested in the difference of one property among particles.
Also many measurement methods are limited to reveal only one property difference.

Hygroscopicity in a cloud chamber and optical properties in an OPC are good exam-
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ples. For these cases, the concept of mixed particles is a useful definition.

After Winkler (12) introduced the concept of internally and externally mixed
particles, a few formal definitions of them have been proposed. Winkler (12) proposed
the standard deviation of the relative composition of individual particles as the degree
of mixing parameter,

LS (@ — ) (14)

=1

o =
n-—1

where o is the standard deviation of each particle’s property, z;, from its mean value,
z, and n is the number of particles. This definition is rigorous and considers individual
particles’ composition variations. But the measurement of individual particles is a
formidable task. Furthermore, the standard deviation parameter does not provide a
specific value for the external mixture and the parameter can have the same value
for particles of a different degree of mixing (25). Therefore, this parameter does not
clearly identify the degree of mixing.

Jaenicke (25) proposed degree of mixing parameters based on the average volume

and number mixing ratios. The internal mixing ratio, My, is defined as

M, - M, ngVr—nrVs )
M; = = 1
"TTISM, T nrVr—npVs (1)

where ng and Vs are the number and volume concentrations of particles containing
the substance of interest, S, respectively; nr and Vr are the total number and volume
concentrations of the aerosol, respectively. M, = reand M, = %f are the number

and volume mixing ratios, respectively. Also the external mixing ratio, Mg, is
Mg =1- M, (16)

While these mixing ratios can be obtained relatively easily, the definition can have
the same value for particles of different distributions. For example, consider ten
particles in which 50% of the volume concentration is the substance of interest, S, i.e.,
M, = 0.5. If S is uniformly distributed among the particles, M,, = 1 and therefore,
M = 1. But the value of that is still 1 in the case of two particles consisting of pure S

and the remaining S being evenly distributed over the other eight particles since still



13

M, = 1. In other words, this definition only considers the presence of the substance
of interest but does not consider whether the particles are pure or a mixture of several
compounds.

The problem of these definitions is that variation of the possible distribution
variations are too broad to be adequately specified. As shown in Figure 3, there may
be a large number of possible distributions between two extremes with the constraint
of the same mean mass (or volume) fraction.

Internally mixed particles are defined as the particles in which the fraction of the

substance of interest is the same as the average fraction of the total particles, or
n(mg, M —mg,t) #0 if mg=0 or mg=M. (17)

Externally mixed particles are defined as the particles consisting of either the pure
substance of interest or other substances, or

.. Ms
if —

— t
n(ms, M — mg,t) #0 i

_ (s

But to define arbitrarily mixed particles, it is desirable to consider more limited

situations. Then the degree of external mixing, Dg, may be defined

Dg =-E (19)
nr

and the degree of external mixing of the substance, S, is

Dgs=— (20)

nr ,

where nr, ng, and ng are the total, externally mixed and pure S number concentra-
tions of the aerosol, respectively. This definition can be obtained from relatively easily
measurable quantities and can uniquely determine the degree of external mixing. The
degree of internal mixing is not obtained from this definition, but as mentioned ear-
lier one parameter cannot describe all possible variations. Therefore, this simple

definition is sufficient to describe present measurement data and techniques.
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3. EXPERIMENTAL METHODS

There are several ways of investigating the number-chemical composition distri-
bution. Ambng them, the most direct and convincing way of showing the existence
of the distribution is to measure chemical composition of individual particles. Several
chemical analysis techniques have been applied for this purpose.

The electron microscope has been used for measuring individual particles. The
scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS)
(30,31) and its refined version, the electron probe X-ray microanalysis (EPXMA)
(32,33) has been used to measure chemical compositions of a large number (usually
several thousand) of atmospheric aerosol particles. The EPXMA provides quantita-
tive elemental analysis for above a limiting atomic number with relatively short time
(compared to previous electron microscopy analyses) by using automated data reduc-
tion scanning technique. Also the EPXMA measures morphology, size and shape,
of each particle. But the required time for analysis is still long and usually this
method does not provide information about molecular species. Furthermore, it has
the limitation in detecting certain elements.

Mass spectrometry, also, has been used for the analysis of individual particles.
Sinha et al. (34) developed the particle analysis by mass spectrometry (PAMS) in
which micron size monodisperse individual particles are volitized by impaction on a
hot rhenium V-type filament (300 to 1400°C) and ionized, and the resulting vapor is
measured by a quadrupole mass spectrometer in real-time. This method was ap‘plied
to measure sodium mass concentration quantitatively (35,36). The laser microprobe
mass analysis (LAMMA) (32,37) is another instrument used for single particle chemi-
cal analysis in which individual particles are excited or vaporized and partially ionized
by the laser power and then analyzed by a mass spectrometer. Similarly, in the laser
spark spectroscopy or laser-induced breakdown spectroscopy (LIBS) (38) individual
particles are vaporized by a pulsed laser and atomic emission spectra are measured.

Generally, these method are fast, have a lower detection limit than the EPXMA,

and can identify molecular species in addition to the elemental analysis. Further-
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more, these can be used in situ. But particles are destroyed to produced spectra and
cannot be used furthermore. Also due to the difficulty in calibration and the poor
reproducibility, these are used primarily for the qualitative analysis.

In general, single particle analysis techniques are, though they have limited appli-
cations and are not in the state of routine analysis, promising and more applications
are expected with the development and improvement of techniques.

A class of methods exploits the property differences of particles to measure prop-
erty variation. In these methods, particles are classified by an instrument according to
their size and then further classified according to the property difference. So these can
be regarded as a partial resolution of the number-property distribution. Frequently
used properties are the commonly measured ones such as hygroscopicity. For exam-
ple, Okada (39) examined the fraction of hygroscopic particles and that of the water-
soluble material in individual mixed particles by observing the particle size change
before and after the dialysis by an electron microscope. Covert and Heintzenberg (40)
used two cascade impactors with different relative humidities (RHs) to collect urban
atmospheric aerosol samples of which chemical compositions were analyzed. By mea-
suring the shift of particle mass and chemical compounds by the hygroscopic growth
at high RH, the degree of external mixing of water soluble (sulfur and other com-
pounds) vs. water insoluble (soot) materials in the aerosol was measured. Harrison
(41) used a thermal diffusion cloud chamber in series with a dichomotous separator
to measure the cloud condensation nuclei (CCN) fraction of atmospheric aerosol.

These experiments measured the size difference between particles after humid-
ification and those before (or without) humidification, sometimes in conjunction
with chemical analysis. In these experiments, the fraction of externally mixed non-
hygroscopic particles is obtained. But the aerosol samples used were not monodisperse
but ranged over a relatively large size. Therefore, the intermingling of the effect of
particle size with that of property variation for one size complicated the analysis of
experimental data.

It is desirable to use monodisperse (or practically very narrow size range) particles
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for the experiments. A few monodisperse aerosol generators are now available (42),
among them, the differential mobility analyzer (DMA) is well suited for generating
monodisperse particles smaller than 0.1 gm diameter. The DMA, developed at the
University of Minnesota (43-46), screens particles according to their electric mobility
very accurately. It measures the number-size distribution by measuring aerosol con-
centration vs. electric mobility and also generates monodisperse aerosol by screening
particles of only one electric mobility from polydisperse feed particles. Application of
the DMA has been further enhanced by improvements of the DMA technology. The
scanning electrical mobility spectrometer (SEMS) (47) reduces the required measure-
ment time by an order of magnitude over that of the conventional DMA by using
a time-varying electric field instead of the discrete step changing electric field. The
electromobility spectrometer (48) based on the DMA has been developed to measure
particles as small as 1 nm diameter by using a very sensitive electrometer.

The relation between electric mobility and particle size (usually diameter) is not
unique since particles of different sizes can have the same mobility through multiple

charging,
iC’de
P 3ruD,

where Z, is the electric mobility, Cy is the slip correction factor, e is the charge of an

(21)

electron, 1.6021 x 107!°C, u is the gas viscosity, and D,; is the diameter of a particle
having ¢ elementary charges. Therefore, for a fixed value of electric mobility, there is
a spectrum of corresponding particle diameters. For the measurement of the number-
size distribution many inversion procedures have been developed that account for the
multiple charging effect (28,29,46,49-52), but for monodisperse aerosol generation the
presence of multiply charged particles is not permitted. See, for example, Reischl (53)
for the effect of several input conditions of the DMA on output variation. For bipolar
charging, which is used in the conventional DMA, particles of sizes below 0.1 ym can
be considered as singly charged. Above that size, the fraction of multiply charged

particles increases dramatically according to either the Boltzmann or Fuchs charging
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probability distribution (5,54,55). Studies to increase the singly charged particle size
are in progress (56).

Instruments that measure a size and/or a number-size distribution of an aerosol
can be classified according to the operating principle of the instrument as shown in
Table II. Pui and Liu (42) reviewed instruments for measuring the number-size dis-
tribution and for monodisperse particle generation. Monodisperse particles screened
by the DMA can be classified and/or separated further according to their other prop-
erty variation by either another number-size measurement instrument of which the
operating principle is based on that property variation of the particles or the combi-
nation of an aerosol condition changer and a number-size distribution measurement
instrument.

For example, particles of the same size can have an optical property distribution
that can be resolved by the optical particle counter (OPC). Covert et al. (60) mea-
sured optical property variation of monodisperse atmospheric particles screened by
the DMA and observed on some occasions that the monodisperse particles developed
two distinct size peaks at the OPC. They concluded that the aerosol was externally
mixed and consisted of soot (light absorbing) and inorganic materials, sulfate and ni-
trate compounds (light non-absorbing). If two components are internally mixed the
OPC should register a single size, while if two components are externally mixed, the
OPC would give two particle sizes due to the difference of refractive indices between
the soot and inorganic materials. Hering and McMurry (61) also used the DMA-single
particle optical counter and determined the optical counter response to monodisperse
atmospheric aerosols. They found that the response sometimes differed from those of
the several different calibration aerosols of the same size. Also, on several occasions,
monodisperse atmospheric aerosols produced two distinct optical diameters that in-
dicated some degree of external mixing of chemical compounds of different optical
properties.

Another possible combination of instruments is the DM A-inertial instrument such

as the cascade impactor or the aerodynamic -article sizer (APS). These instruments
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separate particles according to their inertia difference, therefore, monodisperse parti-
cles screened by the DM A but having different densities should show a number-density
distribution. Cascade impactors (62,63) or the APS (64-66) are common instruments
and this combination can be easily utilized. A DMA-APS system was used to mea-
sure the number-size-electric charge distribution (67). A DMA-hypersonic impactor
system was also used (68) to study the performance of the supersonic impactor.

A problem associated with these combinations is that the ranges of the size res-
olution of individual instruments may not be compatible. For example, the DMA
usually has an upper size limit of 0.1 ym for monodisperse particle generation while
that of the conventional cascade impactors have a lower size limit of 0.3 ym and that
of the APS a lower size limit of 0.8 um. This overlap problem has been partially
solved by several approaches; a low pressure impactor (69), use of small size nozzles
(70), and a hypersonic impactor (68).

Other combinations are also possible, for example, the DMA-diffusion battery
provided that the ranges of particle size resolved for each instrument are mutually
compatible. While these methods have succeeded in demonstrating the existence of
property variations and in measuring the degree of mixing, they do not utilize the
property distribution, for example, do not separate particles.

The tandem differential mobility analyzer (TDMA) differs from the previously
described instruments since in the TDMA the property difference induces particles
size and/or concentration change(s) at the aerosol conditioner between the two DMAs
and the changes are measured at the second DMA (DMA2). A schematic diagram
of the TDMA system is given in Figure 4; polydisperse feed particles are charged
in the charger and screened by the DMA1 according to their electric mobility. The
screened monodisperse particles are treated in the aerosol conditioner in which the
size and/or concentration of particles are intentionally altered and then measured by
the DMA2 and a particle concentration sensor. Several applications of the TDMA
have been reported: evaporation rates, vapor pressures (71), and surface free energy

(72). The TDMA is ideally suited for studying property variation of particles of the
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same size since one can control the processes occurring in the aerosol conditioner in
which particle size and/or concentration changes occur. Liu et al. (73) and McMurry
and Stolzenburg (74) demonstrated that particles of the same size can be separated
according to their hygroscopicity difference. Using a gas-phase diffusion adsorber and
a humidifier as the aerosol conditioner Hansson et al. (75) studied the hygroscopicity
change due to organic coatings on hygroscopic aerosols. Similar measurements were
reported in the DMA-multistep condensation nucleus counter (CNC) in which the
multistep CNC acted as the combination of the conditioner and the DMAZ2 in the
TDMA system (76).

The interpretation of TDMA data depends on the processes occurring in the con-
ditioner: (1) there may be size changes, shift of the peak and/or generation of multiple
peaks depending on the mixedness of particles and the processes; (2) there may be
concentration changes since some processes are not number-conserving; and (3) there
may be multiple processes occurring in the conditioner, though, in many cases by a
careful manipulation of conditions in the conditioner all but one process can be elim-
inated. McMurry and coworkers (77,78) proposed a numerical routine to invert the
TDMA measurement data that is based on the conventional DMA analysis (44) with
approximations for the two DMAs and a geometrical growth model with dispersion
with approximations for the conditioner. The routine requires three parameters for
a distribution peak and the values of these are obtained by a least squares fitting
procedure. While this method can fit the size and concentration changes, it does not
model the fundamental aerosol dynamic processes occurring in the conditioner.

Ideally, the aerosol dynamic processes in the conditioner should be fundamentally
modeled to study the changes in the conditioner. This can be accomplished by using
a numerical routine that solves the multicomponent aerosol general dynamic equation
(GDE) that governs the fundamental aerosol dynamic processes in the homogeneous
gas phase. This approach is the subject of Chapter IV of this thesis.

With improvements in instrumentation and in aerosol modeling for interpreting

TDMA data, the application of the TDMA to property variation studies should in-



20

crease. Some promising applications are: (1) to measure the fraction and the degree
of mixing by selective chemical reaction; (2) to measure the effect of the degree of
surface exposure on aerosol property variation. Particles of the same size and same
composition may have different properties depending on which compound is domi-
nant on the particle surface; (3) to study the effects of multiple processes occurring

simultaneously.

4. NUMERICAL SIMULATION
Dynamics of a spatially homogeneous multicomponent aerosol is governed by the
so-called multicomponent aerosol general dynamic equation (GDE) with chemical

composition as the independent variables,

s

8n (m,t) Z a n(m, )]

- 5/ / B(U, M - U)n(m — u, t)n(u, t)du
—nmt)/ / (U, M)n(u,t)du
+ R[m,t,n(m,t)] + S[m,t,n(m,t)] (22)

where m; is the mass of the i-th component in a particle, and m is a vector of
compositions (my,...,m,), where s is the total number of components. n(m,t)dm is
the number of particles having mass of component i, in the range [m;, m; + dm;] at.
timet. I;is the time rate change of the mass concentration of the 7-th component from
condensation/evaporation processes. 3(U, M) = (M, U) is the binary coagulation
coefficient where U and M are particle sizes given by M = >;=1m;. R and S are

removal and source terms, respectively. The initial condition is
n(m,0) = n,(m). (23)
The boundary condition specifies no particles at the critical cluster size

n(m*t)=0 (24)
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where m* is the size of critical cluster.

Simulation of multicomponent aerosol dynamics presents serious computational
challenges (79). Condensation/evaporation, coagulation, nucleation, and deposition
have inherently different mathematical and physical characteristics. For example, con-
densation/evaporation are number conserving processes, while coagulation is a mass
conserving process. And, condensation/evaporation and nucleation are composition-
dependent processes, while coagulation and deposition are the composition-independ-
ent processes (neglecting shape and sticking effects). A numerical approach that works
well for simulating one particular process may not be suitable for simulating other
processes. Also the computational burden to simulate a multicomponent system is
potentially very large since in addition to the multidimensionality the time step is
limited by the shortest characteristic time among those of the individual processes
Finally, the ideal way to test the performance of a numerical routine is to compare
the numerical solution with the analytical solution but analytical solutions for mul-
ticomponent aerosol dynamics are available only in very limited cases (80,81).

Several numerical routines have been developed to simulate aerosol dynamics.
These approaches can be classified according to whether the aerosol consists of single
or multiple components and whether the computational domain is one-dimensional or
multidimensional. Table III summarizes some of the available numerical codes based
on these criteria.

A numerical routine for multicomponent aerosol dynamics should satisfy the fol-

lowing properties:

1. The numerical schemes adopted in the routine guarantee the distribu-
tion be positive definite and the total number concentration be con-

served.

o

The dynamics of arbitrarily mixed particles can be simulated.

3. Simultaneous processes in addition to single process can be simulated.



4. The numerical schemes used are accurate.
5. The numerical schemes used are efficient.

The first three properties arise from the need for physical consistency between the
real system and the simulated system and the last two properties are desirable from
a numerical analysis point of view. Unfortunately, no single numerical method sat-
isfies all the above properties. For condensation/evaporation, for example, the finite
element methods (FEMs) are accurate and efficient but do not satisfy the property
1, while the upwind difference methods satisfy property 1 but are not as accurate as
the FEMs. On the other hand, numerical schemes based on a Lagrangian approach
in which grids move with the movement of particles satisfy all properties except the
property 3 (85). Finally, Gaussian quadrature for coagulation satisfies all properties
except the final one; it takes a large computing time.

A few numerical methods have been developed to simulate multicomponent aerosol
dynamics. The first and arguably the most widely used program is MAEROS (Mul-
ticomponent AEROSol) (86,87) which is based on the multicomponent sectional
method (17). As noted earlier, in the sectional method, the one-dimensional size
computational domain is divided into a finite number of sections (or elements) and
in each section the moment of number distribution (number, surface area, mass or
volume concentration, in MAEROS the total mass concentration is calculated) is as-
sumed to be uniform (88). Also, in the multicomponent case, the mean mass fraction
of each component in a section is assumed to be uniform (17). The sectional approach
has been successfully applied to several areas of aerosol dynamics research: simulation
of multicomponent aerosol dynamics in plumes (89,90), urban photochemical aerosol
(91,92), simulation of particles in a nuclear reactor (86), simulation of indoor aerosol
dynamics (93), and the discrete-sectional method for simulating the aerosol evolution
associated fast chemical reactions (94).

Based on the two approximations, in MAEROS, the total and components mass

concentration balances in a section are derived. The model reduces to a system of
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(s x 1) ordinary differential equations where s is the number of components and [ is
the number of sections. Coagulation is treated by considering all possible combina-
tions of the two body agglomeration which results in double integrations to calculate
coagulation coefficients. Condensation/evaporation is treated with a second-order
approximation for the concentration distribution.

MAEROS has several advantages: (1) it has an «xcellent User’s manual (86,87);
(2) it has been widely tested; (3) it guarantees satisfaction of certain fundamental
physical properties, such as the distribution being positive definite and the total
mass concentration being conserved; (4) it can simulate simultaneous processes with
different mechanisms; (5) it is highly accurate for simulating coagulation; and (6) it is
efficient since the mean mass fractions are calculated on the one-dimensional domain.

But in MAEROS, only one component, water, can condense. For cases where
water is the only condensible component, for example, hygroscopic growth of aerosol
particles in the air, this restriction poses no serious problem. But, in general, there
are several condensible components in the gas phase. One notable example is the
atmospheric aerosols where condensation of several organic and inorganic compounds
occurs. In this case, this restriction imposes a serious limitation on the application
of MAEROS. Also, the accuracy of the condensation/evaporation simulation scheme
is low. While the assumption that the mean mass fraction of each component in
a section is uniform makes it possible to simulate the average components’ mass
concentration on the one-dimensional computational domain, composition variation
at one particle size is not calculated. In other words, a system of arbitrarily mixed
aerosol particles cannot be simulated by MAEROS.

In ESMAP ( Expanded Sectional Multicomponent Aerosol Package) (95,96) ho-
mogeneous nucleation and a new condensation/evaporation simulation scheme, which
has a number concentration conservation constraint, were added to MAEROS in ad-
dition to several minor modifications. The basic structure of ESMAP is the same as
that of MAEROS, it has generally the same properties as MAEROS.

Pilinis et al. (91,92) extended MAEROS and developed a routine in which multi-
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ple components can condense and/or evaporate for simulating atmospheric aerosols.
To do that, however, all particles in one section are assumed to have the same compo-
sitions. This is more of a severe assumption than that in MAEROS in which particles
can have composition variation even though that is not calculated.

The same problem arises in a variation of the sectional representation by Pilinis
(97) in which the component mass distributions are calculated instead of the com-
ponent mass concentrations. Furthermore, the numerical method used, the Galerkin
method, is known to be unstable for simulating aerosol condensation/evaporation
(98).

Oron and Seinfeld (99,100) developed a two-dimensional sectional code to simu-
late dynamics of charged aerosols and ions, in which a two-dimensional, size-electric
charge, computational domain is used to simulate the dynamic behavior of charged
aerosols and ions which undergo coagulation, electrostatic dispersion, ion recombina-
tion, and ion and particle production and loss. Note that this routine can give insights
in conducting and understanding experiments that measure and utilize the number-
size-electric charge distribution, see for example, Emets et al. (67). The resulting
governing equation contains coefficients each of which requires double summation of
double integrals. The number of integrations increases by two for each increase in
the dimension of the computational domain (if the independent variable is a discrete
one, like the charge, two summations).

The multicomponent sectional method (17) used an Eulerian approach. In this
approach, grids or mashes are fixed and numerical errors (numerical diffusion and dis-
persion errors) occurring during the discretization of the condensation/evaporation
term cannot be eliminated. Numerical schemes using a Lagrangian approach in
which grids move along characteristics of condensation/evaporation processes may
be free from the numerical errors associated with the discretization of the condensa-
tion/evaporation term (85). To cope with the problems of numerical routines using
the multicomponent sectional method, the moving sectional method was developed

(85,101) and implemented to MGA (Moving Grid Analysis) (102). In the moving
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sectional method, the assumptions of the original fixed grid sectional method were
used but now each section’s boundaries are permitted to move along the characteris-
tics of condensation/evaporation, i.e., the Lagrangian approach is used. By doing so,
the accuracy of the condensation/evaporation simulation is greatly enhanced. Also,
by allowing sections to move independently, there may be overlapping of sections in
the same size range and, therefore, aerosol particles of the same size but different
mean mass fractions can be simulated. Therefore, the moving sectional method can
simulate the dynamics of arbitrarily mixed aerosol particles though it still keeps the
assumption of uniform mean mass fractions. Asin MAEROS and ESMAP, only water
can condense or evaporate in MGA though in an extended moving sectional method
(85) multiple components can condensate or evaporate. But a more serious problem
arises because of the use of the Lagrangian approach. Since sections can move inde-
pendently holes may develop in the size computational domain. MGA is suitable for
pure condensation/evaporation processes but not suitable for simultaneous processes,
such as coagulation.

Tsang and Rao (103) developed a numerical scheme (MULFEMM) based on the
moving finite element method (FEM) for simulating condensation of a two-component
aerosol. This method is an extension of the algorithm by Varoglu and Liam Finn (104)
applied to the simulation of single component aerosol dynamics (98), in which ele-
ments move along the characteristics of the system. Simulation of evaporation or
mixed condensation/evaporation is difficult in this method even in the single compo-
nent case due to the excessive loss of elements (98). Thus, MULFEMM is suitable
for simulation only of pure condensation. Also, in this method a positive definite
distribution and conservation of number concentration are not guaranteed.

The deformation of grids or elements is a common problem in numerical schemes
using the Lagrangian approach. Among several approaches to address this difficulty,
one approach is to remap the moving grids onto a fixed grid after each time step.
Even with a high-order accuracy interpolation scheme, however, the positive definite

and the conservation properties may not be maintained. On the other hand, with the
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constraint of number conservation, the remapping introduces new numerical errors
and the overall accuracy deteriorates. An alternative approach is to introduce new
grids whenever these are needed. If condensation/evaporation rates are not very fast
then the required number of new grids may be small since the existing grids cover most
of the computational domain. In general, a numerical scheme using the Lagrangian
approach is ideal for pure condensation/evaporation processes but not suitable for
simultaneous processes.

Chapter III describes the development of a numerical routine called AMPS (Ar-
bitrarily Mixed Particles Simulator) that solves the multicomponent aerosol general
dynamic equation directly without any assumption about the nature of the distri-
bution (79). The main objective of this routine is to simulate simultaneous process
occurring in the multicomponent aerosol system and thus study the distributed chem-
ical composition effect on aerosol dynamics. To simulate simultaneous processes, we
adopt the Eulerian approach. The processes and mechanisms treated are summa-
rized in Table IV. Note that two numerical schemes are provided to simulate con-
densation/evaporation processes. This is due to the complementary nature of two
schemes. The repeated upwind difference method (105-107) keeps the distribution
positive definite and guarantees number conservation but is only second-order accu-
rate and is poor in retaining sharp peaks, while the Taylor-Galerkin method (108-110)
is highly accurate and retains the sharp peak of the distribution but cannot keep the
distribution positive definite and cannot guarantee number conservation.

Comparison of numerical routine for multicomponent aerosol simulation for some
of the desirable properties is summarized in Table V.

There has been considerable controversy about the accuracy of the repeated up-
Wind difference method in particular and the choice of numerical schemes for con-
densation/evaporation in general (103,111,112). While the accuracy of a numerical
scheme is important, other properties, especially those related to the physical system,
should also be considered. It should be recognized that at present no available advec-

tion scheme is fully satisfactory for simulation of aerosol condensation/evaporation
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and a numerical scheme should be chosen that is best suited for the purpose of the

particular application.

5. THE REMAINDER OF THIS THESIS

The remainder of this thesis is as follow: In Chapter II, the extended moving
sectional method is presented in which multiple components can condense and/or
evaporate. In Chapter III, a numerical scheme for simulating multicomponent aerosol
dynamics that can simulate arbitrarily mixed particles is presented. In Chapter IV.
the numerical scheme is applied to simulate a TDMA experimental result by Liu ¢!
al. (73). In Chapter V, conclusions are presented.

And in Appendix [, a review on the numerical techniques for urban airshed modelx
is presented and in Appendix II, a user’s manual for the numerical scheme described

in Chapter III is presented.
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Table I. Aerosol Moments

Based on the Number-Diameter Distribution

w(D,)? Moment (M,")

1 Total number concentration (V)
mD? Total surface area concentration (S)
D> Total volume concentration (V)
ZD3p  Total mass concentration (M)

%3 Mean diameter (D,)
Q’%ﬁﬁ Standard deviation (o?)

M, = [5° w(D,)n(D,,t)dD,.
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Table II. Aerosol Size Measurement Methods

Electric Mobility

According to Their Operating Principle

Optical Property Diffusivity

Inertial Property

EAA (57)

DMA (43-46)

SEMS (47)

Electromobility
spectrometer (48)

OPC (58)

Diffusion

batteries (59)

Photon
correlator

Impactors (62,63)

APS (64-66)

Cyclones (42)
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Table III. Summary of Aerosol Dynamics Simulation Routines

One-dimension Multidimension

Single
Component

Multicomponent

AEROSOL (82)
AGRO (83)
CONFEMM (103)
COAGUL (84)
DISC (94)
CHARM (112)

MAEROS (94) MULFEMM (101)
ESMAP (95) AMPS (79)
MGA (100)
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Table IV. Processes and Mechanisms Treated in AMPS

Process Mechanism Numerical
Scheme
Condensation/ Diffusion-controiled Repeated upwind
Evaporation (Maxwell relation), difference,
Volume reaction-controlled Taylor-Galerkin
gas-to-particle conversion
Coagulation Brownian coagulation Product type
Gaussian quadrature
Deposition Linear deposition With Coagulation
Source User given, With coagulation
Pre-specified
Nucleation User given With coagulation
Simultaneous Operator splitting

Processes




38

Table V. Comparison of Numerical Multicomponent

Aerosol Dynamics Simulation Routines

MAEROS ESMAP MGA MULFEMM AMPS
Positive Yes Yes Yes No Yes
Definite
Conservation Yes Yes Yes No Yes
Arbitrarily
Mixed No No Yes Yes Yes
Particles
Numerical Sectional Sectional Moving Moving RUD.
Methods method method sectional finite TGFEM !
method element Gaussian
method quadrature
Processes Coagulation Coagulation Cond/evap. CondensationCoagulation
Cond/evap. Cond/evap. Cond/evap.
Source Nucleation Nucleation
Deposition  Deposition Deposition
Source Source
Reference 82,83 95 102 103 79

1 RUD: the repeated upwind difference method
TGFEM; the Taylor-Galerkin method.
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FIGURE CAPTION

Figure 1. An illustration of the effect of particle mixedness on aerosol dynamics:
Hygroscopic difference affects particle growth by humidification.

Figure 2. An illustration of the effect of particle mixedness on aerosol dynamics:
Light absorbing capacity difference affect light intensity.

“igure 3. Possible distributions of particles with the same mean mass fraction:
Between two extremes, the external and the internal mixture, infinite number of
distributions are possible.

Figure 4. Schematic diagram of the TDMA system.
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THE MOVING SECTIONAL METHOD
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1. INTRODUCTION

The aerosol general dynamic equation (GDE) presents unique computational chal-
lenges because of the inherently different nature of coagulation and condensation/
evaporation processes. In addition, the aerosol may be of a single component or may
contain several components. The simplest problems to address computationally are
those involving a single component and either, but not both, coagulation or condensa-
tion/ evaporation; the most demanding involve several components and simultaneous
coagulation and condensation/ evaporation.

Considerable effort has been devoted to the development of numerical techniques
for solving the aerosol GDE (3,13). These efforts can be classified according to
whether they address single component or multicomponent aerosols and which pro-
cesses, notably coagulation and/or condensation/ evaporation, are occurring. Table
I summarizes many of the previous approaches organized by these two criteria.

Most of the numerical methods that have been proposed are based on dividing the
size distribution into elements or sections and assuming the form of the size distribu-
tion within these elements. The assumption of a constant dis*-ibution leads to the
so-called sectional method (1,5,6). Additionally, the elements or sections may remain
fixed throughout the calculation or move. Fixed elements are desirable for represent-
ing coagulation; moving elements are preferable for condensation/ evaporation. The
original sectional method, fixed elements with a uniform distribution within elements,
1s 1deally suited for simulating coagulation but suffers from numerical diffusion errors
when condensation/ evaporation occur.

The aerosol size distribution function during condensation/ evaporation is de-
scribed by a first-order hyperbolic partial differential equation for which the occur-
rence of numerical dispersion and diffusion errors in numerical solutions is well known
(7, 12). Discrete approximation of spatial derivatives of a hyperbolic differential equa-
tion may lead to significant numerical dispersion and diffusion errors. Numerical dis-
persion causes the modes of the numerical solution to propagate at speeds different

from those of the exact solution, resulting in spurious oscillations around the true
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solution peak and/or negative values. Furth»rmore, numerical dispersion errors often
cause instabilities since this error generally increases with time. Numerical diffusion
errors cause the amplitude of the numerical solution to propagate in such a way that
peaks in the solution dissipate. Note that this diffusion arises from numerical errors,
and is not a physical phenomenon. Also note that when the amplitude of the nu-
merical solution is larger than that of the exact solution, the numerical solution may
become unstable.

Since aerosol condensation/ evaporation is particle number conserving, a numeri-
cal scheme addressed to condensation/ evaporation should not lose or gain particles
from the computational domain during the simulation. (For the evaporation process,
number conservation may be applied to particles larger than the critical size.)

Numerous schemes have been developed to solve hyperbolic partial differential
equations numerically. Highly accurate schemes such as the Galerkin finite element
method and the Lax-Wendroff method have little numerical diffusion errors but ex-
hibit numerical dispersion errors for steep concentration profiles. Conversely, first-
order upwind differencing schemes are free of numerical dispersion errors but have
numerical diffusion errors. Some numerical schemes such as the Flux-Corrected Trans-
port (FCT) (24) and the Smolarkiewicz’s repeated upwinding scheme (15) have been
developed to eliminate numerical dispersion and reduce numerical diffusion. These
schemes eliminate numerical dispersion by introducing diffusion terms and then sub-
tracting the introduced diffusion contribution from the calculated quantities. Because
all the schemes mentioned above calculate the transport of conserved quantities at
fixed grids, i.e., using the Eulerian approach, numerical errors arising from the dis-
crete approximation of spatial derivatives can not be eliminated, only reduced.

In Lagrangian methods, grids and computational cells move with the conserved
quantities along the characteristics thus eliminating numerical errors due to the dis-
crete approximation of spatial derivatives. The most significant difficulty of applying
a Lagrangian approach to aerosol condensation/ evaporation is the distortion of the

grids and cells that occurs as the different particle sizes grow or shrink at different
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rates. Some numerical schemes use the idea of remapping the functional values from
the distorted Lagrangian grid onto a regular grid by interpolation at each time ste
During interpolation, however, new numerical errors are introduced. Tsang and Brock
(17) used a finite element method incorporating characteristics (21) for representing
aerosol condensation and an Eulerian-Lagrangian scheme (10) for evaporation for sin-
gle component aerosols. Seigneur et al. (13) also used a finite element method with
characteristics. However, even though its global accuracy is good this method does
not conserve particle number concentration as a function of time.

Gelbard (6) combined the sectional approach with the Lagrangian concept of a
movable grid and developed a moving sectional method for simulating aerosol conden-
sation/ evaporation of a single condensible species. In that method the boundaries of
each particle size section move with time in accordance with the growth or shrinkage
of particles at those boundaries. In that way numerical diffusion errors resulting from
the need to apportion the particle size distribution over a set of fixed sections are
avoided. Also, numerical dispersion errors resulting from the convection term are
avoided since the convection term is automatically handled by solving the character-
istic equations.

Single component aerosol dynamics involving either coagulation or condensation/
evaporation can be simulated quite accurately with methods in the literature. Single
component aerosol dynamics involving both coagulation and condensation/ evapo-
ration 1s considerably more difficult but can, nonetheless, be treated with available
methods. The vast majority of papers in the literature address single component
problems, and many are limited to condensation/ evaporation alone, In this latter
case, an approach involving moving elements or sections is the preferred one. For
multicomponent aerosol dynamics the only technique that has been developed and
applied is the sectional method, with fixed sections. The representation of conden-
sation/ evaporation is of course prone to numerical diffusion just as in the single
component case.

There are several numerical schemes available to calculate multidimensional con-
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vection problems which have the same form as those of multicomponent aerosol con-
densation/ evaporation (7, 12), but the schemes require significant computer memory
and computing time. For an s component system, a finite difference method with n
grids for each component needs, for example, an n® grid point and a finite element
method with n cells for each component requires an n* x n® matrix system although
the matrix is usually banded and/or sparse. Also one has to calculate s condensation
rate equations at each grid point (s x n® calculations for a finite difference method).
Furthermore, to calculate the spatial and temporal derivatives with reasonable accu-
racy, rather time consuming schemes should be used, also requiring large computing
time and memory. To calculate multicomponent aerosol dynamics due to conden-
sation/ evaporation processes by conventional multidimensional convection schemes
does not appear to be attractive. For this reason we adopt the sectional concept
together with that of a Lagrangian grid.

Our goal in this work is to extend the concept of the moving sectional method
to multicomponent aerosol condensation/ evaporation processes. To demonstrate
the performance of the method we obtain analytical solutions to model problems of
multicomponent condensation/ evaporation to which the numerical solutions may be
compared. Accuracy and computational efficiency are further compared between the
moving sectional method and the original, fixed grid sectional method.

Finally, limitations of the sectional method due to its inherent assumptions are

discussed.

2. GENERAL DYNAMIC EQUATION
FOR CONDENSATION/EVAPORATION
The General Dynamic Equation (GDE) for multicomponent condensation/ evap-

oration processes is (3)

s—1
T 5 1o, M (om0 1)

=1 @m,~
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0
+ W[l(m’ Mat)n(maM,t)] =0 [1]

where M denotes the total mass of a particle and m; is the mass of the ¢-th com-
ponent in the particle, m = (my,...,ms_1), where s is the number of compo-
nents. n(m, M,t)dmdM is the number of particles having total mass in the range
[M, M + dM], mass of component 7 in the range [m;,m; + dm;],i=1,...,s—1, at
the time t. I; is the time rate change of mass concentration of the +th component
and [ is the time rate change of the total mass concentration. The initial condition

1s the size-composition distribution at time zero,

n(m, M,0) = no(m, M) [2]
The boundary condition is given by

n(m, M*,t)=0 (3]

where M* is the critical total mass below which no aerosol particles exist.

3. SECTIONAL METHOD

3.1 Sectional Method Development

The essential idea of the sectional method is to divide the aerosol size spectrum
into N sections and assume:

1. In a section, the total particle mass size distribution is uniform.

2. All particles in a section have identical composition.

The total mass concentration of the Lth section is defined as

M. M M
Qu(t) = / / Mn(m, M, t)dmdM [4]
Ml,l 0 0
where M;; is the lower bound and M,, is the upper bound of total mass in the /-th
section.

By applying the first assumption, we get

M M
/0 /0 Mn(m, M, t)dm = q(t)f' (M) [5]
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where qi(t) is a constant in the section and f'(M) = ;dAL,[, where f(M) is the size
variable of interest. An example of f(M) is In(M/Mp).

Combining [4] and [5] gives

M,y
Q) = [ " a)s(am

L

= a)[f (M) — f(My)] (6]
The total number concentration of particles in the I-th section is given by
M. M M
Ni(t) = / / n(m, M, t)dmdM [7]
Mu 0 0

If one chooses In M as the size variable, i.e.,f(M), then Ni(t) is given by

Q)3 — 7

Ni(t) = 8
) InM,, —In M, 8]
By applying the second assumption,
m, .
— =constant M;; <m; <M, i=1,...,s—1 9]

M

The mass concentration of the k-th component in the -th section, Q;k(t), is given by

Qui(t) = /M /OM.../OMmkn(m,M,t)dmdM

M,
Ml.u M M mk
= . o — d
‘/Ml,l M~/0 /0 (M )n(m,M,t)dm M

3.2. Moving Sectional Method

During the condensation/ evaporation processes for a fixed volume, if the section
boundaries move without loss or gain of particles in that section, the particle num-
ber concentration in a section must be constant with time. Thus Ni(t) of Eq. (8] is
constant, or d—]\g}t—) =0 ,l=1,...,N. Thus if the temporal variation of the section

boundaries and each component mass in a section are known, one can calculate the
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evolution of total mass concentration of aerosol and mass concentration of each com-
ponent in a section. If section boundaries follow the characteristics of condensation/
evaporation rates, particle number will be conserved.

In the moving sectional method all particles initially within a section remain there
and the section boundaries move according to the particle growth equation, t.e.,
the characteristics. Therefore, all particles in a section can not escape the section

boundaries. The section boundaries obey the characteristic equations shown below,

M,
dt

= I(m, M,t) j=1,...,2N [11]

where the index ;7 denotes the 2V section boundaries.
The problem now is how to calculate component mass changes within each section
as a result of the condensation/ evaporation processes. Each component in a section

also varies according to the condensation rate equation,

dm; .
d—T:Ii(m,M,t) i=1,...,s—1 [12]

Because of the second assumption of the sectional model, the ratio (3#) is constant
in a section; therefore it is immaterial which value of M is used to calculate (5}). Thus
at each time step temporal component mass variations in a section are calculated by
solving Egs. [11] and [12] with a fixed value of M in the section, and one can then
calculate the multicomponent condensation process from Egs. [8] and [10].

One important advantage of this method is that the moving sectional method can
simulate particles of the same total mass but different compositions. Since composi-
tions * adjacent sections are discontinuous at the section boundary, condensation/
evaporation rates of each section at the boundary are different. As a result, sections
can in principle overlap each other or holes in the calculation domain may develop
between sections. In the examples to be considered here, we have assumed linear
total mass condensation/ evaporation rates. In these cases no overlapping of sections
or holes between sections develop, but with other growth rate equations, in the same

total mass range, overlapping sections with different compositions could exist.
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4. ANALYTIC SOLUTIONS FOR

MULTICOMPONENT AEROSOL CONDENSATION/EVAPORATION

In this section, we will derive new analytical solutions for multicomponent aerosol
condensation/ evaporation. These solutions will be used as a reference to evaluate
the performance of the numerical scheme developed above.

Two problems of multicomponent aerosol condensation/ evaporation will be con-
sidered. Both problems are characterized by linear condensation/ evaporation rates.
Although such rates describe the processes of volume reaction controlled gas-to-
particle conversion (14), the main reason for their selection is to enable analytical
solution of the GDE. The two problems differ in their initial aerosol size distribu-
tions; one problem has an exponential initial size distribution and the other has a
log-normal initial size distribution.

Condensation/evaporation rate equations are taken to be linear in total mass and

in each component,

I=aM [13]

I,-=oz,~m,- i=1,...,3—1 [14]

Note that if the value of a; is negative the i-th component evaporates. A three
component system will be considered in the numerical examples to follow.

The derivation of the analytical solution for mass concentration together with
definitions of the notation are given in the Appendix.

For the exponential initial size distribution case, the total mass concentration of
the Lth section is

M. M M N M
t) = e > - —at _
Qi(t) /Mu /0 /0 MOM exp| T at]

s—1 m. .
X exp[——e " — q;t]ldmdM
,'],:—_:E Mio p[ My ]

— Ml'u No M —at s—1 M ot
=, MRl e — o] [I( ~ expl——me™)dM - [15]

=1
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The mass concentration of 7th component in the Fth section is

Lu [V, —at = —ait
Q) = [ Jpesl-qre —atll I[ (1 - expl—oe)]

! 1=1,#]

x [(1 — exp[— M e~ )m;,e%* — M exp[— M e %|dM  [16]

Jo Jo

For the log-normal initial distribution problem, the total mass concentration of

the Lth section is

M. N, (InM —1In M — at)?
t) = . -
Qu(®) /Mx,z (27)Y2lno exp| 2In’o ]
=1 (InM - Inm; — a;t)
—[1 £ erf dM 17
% ;EI] 2[ erf( V2lIno; ] ]

The mass concentration of the #th component in the th section is
/M:,.. N, [ (InM —1nM — at)2]

My (27)Y/2MIno P 2In’o

-1 1 (ln M —1u fﬁ,’ - a;t)
—[1 L erf
8 [,'=11-:[¢J' 2[ ° ( \/51110’,' ]

]
In M — Inm; — a;t —In®0;)

\/51110’,’

By using any appropriate numerical integration method, such as Gaussian quadra-

Qu,5(2)

2
ln o;

1
X 3 exp[lnm; + a;t +

« [1 £ erf(! \JdM (18]

ture, one can evaluate Q;(t) and @Q;(¢).

5. NUMERICAL SOLUTIONS OF

MULTICOMPONENT AEROSOL CONDENSATION/EVAPORATION

For generality and ease of calculation, non-dimensionalization will be used hence-
forth. Also, because of the wide range of magnitudes of the independent variables, a

logarithmic transformation similar to that used by Gelbard and Seinfeld (2) is used:

X=1n(AAZ) [19]
x,=ln(mi) r=1,...,s—1 (20]
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The parameters chosen for the numerical simulations for the exponential initial
distribution are m,, = 0.3, my, = 0.2. For the log-normal initial distribution, the pa-
rameters employed are, for total number concentration, number median dimensionless
mass of 3.0 and geometric standard deviation of 3.0. For components 1 and 2, number
median dimensionless masses are 0.1 and 0.3, and geometric standard deviations are
5.0 and 5.0, respectively.

Two cases of condensation/ evaporation rates were solved for the model problems.
Case 1 is a pure condensation process with condensation rate coefficient chosen as

a=10s1 a0 =09 s7! and a; = 1.1 s

The second case is one of mixed
condensation/ evaporation. The evaporation rate coefficient of the first component is
chosen as @; = —0.1 s™! and the condensation rates of total mass and component 2
are a = 1.0 s™! and a; = 1.7 s~!. The dimensionless time 7 is defined as 7 = at for
these linear cases.

Ten sections were used for both the moving and fixed sectional method. The
dimensionless calculation domain in terms of -]{‘4—"; is [1072,10?] for the exponential
initial distribution and [1072,10%] for the log-normal initial distribution.

The fixed sectional results were obtained according to the algorithm of Warren
and Seinfeld (22). The average density of particles was 10° g m™2 and the reference
total mass was that of a particle of size 1um.

To assess the numerical errors due to the moving sectional method and to compare
the results of the moving sectional method to those of the fixed sectional method, error
sources from the time integration and the sectional method were carefully reduced or
eliminated as much as possible. With linear condensation/ evaporation rates are as-
sumed, the logarithmically transformed rate equations become zeroth-order ordinary
differential equations. In such a case, the Euler method produces no numerical error
due to time integration. Initial conditions calculated from the analytical expression
were used for both analytical and numerical calculations to reduce numerical errors
due to the assumptions of the sectional model.

Figure 1 shows a comparison between the analytical solution and the numerical
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solutions using sectional methods of total mass concentration for case 1 (all species
condense) with exponential initial size distribution at dimensionless time 1. Excellent
agreement between the moving sectional solution and the exact solution is obtained.
The fixed sectional method with 10 sections gives numerical solutions that exhibit
the effect of numerical diffusion errors. Increasing the number of sections by a factor
of two increased somewhat the accuracy of numerical solution. Note the underpredic-
tions at the peak and overpredictions at the larger particle end of the spectrum that
are characteristics of numerical diffusion errors. Figures 2 and 3 show the results for
case 1 and the exponential initial size distribution for dimensionless mass concentra-
tions of components 1 and 2, respectively. Again, the moving sectional method shows
excellent results, and the fixed sectional method exhibits numerical diffusion errors.

Figures 4, 5 and 6 show the results for case 2 (component 1 evaporates, but
others condense and the overall effect is condensation) with the exponential initial
size distribution, As above, for the moving sectional method, good agreement with the
exact solution is obtained though the numerical solutions underpredict at the smaller
particle end of the spectrum. Doubling the number of sections did not appreciably
increase the accuracy of the numerical solution using fixed sections.

To compare the results of the various approaches quantitatively, the median rela-
tive error,

abs(QlIanalytical - Qllnumerical)
Ql Ianalytical

Median Relative Error = median| x 100]  [21]

the value of relative error below which one half of values of relative values lies, was
computed. Since the dimensionless mass concentration varies widely (more than a
factor of 10 in the computational domain), to use maximum absolute and therefore
maximum relative errors among sections is not appropriate because a small shift of
the numerical solution profile at the far right side of the domain results in a large
error. Table II gives the median relative errors of the different methods for both cases.

In Table III, the ratio of computing times between the fixed and moving sectional

methods is shown. The moving sectional method requires slightly more computing
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time than the fixed sectional method for the same number of sections, but less com-
puting time than the fixed sectional method with twice the number of sections.

Since the moving sectional method incorporates a number conserving condition
and uses condensation/ evaporation rates as the characteristics of the section bound-
aries movement, it retains the advantages of both the fixed sectional method and
the finite element method incorporating characteristics, being free from numerical
dispersion error while conserving number concentration. This method also has the
advantage that it can be developed to treat multicomponent aerosols and both con-
densation and evaporation.

The sectional method (irrespective of whether the sections are moving or fixed)
is not without limitations. The first assumption inherent in the method that total
mass size distribution is uniform in a section is the simplest form of approximation of
the size distribution and introduces numerical diffusion errors. Of course, such errors
are inevitable in a fixed grid approach, even with higher order functional forms of
approximation. Thus the first assumption in the sectional method can be viewed as
a useful mathematical approximation.

The second assumption of the sectional method is that the compositions of each
component are constant in a section, that is, particles of the same mass all have the
same composition. This approximation introduces not only numerical errors but also
may not be physically realistic. The moving sectional method can produce particles of
the same size but different composition since sections can overlap each other and/or
holes in the calculation domain may develop between sections. This property of the
moving sectional method alleviates the limitations arising from the second assumption
of the method.

As a final point, while moving elements offer many advantages for simulating
condensation/ evaporation, they are not desirable for coagulation. It is therefore
unlikely that a multicomponent coagulation and condensation/ evaporation method
will involve moving sections. If one seeks to reduce potential numerical diffusion and

at the same time to relax the assumption that all particles of the same size have the
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same composition, it may be necessary to attack the multicomponent GDE as a true

multivariable equation.

6. CONCLUSION

The moving sectional method has been extended to multicomponent aerosol con-
densation/ evaporation processes with multiple condensible species using a Lagrangian
approach and a mass conservation condition. This method accurately simulates model
multicomponent condensation process for which analytical solutions are available.

Limitations and applicability of the sectional method are discussed.
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APPENDIX. ANALYTICAL SOLUTION FOR
MULTICOMPONENT AEROSOL CONDENSATION/EVAPORATION

The general multicomponent condensation equation is given by Eq. [1]. The

analytical solution of Eq. [1] can be expressed as

s—1
n(m, M,t) = exp[— D_ ait — at]n,(mie™*, ... ,m, "%, Me™)  [A-1]

i=1

The exponential initial distribution is given by

M =11 m;
= i A—2
no(m, M) 7 a, Lo mio] | [A - 2]
and the analytical soiution for the exponential initial distribution is
No my _ait
= —e % — a4t A-3
n(m, M,t) M, Mo 1= mioe a;t] [ ]
Then the total mass concentration of the Ith section is
M. M N
SO / / Ry
M,
X H — a;t]dmdM
M,,.. No M _, pt. ot
— at _ _ _ it 4 _
/Ml,l A Moe at] g(l exp| mioe dM [A — 4]
The mass concentration of 7th component in the Fth section is
Qult) = [, 3 eml-gre = —al
M’ 1 .
/ / exp[— T et _ a;tldm])dM [A - 5]
i=1 Mo Mio

If i # j, the integration is the same as Eq. [A-4]. If 1 = j, using integration by parts,

M m - .
/ L exp[— T g-ast a;tldm;
0

Mjo Mjo
‘ M .
= —[m;exp[— T e~ M +/ exp[— i e~ *"dm;
Jjo 0 Mjo
= —M exp[——e %" + m,,e**(1 — exp[——e™*"]) [A - 6]

Jjo jo0
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Therefore,

Qi) = [ Te explate — all T] (1 - expl-2e=o))

" i=1,#; Mio

e~ dM [A—7)

TNy e®t — M exp[—
- ]) Jjo P[ M0

x [(1 —exp[—-

The log-normal initial distribution is given by

_ N, (InM —In M)?
no(m, M) = (27r)1/2Mlna xpl- 2In’ o ]
1 (Inm; — Inm;)?
_ A-8
% g (27)Y/?m; In o; exp| 21n? o; ] [ ]

where M and m; are number median masses and ¢ and o; are geometric standard
deviations

For the log-normal initial distribution problem, the analytical solution is

nm a8 = (27r)‘/]:/;v[ — exp|~ (oM _21221‘3 — at)z]
Then the total mass concentration of the Ith section is
i ”’7r)1/21m o, oPl- lam; 212"; U )M [A - 10)

=1 -

By changing variables, u; = Inm;, and using the definition of the error function,

M-l (Inm; — Inm; — a;t)?
/ ./ H (27 1/2m, ln o; exp|— 2 Jdm

21n‘ o;
In M InM 31 1 (u,» —Inm; — a,’t)2
- /-oo N .v/—oo i (2m)Y21n oy exp|- 21n? o; Jdu
=1 (InM - Inm; — a;t)
= 1+ erf A-11
E 51+ erf( Toino, ] [ ]

where the plus sign is used if In M > 0, and the minus sign is used if In M < 0. The

error function is defined as

exp[—t%]dt [A—12]

erf(z

=7k
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So Q((t) is

My N, (InM —In M — at)?
Qt) = /Mz,z (2m)/2lno exp|- 2In’co

=21 (In M — Inm; — a;t)
—[1 £ erf
XEZ[ erf( V2lno;

The mass concentration of the 7th component in the Fth section is

M N, (InM —InM — at)? M M
QI'](t) N /Ml,l (2#)1/2M Ino exp[— 2ln20 ][‘/0 o "/0

]

1dM [A —13]

s—1 m; (Inm; — Inm; — a;t)?
1——]1: (27")1/27;1.' In g eXp[— 2 1112 o; ]dm]dM [A — 14]

If i # j, the integration is the same as Eq. [A-11]. If ¢ = j, expanding the exponential

term and completing the square,

M m; (Inm; —Inm; — a;t)?
- dm.:
/c; (27)/?m;no; exp| 21n® o Jdm;
In M e (u; — Inmm — o4t)?
/;oo (27)1/?1no; exp| 21n? o, Jdu,
InM 1 In® o, (uj — (Inm + a5t + In? 0;))?
_ —t exollns " j _ i D du
/—oo (27)Y/%1no; expllnm + ait + 2 Jexl 2In® 0, Jdu,

(InM — Inm; — a;t — In® o)
V2lna;

where the plus sign is used if In M > 0, and the minus sign is used if In M < 0.
Thus @, ;(¢) is,

2 5.
In®o;

: ) [4-13]

= %exp[lnﬁzj + ajt + {1 £ erf(

M. N, (InM —In M — at)?
Qus(?) /M,,, (2r)Y2M Ino exp| 2In? o ]
| (In M —Inm; — a;t)
X =1 Lerf
[,'=]'1__I¢j 2[ “ ( ﬂln o; ]
1 _ In? o;
X §exp[lnmj+ajt+ 5 ]

(InM —Inm; — a;t —In? ;)

V21no;

x [1 % erf( )dM [A - 16]
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Table 1. Approaches to the Numerical Simulation of Aerosol Dynamics

Process

Single component

Multicomponent

Condensation/
evaporation
only

Coagulation
only

Condensation/
evaporation
and
Coagulation

Lagrangian calculation (9)
Finite element method
incorporating characteristics
and combined Eulerian-
Lagrangian scheme (17)
Galerkin finite element method
and Smolarkiewicz repeated
upwinding scheme (19)

J-space transformation with
cubic spline method (16)
Sectional method (4)

J-space transformation with
cubic spline method (8)
Orthogonal collocation and
cubic spline on finite element
method (2)

Combine (16) and (17) (18)
Sectional method (22, 23)

Moving sectional method
(6 and this work)

Sectional method (5)

Sectional method (1)
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Table II. Comparison of Median Relative Error, Eq. [21]!

of Total Dimensionless Mass Concentration, at 7=1

Case Method Exponential Log-normal
Distribution Distribution

Moving sectional 0.214 x 10° 0.166 x 10°
method

Case 12 Fixed sectional 0.640 x 103 0.354 x 104
method
Fixed sectional 0.305 x 10° 0.203 x 104
method
(20 sections)
Moving sectional 0.560 x 10° 0.195 x 10!
method

Case 2° Fixed sectional 0.445 x 10° 0.425 x 104
method
Fixed sectional 0.200 x 103 0.215 x 104

method
(20 sections)

! Median Relative Error = median|

2 all components condense

3

abs(Q( |analytical—Ql Inumencal) X 100
Ql lana!ytical

component one evaporates, but others condense



Table ITI. Comparison of Ratio of Computing Times at 7=1

65

Case Method Exponential Log-normal
Distribution Distribution

Moving sectional 1 1
method

Case 1} Fixed sectional 0.852 0.897
method :
Fixed sectional 1.356 1.402
method
(20 sections)
Moving sectional 1 1
method

Case 2? Fixed sectional 0.916 0.923
method
Fixed sectional 1.583 1.769

method
(20 sections)

1 all components condense

? one component evaporates, but others condense
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FIGURE CAPTIONS

Figure 1. Comparison of analytical solution (solid line, left one is the initial size
distribution) and sectional solutions of dimensionless total mass concentration for
case 1 with exponential initial size distribution at dimensionless time 1. ( MS(10):
moving sectional method with 10 sections, FS(10): fixed sectional method with 10
sections, FS(20): fixed sectional method with 20 sections).

Figure 2. Comparison of analytical solution (solid line, left one is the initial size
distribution) and sectional solutions of dimensionless mass concentration of compo-
nent 1 for case 1 with exponential initial size distribution at dimensionless time 1.

( MS(10): moving sectional method with 10 sections, FS(10): fixed sectional method
with 10 sections, FS(20): fixed sectional method with 20 sections).

Figure 3. Comparison of analytical solution (solid line, left one is the initial size
distribution) and sectional solutions of dimensionless mass concentration of compo-
nent 2 for case 1 with exponential initial size distribution at dimensionless time 1.

( MS(10): moving sectional method with 10 sections, FS(10): fixed sectional method
with 10 sections, FS(20): fixed sectional method with 20 sections).

Figure 4. Comparison of analytical solution (solid line) and sectional solutions of
dimensionless total mass concentration for case 2 with exponential initial size distri-
bution at dimensionless time 1. ( MS(10): moving sectional method with 10 sections,
FS(10): fixed sectional method with 10 sections, FS(20): fixed sectional method with
20 sections).

Figure 5. Comparison of analytical solution (solid line) and sectional solutions of
dimensionless mass concentration of component 1 for case 2 with exponential initial
size distribution at dimensionless time 1. ( MS(10): moving sectional method with
10 sections, FS(10): fixed sectional method with 10 sections, FS(20): fixed sectional

method with 20 sections).
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Figure 6. Comparison of analytical solution (solid line) and sectional solutions of
dimensionless mass concentration of component 2 for case 2 with exponential initial
size distribution at dimensionless time 1. ( MS(10): moving sectional method with
10 sections, FS(10): fixed sectional method with 10 sections, FS(20): fixed sectional

method with 20 sections).
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Chapter III

SIMULATION OF
MULTICOMPONENT AEROSOL DYNAMICS
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1. INTRODUCTION

Multicomponent aerosols arise in diverse cases: in the atmosphere (2, 15, 23,
24); in indoor air (19); in material synthesis (8); and in nuclear reactor contain-
ment environments (9, 25). A multicomponent aerosol is characterized by a size-
composition distribution function and that function is governed by the aerosol general
dynamic equation (GDE) (13). The GDE includes terms that represent condensation
(growth/evaporation), coagulation, source, nucleation, and removal processes. Nu-
merically solving the full multicomponent aerosol GDE presents several computational
challenges because of the inherently different mathematical nature of condensation
and coagulation processes and the multidimensional nature of the size-composition
distribution. Also particle size typically varies by three to five orders of magnitude
in particle diameter or nine to fifteen orders of magnitude in particle mass, and the
distribution itself frequently varies by several orders of magnitude.

Relatively few solutions of the multicomponent aerosol GDE exist, either analyt-
ical (11, 25) or numerical (3, 9, 10, 14, 16, 21, 22, 31, 35). Presently two numerical
methods are available for simulating multicomponent aerosol dynamics, the sectional
method (14) and the moving finite element method (31). In the sectional method,
the size distribution is divided into a finite number of sections, the size distribution
in a section is assumed to be uniform, and the mean mass fractions of species of all
particles in a section are assumed to be identical. While the assumption that the
size distribution in a section is uniform itself introduces numerical errors (35), such
errors exist even in higher order approximations, so this assumption is best viewed
as a necessary mathematical approximation. The assumption that all particles in a
given section have identical mean mass fractions, however, is advantageous because
it el:minates the need to know the composition distributions in the sections to de-
termine the component mass concentrations in the sections. Although a composition
distribution in a section is permitted in the sectional method, it is neither calculated
nor used in the sectional method simulation.

The sectional method with moving grids has several advantages over the fixed
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grid sectional method. In general, a numerical method based on the Lagrangian ap-
proach, the moving grid method, can be highly accurate and efficient for simulating
condensation processes since there is no need to discretize the growth term. Further-
more, since sections can overlap each other, this method can simulate particles of the
same size but different composition. Treating coagulation or sources, however, be-
comes difficult due to the deformation of the calculational domain that results when
the sections are allowed to move (16). Thus, for aerosol dynamics consisting only of
condensation a numerical method based on the Lagrangian approach is the preferred
choice. Unfortunately, this approach loses its advantages when simulating simulta-
neous condensation and coagulation. There have been several efforts to extend the
attributes of the Lagrangian approach (20, 36). One approach is to generate new
grids or elements whenever they are needed. For a system of fast condensation and
sources of small particles the number of new grids required can be quite large. An-
other approach is to remap or reinitialize the distribution based on the moving grids
to fixed grids, but this remapping also introduces numerical errors. Tsang and Rao
(31) extended the one-dimensional moving finite element method (FEM) along the
characteristics (32) to simulating aerosol condensation in two dimensions. While the
method is highly accurate, it is only applicable to cases in which all components grow,
not to general condensation processes, due to the loss of grid points (29). Also, the
method is unsuitable for simultaneous processes, such as condensation, coagulation,
and sources due to the deformation of the computational domain.

Condensation is a number conserving process (as long as particles do not com-
pletely evaporate), while coagulation is a mass conserving process. Since the number-
composition distribution cannot be negative, negative values are unacceptable. Nu-
merical methods that conserve total number concentration during condensation (for
evaporation number conservation may be applied to particles larger than the crit-
ical size) and conserve total mass concentration during coagulation are preferred.
Non-negativity and proper conservation of number or mass are especially important

characteristics a numerical method should possess since their absence results in phys-
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ically unacceptable solutions. Since we are interested in solution of the full GDE
with multiple processes, we seek a method that is able to simulate the spectrum of
processes that can occur. Numerical methods that perform well for simulating one
process but cannot be used with other methods to simulate simultaneous processes
are not suitable. If one has a process of pure condensation, then a Lagrangian method
is known to be best. To develop a robust method for simultaneous coagulation and
condensation, one must inevitably compromise accuracy in order to accommodate the
simultaneous processes.

Our goals in this work are twofold: (1) to develop a technique to numerically
solve the multicomponent aerosol GDE directly without introducing any physical as-
sumptions about the nature of the size-composition distribution; and (2) to develop
a technique applicable for simultaneous coagulation and condensation. Three differ-
ent cases, pure condensation, pure coagulation, and simultaneous condensation and
coagulation will be studied numerically. Model problems of multicomponent aerosol
dynamics for which analytical solutions have been obtained are solved numerically to
evaluate the accuracy of the numerical scheme. The effects of choice of condensation
simulation scheme, rate form, and boundary condition are discussed. In addition,
the direct numerical solution is compared to that of the sectional method. Finally,
several aspects of the direct solution, including its applicability and limitations, are

discussed.

2. MULTICOMPONENT AEROSOL GENERAL DYNAMIC EQUATION
The multicomponent aerosol general dynamic equation (GDE) governing the size-

composition distribution function, n(m,t), is

on(m,t) < 0
o + ?: . [£;(m, t)n(m,t)]

=1
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= % /Oml ) ../Oms B(u,m — u)n(m — u,t)n(u,t)du

— n(m, ) /Ooo e /Ooo B(u, mjn(u,t)du
+ R[m, t,n(m,t)] + S[m, t,n(m,t)] 1]

where m; is the mass of the :-th component in a particle, and m is a vector of
compositions (m,,...,m,), where s is the total number of components. n(m,?)dm
is the number of particles having mass of component i, in the range [m;, m; + dm;]
at time t. I; is the time rate change of the mass concentration of the i:-th component
from condensation process. 3(u,m) = S(m,u) is the binary coagulation coeflicient.

R and S are removal and source terms, respectively. The initial condition is
n(m,0) = n,(m). (2]

One possible boundary condition is that there is no particles below the critical size,

*

m-,
n(m™,t) =0 (3]

Since the range of values of m is quite large (usually several orders of magnitude),

a logarithmic transformation is useful (12, 14),

m;

M,

z; = In(—) 1=1,...,8 (4]

where M, is the mean mass of a particle in the initial distribution,

s 1 oo o0
M, = ;E/O /0 u;n (u)du (5]

where N, is the total number concentration of the initial distribution. Also by ap-

plying a property of the density function (24),
n(m)dm = n(x)dx [6]

the resultant transformed GDE in a computational domain [x%,x*] is,

on(x, . 0
_"_(5:_0 + 3 g i tnx. )]

1=1
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1 f= 2 e’
= 5/1:0 / y)n(q,t n(y,t)g(m)dy

—nxt/ / B(x,y)n(y,t)dy
+ R[x,t,n( x,t)] + S[x,t,n(x,1)] (7]

where ¢ is given by,

m; U; )

M, M,

= In(exp[z;] — exp[y:]) i=1...,s. (8]

¢ = In(

The transformed initial condition is,
n(x,0) = ny(x)
= n,(m) [[m; [9]
=1

and an appropriate boundary condition is required either at z; = z¥, if the ¢-th
component grows, or at r; = :c?, if the 7-th component evaporates. Removal and
source terms are not considered here. To include these terms in a numerical scheme
is not difficult once the numerical scheme treating condensation and coagulation is
established.

If the characteristic times of all or several processes are the same order of mag-
nitude, the processes have to be calculated simultaneously. But, if the characteristic
time of one process is significantly larger than those of other processes, that process
can be regarded as in a pseudo-steady state with respect to other processes. The
problem of characteristic time difference is well exemplified by the following: Con-
sider the vapor phase synthesis of ceramic particles at high supersaturation ratio. At
first, particles are rapidly produced by nucleation and other processes are negligible.
After the initial particle burst, both nucleation and condensation will occur, compet-
ing for the available condensible gas phase species. During this, coagulation can be
neglected. After the condensible gas phase species is depleted and the number con-
centration of particles increases, coagulation and deposition will be important while

nucleation and condensation are negligible.
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3. NUMERICAL METHODS FOR AEROSOL DYNAMICS

3.1 Simulation of the Condensation Term in the Multicomponent GDE

The evolution of an aerosol number-composition distribution as the result of con-
densation processes is described by a first-order hyperbolic partial differential equa-
tion, of the form that also describes general advection processes. The difficulties
of solving this equation numerically both accurately and efficiently are well known
(17, 20, 36). In particular, discrete approximation of the spatial derivatives of the
hyperbolic equation may lead to significant numerical dispersion and diffusion errors
(16). Another specific problem associated with condensation is that the rates may
vary quite widely, often over several orders of magnitude. Therefore, a numerical
scheme that works well for other advection process may not be suitable for aerosol
condensation processes.

A numerical scheme for the condensation process should possess following prop-
erties: (1) It should keep the distribution positive definite; (2) It should conserve the
total number concentration; (3) It should be accurate; and (4) It should be efficient.
If condensation only is occurring, then an appropriate Lagrangian method can satisfy
the above four conditions (10, 16, 31). However, as we noted earlier, a numerical
method based on the Lagrangian approach is not suitable for simultaneous conden-
sation and coagulation, and we seek here a method that can be used as part of a
numerical approach to solve the fully multicomponent GDE.

Two numerical methods, the repeated upwind difference method (RUD) (26,27)
and the Taylor-Galerkin method (TGFEM) (7) are chosen here to treat condensation
term in the GDE. The RUD was developed to reduce excessive numerical diffusion
errors associated with the first-order upwind difference method. The RUD satisfies
properties 1 and 2 but is only second-order accurate. Furthermore, the RUD is known
to smear sharp peaks in the distribution (5,28,29). The TGFEM was developed to
reduce the numerical dispersion errors associated with the Galerkin method. While

the TGFEM satisfies properties 3 and 4, it does not satisfy properties 1 and 2.
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3.1.1 The Repeated Upwind Difference Method (RUD)
The first-order accurate upwind difference method for numerical evaluation of Eq.

(7] without coagulation can be written in the form

S

! ! ke 11 k ki 1 I 7k
n =0 = Y FN e Brayae) = FF(ice 16 I (1/2),)] (10]
k=1
where n! is a numerical approximation of the solution of Eq. [7] (without coagulation),

defined at time [At and size (:'Az?,...,7°Az®), and where e is a unity vector in the
k-th component, If+(l /2)e,, 15 the k-th component condensation rate at the midpoints
of the size domain. FF is the condensation flux of the k-th component evaluated
at the same midpoints as the k-th component condensation rate and is defined as
follows:

At

Fk(ni3ni+6k7]) = [(I+ ])ni + (1 - |I|)ni+e*]2Amk'

[11]

The first-order upwind difference methods have several desirable properties; they
maintain positivity, are stable and free from numerical dispersion errors, conserve
total number concentration during the simulation of condensation processes, are easy
to formulate and require less computing time than higher-order methods. A drawback
is that these methods suffer from excessive numerical diffusion errors. The rate of

the excessive diffusion in the case of a constant condensation rate may be estimated

H1 !t and n!_

by expanding n;*’, n;,, , in a second-order Taylor series about the point

€k

(t',z;). Doing so, the numerical method may be expressed as

@1_ ST R > 0 k| A K ky27 0N
Gl =~ L gl g OsIMAt - A g
.S o.smzkﬂ%)u. 12]

J=1,#k
" The first term on the right hand side (RHS) of above equation represents the original
condensation term, while the second term on the RHS represents the induced excessive
numerical diffusion that should be removed to get an exact solution.

The repeated upwind difference method developed by Smolarkiewicz (26, 27) is

selected as the one of the two numerical schemes. The strengths of this scheme are:



82

(1) It has the desirable properties of the upwind difference methods; (2) It is a fully
multidimensional method and can be used without adopting the spatial fractional
time steps scheme; (3) It is easy to formulate; and (4) In comparisons with the
SHASTA method, a type of flux-corrected transport (FTC) method (4) that has been
widely tested and used, for the simulation of single component aerosol dynamics with
simultaneous coagulation and condensation, the repeated upwind difference method
has been found to be both more accurate and more computationally efficient than
the SHASTA method by the authors.

The basic idea of the RUD is to subtract the excessively diffused amount from the
transported quantity and add that amount back to the original grid cell by defining
a so-called antidiffusion velocity and using the first-order upwind difference method,

repeatedly if necessary. The reversion of the numerical diffusion can be written as,
— = (I*n) 13
at Z 8:16‘L [13]

in the next corrective step. I* is the antidiffusive rates defined as follows:

- 1 On s 16
Ik = 05 Ik k_ k N _ ki — y
[174]8a* — Ay~ == p §1 iko SAMI'PEZ=if n>0
= 0 iof n=0 [14]

which, in fact, is the second term on the RHS of Eq. [12] if n > 0. Based on this

concept, the corrective step (the repeated upwind difference step) is

l+1 = Tl Z[Fk n:+ek’jf+(l/2)ek) - Fk(n: ek’nz ’Iz—(1/2)ek)] [15]

where n* is given by the RHS of Eq. [10] and

* *

n n

Tk _ 2 ivex i
Ii+(l/2)ek - [I +(1/2)ek| — At (It+(l/2)ek) ](71‘-'_1, + 7‘;? +€)A;‘l}k
1T€k 1
Z 0. 5At11+(1/2)ek‘[z+(1/2)ek
i=1,#k
n:+€k+e_7 + n‘:-}-EJ - n:-vl-ek—e’, - n:—CJ [16]
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where

Eramen = 0254 v /e, + Lrasme; + Lien—rare; T Ti-u2)e,) [17]

and ¢ is a small value, e.g., 10~%, to ensure /¥ = 0 when all functional values of
n of Eq. [16] are equal to zero. The corrective step, Eq. [15], is again the upwind
difference scheme and contains numerical diffusion errors that can be reversed by
the next corrective step. The number of corrective steps, denoted by IORD, is
optional. Note that JORD = 1 implies only the original upwind difference method.
Smolarkiewicz (27) reported that using JORD > 4 only negligibly improves the
accuracy of the numerical solution over using JORD = 4. If the condensation rates
are in divergent form, the above corrective formula assumes the form

I ajpyer = - = 0.25AtI5 oo (TK 3/2yen — T (1 /210 )/ DT

s

. . .
— 0‘25At1i+(1/2)6k ' z:#-k(l;?.*.(]/?)ej + Ig+(1/2)81+ek
=1,

"Iij-(l/z)e, + Ig—(1/2)e,+ek)/A"‘7j 18]
where the terms omitted are the same as those in Eq. [16]. The method is second-
order accurate in both time and space (27).

The repeated upwind difference method is not without drawbacks. First, the
method is generally less accurate than other methods, such as the Galerkin meth-
ods, for simulating advection, or the moving FEM for simulating condensation of
single and two-component aerosol systems (5, 30, 31). However, both the Galerkin
method and the moving FEM do not guarantee non-negativity and number conser-
vation which are deemed essential in aerosol simulation. And as mentioned earlier,
a numerical method based on the Lagrangian approach is not suitable for simulta-
neous condensation and coagulation. Therefore, while the RUD is not as accurate
as one might wish, it has reasonable accuracy and several desirable properties that
are essential for the simulation of multicomponent aerosol dynamics. The stability of
the RUD has been proved only up to three dimensions (27). For the simulation of a

multicomponent aerosol that may consist of more than three components, stability is
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of course essential. We will subsequently demonstrate by numerical experiments the
stability of this method for cases of more than three dimensions.

Computing time increases with the number of repeated computation steps. Smo-
larkiewicz (27) reported that increasing the number of iteration steps enhances the
accuracy of the scheme up to JORD = 4, but the computing time required for four
iterations is similar to that of a FCT method. Smolarkiewicz (26, 27) suggested a
compromise between accuracy and computing time by increasing the antidiffusive

velocity, I*, by multiplying by a factor Se,
I* = (I*) gy 6oy X Se. (19]

He reported that a small increase of Sc over unity (e.g.,Sc = 1.06) significantly
improves the solution for the JORD = 2 scheme (one iteration). We have carried out
numerical experiments to choose the optimal values of two parameters, the number of

iterations, JORD, and the scale factor, Sc, and these will be described subsequently.

3.1.2 The Taylor-Galerkin Method (TGFEM)

In the Galerkin method, a distribution is approximated by a finite series
n(-) & () = n;¢;() [20]
=1

where n; is an undetermined coefficient and ¢;(-) is the basis function or shape func-

tion. Let the governing equation be represented by
Ln(:)— f=0 [21]

where L is an operator and f is an arbitrary function. But the approximation, 7 does

not satisfy the above governing equation exactly, so there exists so-called the residual

error, R(-),
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A class of numerical schemes, called the method of weighted residuals, has been
developed to minimize the residual error by selecting the undetermined coefficients

n; that satisfy the following integral relation;
/RMw&MV:O i=1,2,....m 23]

where w;(+) is called the weighting function. In the Galerkin methods, the weighting

function is chosen to be the basis function, so
/RH@CMV:O i=1,2,...,m. [24]

If a piecewise linear function (a chapeau function) is used as the basis function then
the Galerkin method is also called as the chapeau function method or the linear finite
element method (17).

The Galerkin method has several advantages: (1) It is highly accurate; (2) It can
retain a sharp peak distribution without smearing. But the method has the serious
disadvantage of numerical dispersion errors. Numerical dispersion errors may shift
the peak position and/or produce spurious oscillations in the numerical distribution
that frequently can cause negative values in distribution (16).

There are some approaches to eliminate or at least reduce the undesirable nvmer-
ical dispersion errors. One approach is to add the upwind term to the condensation
term (or in general term, on the advection term), so the numerical dispersion errors
are suppressed by the numerical diffusion. Usually in the numerical schemes, the
upwind effect is added to the weighting function so this kind of approach is called
the asymmetric weighting function Galerkin method or the Petrov-Galerkin method
(PGFEM) (17).

A new approach (7) was nroposed in introducing the upwind effect into the
Galerkin method in which the forward-time Taylor series expansion up to the third-
order time derivative is applied to the governing equation and the second-order time
derivative is replaced by a spatial form and the third-order term by a mixed spatial-

temporal form. By doing so, the usual Galerkin method approach can be used, so this
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method is called the Taylor-Galerkin method (TGFEM). Depending on the original
time discretization scheme, one can obtain the Euler TGFEM, the leap-frog TGFEM,
or the Crank-Nicolson TGFEM (7). The Euler TGFEM with time splitting (5,7) is
chosen here as the one of the two condensation simulation schemes. It was shown
as a method superior to the RUD and the PGFEM with high-degree weighting for
simulating a rotating cosine hill by Chock (5). For a model problem presented by
Donea (7) and Chock (5) the RUD predicted about 51% while the TGFEM pre-
dicted 105% of the peak value. It has no adjustable parameters while the RUD or
the PGFEM has one or two. It is straightforward and easy to implement. But as
with the other Galerkin methods, this method does not totally eliminate numerical
dispersion errors. Thus, this method also does not guarantee non-negativity or num-
ber conservation even with a nonlinear filter (5), so the original form with the time

splitting method is used (7).

3.2 Simulation of the Coagulation Term in the Multicomponent GDE

To represent the coagulation integrals accurately and efficiently is a demanding
problem even in the case of a single component. Due to the logarithmic transforma-
tion, the numerical value of ¢; does not coincide with that at the grid points even if
both values z; and y; as shown in Eq. [8] are at grids. The cubic spline method has
been widely used for interpolation and integration. In single component coagulation
systems, the cubic spline method has been used to calculate the coagulation terms
(18). It is applicable in principle to multidimensional cases but rarely has been applied
to cases of more than two dimensions (1). Furthermore, the computing time required
to calculate coeflicients of the third-order polynomial for each dimension is sufficiently
excessive that it does not appear to be attractive to use the multidimensional cubic
spline method to represent the multicomponent coagulation integrals.

Gaussian quadrature with a product rule is selected here to perform the multiple
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integrals. The Gaussian quadrature has been well proved and extensively tested (6,
28) and this method is already used in the multicomponent sectional method to
evaluate double integrals (34).

The one-dimensional integration can be approximated by

b m

/ w(z)n(z)de = Y wen(z). [25]

. k=1
If w(z) is the non-negative weight function with corresponding orthonormal polyno-
mials and . . are the weights represented by the specified relation of the orthonor-
mal polynomials, and z,’s are the zeros of the orthonormal polynomial satisfying,
a< 1ty <...<zZy, <b, then the above integration approximation is of Gaussian type
(6). In this work, a Jacobi polynomial is used as the orthonormal polynomial in the

transformed domain of [0,1] (33). The polynomial used here is

pn(z) = [z — gn(N,a,b)|pn-1(z) — An(N,a,b)pn-2 [26]

where a = 0 if the boundary point = 1 is not included in the grid point, and b= 0

if the boundary point # = 0 is not included in the grid point. Also

_b+1
S TIEY
1 a? — b?
==[1- 2
on =3l GN+ato-17-1 N>1 [27)
h] = 0
b — (a+1)(b+1)
T (a+b+2)2(atb+3)
(N-1)(N+a—-1)(N+b—-1)(N+a+b-1)
hy = N > 2. 2
N ON+a4b-1)2N+a+b—222N+atb-3) >2 28]
The weight function and the weights are
w(z) = 2%(1 — z)° [29]
Wy = /1 lk(x)(]- - .’If)ailfbd’l? [30]
A ;
respectively. [i(x) is
l(x) = —222) 31]

(z — zp)p(z;)
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Since the grids do not contain boundaries, both a and b are set to zero.
In the multidimensional case, a product rule of a one-dimensional scheme is usually

used (6). A two-dimensional integration product rule is shown as an example,
b d(z) m P
/ df”/ n(z,y)dy = Z Wk Zvjkn(ﬂfk,yj)- 32]

The log-linear approximation method is used for the interpolation of each compo-

nent. For example, the two-dimensional linear interpolation formula is,

A.’E,‘ - h,)(AyJ —h
Azx; Ay;

AIL’,’ - h,’ hj

e e LICH7IY

hi \ Ay; —h;
+ (AIE,)( Ay] )ln n(:c,.H,y])

(Fo) ) nn(eigs, i) &5

Inn* = ( 1) Inn(zi, ;)

where n* is the approximated functional value at (z;+k;,y;+h;) and Az; and Ay, are
the grid spacings of the i-th and j-th component directions, respectively. Though less
accurate than higher order interpolation methods, this selection represents a compro-
mise in computing time. As shown later, even the linear approximation method for

the coagulation integrals consumes the largest portion of the total computing time of

the full GDE.

3.3 Simulation of Simultaneous Condensation and Coagulation.

The operator splitting method (20) is applied for simultaneous condensation and
coagulation. In the operator splitting method, if the values of the size-composition
distribution do not change too rapidly over a time step as a result of any of the
individual processes, one can add the changes occurring as a result of the individual

processes to calculate the total change in n,

n|i+At = n‘t + Anlcondcnsation + AnIcoa.gulation- [34]
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The validity of the above relation is determined by the ratios of An|.pndensation and
An|coagulation 10 1|t both An|ondensation /1]t and An|coaguiation/n|: must be much smaller
than the order of one. If the characteristic times of condensation and coagulation
differ, the choice of the computing time step At is determined by the smaller charac-
teristic time. We have checked the validity of this method by changing the values of
At and calculating (An/n|;)’s and the results presented in Section 4.1. confirm the

validity of using the time splitting method.

4. NUMERICAL SOLUTION OF

MULTICOMPONENT AEROSOL DYNAMICS

In this section the proposed numerical scheme is applied to model problems. Three
problems are studied, pure condensation, pure coagulation, and simultaneous conden-
sation and coagulation. Systems of up to four components have been simulated and
compared to the analytical solutions. Also numerical solutions of the three-component
system are compared to the those from the sectional method. The cases studied are
summarized in Table I. The model problems having analytical solutions are employed

so as to evaluate the accuracy of the numerical scheme.

4.1 Exact Solutions for Special Cases

For reasonably complicated expressions for condensation rates and coagulation
coefficient, it is impossible to obtain analytical solutions for simultaneous processes.
To obtain the analytical solutions for simultaneous processes, linear condensation

rates and constant coagulation coefficient are assumed. These are
Ii=aim,~ i=1,...,8 [35]

B(m.u) = B, [36]
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Note that if the value of ¢; is negative the i-th component evaporates. Though sim-
plified, linear condensation rates such as in Eq. [35] represent a class of condensation
mechanisms arising from volume reaction-controlled gas-to-particle conversion (24).
The rate of coagulation is dependent on the sizes of the two particles irrespective of
the mechanism except for the early stage of coagulation of a monodisperse aerosols
in the continuous regime (24), so a constant coagulation coefficient is an idealized
simplification needed to obtain the analytical solutions.

The pure condensation process with one-third order rate is also studies to check

the performance of the numerical methods for various condensation rate formulae.

Li=a; Y (my)? i=1,...,s. [37]

i=1
These rates represent a class of condensation mechanisms arising from gas diffusion-
controlled gas-to-particle conversion, also known as the Maxwell relation (24).

An exponential initial distribution is considered:

e [38]

mio

ne(m) =

where N, and m;, are the total number concentration and the mean mass of the i-th

component in a particle, respectively, and are given by

N, = /000 .. /000 no(m)dm [39]

1 o] o)
m, = _]\To/(; /0 m;n,(m)dm. [40]

The exact solution of Eq. 7] for pure condensation processes subject to Egs. [35]

and (38] is obtained by the method of characteristics and the result is,

_m;
(m,t) :

€M — A7) [41]

10
where A, is dimensionless condensation rate, A; = £ and 7 is the dimensionless time
o

defined as, 7 = ta,, where a, is an arbitrary condensation rate, but usually Yot gl



91

The exact solution of Eq. [7] for pure condensation processes subject to Egs. [37]

and [38] is also obtained by the method of characteristics and the result is,

a(m,t) = NoJ] o expl-—(m; - zmg—[(zmj)m—-zajtﬁ/z

LT Mo _7__1 Qj j=1
[(Zs_l m3)2/3 3 _; =1 aJt]l/2 [42]
(Z =1 m1)1/3 .

The exact solution of Eq. [7] for simultaneous condensation and coagulation pro-

cesses subject to Eqgs. [35]-[36], and [38] was obtained by Gelbard and Seinfeld (11),

o ~ 1 m; _A.r
n(m,r) = T+22H ‘exp[—m_ A AT
- mj ~A, 7Tk
; 43
XZ kl T+7JII]m]oe ] [ ]

where 7 is the dimensionless time and is defined with a characteristic coagulation
time, 7 = §,N,t, and A; is the ratio of the characteristic time for coagulation to the
characteristic time for condensation of the i-th component of a particle, A; = B

The analytical solution for pure coagulation is a special case of the above equation
with all A; = 0.
The initial size-composition distribution is characterized by the initial total num-

3

ber concentration (N,) of 1 x 10%cm™3, mean particle mass (M,) of 5.2 x 10~ g, which

is equivalent to the mean mass diameter of 0.1xm if the particle density is 1 gem™3.

The coagulation rate is 1 X 10~7cm?®s~! and the condensation rate coefficients are
1x 107 's7! for Eq. [35] and 1 x 10~'%¢%/3s~1 for Eq. [37]. The dimensionless physical
parameters, m;, and A;, used in the test cases for up to four components are given
in Table II. These parameters represent a system of aerosol components of similar
initial mass concentrations and similar condensation rates.

To compare the numerical and analytical solutions quantitatively, two errors are
defined: (1) The median relative error is that value of the relative error below which

one half of the values of relative errors at all grid points and for all components lie;

and (2) The maximum relative error is the maximum value of relative error over all



grid points and for all components. These errors are defined as:

Median Relative Error

abs(n(mjk, t)lanalytical - n(m]‘k, t)lnumerical)

= Median| x 100]
n(mjka t)la.nalytica.l
J=1,...,s k=1,...,ns; [44]
Maximum Relative Error
— Max[abs(n(mjk’t)lanalytical - n(mjka t)lnumerical) % 100]
n(mjka t)lanalytical
J=1...,8 k=1,...,ns [45]

where j stands for the j-th component and ns; is the number of grids of the j-th
component. The reason for using the relative error as the measure of accuracy is that
the size-composition distribution varies by several orders of magnitude. Among the
two measures of errors, the median relative error is indicative of the overall perfor-
mance of the numerical method, while the maximum relative error tends to give the
error only at the steepest portion of the profile. Also the changes of the total number
and mass concentrations of the analytical and numerical solutions are obtained and
compared to check the conservation performance of the numerical technique.

The calculational parameters summarized in Table III are employed. In dimen-
sional terms, for example, the computational domain is [0.0046um,0.27um] for a
single-component system and [0.01um,0.22um] for a two-component system. An
equally spaced grid system is used. In most cases, 21 grids per component are em-
ployed, but for the four-component system, due to excessive computing time and
memory requirements, the number of grids per component is reduced to 13 for pure
condensation and to 7 for the cases including coagulation. The computational domain
for the four-component system including coagulation is also reduced to account for the
reduction of the number of grids. Also the computational domain of three-component
system including coagulation is reduced without the change of the number of grids to
study the effect of the number of grids. The changes of the analytical total number

and mass concentrations have been calculated in order to check the performance of
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the numerical method. A forward Euler method is used for the time integration of
the coagulation portion of the equation. Since a linear interpolation scheme is used, a
higher order time integration method is unnecessary. A five-point Gaussian quadra-
ture is employed. The choice of the number of quadrature points will be addressed
later.

The numerical results to be presented here are those after one characteristic time.
For the given conditions, the numerical values of the characteristic times are 10 s for
condensation with linear rates, 7 s for condensation with one-third order rates, and
10 s for coagulation. The dimensionless time step is chosen as 0.01 except in the cases
4-6, and 9 in which cases the dimensionless time step is chosen as 2 x 1076 due to
the Courant number restriction. The changes of the size distribution at each time
step are generally within 2%. A SUN386i and a SPARC station were used. When
comparing computing times, results from the same computer were compared.

In calculating the numerical solution, the analytical expression is used for the
inflow boundary condition except in cases 4-6, and 9 where a numerical boundary
condition is used to eliminate the effect of the boundary condition on the performance
of the numerical scheme. Also, to calculate the antidiffusive velocity in the repeated
upwind difference method, a boundary condition at the outflow boundary is needed.
Good results are obtained with a logarithmic-linear extrapolation, w;; = w?,/w;3
for a two-component system, for the lower boundary and a symmetry condition,
w; N1 = w;N-1, for the upper boundary. Usually the values at the boundary are
much smaller than the peak values. As will be shown later, numerical solutions with
this numerical boundary condition are in good agreement with those obtained with

the analytical boundary condition.

4.2 Pure Condensation

We remind the reader that if one knows a priori that only condensation is occur-
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ring, then an appropriate Lagrangian method should be selected. In this subsection
we will test the methods considered here for treating the condensation term in the
full GDE, which, as described above, are not Lagrangian methods. The numerical
tests to be presented are necessarily a severe test of the condensation portion of the
overall method.

In this subsection, several cases of condensation are considered:
1. Linear rates.

e Case 1: Pure growth of up to a four-component system.
e Case 2: Pure evaporation of a two-component system.

e Case 3: Mixed growth/evaporation of a two-component system,

one component evaporates and the other grows.
2. One-third order rates.

o Case 4: Pure growth of a two-component system.
e Case 5: Pure evaporation of a two-component system.

o Case 6: Mixed growth/evaporation of a two-component system,

one component evaporates and the other grows.

While the second to the sixth cases are simulated only for a two-component system,
they can readily be extended to a general multicomponent system. Also the effects
of the choice of the two parameters of the RUD are studied. The TGFEM is tested
for cases 1 and 4.

Figure 1 shows the initial size-composition distribution assumed for a two-component
system. Note that the distribution is dimensionless, the number distribution divided
by the total number concentration. Figure 2 shows the analytical and numerical size-
composition distributions for case 1, growth of a two-component system with linear

condensation rates by the RUD. The effect of growth is to shift the size-composition
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distribution to larger sizes according to the characteristics, in this case linear con-
densation rates, of each component. The result of the TGFEM are indistinguishable
from those by the RUD and no graphical presentation is therefore given.

Table IV gives the computing times and the numerical errors associated with case
1 for the both numerical methods. It is demonstrated that the RUD can be applied
to more than three-dimensional cases. The overall performance of the RUD can be
visualized from Figure 2 and the median relative errors are seen to be acceptable for
situations of this type (Table IV). For example, the median relative error of the first-
order upwind difference method for a single component system is 24.2% compared
to 2.79% for the RUD for the same system. There is no numerical dispersion error.
While the values of the maximum relative errors appear to be large, they are in fact
quite reasonable in view of the wide variations in magnitude of the size-composition
distribution. For example, the maximum relative error for a single component system
is 130%. However the numerical solution at that maximum relative error is 5.15x 1072
and the analytical solution is 2.24 x 10~2. This numerical error is within an acceptable
range of accuracy given the wide spread in the values in the solution. As another
example, in Figure 2, the maximum relative error which occurs at the largest particle
grid is 23%. As mentioned earlier, the maximum relative error should be considered
as the error of the solution at the point of the steepest gradient.

The overall performance of the TGFEM is also given in Table IV. Generally,
the TGFEM performs moderately better than the RUD for both the median and
maximum relative errors. During the simulation of single component dynamics by the
TGFEM, negative distributions at the larger end were observed, but these negative
numbers did not affect the overall performance of the scheme.

The changes of the total number and mass concentrations for pure condensation
with linear rates are given in Table V. Ideally, the number ratio, ratio of the total
number concentration at dimensionless time 1.0 to that at time zero, should be 1.0,
but due to the finite domain error (12), the analytical number ratios are not one.

The changes of the numerical calculation are close to those of the analytical solution
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for the both methods. Though the TGFEM generally gives higher values than the
analytical solutions, it is slightly better than the RUD. Another point is that during
the simulation time, the total mass concentration increases by about a factor of
two. Thus the system has undergone a significant change in its size-composition
distribution.

A point to note is that the computing time increases substantially with increase
of the number of components. This is due to the geometric increase of computational
requirements with n°.

Systems including evaporation with linear rates (cases 2 and 3) are also studied
by the RUD. The results of pure evaporation and mixed condensation of a two-
component system are summarized in Table VI, with the parameter values used and
the resultant errors. Again a good agreement between numerical and exact solutions
is obtained.

The effects of the choice of two parameters for the RUD, the scale factor of an-
tidiffusive velocity and the number of iterations, have been tested by increasing the
number of iterations up to two (/ORD = 3) and changing the scale factor from 0.9 to
1.10. Contrary to Smolarkiewicz’s reports (26, 27), variation of these two parameters
1s found not to significantly enhance the performance of the numerical scheme consis-
tently. By increasing JORD from 2 to 3, the accuracy of single and three-component
calculations slightly increases but the accuracy of two- and four-component calcu-
lations slightly decreases. The accuracy of the four-component calculation slightly
increases with decrease of Sc from 1 to 0.9 while the accuracy of other component
calculations slightly increased with increase of Sc from 1 to 1.1. Thus, the numerical
results for the RUD with only one iteration and with the original antidiffusion rates
are already greatly enhanced over those for the first-order upwind difference method
and further iteration or/and ‘ change of the scale factor does not significantly improve
the numerical results. One possible explanation for this insensitivity of the numer-
ical results to the parameters after one iteration is that since the size-composition

distribution changes by several orders of magnitude, the antidiffused amount at the
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first iteration step successfully subtracts the diffused amount, while Smolarkiewicz’s
examples exhibited small relative changes of the solution (26, 27).

Furthermore, the scale factor does not change the basic algorithm of the numerical
scheme, Thus, the effects of the two parameters will not be studied further for pure
condensation with one-third order rates.

Two-component aerosol dynamics with one-third order rates (diffusion-controlled
condensation) is also studied (cases 4-6, pure growth, pure evaporation, and mixed
growth/evaporation) to compare the two methods to a range of rate formulae. One
characteristic of the one-third order rates is that the variation of the condensation
rates with respect to the particle sizes is much larger than that of the linear rates.
The analytical and numerical solutions by the RUD for pure condensation (case 4)
are shown in Figures 3 and 4, respectively. Since the condensation rates of small par-
ticles are much larger than those of large particles, the size-composition distribution
tends to sharpen, and the both the analytical and the numerical solutions clearly
show this trend. The analytical and the numerical solutions for pure evaporation of a
two-component aerosol system are shown in Figures 5 and 6, respectively. The effect
of evaporation is to shift the size-composition distribution to smaller sizes according
to the characteristics of each component. The effect of mixed growth/evaporation is
growth of the condensing component and shrinkage of the evaporating component,
and the result is shown in Figures 7 and 8 for the analytical and the numerical solu-
tions, respectively. The simulation results, computing times and errors, are given in
Table VII. Note that the required computing time increases drastically since the time
step is very small compared to that of case 1 due to the Courant number constraint
which arises from the large variation of condensation rates. The numerical solutions
are generally in fair agreement with the analytical solutions, though there are evident
signs of numerical diffusion errors, spreading of the distribution and smearing peak
values out.

The numerical diffusion errors develop noticeably because the size-composition

distribution is very steep. The numerical simulation by the TGFEM produced nega-
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tive distribution values, and the number of grids having the negative values increased
with time with the scheme becoming unstable about the dimensionless time 0.07.
Tsang and Rao (29) reported similar instability of the linear Galerkin method for
single component aerosol condensation. Numerical dispersion errors are the cause of
this instability. If the TGFEM with a nonlinear filter, for example Forester’s filter, is

used (5), there is still no guarantee of the non-negativity and therefore of stability.

4.3 Pure Coagulation

In this subsection, numerical results for pure coagulation (case 7) are studied.
Since the coagulation process is the most time consuming part of the total solution,
efforts are made to determine optimal computational parameters for this portion of
the simulation.

In Figure 9, numerical and analytical solutions for a two-component coagulation
system are shown. Good agreement between the numerical solutions and the ana-
lytical solutions was obtained. Contrary to the case of pure condensation, the size-
composition distribution in Figure 9 shows only the shift of the peak to the largest
particle size domain. This can be explained by the characteristics of coagulation.
Table VIII also shows excellent performance of the numerical technique.

In Table IX, number and mass concentrations during coagulation are shown. A de-
crease of about 1/3 of the particles occurs during the coagulation process. Generally
the total mass concentrations are well conserved during the simulation except when
the number of grids is small. Note that for a three-component system, the agreement
between the analytical and the numerical ratio is better than those for other sys-
tems. This is due to the decrease of the computational domain for a three-component
system, which is equivalent to increasing the number of grids.

Even with the use of the lower order accuracy schemes to minimize computing

time, the computing time is still considerable (see Table VIII). By comparing the
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computing time required for calculating pure condeusation and pure coagulation (Ta-
bles IV and VIII), one can see that the computing time for pure coagulation far
exceeds that for pure condensation and the differences increase with the number of
components. The integration of the first term on the RHS of Eq. [7] is mainly re-
sponsible for these effects on the computing time. Integration of that term requires
linear interpolation of a size-composition distribution at every Gaussian quadrature
point for every grid point. Thus both the interpolation and the integration require
substantial operations and consequently long computing time. Also both operations
increase geometrically with the number of components For an s component system
with n grids for each component, using a ¢ point product type Gaussian quadrature
and the linear interpolation, (n® x ¢°+¢°) point calculations and (2x s xn*x¢*+sx¢°)
interpolations are required for each time step.

Several parameters are studied to find the optimal conditions for computing time
and accuracy. Increasing the number of grids per component from 21 to 31 for two-
and three-component cases gives a slight increase in accuracy but not enough to justify
the subsequent increase of the computing time. The number of Gaussian quadrature
points was also studied. A five-point Gaussian quadrature was found to represent a
good compromise between accuracy and computing time; a three-point scheme gave
results with poor accuracy while a seven-point scheme took too much computing time.
Decreasing the time integration step by half produced a slight increase of accuracy

for all cases but not sufficient to justify the computing time increase.

4.4 Simultaneous Condensation and Coagulation

We now address simultaneous condensation and coagulation processes (cases 8
and 9). Systems in which the changes of the size-composition distribution from both
condensation and coagulation processes are of similar magnitude are studied here.

Systems in which the magnitudes of these two processes are different are discussed in
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the next section.

Figure 10 presents the numerical and analytical results of a two-component con-
densation and coagulation system with linear condensation rates (case 8). Table X
presents the computing time and the errors. The numerical solutions are in good
agreement with the analytical solutions. Table XI gives the total number and mass
concentration ratios. During simultaneous coagulation and condensation, neither
total number nor total mass concentration is conserved as shown in Table XI. Com-
paring Figures 2, 9, and 10, we see that the size-composition distribution is primarily
determined by condensation, but from Tables IV, VIII, and X, the computing time
is dominated by the calculation of coagulation.

The effects of the choice of the two parameters used in the repeated upwind dif-
ference method were investigated since the size-composition distribution is primarily
affected by condensation. As in the case of pure condensation, changing /JORD did
not affect the accuracy noticeably. Decreasing the values of Sc from 1 to 0.9 gave
slight increased accuracy for all cases. Again, these two parameters have no apparent
effect on the performance of the numerical scheme.

Figure 11 presents the numerical solution of a two-component simultaneous con-
densation and coagulation with one-third order rates (case 9). For this case, no
analytical solution is available. The effect of coagulation is to move particles to larger

sizes. Thus, the distribution has lower peak value than that of pure condensation.

5. DISCUSSION

The most significant attribute of the direct numerical solution of the multicompo-
nent aerosol GDE is that for particles of the same size, the composition distribution
is determined directly. The physical significance of this advantage can be illustrated

by a simple example.
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Consider a two-component aerosol-gas system, with component A condensible
and component B non condensible. There are N particles of the same size but of two
different compositions. The gas phase is supersaturated with A and only condensation
occurs. After some time, there should be particles of two different sizes corresponding
to growth of the two sets of initial particles. Say, for example, that there are initially
equal numbers of monodisperse particles at dimensionless total mass of 0.930 with
compositions of 88.1 % and 11.9 % of A, respectively. The dimensionless condensation
rate of A is 2 and that of B is 0. At dimensionless time 1, the particles are of two
different dimensionless total mass sizes, 6.161 and 1.638, respectively. This example
illustrates the importance of the composition distribution effect on the evolution of
the size-composition distribution. Heintzenberg and Covert (15) also presented some
examples for atmospheric aerosol particles that demonstrate the importance of the
composition distribution in one size range.

An important difference between the method developed here and the sectional
method is that the latter calculates moments within the sections, usually the mass
moment, while the direct method calculates the size-composition distribution itself.
Therefore, the difference between the direct method and the sectional method is also
reflected in the nature of the numerical results, in addition to the accuracy or the
computing time, since the methods compute different quantities.

Integration of the size-composition distribution results in the mass concentration
as in the sectional method. But during the integration, information about the compo-
sition distribution is lost. Thus, even if the two methods present comparable results
with integration, it does not mean that the additional cost of computing time cannot
be justified since one may want to know not only the mass concentration but also the
composition distribution. Including sources and removal processes in the proposed
numerical scheme is straightforward. This is done by including these processes with
the coagulation calculation.

The effect of the numerical boundary condition has been studied by comparing

numerical solutions obtained with the analytical boundary condition to those with the
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numerical boundary condition for pure condensation with linear rates and the RUD.
As shown in Table XII, the two solutions exhibit almost no difference. Therefore, the
use of the chosen numerical boundary conditions can be justified for the simulation
of cases 4-6 and 9 (cases with one-third order condensation rates).

In Table XIII, a comparison of the computing times of direct solutions and sec-
tional solutions is given. The computing times of the direct solution are less than
those of sectional solutions for the single component system. But the computing times
of the direct solution increase with the number of components and are about a factor
of 10 and a factor of 1000 longer than those of sectional solutions for two- and three-
component systems, respectively. For many real systems of two-component aerosols,
considering the quality of the solution obtained, 20 times longer computing time is
not considered as a major disadvantage. The direct solution of the three-component
GDE is the order of 100 times longer than the sectional method. The ratio of the
computing time of the direct solution method to that of the moving grid sectional
method for pure condensation is 473. Note that in the moving grid sectional method
the computing time is linearly related to the number of grids.

The ratio of computing time of the direct method to that of the fixed grid sec-
tional method for pure coagulation is much larger than that for the cases of conden-
sation processes, namely for the example considered here, 1168. In both the sectional
method and direct method, simulation of the coagulation process is the most time
consuming part as already shown in Table XIII. Double integrals must be evaluated
in the sectional method regardless of the number of components while triple integrals
must be evaluated in the direct method for the three-component GDE (n integrals for
an n component system). Note that the computing time increases about five times
for a doubling of the number of grids in the sectional method. With ten sections,
one can simplify the double integrals by imposing the so-called geometric constraint,
mijs1 < 2m;; (14). But with 21 sections, the geometric constraint is no longer
applicable.

For the cases of simultaneous condensation and coagulation, the computing times
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of both methods are determined, in principle, by both the coagulation and the con-
densation processes as shown in Table X, but the ratio of computing time for the
coagulation portion over that of the condensation portion is about 45. Thus the
use of the linear interpolation method for the coagulation simulation is basically a
compromise between accuracy and computing time.

With respect to the required computer memory for an s-component GDE with n
grids per each component, n® functional values represent the size distribution, while in
the sectional method, only s x n functional values represent the moment distribution.

One interesting problem is whether the integrated results of the direct solution
and those of the sectional solution are comparable. For a single component case, it is
expected that the two methods produce comparable results and that is the case. For a
two-component case, the pure condensation result is shown in Figure 12; both results
are accurate and comparable. This similarity is due to the system itself. Since the
chosen system has similar condensation rates for each component and similar initial
component mass, the mean mass fractions represent well the real situations and there
is no severe difference between results as the example given before in which the mean
mass fractions misrepresented the real situation. Also, still one can see the difference
of mass concentrations just after the peak.

For the pure coagulation case, the two results are almost equivalent. Gelbard
(private communication) suggested that since the coagulation process is composition
independent (with composition independent coagulation coefficients), the two meth-
ods may produce similar results.

The computational demands of the direct solution may not always be so severe.
In many cases, the time variation of only one species is of special interest. One
notable example is the dynamics of water in a nuclear reactor containment system
where the condensation rate of water is much larger than that of other species. In
such cases one can specify a large number of grids for the component of interest
while maintaining a rather smaller number of grids for other components. Table

X1V illustrates one example in such a case, where in a two-component system, one
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component condenses nine times faster than the other while coagulation proceeds
simultaneously. By reducing the number of grids of the less condensible component
from 21 to 7, the computing time decreased from 546.2 to 171.0 seconds with only a
slight decrease in accuracy.

In some cases, A;, the ratio of the characteristic time for coagulation to that
for condensation of the i-th component may be very large. In such a case, one can
simulate several condensation steps over one coagulation step. One such example is
presented in Table XV. Two condensation steps were calculated per one coagulation
step and the results show the computing time is reduced to about half of the origi-
nal calculation with modest loss of accuracy. Also this example illustrates well the
difficulty in applying the time splitting method to simultaneous processes. Since the
characteristic time of condensation is smaller than that of coagulation by a factor
of about 5.5, using the same time step as when the characteristic times for the two
rrocesses are equal gives erroneous results (see the two-component results in Table
VI and Table IX). Thus, the time step should be reduced in accord with the smallest

characteristic time.

6. CONCLUSIONS

A numerical scheme is developed to simulate the evolution of the number size-
composition distribution of a multicomponent aerosol system with special attention
to simultaneous condensation and coagulation. The scheme does not adopt any as-
sumptions on the size-composition distribution. Smolarkiewicz’s repeated upwind
difference method and the Taylor-Galerkin method are used to simulate the conden-
sation process, a product type Gaussian quadrature with linear interpolation method
is used to simulate the coagulation process, and the operator splitting method is used

to combine the two methods.
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Table 1. Cases Studied in Multicomponent Aerosol Dynamics

Case Process(es) Rate form No. Comp.
1 Growth I; = a;m; 1-4
2 Evaporation I, = a;m; 2
3 Grow./Evap. I, = a;m; 2
4 Growth I = (35, m;)/3 2
5 Evaporation I = oi(Tioy my)'P 2
6 Grow./Evap. I; = oi(T5, m;)1/3 2
7 Coagulation B =0, 1-4
8 Condensation I, = a;m; 1-4
and
Coagulation B =23
9! Condensation  I; = oy( 3=, m;)/3 2
and
Coagulation B =5

! No analytical solution is available.
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Table II. Parameters for the Simulations

Case Number of mio /M, Al
Components

1,8 1 1.0 1.0

1,4,8,9 2 0.5, 0.5 09,1.1

1,8 3 0.33, 0.33, 0.34 0.9,1.0,1.1

1,8 4 0.25, 0.25, 0.25, 0.25 0.9,08,1.3,1.0

! Case 1 (pure condensation, linear rates): A; = &
o
Case 4 (pure condensation, one-third order rates): A; = 2-.
o

Case 7 (linear condensation rates, coagulation): A; = z%-.
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Table III. Summary of Calculational Parameters Used !

Case Number of Number of Grids per Computational
Components Each Components domain ()

1, 7,8 1 21 1x1074,2 x 10!
1-9 2 21 5x1074,5 x 10°
1 32 21 5x 107%,3 x 10°
7,8 33 21 5x1073,3 x 10°
1 42 13 5x1074,2 x 10°
7,8 43 7 5x1073,2 x 10°

! Dimensionless time step At is 0.01 for all cases except cases 4, 5, and

8 for which At is 2 x 1073,

% For the cases of pure condensation/evaporation.

3 For the cases including coagulation.
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Table IV. Summary of Condensation Simulations (Case 1)

Number of Computing Median Relative Maximum Relative
Components Time (s)! Error (%)? Error (%)3

The Repeated Upwind Difference Method

1 0.6 2.79 130
2 22.9 5.36 23.0
3 1341 4.55 36.9
4 9462 15.1 28.7

The Taylor-Galerkin Method

1 0.8 0.39 50.2
2 36.6 3.14 12.2
3 1827 3.959 11.4
4 10475 12.1 22.6

1 SUN SPARC station.

2 Median Relative Error (%) = median[abs(n(m,t)L:ln(‘::zyttl)ial_:l(:n’tl)lnm"'“‘) x 100]
st} lanalytica

3 Maximum Rela.tive Erl‘Ol‘ (%) — Max[abs(n(myt)lanalvtical—n(m‘t)'numertcal) X 100]

n(m’t)lunalytical
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Table V. Total Number! and Mass? Concentration Ratios

for Pure Condensation (Case 1)

Number of Analytical Numerical Numerical

Components  Ratio Ratio Ratio
(RUD?®) (TGFEM?)

1 0.999 0.982 1.001
Number 2 0.949 0.903 0.953
3 0.894 0.835 0.831
4 0.790 0.682 0.809
1 2.70 2.72 2.75
Mass 2 2.33 2.11 2.34
3 2.64 1.89 2.14
4 1.79 1.42 1.80

! Ratio of total number concentration at 7 = 1 to that at 7 =0 ;

m? m? m? m?
/ / n(m,r:l)dm// / n(m,7 = 0)dm
mg me mg me

2 Ratio of total mass concentration at 7 = 1 to that at 7 =0 ;
B

s mlﬂ ml S m‘f mf
Z/ m;n(m,r = 1)dm/ Z/ / m;n(m, 7 = 0)dm
j=17mt j=17m% me

x
mg

3 RUD: The repeated upwind difference method.
* TGFEM: The Taylor-Galerkin method.



Table VI. Summary of Growth/Evaporation Simulations

(Cases 2 and 3, Two-Component)
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Dimensionless Computing Median Maximum
Process Rates, A; Time (s)* Relative Relative
Error(%)? Error (%)?
Pure Evapora- -0.1,-0.1 27.2 1.37 92.3
tion (case 2)
Mixed -0.1, 1.1 27.5 2.26 43.9
(case 3)
1 SUN 386i.
2 Median Relative Error (%) = rnedian[Abs(n(m’t)l‘:z"(‘;;”‘t‘)cl“'TW‘?'"“"‘"“"” x 100]
1 /lanalytical
3 Maximum Relative Error (%) — Max[abs(n(mrt)lanalvtical_n(mvt)|numer:cal) X 100]

n(mvt)lanalyt!cal
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Table VII. Summary of Condensation Simulations

(Cases 4-6, Two-Component)

Dimensionless Computing Median Maximum
Process Rates, A; Time (s)! Relative Relative

Error(%)? Error (%)

Pure 0.9,1.1 8450 92 100
Condensa-
tion (case 4)

Pure Evapora- -0.9,-1.1 9640 71 147
tion (case 5)

Mixed -0.9, 1.1 9100 93 393
(case 6)

1 SUN 386i.

? Median Relative Error (%) = median[abs(n(m't)l‘;"(‘;:"t')cl"'_?(:,n’?ln"m"'m') x 100]
st)lanalytica

3 Maximum Relative Error (%) = Max[abs(n(m't)l‘:‘(‘;f;"ﬁ“'_?(‘fn’f)l""m"'m') x 100]
1 anaiyttca
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Table VIII. Summary of Coagulation Simulations (Case 7)

Number of Computing Median Relative Maxifnum Relative
Components Time (s)* Error(%)? Error (%)?
1 4.4 8.17 95.9
2 408 4.81 16.1
3 40541 1.95 25.2
4 59908 8.19 67.4
1 SUN 386i.

2 Median Relative Error (%) = median[22(2(m:d) I‘:l"(ﬁ”'t"—)“l‘"_?(:n’? lnumericat) ¢ 100]
] anaiytica

3 Maximum Relative Error (%) = Max[abs(n(m't)l‘:‘(‘;'l"'t'ﬁ“’_:l(m’j)l""'""““) x 100]
»t)lanalytica
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Table IX. Total Number! and Mass? Concentration Ratios

for Pure Coagulation (Case 7)

Number of Analytical Numerical

Components Ratio Ratio

1 0.667 0.595
Number 2 0.666 0.622

3 0.672 0.676

4 0.674 0.527

1 1.00 0.972
Mass 2 0.988 0.910

3 0.989 0.988

4 0.976 0.810

! Ratio of total number concentration at 7 = 1 to that at 7 =0 ;

m? m? m? m?
/ / n(m,r=1)dm// / n(m,7 = 0)dm
mg me mg me

2 Ratio of total mass concentration at 7 = 1 to that at 7 =0 ;

hd m'l3 m? S mf m?
Z/ / m;n(m, 7 = 1)dm/ Z/ . / m;n(m,7 = 0)dm
j=1 mg m¢ j=1 m§ mg



117

Table X. Summary of Simultaneous Condensation

and Coagulation Simulations (Case 8)

Number of Computing Median Relative Maximum Relative
Components Time (s)’ Error(%)? Error (%)3
1 4.9 2.62 27.8
2 431 3.34 34.6
3 43035 1.54 34.2
4 60217 24.0 66.6
1 SUN 386i.

2 Median Relative Error (%) = median[abs(n(m’t)l‘;"(“r;”';ﬁ“'—T(r,n’?l"“’"“““’) x 100]
st}lanalytica

3 MaXimum Relative Error (%) — Max[Abs(n(mvt)lanalyhcal—n(mvt)lnumencal) X 100]

"(mvt)lanalyncal
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Table XI. Total Number! and Mass? Concentration Ratios

for Simultaneous Condensation and Coagulation (Case 8)

Number of Analytical Numerical

Components Ratio Ratio

1 0.662 0.597
Number 2 0.566 0.542

3 0.514 0.521

4 0.432 0.357

1 2.60 2.30
Mass 2 1.71 1.55

3 141 1.40

4 1.07 0.829

! Ratio of total number concentration at 7 = 1 to that at 7 =0 ;

mf mf mf mf
/ / n(m,r = l)dm// / n(m,r = 0)dm
m§ me m§ mg

2 Ratio of total mass concentration at 7 = 1 to that at 7 =0 :

s m? m? 5 my m?
Z/ / m;n(m, 7 = 1)dm/ E/ . / m;n(m,7 = 0)dm
1=1 mi. me 7=1 m? mg
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Table XII. The Effect of Numerical Boundary Condition

on the Numerical Solution (Two-Component System)

Case Number Mass Median Relative Maximum Relative
Ratio? Ratio® Error(%)* Error (%)*
1 0.901 2.19 3.24 32.4
(0.901) (2.11) (8.00) (23.0)
7 0.621 0.909 4.79 16.1
(0.622) (0.910) (4.81) (16.1)
8 0.541 1.55 3.22 34.6
(0.542) (1.55) (3.34) (34.6)

! Numbers in parenthesis are values using the analytical boundary condition.

2 Ratio of total number concentration at 7 to that at 7 =0 ;

mf  mb m8  pmb
/ / n(m,T)dm// / n(m,7 = 0)dm
m§ m¢ my mg

3 Ratio of total mass concentration at 7 to that at 7 =0 ;

s mf mf s mf mf
Z/ / m;n(m, 7)dm/ Z/ / mjn(m,7 = 0)dm
j:] mla m? j:l m? msa

4 Median Relative Error (%) — lllediall[abs(n(mft)lanalytzcal—n(mvt)lnumcrical) % 100]

n(m't)lanalyncal

® Maximum Relative Error (%) = Max[abs(n(m’”";’}‘:f;Bi"'_:l(tm’f)l""'“”‘“’) x 100]
st)lanalytica
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Table XIII. Comparison of Computing Times

between the Direct Solution and the Sectional Solution

Process Numerical Number Computing Computing
Number of Method  of Time(s)? Time Ratio
Grids!

Components 1 2 3 1 2 3
Condensation/ MSM? 10 03 1.0 0.9 0.50 0.83 047
evaporation MSM 21 0.6 1.2 1.9 1 1 1
only (case 1) DM?* 21 0.4 242 899 0.67 202 473
Coagulation FSM?® 10 2.5 4.8 5.8 0.16 0.14 0.17
only FSM 21 15.3 33.3  34.7 1 1 1
(case 7) DM 21 44 408 40541 0.29 123 1168
Simultaneous FSM 10 24 49 54 0.16 0.16 0.16
condensation FSM 21 15.1 327 336 1 1 1
and DM 21 4.9 431 43035 0.31 13.2 1281

coagulation
(case 8)

! Direct method: number of grids per each component.

Sectional method: total number of sections.

2 SUN 386i.

3 Moving grid sectional method.

4 Direct Solution.

® Fixed grid sectional method.
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Table XIV. A Case of Reducing Computing Time:
Two-Component Condensation

with Different Condensation Rates! (Case 1)

Compo- A; Number Computing Median Relative Maximum Relative

" nents of Grids Time(s)? Error(%)3 Error (%)*

o o0

21 171.0 9.42 32.1
7

S =

! With 21 grids per component,
Computing time : 546.2 seconds
Median relative error : 5.79 %
Maximum relative error : 31.3 %
2 SUN 386:i.
3 Median Relative Error (%) = median[abs("(m‘t)“’"“"'"‘“'_"(m’t)l""’"m“") x 100]

"(mvt)lanalyucal

4 Maximum Relative Error (%) = Max[abs("(m’t)l‘;"(‘:f't‘)cl"'—?(tm‘?l"""‘""‘”) x 100]
st)lanalytica
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Table XV. A Case of Reducing Computing Time:
Two-Component Condensation and Coagulation

with Fast Condensation! (Case 8)

Compo- A; Number Computing Median Relative Maximum Relative

nents of Grids Time(s)? Error(%)3 Error (%)*
1 5.0 21 287.8 38.8 363
2 6.0 21

! Two condensation steps calculation per coagulation step calculation.
With usual simulation of one condensation step calculation per one coagulation
step calculation,
Computing time : 554 seconds
Median relative error : 39.2 %
Maximum relative error : 283 %

2 SUN 386i.

3 Median Relative Error (%) = median |22 |‘;"(:f;‘ﬁ:;:::tf’:;?I’"‘"‘"‘“‘) x 100]

4 Maximum Relative Error (%) = Max[abs(n(m’t)l‘:‘(‘;l"“t‘ﬁ“‘_:‘(tm’t‘)l"“"‘e””') x 100]
i) anaiytica
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FIGURE CAPTIONS

Figure 1. Initial exponential dimensionless number distribution of a two-component
aerosol system.

Figure 2. Analytical solution (solid line) and numerical solution (broken line)
of dimensionless number distribution of a two-component aerosol system with pure
growth following linear rates at dimensionless time 1.

Figure 3. Analytical solution of dimensionless number distribution of a two-
component aerosol system with pure growth following one-third order rates at di-
mensionless time 1.

Figure 4. Numerical solution of dimensionless number distribution of a two-
component aerosol system with pure growth following one-third order rates at di-
mensionless time 1.

Figure 5. Analytical solution of dimensionless number distribution of a two-
component aerosol system with pure evaporation following one-third order rates at
dimensionless time 1.

Figure 6. Numerical solution of dimensionless number distribution of a two-
component aerosol system with pure evaporation following one-third order rates at
dimensionless time 1.

Figure 7. Analytical solution of dimensionless number distribution of a two-
component aerosol system with mixed growth/evaporation following one-third order
rates at dimensionless time 1.

Figure 8. Numerical solution of dimensionless number distribution of a two-
component aerosol system with mixed growth/evaporation following one-third order
rates at dimensionless time 1.

Figure 9. Analytical solution (solid line) and numerical solution (broken line)
of dimensionless number distribution of a two-component aerosol system with pure

coagulation at dimensionless time 1. (Hidden lines are removed).
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Figure 10 Analytical solution (solid line) and numerical solution (broken line) of
dimensionless number distribution of a two-component aerosol system with simulta-
neous condensation and coagulation at dimensionless time 1.

Figure 11. Numerical solution of dimensionless number distribution of a two-
component aerosol system with simultaneous condensation and coagulation following
one-third order condensation rates at dimensionless time 1.

Figure 12. Comparison of direct solution, sectional solution, and analytical so-
lution of a two-component aerosol system with pure condensation at dimensionless

time 1.
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Chapter IV

USE OF
THE TANDEM DIFFERENTIAL MOBILITY ANALYZER
TO EVALUATE THE DEGREE OF MIXING
OF AEROSOL PARTICLES
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1. INTRODUCTION

Composition and/or property variations among aerosol particles of the same size
can lead to different dynamical behavior. Junge (1963) introduced the concept of
mized particles, and Winkler (1973) described the two extremes of internal and ex-
ternal mixing. In an internally mized aerosol all particles consist of the same relative
mixture of substances, while in an externally mized aerosol all particles consist in-
dividually of pure compounds. (See, for example, Heintzenberg and Covert, 1990).
As an example, Figure 1 shows the effect of the degree of particle mixing on the dy-
namics of hygroscopic and non-hygroscopic particles of the same size. If the particles
are internally mixed, all particles of the same size will grow equally when exposed to
water vapor, while for an external mixture the non-hygroscopic and the hygroscopic
particles exhibit different growth behavior. Another example is that with a refractive
index difference among aerosol particles the sizes of equally sized light-absorbing and
non-absorbing particles as inferred from an optical particle counter may be different
(Covert et al., 1990).

The Tandem Differential Mobility Analyzer (TDMA), developed by Liu et al.
(1978), (also called the aerosol mobility chromatograph) is an instrument consisting
of two differential mobility analyzers (DMAs) separated by an aerosol conditioner.
The essential feature of the TDMA is depicted in Figure 2. The size and/or the
concentration of monodisperse particles screened by the first DMA (DMAL) from
polydisperse feed particles can be changed in the conditioner and then measured by
the second DMA (DMAZ2) and an aerosol concentration sensor. The TDMA is an
ideal system to investigate the degree of mixedness of particles. Liu et al. (1978) and
later McMurry and Stolzenburg (1989) demonstrated that particles of the same size
can be separated according to their hygroscopicity difference. The TDMA has also
been used to measure the evaporation rates of aerosol particles (Rader and McMurry,
1987), vapor pressure and surface free energy (Tao and McMurry, 1989), and in other
applications in which aerosol size change can be induced (Stolzenburg and McMurry,

1988).
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Rader and McMurry (1986) developed a theoretical treatment of the TDMA sys-
tem, which Stolzenburg and McMurry (1988) extended to include cases of more than
one peak in the distribution and a spectrum of growth rates. In that treatment, the
DMA1 was analyzed by the number-mobility distribution and the transfer function
concept developed by Knutson and Whitby (1975) with approximations to describe
the DMAL1 exit distribution. To simulate the behavior of the particles in the condi-
tioner, a least squares fitting procedure with three parameters for each distribution
peak at the conditioner exit was proposed, one parameter for the particle wall loss
and two others to describe the shape change of a peak inside the conditioner. If there
are multiple peaks, the relative concentrations of each peak and the size changes can
be calculated. A limitation of the geometric growth model is that it does not model
the fundamental aerosol dynamic processes occurring in the conditioner.

An expanded approach to analyze the TDMA system is proposed here in which
aerosol behavior in the conditioner is simulated by a recently developed routine for
solving the multicomponent aerosol general dynamic equation (GDE) directly (Kim
and Seinfeld, 1991). The GDE governing the number-composition distribution func-

tion, n(m,t), is

QT% + g b%g[li(m’ t)n(m, t)]

= %/()ml .../Om B(u,m — u)n(m — u,t)n(u,t)du

— n(m,t) /000 . ..'/:o B(u, m)n(u,t)du
+ R[m, t,n(m,t)] + S[m, t,n(m,t)] (1)

where m; is the mass of the i-th component in a particle, and m is a vector of
compositions (m, ..., m,), where s is the total number of components. n(m,t)dm is
the number of particles having mass of component ¢, in the range [m;, m;+dm;] at time
t. I; is the time rate change of the mass concentration of the :-th component from
condensation/evaporation processes. 3(u,m) = B(m,u) is the binary coagulation

coefficient. R and S are removal and source terms, respectively.
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In the numerical routine cited above no assumptions on the nature of the distri-
bution are made, therefore, it is possible to simulate aerosol dynamics for arbitrarily
mixed particles. Processes and mechanisms treated in the numerical routine are
shown in Table 1.

The TDMA analysis approach is presented in the next section. Then, as an
example, the experimental data of Liu et al. (1978) are simulated to demonstrate the

approach.

2. TDMA ANALYSIS

The Differential Mobility Analyzer (DMA) (Knutson and Whitby, 1975) can select
particles of a very narrow size range (practically monodisperse) from a polydisperse
aerosol sample. Several inversion procedures to interpret DMA measurements have
been proposed (Liu and Pui, 1974; Knutson, 1976; Hoppel, 1978; Haaf, 1980; Alofs
and Balakumar, 1982; Kousaka et al., 1985; Wolfenbarger and Seinfeld, 1990; Reischl,
1991).

The behavior of a DMA is described by a so-called transfer function, the proba-
bility that a particle will leave via the sampling slit, which may be expressed in the

form (Knutson and Whitby, 1975),

1 1 2r LV 1

Q= (;) max|0, min(ga, gs, [§(qa +¢s) — lm—)zp +5(gm + g Q)

where Z, and AZ, are the mean mobility and half-width of the transfer function,

_ Gt m, o 2

»= gLy ME) e
(qa + QS) R,

= W2 T9s) ) T2 3

By =TV ln(Rl) (3)

L is the length of the DMA, V is the applied rod voltage, ¢c, ¢m, ¢s, and ¢, are the
clean air, main outlet, sampling, and aerosol flow rates, respectively, and R; and R,

are the inner radius of the DMA housing and the outer radius of the DMA center
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rod, respectively. The relation between mobility, Z,, and diameter of a particle with

¢ elementary charges, D,;, is

_ iCqe
|2 37rﬂDpi (4)
Cs =1+ Kn[1.37 + 0.4exp(—1.1/Kn)] (5)

where Kn = 2)A/D,;, Cy is the slip correction factor, e is the charge of an electron,
1.6021 x 10719C, u is the gas viscosity, and ) is the mean free path of the suspending
gas. For a given applied voltage the mobility is single valued and fixed but the
corresponding particle diameters are not. One can define a probability, p(D,;), of a
particle having ¢ elementary charges with the diameter D,;.

If the DMAL inlet number distribution is d—l‘ﬂv—‘?—— or no(In D), then the total number

concentration, Ny, of the DMA1 output for a fixed voltage, V, can be represented by

Ga1 dN )

N = / )0 dln D, ¢

1 ooqsl?;” ) g, 4 o)

For a sufficiently narrow transfer function, both p(D,;) and dlnD 1o |Dp=D,. can be ap-
proximated as constants, then

qal -

& S (D) Dm]/ udin D, (7)

slzl

By changing the integration variable in Eq. (8),

& dDy/ Dy )
/_lenD / 7z o

From Eq. (5),

dDpi/Dpi, 1 Cq.  d(CafDyi)
dZ, /Z,,l) B (D,,i Dpi)/ ( dD,; )
o, (9)

(

Thus, Eq. (7) becomes

qal dN Ql
S [(D Yol 7 0 (10)

q511 =1 0

ﬂﬂ— is obtained,

In the conventional DMA analysis, the entire number distribution, D,

so the accuracy of the constant approximations can be evaluated. Also the values of
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dNo

Tiop— are obtained and thus the multiple charging effect can be assessed. Since,
p

however, in the DMA1 analysis, ﬁ: is not known, the singly charged particle sizes
can be calculated but the total number concentration and the relative contribution
of the multiple charging effect are not known.

The effect of multiple charging and the accuracy of the approximation that the
DMAL inlet distribution is constant over a narrow transfer function are important
issues, both of which can be addressed if the initial distribution is known. For some
cases, however, this is not possible. As will be shown in Section 3, the effect of
multiple charging for small particles (usually less than 0.1m) can be negligible when
Dy, is on the right side of a unimodal peak. If the particles screened by the DMATL lie
near the peak of the distribution, the constant distribution assumption is a reasonable
approximation.

The distribution at the conditioner exit is determined by the DMA2 and the
subsequent aerosol concentration sensor. Following the same approach used in the
DMAI1 analysis, let the DMAZ2 inlet or the conditioner outlet number distribution be

di}va,, or n,(In D,), then the total number concentration, N;, of the DMA2 output

aerosol particles for a voltage, V, is

Ga2 N
i d 11
N, = /wqﬂzzlp pﬂgdlD InD, 11)
Then Eq. (12) finally becomes
qa2 / ¢ .
E 5 2% dz,. 12
42 = 1[”( #) 7T D,,,] Zp (12)

Now, both the inlet and outlet conditions between the two DMAs are fully de-
scribed except for the total number concentration of the conditioner inlet particles
and the effect of multiple charging. The differences in size and/or concentration be-
tween the two distributions depend on the dynamic process(es) in the conditioner.
The multicomponent aerosol GDE (Kim and Seinfeld, 1991) will be used to simulate
the process(es) occurring in the conditioner.

As inherent feature of the TDMA is that the aerosol number concentration at the

conditioner inlet is generally not known. One cannot use the number concentration at
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the conditioner exit obtained by the DMAZ2 as that at the conditioner inlet since non-
number conserving process(es), such as coagulation, deposition, or nucleation, may
be occurring inside the conditioner. Since there may be particle losses that cannot

be modeled, an equipment specific deposition parameter will be retained.

3. APPLICATION OF THE TDMA TO DETERMINE AEROSOL MIXEDNESS

The TDMA application on which we focus here is to evaluate the degree of mixed-
ness of an aerosol sample. Liu et al. (1978) demonstrated that the TDMA can
separate particles of the same size but different composition according to their hygro-
scopicity differences. Aqueous solution droplets of K,SO4 and H,SO, were dried at
a relative humidity (R.H.) of about 8%, introduced into DMA1, and then humidified
to about 53% R.H. in the conditioner. At this relative humidity, the HySO,4 solution
particles grew while those of K;SO4 solution did not. The post-condensation size
distribution was measured by the DMA2. The measured number distributions are
shown in Figure 3. The solid curve corresponds to the case of no humidification be-
tween the two DMAs and the broken curve is that of humidification. Therefore, the
solid curve represents the screened narrow size distribution of the DM A1 modified by
the attenuation due to particle losses. The experimental data are chosen as a model

example to be simulated by the new TDMA analysis approach.

3.1 Data Inversion

Since Liu et al’s (1978) experimental data are represented as electric current vs.
DMAZ2 rod voltage, the data must be first inverted to a widely used format, i.e.,
number distribution vs. diameter or mass.

STEP 1: Convert the applied DMAZ2 rod voltage to mobility and finally to diam-
eter.

The relation between the mobility transfer function and operating conditions is

given in Eq. (5) and the relation between mobility and particle diameter is given in
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Eq. (7). The dimension of the DMAs and the operating conditions are those of Liu
and Pui (1974). Since the length of the DMA was not stated in Liu and Pui (1974),
the value reported in Knutson and Whitby (1975) is used in the data inversion. All
other dimensions of the DMA in the two reports are the same. Since particles of
different sizes can have the same mobility due to multiple charging, a spectrum of

diameters of particles with the same mobility was calculated.

STEP 2: Convert the electric current to particle number concentration.

If all particles are assumed to be singly charged, the relation between the current
and the apparent number concentration is Ny = q—Ie, where ¢ is the aerosol flow rate
entering the electrometer current sensor. Liu et al. (1978) considered all particles
detected as being singly charged based on the fact that for particles in Boltzmann
equilibrium multiple charging does not become a significant factor until the particle
diameters exceed 0.1 pm. Since Kousaka et al. (1985) subsequently showed that the
Fuchs equilibrium satisfies experimental data better than the Boltzmann equilibrium.
a further analysis of the possibility of multiple charging is warranted.

Let N; be the number concentration of particles with ¢ elementary charges and
mobility, Z,, then the true number concentration is

00
N=)_N,. (14)

-
—

The apparent number concentration, N, is

iN;. (15)

-

N, =

1

-
Il

Combining the above two equations,

N © N;
= =t 16
Ns Z?:l ZN, ( )

The relation between N; and N; can be expressed as,

N; = p(Dpi)fiIJ(—l;,,,I—)Nl (17)
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where p(D,;) is defined in section 2 in the text before Eq. (7) and f; is the ratio of

the number distribution at D,; to that at D,;. Then Eq. (16) becomes

_]\_/_ _ P(Dp1) + 252, p(Dyi) £ (18)

Ny p(Dp1) + 232, ip(Dpi) fi
The values of p(D,;) and p(D,;) can be obtained from the Fuchs theory. From

Kousaka et al. (1985), the ranges of the numerical values in the size range of in-
terest are 2 x 10~3 — 1.5 x 1072 for p(D,.) and 0.1 — 0.18 for p(D,,). The probability
of a particle being more than doubly charged diminishes drastically, so is not consid-
ered here. Therefore, unless the values of f; are very large, the assumption of Liu et
al. (1978) that all the particles in this size range of interest are singly charged is a
valid one. The difficulty is that Z% and the f; are unknown since the DMAL1 inlet
distribution was not obtained. So let us consider under what condition f; is a large
number. For a unimodal distribution, the usual case, f, is large only if D, is on
the left side of the peak, and multiply charged particles of K;SO4 solution would not
grow, not affecting the overall dynamics. On the other hand, multiply charged parti-
cles of H,SO4 solution would affect the dynamics; some grow beyond the measuring
range, while others grow but remain in the measuring range but cannot be detected
since there is no information about the initial distribution.

Although we cannot assess the effect of multiple charging quantitatively, the effect

is expected to be small and the number concentration was calculated based on this

approximation.

STEP 3: Convert the number concentration to number distribution.

Based on the above calculations, the actual number distribution vs. the particle
diameter is calculated. Since the size range is very narrow, it is reasonable to as-
sume the number distribution in the narrow size range is constant (Stolzenburg and
McMurry, 1988; Reischl, 1991). With this assumption, the number distribution is

obtained by dividing the number concentration in one size by the size range.

3.2 Thermodynamic Properties
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The aerosol particles in Liu et al.’s experiment (1978) consist of three species,
K,S0,, H;SO,, and H,0. It is assumed that K;SO,4 and H,SO,4 particles are ex-
ternally mixed. From the data, it is deduced that about 32% of the initial aerosol
particles consisted of K504 — H,O with the remainder being H,SO4 — H20. It is as-
sumed that at the final stage the particles in the larger peak consist of H,SO4 — H,0
and the particles in the smaller peak consist of K2SO4 — H20. It is also assumed that
the ambient temperature and pressure are 298 K and 1 atm (1.01325 x 10° Pa). The
effect of these assumptions will be discussed later.

The relation between the partial pressure of ¢-th component in the gas phase and

the composition in the aqueous aerosol phase is given by,

Pip = ViZTiDf
= a;p] (19)

where the subscript ¢ denotes the ¢-th component. +; is the activity coefficient. a,
is the activity, z; is the mole fraction in the aqueous aerosol phase, and p;; and p]
are the partial pressure on the bulk flat surface and the saturated vapor pressure
(equilibrium pressure), respectively. The Kelvin effect may be significant for ultrafine

particles,
P _ In( 4roT;
Dip RTD,,

where p; and p; ; are the vapor pressures over the droplet and over a flat bulk surface,

) (20)

respectively. o is the surface tension, ¥; is the molar liquid volume of species i," R is
the gas constant (8.314 J/mole K), and {" is the absolute temperature.

The thermodynamic properties needed to calculate the initial and the final parti-
cle compositions of an H;SO4 — H,0 system were obtained from a numerical routine
by Kreidenweis-Dandy (1989). The saturation vapor pressure of sulfuric acid was cal-
culated from the relation given by Ayers et al. (1980) and properties of K;504 — H,0
system were obtained from Lobo (1984). The initial and the final states of the
H,S04 — H,0O particles are assumed to be in equilibrium with the ambient condi-

tions. This enables the calculation of the mass fractions of the initial and the final
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H,S0O4 — H,0 aerosols.
Since thermodynamic property data for a ternary systems are scarce, and therefore

the approach used here is to assume the system is an ideal solution.

3.3 Data Preparation for the Numerical Routine

The experimental data were presented as number concentration (N) vs. DMA
voltage, equivalent to particle diameter (D,). Thus, one can calculate the number-
size distribution %, or n(log Dy, t) directly from the exp<..mental data. Since the

numerical routine is based on multiple composition variables, the required number

aN

dlnmi...dlnm,? or n(ln my,... ,11’1 ms)’ where s is the
s

distribution must be in the form of
number of components. To obtain the required distribution, it is assumed that the
number distribution inside each grid is uniform.

During the experiment, the aerosol particles consist of either K3SO4 — H,O or
K;S04 — H;0, but not a combination. In the numerical routine, the logarithmic
transformation precludes two-component aerosol particles in an three-component sys-
tem. A practical solution is to assume an infinitesimal amount of the third compo-
nent. The amount of K;SO4 and H,SO,4 assumed present in the H,SO4 — H,0 and
K,S04 — H;0 aerosols, respectively, was 0.1% of the minimum amount of K,504 and
H;SOy4 in the existing particles. That amount of H2SOy4 in a K;SO4 — H20 particle
is too small to affect the thermodynamic properties of the particle since the activity
of H,S04 in a water solution of that concentration is about 1.9 x 10716, Likewise the
amount of K,SO4 assumed in a H,SO4 — H,0 particle does not change the thermo-

dynamic properties. The mass contribution of the artificially added compounds was

less than 0.02% of the total mass concentration.

3.4 Numerical Results
The DMA2 outlet without humidification is used as the DMA1 outlet distribution
since both total number concentrations differ by only about 2%; the dominant process

is hygroscopic growth. Also by doing so, the parameter that accounts for the particle
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depositional loss can be set as 1.0 since both data were measured at the DMAZ2.
Figure 4 shows the initial distributions obtained by the experiment and the numer-

ical inputs with and without the Kelvin effect. Note that the numerical distribution

compared in the figures is based on a one-dimensional size variable and therefore is

obtained by integrating the distribution based on the multidimensional composition

variables
n(D,) = Z (9/ / / n(my, mq, m3)dmadmadm, (21)
i,k mgy Ym2,; JM3k
O =1 if D,—AD, < Dy(my;+ma;+mar) <D, +AD,
= 0 otherwise ,5,k=1,...,ns (22

where ns is the number of grids for each component. The numerical distributio:.~

clearly represent the experimental data well. Also, note that the Kelvin effect can be
neglected.

The simulation is terminated when the ratio of the mass concentration of the
simulated result to that of the initial distribution becomes the same as that measured.
Without the Kelvin effect, the required time for the particles to reach the final state
was about 3.75 us increasing to 4.1 us with the Kelvin effect. This is expected since
the Kelvin effect increases the water concentration at the particle surface increase,
decreasing the concentration difference.

Figures 5 and 6 show the predicted size distributions calculated with two different
numerical methods, the repeated upwind difference method (RUD) and the Taylor-
Galerkin method (TGFEM), respectively. Both methods predict the peak heights
accurately. For the larger peak, the RUD predicted about 95 and 97 % of the ex-
perimental peak height while the TGFEM predicted about 96 and 101 % of that
depending on whether the Kelvin effect is included. The TGFEM is slightly bet-
ter than the RUD in predicting the peak height accurately here, but the RUD has
been found to perform better than previous applications (Tsang and Rao, 1988, 1990;

Chock, 1990).
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Note that both the methods overpredicted the smaller peak height. Also note that
the position of the simulated peaks lie at slightly smaller sizes than those measured
by about 0.001um for the particles of K2SOy4 solution (smaller peak) and slightly
larger than that by about 0.001um for the particles of H,SO4 solution (larger peak).
Though small, the discrepancies of the peak positions are real. The overprediction of
the smaller peak may be caused by the assumption that the two sulfur compounds
were totally unmixed. Apparently, particles of the two solutions were mixed, dried,
and then sent through the aerosol charger. If some coagulation might have occurred,
a simple analysis (Pui, private communication) shows that the residence time before
DMAL1 was comparable to the characteristic time of coagulation. These mixed parti-
cles are classified either as pure K3SO4 solution which could not grow numerically but
grows experimentally, or particles of pure HSO, solution which grew faster numeri-
cally than the real particles. The overall effect of a fraction of the particles that may
be intermediately mixed in the numerical simulation is the undergrowth of the as-
sumed pure K,SO, solution particles and the overgrowth of the assumed pure H,50,
solution particles. The measured distributions are consistent with this explanation.
In Figure 2, one can see that the smaller peak position with the hygroscopic growth is
larger than that without the growth. Thus, even particles of pure K2SO,4 (assumed)
were observed to grow somewhat which can be reasonably explained by the mixed
particles concept.

The effect of other processes, evaporation, coagulation, and deposition was also
studied. A slight evaporation of H,SO4 was predicted but the amount was negligible.
The characteristic time of coagulation in the conditioner was about 5 x 10*s. Also,
the rate of mass removal by deposition was about thirteen orders of magnitude less
than that by condensation. Therefore, it is concluded that condensation was the only

substantial process occurring in the conditioner.

4. CONCLUSION
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An analysis of the TDMA system is presented based on the multicomponent
aerosol GDE allowing the simulation of an arbitrarily mixed aerosol. The data of
Liu et al. (1978) are simulated to demonstrate the ability of the new TDMA analysis

approach.
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Table 1. Processes and Mechanisms Treated in Numerical Routine

Process Mechanism Numerical
Scheme
Condensation/ Diffusion-controlled Repeated upwind
Evaporation (Maxwell relation), difference,
Volume reaction-controlled Taylor-Galerkin
gas-to-particle conversion
Coagulation Brownian coagulation Product type
Gaussian quadrature
Deposition Linear deposition With Coagularion
Source User given With coagulation
Pre-specified
Nucleation User given With coagulation
Simultaneous Operator splitting

Processes
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FIGURE CAPTION

Figure 1. An illustration of the effect of particle mixedness on aerosol dynamics:
Hygroscopicity difference affects internally and externally mixed particles differently.

Figure 2. Schematic diagram of the TDMA system.

Figure 3. Measured size distributions of Liu et al. (1978), converted to number
distribution vs. particle diameter. Solid line; without growth, broken line; with
growth.

Figure 4. Initial distribution. Solid line; measured size distribution without
growth, single dotted line; the numerical initial distribution without the Kelvin effect,
double dotted line; the numerical initial distribution with the Kelvin effect.

Figure 5. Final distribution, the numerical results using the repeated upwind
difference method. Solid line; measured size distribution with growth, single dotted
line; the numerical result without the Kelvin effect, double dotted line; the numerical
result with the Kelvin effect.

Figure 6. Final distribution, the numerical results using the Taylor-Galerkin
method. Solid line; measured size distribution with growth, single dotted line; the
numerical result without the Kelvin effect, double dotted line; the numerical result

with the Kelvin effect.
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HYGROSCOPICITY: INTERNAL VS. EXTERNAL MIXTURE
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Chapter V

CONCLUSIONS
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1. SUMMARY

The concept of mixed particles, particles of the same size but different chemical
composition, is not well defined and understood. Recent measurements show that
the number-chemical composition distribution is important to understand aerosol
properties. Several issues of the distribution are discussed in Chapter I: importance,
definition, measurement techniques and data, numerical routines, and further re-
search needs. The sectional representation has been successful in simulating multi-
component aerosol dynamics since it is based on the one-dimensional computational
domain, size, though only mean mass fractions of individual species in a section are
obtained. A numerical scheme which can simulate mixed particles while having the
advantages of the sectional representation, the extended moving sectional method, is
presented in Chapter II in which sections move with the characteristics of condensa-
tion/evaporation rates. While accurate and efficient, it is only suitable for simulating
condensation/evaporation. A numerical method that can simulate mixed particles
with simultaneous processes is developed in Chapter III. In this method, contrary to
the sectional methods, no assumption is made on the nature of the distribution and
a multidimensional hyperbolic partial differential integral equation is directly solved
numerically. The routine is applied to simulate the experimental data by Liu et al.
(1) and the numerical results agree with the experimental data well.

The numerical methods presented, the extended moving sectional method and
the fully multidimensional method, should have a significant impact on the aerosol
research area. These can simulate the number-chemical composition distribution that
has been a major goal of the aerosol research community. The extended moving sec-
tional method is ideally suited for simulating condensation/evaporation with several
unique advantages: (1) it can simulate mixed particles on the one-dimensional com-

putational domain; (2) it can simulate combination of condensation and evaporation;
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and (3) it has no limitation on the “umber of chemical species. The fully multidimen-
sional scheme also has a unique advantage; it can simulate simultaneous processes.

These features are a big improvements over other numerical routines.

2. RECOMMENDATIONS FOR FUTURE RESEARCH

There are clear areas for improvement in developing numerical routines for simu-
lating aerosol dynamics. First, the required computing time for simulating arbitrarily
mixed particles is quite long even considering the current progress in computer de-
velopment. Thus, ways that can reduce the necessary computing time are needed.
Application of promising numerical schemes is in progress, for example, the metl;
ods of weighted residuals on coagulation simulation (2) have been tried. Second. it
is desirable to incorporate other effects such as thermal (2-5) and equilibrium (6.7)
effects between the gas phase and the aerosol phase and the spatial inhomogeneity of

aerosols.
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PART A NUMERICAL ASPECTS OF GAS-PHASE
PHOTOCHEMICAL AIR QUALITY MODELS
A.1 Advection
Because of the infeasibility of simultaneously solving for all three directions in
a three-dimensional grid-based photochemical air quality model, an operator split-
ting algorithm is generally used in which the orizontal and vertical transport steps
are computed separately. The two-dimensional horizontal advection operator is the

solution of the advection portion of the problem,

dc _ O(uc) 9(ve) 0
ot~ 9z Oy

where ¢ denotes the concentration of a species and u, v are the wind velocities in the
z,y directions.

Eq. (1) is a first-order hyperbolic partial differential equation, the numerical solu-
tion of which has received a great deal of attention (see, for example, [34]). Numerical
dispersion and/or diffusion errors are the particular problems associated with the dis-
crete approximation of partial derivatives of Eq. (1). Since these errors play an
important role in choosing the best schemes, they require a brief explanation.

For simplicity, consider a one dimensional constant velocity advection system,

Jdc Jc

Let ¢} be a discretized value of c at time ¢, and grid point z; and T denote a specific
numerical method that advances the solution from time step t,_; to time step ¢,.

Then the relation

! =T(G™) l=1,...,7,...,ns (3)

J

describes the advance of the numerical solution one time step, where ns is the number

of spatial grid points.



167

A widely used error analysis technique for numerical methods is the Fourier ex-
pansion analysis {34, 40]. In this approach the numerical solution can be expressed

by a finite Fourier series expansion, each Fourier component of which is,

;= c(k)ehiae (4)

where c*(k) is the amplitude function at time level n, ¢ = v/—1, k is wave number and
Az is distance between two grid points. Each Fourier component is a convenient test
function to see how the numerical solution for a specific numerical method evolves.

The amplification factor for each k is defined as,

_ g _ T
AR) = o = (5)

Usually, A(k) is a complex number and can be written
A(k) = |A(k)|e ™ (6)

where |A(k)] is the amplitude ratio and @(k) is the phase shift of wave number k over
one time step.

Since a specific numerical method T gives only an approximate solution of the
exact equation, the phase shift of Eq. (6) is generally different from that of the exact
solution. This discrepancy between the two phase shifts gives rise to the numerical
dispersion errors. If solutions of each wave number propagate at speeds different from
those of the exact solution, the result is spurious oscillations around the true solution
peak and/or negative values and these phenomena are called numerical dispersion
errors. Numerical dispersion errors often cause instability since these errors generally
increase with time.

If the amplitude ratio is less than one, the magnitude of the numerical solution
is dampened compared to the exact solution. This dissipation induces so-called nu-
merical diffusion errors since the peak in the solution appears to be diffusing away in
time. Note that this diffusion error arises from numerical errors, and is not a physical
phenomenon. Also note that when the amplitude ratio is larger than one, the numer-

ical solution becomes unstable. This boundary is called the von Neumann stability
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criterion [40]. If the amplitude ratio is exactly one, there are no numerical diffusion
errors. Numerical dispersion and diffusion errors are schematically shown in Figure
l.

Numerous numerical schemes have been developed to solve Eq.(1) and their perfor-
mance has been compared by many researchers. The aim of this section is to perform
an objective assessment of the published comparisons of numerical schemes to solve
Eq. (1) and to recommend the best schemes for use in grid-based photochemical air
quality models.

The abbreviations of some well known numerical methods for the advection equa-
tion are given in Table 1. Papers that compare the performance of these methos
are listed in Table 2. Table 3 presents properties of the numerical methods showun
in Table 2. Some numerical methods not compared in the papers listed in Table 2.
but widely regarded as important schemes, are also given in Table 3. In Tables |
and 5, quantitative results of comparisons of some numerical methods from Table
3 are given. For reference, the advection schemes being used in current grid-based
photochemical air quality models are indicated in Table 6.

The desirable properties of a good numerical advection scheme are in descending

priority:
1. Positivity.
2. Accuracy.
3. Mass conservation.
4. Minimum memory size.
5. Fast computing time.

There is a need to comment on the priority list. The advection operator is a part of
the full grid-based photochemical air quality model, which includes a gas-phase chem-

ical kinetics operator which will be addressed later. Negative concentrations are not
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allowed. By the same token, mass conservation is an important desirable property.
But in some numerical methods, such as a first-order upwind difference method, even
though positivity and mass conservation are guaranteed overall accuracy is unaccept-
ably poor. Memory size and speed of computers have increased markedly. Since a
two-dimensional space does not require substantial memory size, the minimum mem-
ory size required for the calculation of the two-dimensional advection step is not the
major criterion for choice of a method. In addition, the computing time required
for the advection portion of the overall grid-based air quality model solution is quite
small compared to that required for the chemical kinetics. Thus, the computing time
required for the advection step is not the major criterion for choice of a method.

An important point to remember is that the above properties of a good advection
scheme are not independent but are interrelated. In many cases, to maintain one
property one has to sacrifice other properties to some extent. But, at the least. a
good advection numerical method should satisfy the first three properties.

Other evaluations of numerical methods have used different criteria and priorities.
For example, Chock and Dunker [8] and Chock [7] selected numerical methods based
on the same criteria as in this report but put accuracy and computing time as high
priorities.

One caution is that the performance of a numerical method is often dependent on
the model problem and perhaps other factors like the time integration method and/or
the type of computer used. Therefore, one should be aware that a numerical scheme
judged best on the basis of one test case may not necessarily be the best method for
all cases. |

The pseudospectral method has been reported as the most accurate numerical
method among those tested by Chock and Dunker [8] and Hov et al. [26]. While
Hov et al. [26] recommended the pseudospectral method as the best scheme, Chock
and Dunker (8] did not recommend this method because of several limitations such
as a small Courant number, a long computing time and a limitation on temporal

integration scheme. Also the pseudospectral method requires a periodic boundary
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condition which is difficult to implement in an real atmospheric model. Therefore,
the pseudospectral method is not considered further here as a candidate for use in
grid-based air quality models.

In the Galerkin method (G-FEM), a kind of finite element method, the numerical
solution is approximated by the linear expansion of basis functions. This method
requires the residual (error) be orthogonal to the basis functions. The simplest choice
of the basis functions is a hatshaped piecewise linear function (chapeau furction)
[29]. This method has been widely used since it is accurate and its performance is
well proven for many cases. G-FEM, however, exhibits difficulties in solving stably
a hyperbolic partial differential equation such as Eq. (1) due to the properties of
the hyperbolic equation, the propagation of waves, which result in the numerical
dispersion errors [29]. Several improvements have been proposed to cope with this
difficulty. In asymmetric G-FEM [5, 21], an upwinding term is added to the basis
functions to increase the numerical diffusion effects to dampen the dispersion effects.
Another approach is to add a numerical filter to remove the numerical dispersion
effects {12]. These improvements can reduce the numerical dispersion errors, but at
the cost of increasing numerical diffusion errors.

The flux-corrected transport (FCT) method is a technique developed to maintain
both the positivity and accuracy of the numerical solution. The idea of the SHASTA
method [2, 3], a basic one-dimensional version of FCT, is to transport strongly dif-
fused convective quantities and then to use a nonlinear filter to subtract the diﬁused
amounts from the transported quantities with the constraint of keeping the solu-
tion monotone. Zalesak [61] developed a generalized fully multidimensional FCT
(G-FCT). These methods have been widely used since they keep the solution positive
and reasonably accurate. Also mass is conserved in these methods.

Smolarkiewicz [43, 44] developed the repeated upwind difference method (SMO).
This method is similar to G-FCT except for the numerical advection scheme and
the form of nonlinear filter. A first-order upwind difference method was used as

the advection scheme. It has several desirable properties; it is stable and free from
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numerical dispersion errors, conserves total number concentration during condensa-
tion/evaporation processes, maintains positivity, is easy to formulate and requires
less computing time than higher-order methods. But it produces excessive numerical
diffusion errors. The excessively diffused amount is subtracted from the transported
quantity and added back to the original grid cell by defining a so-called .  idiffusion
velocity from a Taylor expansion analysis. The first order upwind difference method
is applied repeatedly if necessary. The strengths of this scheme are: (1) It has the de-
sirable properties of the upwind difference methods; (2) It is a fully multidimensional
method and can be used without adopting the spatial fractional time steps scheme;
(3) It is easy to formulate; and (4) It gives reasonably accurate results with relatively
short computing time.

A two-dimensional rotating cosine hill problem has been widely used as a model
problem to test numerical advection methods. Comparisons by Chock [7] and Chock
and Dunker (8] and Smolarkiewicz [43, 44] are shown in Tables 4 and 5, respectively.
The finite element method with Forester’s method (F-FEM) gives better results (accu-
racy, computer time and memory) than either the generalized flux-corrected transport
method (G-FCT) or the repeated upwind difference method (SMO). F-FEM predicts
more accurate peak values than G-FCT and SMO with two iterations. SMO with
four iterations gives slightly better results than the F-FEM but requires about two
times more computing time. Also F-FEM needs smaller memory than G-FCT. But
in F-FEM, one has to solve a matrix system though the matrix is usually sparse and
banded while SMO does not require matrix operation.

Yamartino et al. [57] modified a F-FEM method developed by McRae et al. [31]
for the CIT air quality model and formulated it for an arbitrary grid system. They
reported that for the two-dimensional rotating cosine hill case, the modified F-FEM
and the original F-FEM gave almost the same results. Aside from the transport of
a point source case, the modified F-FEM performed better than the original one. F-
FEM occasionally gives negative concentrations when the nonlinear filter of Forester’s

method does not work well. Forester’s method smooths out ripples of a certain
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wavelength. To maintain the positivity, one has to smooth out a broader range of
ripples and the peak values are also smeared out as shown in Table 4. The G-FCT
and SMO give similarly good results and guarantee positivity. For the same accuracy
the G-FCT requires more computing time than SMO.

Based on the above criteria and considerations, we recommend the finite element
method with Forester’s method and the Smolarkiewicz’s repeated upwind difference
method as the best numerical advection schemes for grid-based photochemical air
quality models. Both methods can be implemented easily. Quite interestingly, these
two methods are currently used in grid-based air models, F-FEM in the CIT model,
the modified F-FEM in the State of California Air Resources Board model (CAL-
GRID) and SMO in the Systems Applications Inc. UAM. Thus, further effort on the
development of methods for the advection portion of photochemical models does not

seermn warranted at this time.

A.2 Chemical Kinetics
The chemical kinetics operator is the solution of the gas-phase chemical rate re-

action equations (ODEs),
dci

d—tzfi(cl,...,cs,t) i:l’...’s (7)

with an appropriate set of initial conditions, where ¢; denotes the concentration of
a species ¢, s is the number of components, and f; is the temperature dependent
chemical reaction rate of species 1.

The difficulties in solving Eq. (7) for atmospheric mechanisms are well docu-
mented [31]. One difficulty arises from the nonlinearity of the kinetic forms; another
is a result of the fact that the number of species and the number of reactions are
usually large and the reaction rates must be calculated at every grid point. The most
serious difficulty, however, arises because the characteristic time scales of the reac-
tions differ by orders of magnitude, ¢.e., the chemical kinetic system is stiff [9, 31].

Eq. (7) is called stiff if
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1. Re(A;) >0 i=1,...,s.
2. ( max| Re(\;)| )/( min | Re(X;))] ) =R > 1 i=1,...,s [31],

where R is the so-called stiffness ratio and A; are the eigenvalues of the Jacobian
matrix J = %EE, where upper bars denote vectors. The concept of stiffness can be also

explained physically. If we rewrite Eq. (7) as

dci C,'(t)

@ = AU

= filer,...,¢5,1) 1=1,...,8 (N)

where ();(t) is the generation rate and i—:g is the loss rate of species ¢, 7;(¢) is the
characteristic relaxation time describing how quickly species 7 reaches its equilibrinu
value. If the values of 7;(¢), ¢ = 1,...,s vary by many orders of magnitude. 1}
system is called stiff. In other words, some species reach their equilibrium values
very quickly while others reach their equilibrium values very slowly. The difficulv
with stiff problems is that for conventional numerical methods, the time step size is
determined by the minimum 7;(¢) due to consideration of stability, while the total
simulation time is governed by the maximum 7;(¢). Thus, if the small step sizes
dictated by stability are used, the computing time is prohibitively long. Due to the
considerable spread in time scales of the species, the calculation of chemical kinetics
in a photochemical air quality model requires the major portion of the computing
time.

Many methods have been developed to solve stiff ODEs. The aim of this section
is to assess those published stiff ODEs solvers to solve Eq. (7) and to recommend the
best schemes for use in grid-based photochemical models. In Table 7, several numeri-
cal methods for stiff ODEs are listed. Particular integration packages that can handle
stiff ODEs and the numerical methods on which they are based are given in Table
8. For reference, the stiff ODEs solvers used in current grid-based photochemical air

quality models are summarized in Table 9.
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The desirable properties of a good numerical stiff ODEs solver are in descending

order:
1. Computing time.
2. Memory size.
3. Accuracy.

Since the chemical kinetics calculation consumes the predominant part of the air
quality model computing time, a stiff ODE solver with short computing time has
a significant advantage over other solvers with longer computing time even at the
expense of some accuracy. Since the chemical kinetics has to be calculated at every
three-dimensional grid point, the memory size requirement is also important. In that
sense, a single step method is preferable to a multistep method since only one previous
time level of information is stored. With respect to accuracy, as pointed out by Young
and Boris [60], there is no need that the errors in the calculation of chemical kinetics
should be significantly less than those from the calculation of other processes.

Integration packages such as GEAR [23], EPISODE [25] and LSODE [24], which
use the backward differentiation formulae (BDF'), have been tested extensively and
are regarded as some of the most accurate and rigorous methods for stiff ODEs. But
the BDF are implicit multistep methods, in which information from several previous
time steps must be stored for later use. Also in implicit methods, a nonlinear alg:  raic
system must be solved which requires matrix operations, although sometimes one can
take advantage of the fact that the matrix is sparse and/or banded. Implicit or semi-
implicit Runge-Kutta methods have been widely tested and well proven, but these
methods again require matrix operations and long computing times [18, 34].

LARKIN [11] uses a semi-implicit midpoint rule, a kind of extrapolation method,
and has shown results comparable to GEAR. Deuflhand et al. [11] compared GEAR,
a BDF solver which is not effective at solving very stiff ODEs [25], GRKF4, a
semi-implicit Runge-Kutta method and METASI1, the main stiff ODEs s..ver in the
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LARKIN on several examples. They reported that METAS]1 was comparable to
GEAR in computing at the same accuracies, while GRKF4 spent a longer computing
time than two other methods at the same accuracies. These methods, either multi-
step or/and implicit methods, have severe disadvantages of long computing time and
large memory size.

In CHEMEQ [59, 60], an asymptotic integration method [34] is used to solve the
stiff ODEs and a normal second-order accurate predictor-corrector method is used
for the nonstiff ODEs. The asymptotic method best treats the stiff problem when
the solution is slowly changing, but the time constants are prohibitively small. This
occurs when both the generation rate (@;) and loss rate (¢;/7;) are large but nearly
equal, and there is strong coupling among the equations. This method is stable and
tends to damp out small oscillations caused by very small time constants. The second-
order predictor-corrector method is employed to continue the integration process. A\
crucial part of the method is to identify the stiff equations and to determine the initial

time stepsize. The initial time stepsize is determined by

C;
At = ¢ min[— (9)
=
or if Q; >> ¢;/7, then
At = € min[r;] (10)

where € is_a scale factor, typically the same as the convergence criterion that will
be discussed shortly. If the stepsize is greater than a specified value, the equation is
considered stiff throughout the integration process and is integrated according to the
asymptotic method.

The predictor part of the step is

ci(l) = c(0)+ Atfi(0) (normal)

. _ ci(0)[27:(0) — At] 4+ 2At7;(0)Q:(0)
all) = a0+ 27:(0) + At

(stiff)  (11)

where f;(0) = fi[t(0),¢:(0)] and c¢;(k) is the k-th iterated value of ¢;, or an approxi-
mation to ¢;(t(0) + At). Also fi(k) = fi[t(0) + At,ci(k)]. The correction part of the
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step 1s
At
alk+1) = al0) + —1fi(0) + fi(k)] (normal)
clk+1) = ¢(0) (stiff)

+Ci(0)[ﬂ'(0) + 7i(k) — At] 4+ 2H7(0) + 7a(k)][Q:(0) + Qu(k)]

7:(0) + (k) + At - (12)

By comparing c;(k + 1) with ¢;(k) for all of the s equations using the relative error

criterion,
|ei(k + 1) — ci(k)
s

convergence of each of the individual equations can be determined. A fixed, small

<e. (13)

number of iterations are carried out each step, and whether or not convergence is
achieved determines how the step size will change in the next time step. The method
is stable, efficient, and generally accurate. Since it is self-starting and is a one-step
method, it requires small memory size. Also it does not require matrix operations.
One problem of the method is that it is not inherently conservative. Conservation is
controlled by adjusting the convergence criterion.

Young and Boris [60] compared several numerical schemes, GEAR, a second or-
der predictor-corrector method, KREGEL (an implicit linear multistep predictor-
corrector method [34]) and CHEMEQ. They reported that both CHEMEQ and
KREGEL had about the same order of accuracy (second order) and CHEMEQ spent
less computing time than others for the same accuracies. Also McRae et al. [31]
compared EPISODE and CHEMEQ. They reported that the maximum relative error
after 120 minutes simulation was about six percent (using EPISODE as a reference)
and CHEMEQ required only one-third the computing time of EPISODE.

CHEMEAQ satisfies most of the criteria discussed earlier. Contrary to other mul-
tistep and/or implicit methods mentioned above, BDF, (semi-)implicit Runge-Kutta
methods and (semi-)implicit extrapolation methods, the method requires informa-
tion from only the previous time step and does not require matrix operations. Thus,

computing time and memory size problems are reduced to manageable sizes. Further-
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more, this method is reasonably accurate as compared above. Therefore, CHEMEQ
is favorable to other methods mentioned above.

CREKID, developed by Pratt and Radhakrishnan [37], uses an exponentially fit-
ted trapezoidal method. They reported that the CREK1D has a polynomial order
accuracy of at least two, but the general performance of the exponential fitting meth-
ods is similar to that of BDF [34]. Therefore, there is no merit to use an exponentially
fitted extrapolation method over the asymptotic integration method.

Carmichael et al. [6] used a semi-implicit Euler method developed by Preussener
and Brand [38]. This method is a one-step method and fast but its accuracy is of first
order which is usually lower than those of the numerical methods for other processes.

In a quasi-steady state approximation (QSSA) method [22], a kind of locally-
exact solution method, all coeflicients of the ODEs in one time step are assumed to
be constant and the exact solutions of the approximate equations are calculated for
some species determined before each integration step. The criteria and the integration

scheme are as follows: (1) If r; < At/10,
ci(t + At) = Qi(t + At)ri(t + At). (14)
(2) If At/10 < 7; < 100A¢,
At
Ci(t + At) = Cie + {C,’(t) - cie] exp[——:], (15)

where ¢;c = Q;7; and assumed as a constant. If ; >> At,

C,’(t + At) = C,‘(t) + [Q,(t) - Ci(t)]At. (16)

Yamartino et al. [57] tested Gear’s method, the asymptotic method, and the QSSA
method for some model problems. They reported that all three methods gave similar
results while the computing time ratio was 10:1.5:1 in order of Gear’s method, the
asymptotic method, and the QSSA method. While fast and accurate in some cases,
the QSSA method has a severe time step limitation and a problem of choosing a

appropriate time step since the QSSA is usually valid only with a very small time
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step. Also this method is basically of first-order accuracy since it uses the Euler
method for species with longer photochemical lifetimes. As mentioned by the authors
[22], this method is views as an alternate method.

The Urban Airshed Model (UAM) developed by Systems Applications, Inc. uses
Crank-Nicholson method to convert the kinetics ODEs to nonlinear algebraic equa-
tions and uses Newton’s iteration method to solve the algebraic equations [39]. While
stable, it is a conventional implicit finite difference method and suffers from numeri-
cal errors, especially numerical dispersion errors [34]. Also it is less suitable for stiff
ODE:s than several of the other methods cited above. In the CIT model, some species
are approximated to be in pseudo steady state (PSSA) to reduce the computing bur-
dens [31]. The chemical kinetics of other species are simulated by CHEMEQ. In the
CALGRID, the PSSA is also applied and both QSSA and CHEMEQ are installed
and can be chosen by the users to do temporal integration of chemical kinetics.

Based on the above comparisons, we recommend for grid-based air quality models
CHEMEQ), a hybrid predictor-corrector method of the asymptotic integration form.
coupled with the Euler method.

A.3 Summary of Numerical Issues in
Gas-Phase Photochemical Air Quality Models

Our analysis of the numerical elements of current gas-phase photochemical air
quality models indicates that the numerical techniques have generally been optimized
for the particular structure of these models. Therefore, we do not recommend any
further projects aimed at fine-tuning the methods that are currently incorporated (see
Table 10 for the methods). On the other hand, with the advent of massively parallel
computer architecture, one could envision eventually re-programming these models
for concurrent computers. This could be a major undertaking, with the possible

benefit of greatly decreased computer execution time.
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PART B. NUMERICAL ASPECTS OF
ATMOSPHERIC AEROSOL MODELS

In the second half of this report we turn our attention to numerical issues in
aerosol and PM;o models. Although such models, at least from the point of view
of atmospheric applications, are less well developed than those for gas-phase species,
the importance of PM;o modeling dictates that such models will assume an ever
expanding role in the near future. We begin with a consideration of the aerosol
general dynamic equation which is, in principle, the basis for a PM;o model. We first
discuss the numerical solution of the general dynamic equation and then proceed to
episodic PM;o models, which have their special requirements relative to numerical

aspects.

B.1 The General System
In its most general form, the multicomponent general dynamic equation (GDE)
governing the size-composition distribution function of an aerosol, n(m,t), is (spatial

dependence is omitted)

an (m,
) Z a ,t)n(m,t)]

- /m .. ‘/m, B(u,m — u)n(m — u, t)n(u,t)du

—n(m,t) / / (u, t)du, (17)

where m; is the mass of the i-th component in a particle, and m is a vector of
compositions (my,...,m,), where s is the total number of components. n(m,t)dm is
the number of particles having mass of component 7, in the range [m;, m;+dm,] at time
t. I; is the time rate change of the mass concentration of the i-th component from
condensation/evaporation processes. [(u,m) = [(m,u) is the binary coagulation

coeflicient. The initial condition is

n(m,0) = n,(m). (18)
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The boundary condition specifies no particles of zero size,
n(0,t) = 0. (19)

The multicomponent aerosol GDE presents several computational challenges be-
cause of the inherently different nature of condensation/evaporation and coagulation
processes, the wide range of magnitudes of the dependent and independent variables,
and because of the multidimensional nature of the size-composition distribution func-
tion. Condensation/evaporation are number conserving processes, while coagulation
is a mass conserving process. The characteristic times of the processes in Eq. (17)
may differ by several orders of magnitude. Numerical methods that conserve the to-
tal number concentration during condensation/evaporation (for evaporation number
conservation may be applied to particles larger than the critical size) and conserve
the total mass concentration during coagulation are preferred. To simulate processes
not explicitly indicated in Eq. (17), such as deposition or nucleation, is not difficult
once coagulation and condensation/evaporation are adequately handled.

Considerable effort has been devoted to the development of numerical techniques
for solving the aerosol GDE [28, 42]. These efforts can be classified according to
whether they address single component or multicomponent aerosols, which processes.
notably coagulation and/or condensation/evaporation, are occurring, and whether the
methods have been applied to real or hypothetical situations. Table 11 summarizes
many of the previous approaches organized by these criteria.

From Table 11, following observations can be made:

e Single component aerosol systems have been mainly treated in the lit-

erature.

o The only numerical method currently available for multicomponent sys-

tems 1s the sectional method.

¢ In many cases, hypothetical situations have been treated in the litera-

ture and the numerical methods used in those studies are not generally



181

applicable to an episodic PM;o model.

B.2 Numerical Solution of the Single Component
Aerosol General Dynamic Equation

Simulation of the single component aerosol GDE has been an interesting and
important topic since the early 1970s and several numerical schemes have been de-
veloped. Seigneur et al. [42] compared several of those schemes for the simulation of
atmospheric aerosol dynamics. Simulation of single component aerosol dynamics with
a single process occurring (condensation and evaporation are considered as the same
process since both processes are described by the same mathematical form) is eas-
ier than the simulation of simultaneous processes because of the conflicting demands
imposed by condensation/evaporation versus coagulation. In this section, three cases
are discussed; pure coagulation, pure condensation/evaporation, and simultaneous
condensation/evaporation and coagulation.

The so-called moment methods are aimed at obtaining moments of the size dis-
tribution, such as the total number, the total mass (or volume), or the total surface
area concentration by assuming either the form of the size distribution [4, 42] or other
properties to describe the evolution of the aerosol size distribution. Though these mo-
ment methods are relatively easy to formulate and need short computing time, the
accuracy of these methods is generally poor and thus their use is restricted to special
cases and/or crude estimates and will not be considered further here.

To represent the coagulation integrals in Eq. (17) is a demanding problem even
in the single component case. Since a logarithmic transformation is usually used to
reduce the range of independent variables in Eq. (17), a problem immediately arises
because the transformed value of (m — u) in the first term on the right hand side of
Eq. (17) does not coincide with the value at the grid points even though both the

transformed values of m and u are at grid points. Thus, an interpolation scheme



182

must be used in the evaluation of the coagulation integrals.

Gelbard et al. [15] developed the sectional method to treat coagulation. The
essential idea of the sectional method is to divide the aerosol size spectrum into
a number of sections and assume that the total particle mass size distribution is
uniform in each section. The resultant quantities obtained are moments, usually
the number or the mass concentration, of each section. Thus this method can be
regarded as a moment method on finite elements. The sectional method uses a kind
of bookkeeping technique to account for inflows and outflows of particles in each
section and transfer between sections to conserve the total mass concentration. The
sectional method requires evaluation of the double integrals to calculate the sectional
coagulation coefficients and this integration takes the largest portion of the computing
time. With the use of the so-called geometric constraint; v; > 2v,_;, where v, is
the upper and v,_; is the lower bound of the particle volume of the I-th section,
the integration becomes simpler and requires less computing time than without this
constraint. The sectional method has been extended to the multicomponent case as
will be discussed later.

Brock and coworkers {32, 46] used the cubic spline method to calculate coagulation
dynamics. The method is rigorous and accurate but is difficult to us<e it in the
multicomponent case due to the excessive computing tAime.

Seigneur et al. [42] applied several numerical schemes for coagulation to a number
of examples of atmospheric aerosol dynamics and compared the results. They ob-
served that COAGUL, a program based on the cubic spline method [46], and ESMAP,
a program based on the sectional method [14], gave similar results but that ESMAP
needed more computing time for a comparable level of accuracy. Therefore, for single
component aerosol dynamics involving coagulation, a numerical scheme based on the
cubic spline method [46] is preferred.

The evolution of an aerosol size distribution as a result of condensation/evaporation
processes is described by a first-order hyperbolic partial differential equation which

also describes advection processes. Numerical difficulties in solving this equation
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accurately and efficiently are described above, especially the problems of numerical
dispersion and diffusion. Conventional higher-order accuracy numerical advection
methods, such as the Galerkin finite element method, give accurate solutions and
have small numerical diffusion errors. Yet these methods usually suffer from nu-
merical dispersion [29]. On the contrary, lower-order accuracy numerical advection
methods, such as the first-order upwind difference method, are free from numerical
dispersion, but suffer from excessive numerical diffusion.

In general, in numerical methods that calculate the transport of conserved quanti-
ties at fixed grids, i.e., using the Eulerian approach, numerical errors arising from the
discrete approximation of first-order spatial derivatives (advection terms) cannot be
eliminated, only reduced. In Lagrangian methods, grids and computational cells move
with the conserved quantities along the characteristics thus eliminating numerical er
rors due to the discrete approximation of spatial derivatives. The most significant
difficulty of applying a Lagrangian approach to aerosol condensation/ evaporation i
the distortion of the grids and cells that occurs as particles of different sizes grow or
shrink at different rates. Some numerical schemes remap the functional values from
the distorted Lagrangian grids onto the regular Eulerian grids by interpolation at
each time step. During interpolation, however, new numerical errors are introduced.

Tsang and Brock [49, 50] simulated condensation/evaporation by using the finite
element method with characteristics [53] and then remapping to a fixed grid bx u-
bic spline interpolation. This is a kind of Lagrangian-Eulerian approach [33] and
can be quite accurate. It can, in principle, be extended to the multicomponent case.
Seigneur et al. [42] applied several schemes for condensation. CONFEMM, a program
based on the finite element method with characteristics [53], gave globally accurate
results though, in some cases, the scheme did not conserve the total number concen-
tration. ESMAP, a program which uses the sectional method developed by Warren
and Seinfeld [55] to simulate condensation/evaporation, conserved the total number
concentration, but suffered from numerical diffusion errors.

We conclude that for single component aerosol dynamics with condensation/evaporation,
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a numerical scheme based on the finite element method with characteristics [49, 50]
is preferred.

Simulation of simultaneous condensation/evaporation and coagulation is more dif-
ficult than that of either single process. Ideally, both processes should be treated by
a single numerical method. But, in practice, the method of fractional steps [34, 58] is
usually used. In this approach, each process is treated by a different numerical scheme
and then the individual results are combined under certain constraints. Fractionation
errors are introduced, but this kind of error is an inevitable price one has to pay to
solve the simultaneous processes. A more severe limitation arises if the characteristic
times of each process differs by several orders of magnitude, and the temporal step
size must be limited by the process of which the characteristic time is the shortest.

Tsang and Hippe [51] used the cubic spline method [46] and the finite element
method with characteristics [49] with the time splitting method [58] for the case of
simultaneous condensation/evaporation and coagulation. The results were accurate
but required relatively long computing time. Warren and Seinfeld [55] developed
the code ESMAP, based on the sectional method [15, 55]. This method does not
require the time splitting method, but as mentioned earlier, the numerical scheme for
condensation/evaporation is only first-order accurate and, as a result, it suffers from
numerical diffusion errors.

We conclude that for single component aerosol dynamics with simultaneous con-
densation/evaporation and coagulation, the approach of Tsang and Hippe [51] is

recommended.

B.3 Numerical Solution of the Multicomponent
Aerosol General Dynamic Equation
Multicomponent aerosol dynamics, a multidimensional problem from the math-
ematical point of view, presents serious numerical challenges. Simulation of multi-
component aerosol dynamics will be constrained by the computer memory size and

computing time for even a modest number of components. For example, calcula-
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tion of multicomponent condensation/evaporation processes can require a substantial
computer memory and a long computing time [28]. For an s component system, a
finite difference method with n grids for each component needs, for example, n® grid
points and a finite element method with n cells for each component requires an n* x n*
matrix system although the matrix is usually banded and/or sparse. Also one has to
calculate s condensation rate equations at each grid point (s x n® calculations for a
finite difference method). By its nature, the coagulation process also requires lengthy
computing times. For an s component system with n grids for each component, using
a g-point product type Gaussian quadrature and linear interpolation, (n® x ¢° + ¢°)
point calculations and (2 x s x n® x ¢° + s x ¢°) interpolations are required for each
time step.

The method of fractional steps (or time splitting method) [58] has been used in
some cases, such as in grid-based air quality models [31], to circumvent the dimen-
sionality problem. In this approach as applied to aerosol dynamics, a multicomponent
condensation/evaporation problem is divided into several single component condensa-
tion/evaporation problems, each solv.ed respectively, and then combined under some
restrictions. While requiring less memory than attacking the full problem directly, er-
rors due to the fractionation are introduced. Thus, if there were a numerical method
to solve multicomponent dynamics directly, this direct scheme is preferable to those
based on the method of fractional steps.

Relatively few numerical solutions of the multicomponent aerosol GDE exist as
shown is Table 11. Presently the only numerical method available for simulating mul-
ticomponent aerosol dynamics is the sectional method [14]. In the multicomponent
form of the sectional method, in addition to the single component sectional method
assumptions, the mean mass fraction of all particles in a section are assumed to be
identical. Bassett et al. [1] and Pilinis et al. [35] have applied the multicomponent
sectional method to atmospheric aerosol simulations.

In the original fixed grid sectional method [14], the total mass concentration is

conserved as in the single component sectional method. Thus the sectional method
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with fixed grids is most suitable for the simulation of coagulation. In the fixed grid
sectional method, condensation/evaporation processes are simulated by the method
developed by Warren and Seinfeld [55]. As explained in the previous section, while this
scheme conserves the total number concentration, it suffers from numerical diffusion
errors.

Gelbard (16, 17] combined the sectional approach with the Lagrangian concept
of a movable grid and developed a moving sectional method for simulating aerosol
condensation/evaporation of a single condensable species. In that method the bound-
aries of each particle size section move with time in accordance with the growth or
shrinkage of particles at those boundaries. In that way numerical diffusion errors
resulting from the need to apportion the particle size distribution over a set of fixed
sections are avoided. Also, numerical dispersion errors resulting from the convection
term are avoided since the convection term is automatically handled by solving the
characteristic equations. Kim and Seinfeld [28] extended the concept of the mov-
ing sectional method to treat multiple condensable species. In the moving sectional
method, the deformation associated with the Lagrangian approach provides the ad-
vantage that the moving sectional method can simulate particles of the same total
mass but different compositions. Since compositions of adjacent sections are discon-
tinuous at the section boundary, condensation/evaporation rates of each section ..
the boundary are different. As a result, sections can in principle overlap each other
or actual vacancies in the calculation domain may develop between sections. To treat.
coagulation with the moving sectional method is difficult due to the computational
domain deformations, overlapping and possible vacancies.

While the assumption that the size distribution in a section is uniform itself intro-
duces numerical diffusion errors, such errors exist even in higher order approximations,
so this assumption is best viewed as a necessary mathematical approximation. The
use of the same mean mass fraction in a section composition, however, imposes a pos-
sibly undesirable physical constraint, namely that particles of the same size should

have same mean mass compositions (so-called internally mixed particles) since the
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result of the sectional method is not the size distribution but the moment of the size
distribution.

To alleviate the above limitations of the sectional method, a new technique has
been developed to numerically solve the multicomponent aerosol GDE diréctly with-
out introducing any physical assumptions about the nature of the size-composition
distribution [27]. The advantages of a direct numerical solution over the sectional
method are: (1) The direct solution can simulate arbitrarily mixed multicomponent
particles, while the sectional method simulates only internally mixed particles; and
(2) The technique gives the size distribution directly, while the sectional method
gives moments of the size distribution, integrated quantities over the section. The
penalty one pays for these advantages of the direct numerical solution is, of course,
in increased computing time and memory size.

The direct solution technique uses the repeated upwind difference method [43,
44] for the simulation of condensation/evaporation and the product type Gaussian
quadrature with linear interpolation for the simulation of coagulation, and a time
splitting method to combine both methods. The Euler method is used to integrate
the coagulation process in time. In a comparison with the SHASTA method, a type of
flux-corrected transport (FTC) method (3] that has been widely tested and used, for
the simulation of single component aerosol dynamics with simultaneous coagulation
and condensation, the repeated upwinding method has been found to be both more
accurate and more computationally efficient than the SHASTA method.

Gaussian quadrature with a product rule is selected to perform the multiple inte-
grals. The Gaussian quadrature has been well proved and extensively tested [10, 45],
and this method is already used in the multicomponent sectional method to evalu-
ate double integrals [54]. As a compromise between the accuracy and the computing
burden, linear interpolation is used. Since the interpolation scheme is linear, a higher-
order time integration method is unnecessary.

Numerical solutions have been compared to analytical solutions for model prob-

lems of pure condensation/evaporation, pure coagulation, and simultaneous conden-
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sation/evaporation and coagulation and good agreement has been obtained. That
this direct solution method can simulate, for the first time, particles of same size but
different composition is the most important advantage of the direct solution method
over the sectional method. Another important difference between the direct solution
method and the sectional method is that the latter calculates moments, usually the
mass moment, while the direct method calculates the size distribution itself. The ad-
vantages of this direct solution are not obtained without a price, namely the comput-
ing time of the direct method is considerably longer than that of the sectional method.
The ratios of computing time of the direct solution method to that of the sectional
method for a three component system are 500 for pure condensation/evaporation.
2202 for pure coagulation, and 1979 for simultaneous processes.

A final note is that the numerical schemes for multicomponent aerosol dynanic~
are also applicable to the single component aerosol dynamics. For example. the
moving sectional method [16, 17, 28] is directly applicable to the single compouci

case and give very accurate results efficiently.

B.4 Numerical Issues in Episodic PM;, Models.

A PM;o model refers to an air quality model capable of predicting the quantity
and chemical composition of airborne particles of diameters less than 10gm. While
such a model may have additional size resolution beyond simply one size class from
zero to 10um diameter, it is generally recognized that size distribution is less critical
than chemical composition discrimination, from the point of view of air quality main-
tenance planning, for example, nitrate, ammonium, sulfate, carboneous material, etc.
Any PM;4 model is based in principle on the aerosol general dynamic equation, but
if size resolution is to be integrated out, the model variable will be just the mass con-
centrations, in pugm™3, of each of the components of interest. Coagulation processes
then no longer play a role in the model and the principal physical processes that are
included are gas-to-particle conversion by condensation/evaporation, together with

transport, diffusion and dry deposition. As a result, many of the numerical issues
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discussed above relating to solving the aerosol GDE are not immediately relevant
to such episodic PM; models. On the other hand, it is anticipated that future op-
erational PM;o models will incorporate both size and composition resolution (the
model of Pilinis and Seinfeld [36] does so already), and therefore the numerical issues

addressed earlier will be highly relevant.
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Table 1. Abbreviations of Numerical Methods

for the Advection Equation

195

Method Abbreviation
Galerkin Finite Element Method G-FEM

or Chapeau function method [29]

Finite Element Method with Forester’s Method [12, 31] F-FEM

One Dimensional Flux-Corrected Transport SHASTA
(FCT) Method [2, 3]

Generalized FCT Method [61] G-FCT
Repeated Upwind Difference Method [43, 44] SMO

Total Variation Diminishing Method [19, 20] TVD
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Table 2. Recent Tests of Advection Schemes

Number of Model Suggested
Authors methods problems best
compared methods
Long and 6 2D rotating Cubic spline method
Pepper([30] cosine hill Second moment method
G-FEM
McRae 6 1D square F-FEM
et al. [31] triangle
Gaussian
Chock and 6 2D rotating G-FEM
Dunker (8] cosine hill G-FCT
Smolarkiewicz 3 2D rotating SMO
(44] cosine hill
3D rotating
sphere
Chock (7] 5 2D rotating F-FEM
cosine hill
Oran and 8 1D square No conclusion
Boris [34] Gaussian
Half dome
Tesche [47] 2 Urban air G-FCT
data
Hov et al. [26] 4 Hypothetical Pseudospectral method
air data G-FEM
Yamartino 4 2D rotational Modified F-FEM
et al. [57) cosine hill

A point source
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Table 3. Properties of Numerical Methods for Advection

Method Strengths Limitations
G-FEM [29] Accuracy Dispersion errors
(negativity)
F-FEM [12, 31] Positivity Ad hoc method
Accuracy’ Diffusion errors

Asymmetric G-FEM [29]

SHASTA [2, 3]

G-FCT(61]

SMO [43, 44]

TVD (19, 20]

Upwind property
(positivity)
Accuracy

Positivity
Easy to use

Positivity
Accuracy

Positivity
Accuracy
Easy to use

Positivity
Accuracy

Diffusion errors

Diffusion errors
One dimensional scheme

Diffusion errors
Slow speed

Diffusion errors

Diffusion errors
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Table 4. Comparison of Numerical Methods on a Model Problem:

Two-Dimensional Rotating Cosine Hill [7, 8]

Items? SHASTA G-FCT? G-FEM? F-FEM 2
Peak (100) 27 50/58 87/91 76/71
Minimum(0) 0 0/0 -5/-20 -1/0
Mass distribution 0.33 0.51/0.61 0.8/1.0 0.74/0.51
ratio (1)

Average absolute 1.3 0.8/0.6 0.7/1.1 0.65/0.35
error (0)

Computing 44 140/135 44/51 65/71
Time(s)

Memory 3ize (2D) 4 8/12 3/3 3/3

! Numbers in parentheses are values of the exact solution.

2 Different values mean different time integration schemes.
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Table 5. Comparison of Numerical Methods on a Model Problem:

Two-Dimensional Rotating Cosine Hill [43, 44]

[tems! Upwind G-FCT TVD? SMO 3
Peak(1) 0.07 0.79 0.41/0.38  0.54/0.81
Minimum(0) 0 -1x10"1% 0/0 0/0
Computing 1 7.7 3/3 2.9/7
Time(ratio)

Conservation  0.95 0.29 0.52/0.60 0.52/0.14
Error (0)*

! Numbers in parentheses are values of the exact solution.
2 First values: time splitting, second values: combined form.
3 First values: two iterations, second values: four iterations.

4 Conservation Error is defined as:

[ (sizedistribution|,=;)?dV + [(outflow)dt
[ (sizedistribution|;=¢)2dV '




Table 6. Numerical Methods for Advection Processes Used

in Current Grid-Based Photochemical Air Quality Models

Air Quality Model Method
UAM (Systems Application, Inc.) SMO
CIT (California Institute of Technology F-FEM

and Carnegie-Mellon University)

CALGRID (State of California Air Resources
Board and Sigma Corp.)

Modified F-FEM




Table 7. Numerical Methods for Stiff ODEs

Method

Strengths

Limitations

Backward differentiation
formulae (BDF) [18, 34]

Asymptotic integration
methods [34, 59, 60]

(Semi-)Implicit
Runge-Kutta
methods [18]

Exponentially-fitted
methods {34, 37]

(Semi-)Implicit
extrapolation
methods [11, 18, 34]

Quasi-steady state
approximation
methods [22, 57]

(Semi-)Implicit
Euler methods [38]

Widely tested
Rigorous
Accurate

No matrix operation
One step method
Fast

Widely tested
Rigorous
Accurate

One step method
Comparable to BDF

Accurate

One step method
Fast speed

One step method
Fast speed
No matrix operations

Multistep method
Matrix operations
Slow speed

Second order accurate
No conservation of mass

Matrix operations
Slow speed

Usually needs
matrix operations

Slow

Matrix operations

QSSA
Step size limitations
Low accuracy

Low accuracy
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Table 8. Integration Packages for Stiff ODEs

Package Numerical methods Remark

EPISODE [25], Implicit Adams method (nonstiff)  Rigorous

GEAR (23], BDF (stiff) Well tested

LSODE [24] Slow speed

CHEMEQ Hybrid predictor-corrector method Fast

[34, 59, 60] Euler method (nonstiff) Second-order accuracy

LARKIN [11]

CREKIT [37]

Asymptotic method (stiff)

Semi-implicit mid-point rule
(Extrapolation method)

Exponentially fitted
trapezoidal method

Comparable to GEAR

Especially for
combustion




Table 9. Numerical Methods for Chemical Kinetics Used
in Grid-Based Photochemical Air Quality Models

Air Quality Model

Method

UAM (Systems Application, Inc.)

CIT (California Institute of Technology
and Carnegie-Mellon University)

CALGRID (State of California Air Resources
Board and Sigma Corp.)

Crank-Nicolson method

CHEMEQ

CHEMEQ, QSSA




Table 10. Summary of Numerical Technique in Current

Grid-Based Photochemical Air Quality Models
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Component UAM CALGRID CIT
Operator Yes Yes yes
Splitting
Advection SMO Modified F-FEM F-FEM
Vertical Crank-Nicholson Crank-Nicholson G-FEM with
Diffusion and Implicit Crank-Nicholson
finite difference time integration
Chemistry Crank-Nicholson PSSA PSSA
Either QSSA QSSA

or CHEMEQ




o
o
(@3]

Table 11. Existing Aerosol Model Based on the General Dynar:ic Equation

Author Process'  No. of Application® Numerical  Applicability for
comp.? method PM;, modeling*
Middleton and CD, S H J-space transform, N/A
Brock[32] CG, Cubic spline,
N Runge-Kutta
Gelbard and CD, S H Finite element N/A
Seinfeld[13] CG, with orthogonal
S, R collocation and

cubic spline

Suck and CG S H J-space transiorm. N/A
Brock[46] Cubic spline,
Adams-Moulton

Gelbard CG S Plumes Sectional method N/A
et al.[15]

Gelbard and CG, CD, M Urban Sectional method AIP
Seinfeld[14] S,R plume

Bassett CD, CG, M Plumes Sectional method AlIP
et al.[1] CR, S

Tsang and CG S Plumes Methods of Suck N/A
Brock[48] and Brock[46)

Tsang and CD/EV S H Finitc element with N/A
Brock[49, 50] characteristics,

Cubic spline

Warren and CD/EV, S H Sectional method N/A
Seinfeld[55] CG,
N,D

to be continued
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Table 11. (continued)

Author Process! = No. of Application® Numerical Applicability for
comp.? method PM,o modeling*
Pilinis CD/EV, M Air Sectional method DA
et al.[35, 36) CG, R, trajectory
S(N) model
Gelbard([16] CD/EV, M Nuclear Moving and AIP
CG, S reactor fixed

sectional method

Brock and EV S H Moment method NCA
Oates[4]
Tsang and EV S H Galerkin finite N/A
Korgaonkar[52] element and
Smolarkiewicz
method
Wu and CR, S Aerosol Discrete N/A
Flagan[56] CG, generating sectional
CD/EV experiment method
Tsang and CD/EV, S H Methods of N/A
Hippe[51] CG [46] and [49]
Gelbard[17] CD/EV M H Moving sectional AIP
method
Kim and CD/EV M H Moving sectional AIP
Seinfeld[28] method

! CD: condensation, EV: evaporation, CG: coagulation, S: source,
R: removal, N: nucleation, D: deposition, CR: chemical reaction.
% S: single component, M: multicomponent.
3 H: hypothetical case.
* N/A : not applicable, API: applicable in principle, DA: directly applicable.



FIGURE CAPTION

Figure 1. Schematic showings of the numerical diffusion and dispersion errors.

Solid lines: exact solutions, broken lines: numerical solutions.
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NUMERICAL DIFFUSION

ta g

NUMERICAL DISPERSION
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Figure 1
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1. INTRODUCTION

The main objective of AMPS (arbitrarily mixed particles simulator) is to simulate
multicomponent aerosol dynamics with simultaneous processes without any assump-
ton on tii¢ nature of the distribution. Therefore, it can simulate the number-chemical
composition distribution. For a detailed description of the routine, see Kim and
Seinfeld (1).

This program is written by Yong Pyo Kim in CALTECH during 1989-1990. The
language used is FORTRAN used at SUN SPARC station but this routine can be
used in other computers with slight modifications. Since the program is written wi: ',
a modular approach, a use can modify the source program easily.

It can simulate following processes: (1) coagulation, (2) condensation/evaporat .
(3) depositional loss, and (4) time varying source and nucleation.

In Section 2, processes, mechanisms, and numerical schemes are described [
Secion 3, input data file is explained and an example is given.

Main variables are explained in main program, main.f and brief descriptions tor

individual programs are also given in each program.

2. PROCESSES AND MECHANISMS

At present, following options are available for processes and formulae for some
mechanisms are shown (options in parenthesis will be added later). Also, numerical

schemes used are summarized in Table 1.
o Coagulation

1. Constant coefficeint
2. Brownian diffusion coefficient
3. (Turbulence coagulation coeflicient)

4. (Gravity coagulation coefficient)
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e Condensation/evaporation

1. Diffusion-controlled or Maxwell relation

(O]

. (Surface reaction-controlled)
3. (Volume reaction-controlled)

4. Volume reaction-controlled with a constant
e Source

1. User given data file

o

. Exponential distribution
3. Log-normal distribution

4. User given subroutine
e Deposition

1. Gravity settling deposition

2. (Phoretic effects)
o Nucleation: User given time dependent nucleation rates and location
Also, the inital distribution has following options:

1. User given data file

[SV]

. Exponential distribution

3. Log-normal distribution

N

. User given subroutine

2.1 Condensation/Evaporation
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Two mechanisms are considered in the routine, one is the diffusion-controlled
gas-to-particles conversion, also known as the Maxwell relation and the other is the
volume reaction-controlled gas-to-particles conversion (2). The Maxwell relation is
the most widely used relation and is in the form;

. dm;

L=

= 27TDPD,‘(Ci — C,‘e)ﬁp (1)

where [; is the condensation/evaporation rate of the i-th component, m; and D; the
mass and the diffusivity of ¢-th component, respectively. D, is the diameter of a
particle, ¢; and c¢;. the mass concentration of i-th component in the gas phase and in
equilibrium state, respectively, and BF is the correction factor by Fuchs and Stugin

(2) and given by

1+ Kn
= 2
Br 1+ 1.71Kn + 1.33Kn? (2)
Kn = 2\/D, (3)

where Kn is the Knudsen number and A is the mean free path of the air.

For aerosol particles of submicron size, the Kelvin effect (2 may be significant. Due
to the curvature of a particle, the partial pressure on the aerosol surface is higher than
that on the flat bulk surface of the same composition. The relation in concentration

form is
Cie 4rov;
= In(

Cie,b RTD,

where c;e and c¢;.p are the equilibrium concentration on the aerosol surface and the

) (4)

flat bulk surface, respectively. o is the surface tension of an aerosol, ; is the molar
liquid volume of the species ¢, R is the gas constant (8.314 J/mole K), and T is the
absolute temperature.

The volume reaction-controlled gas-to-particles conversion is expressed as,

I =

= o;m; (5)

dt
where o; is the rate constant of i-th component. In this case, no detailed calcula-

tion of o; is done. The purposes of this option are twofold, firstly to simulate the
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volume reaction-controlled gas-to-particles conversion mechanism in a simplified way,
secondly to check the performance of the routine since analytical solutions for this

rate form can be obtained for many cases including for simultaneous processes.

2.2 Coagulation

Coagulation due to the Brownian diffusion (the Fuchs form) is used (2),

Dy + Dy, 8(Dy + D»)
Dpi 4+ Dpz +2g12  ©12(Dp1 + Dp2)

Bi2 = 27(D1 + D2)(71 Dp1 + 12 Dp2)| ()

T 5 + 4Kn; + 6Kn;% + 18Kn;3
T 3ruDyi 5 — Kny + (8+ 7'!')Kni2

] (V)

g12 = (97 + g3)'"* (¥)

g = (1/(3Dp:li))[(Dps + 1)° — (D3 + 11)¥%] — Dy (9)
l; =8D; /7% (10)

Ty = (2 + )2 (11)

& = (8kT/mm)'/? (12)

where 3;; is the coagulation coefficient between particles i and j, 7; is the agglomer-
ation shape factor, u is the gas viscosity, and k is the Boltzmann'’s constant.
Constant coagulation coefficient is useful for model validation and a quick process

assessment.

2.3 Deposition
The linear deposition model due to gravity which is similar to that used in

MAEROS (3) but the density difference correction is added, is used here.

R{m, t,n(m,t)] = 2% 22 (m, ¢) (13)

volume

(pp — Pg)ngCd

14
18xp (14)

Vd =
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where vy is the deposition velocity, p, and p, the density of a particle and gas,

respectively, g is the gravity constant, Cy is the Cunningham correction factor,
Cy =1+ Kn[1.37 4+ 0.4exp(—1.1/Kn)], (15)

and x is a shape correction factor to account for the non-spherical effects.

2.4 Source and Nucleation

The source rates and distributions should be given by a user. Both exponential
and log-normal distribution are installed in the routine as a choice of the source
distribution or a user can input a distribution. Since the existing multicomponent
nucleation theory is not well established to predict accurate nucleation rates and/or

size, and composition, these should be also given by a user.

3 INPUT DATA FILE

Input data file description is given and some explanation is needed; i and e
in bracket stand for an integer and a real values, respectively; and the expression
i=1,nzzzz stands for the repeated reading of (nzzzz) times. Also, an example of the

input data file is given in Table II.
e line 1 : title, up to 79 characters

e line 2 : blank

ncompli]: number of component

e line 3 : blank
i=1,ncomp
1. ngrid[i] : number of grid
2. ngausli] : number of Gaussian quadrature point

3. dale] : lower calculational domain(kg)
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4. dble] : upper calculational domain(kg)
5. densle] : density of i-th component(kg/m3)

6. wtmol[e] : molecular weight(kg/mole)

=~

congas[e]: initial gas concentration(kg/m3)
e line 4 : blank

1. totm[e] : initial total mass concentration(kg/m3)

2. totn[e] : initial total number concentration(1/m3)
e line 5 : blank

1. dtfe] : suggested temporal step(s), in nuint.f, this value is com-
pared to the characteristic times of processes and the minimum

value is used as the final temporal step
2. tmax[e] : maximum time(s) for simulation

3. eps[e] : relative error bound
e line 6 : blank

1. iop[i] : option flag for condensation/evaportion and coagulatior,
if set zero, default value of 31 is used

— 11: pure cond/evap. with limited amount of condensable
species

— 12: pure cond/evap. with unlimited amount of condensable
species

— 20: pure coagulation

— 31: case of 11 and coagulation

— 32: case of 12 and coagulation.



216

2. iinifi] : initial size distribution data,if set zero, default value of 3
is used
— 1: user given data
— 2: exponential initial distribution

— 3: log-normal initial distribution

4: user given subroutine.

3. ibound[i] : boundary condition,if set zero, default value of 2 is
used
— 1: log-linear/symmetry
— 2: all set zero
— 3: user given subroutine.
4. icond[i] : condensation/evaporation rate, if set zero, default value
of 1 is used
— 1: the repeated upwind difference method
— 2: the Taylor-Galerkin method
— 31: same as 1 but constant rates
— 41: same as 2 but constant rates

5. icoagli] : coagulation rate, if set zero, default value of 2 is used
— 1: constant
— 2: Fucks relation.

6. isource[i]: source rate data, if set zero, default value of 3 is used
— 1: user given rate data
— 2: exponential source rate
— 3: log-normal source rate
— 4: user supplied soubourine.

7. inucli] : nucleation option flag



— 0: no nucleation

— 1: nucleation
8. idepoli] : deposition process
— 0: no deposition
— 1: deposition.
9. ikel[i] : Kelvin effect, if set zero, default value of 1 is used

— 1: no effect calculation

— 2: effect calculation.
e line 7 : blank

1. npt[i] : number of times results are printed.
2. npx[i] : number of grids results are printed.
3. nseg[i] : number of sections in sectional representation
4. iprint[i]: print option
— 1: print initial data, but mo number and mass moment cal-
culation

— 2: print inital data and calculate number and mass moment

by grid calculation, it takes lagre computing time
— 3: no initial data and no calculation

— 4: no initial data but calculation.
5. idebug[i]: report the status of the program

— 1: no report
— 2: basic report, mainly calling sequences
— 3: detailed report

— 4: in addition to 3, report contributions of each process.

6. ntp[i] : number of temp. and pres. input, 0; j 21
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7. nsource[i]: number of source term input, 0= j 21.
e line 8 : balnk

1. scle] : scaling factor for the repeated upwind difference method.
2. iord[i] : number of iteration for the repeated upwind difference
method.

e line 9 : blank

1. volumel[e]: reactor volume(m3)
2. arcele]g : ratio of ceiling area to volume(1l/m)
3. arflfe]g : ratio of floor area to volume(1l/m)

4. arwale]g : ratio of wall area to vlume(1/m)
Fokkxokkkokkkokxokxxx* arce and arwa are not used in this version
o line 10: blank

1. iplot[i] : plot sectional concentration

— -2: log-scale, user given boundaries
— -1: log-scale, automatic boundaries
= 10: no plot

— +1: linear scale, user given boundaries

— +2: linear scale, automatic boundaries.
2. cplotfi] : plot each component

- 1: no

— 2: yes.
3. nrow[i] : number of rows

4. ncolli] : number of columns
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5. xplmin[e]: minimum concentration(kg/m3)

6. xplmax[e]: maximum concentration(kg/m3)
KAAFHRRRA A K KRN XXX XL his line is not used in this version

e line 11: blank
i=1,ncomp
1. xmdmle] : i-th component mass of mean diameter(kg)
2. stdev[e] : standard deviation(meaningful only if iini = 3)
e line 12: blank
i=1,ntp
1. timetp[e]: time sequence(s)
2. temple] : temperature(K)
3. pres[e] : pressure(Pa, 1Pa = 1N/m2)
4. xnuclfe] : nucleation rate(1/m3/s), meaningful only if inucl = 1
o line 13: this line is a part of line 12, thus, (ncomp) lines of line 13 entry
are needed for each entry of line 12, and the:e is no blank line
j=1,ncomp
1. eqgasle] : equilibrium gas concentration(kg/m3)
2. diff[e] : gas diffusivity(m2/s)
3. xnsle] : nucleation location in grid point(kg,kg,kg,kg got 4- com-

ponent case)

e line 14:blank

i=1,nsource

1. timesole]: time of source data are given(s)
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2. sonumle] : total number concentration of source(1/m3)

e line 15: this line is a part of line 14, thus, (ncomp) lines of line 15 entry
are needed for each entry of line 14 and there is no blank line

j=1,ncomp

1. somamle] : j-th component mass of mean diameter particle(kg)

2. sodevle] : standard deviation(meaningful only if isource = 3)

e line 16: blank
this line is meaningful only if ikel = 1

1=1,ncomp

1. sigmale] : sueface tension(j/m)

2. vollig[e]: liquid molar volume(m3/mole)

¢ line 17:blank
this line is meaningful only if icoag = 1

betale] : constant coagulation coefficeint(m3/s)

o line 18:******* this is temporary input for constants of volume reaction-
controlled condensation/evaporation and has no blank line**** ¥z xxxxx
1=1,ncomp

am[e] : constant(1l/s)
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Table I. Numerical Schemes Used in AMPS

Process Numerical

Scheme
Condensation/ Repeated upwind
Evaporation difference (4-6),

Taylor-Galerkin (7-9)
Coagulation Product type

Gaussian quadrature
Deposition With Coagulation
Source With coagulation
Nucleation With coagulation
Simultaneous Operator splitting

Processes

o
[S]



Table II. An Input Data File for AMPS

this is a test case for a two-comp. system
number of component

2 No. grid, Gaussian pt.,da,db,density, M.W.,gas conc.

21,5,2.6e-19,2.6e-15,1.e3,18.e-3,1.e-5
21,5,2.6e-19,2.6e-15,1.€3,28.e-3,2.e-5
total mass and number

5.2e-11,1.e5

delta (time step), maximum time, tolerance
0.01,0.999,1.0e-4

options

20,2,3,2,1,2,0,0,0

informations

100,5,21,2,1,2,0

cond/evap. parameters

1.0,1

chamber and physical parameters
100.0,.1,0.2,0.3,1.0,1.0

plot information
-1,1,30,30,.0001,1.0

initial distribution data
2.60e-16,0.0

2.60e-16,0.0

temperature, pressure table
0.0,273,1.€5,0.0

.8e-5,1.e-6,0.0

.9e-5,1.2e-5,0.0

0.6,300.,1.2e5,0.0

.82e-5,1.5e-6,0.0

.92e-5,1.7e-6,0.0

source table

surface tension liquid molar volume
l.e3,2.e-2 .

1.2e3,1.2e-3

constant coagulation coefficient

1.0

9,1.1
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