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A technique for the digital simulation of multicorrelated Gaussian random processes is described. 
This technique is based upon generating discrete frequency functions which correspond to the Fourier 
transform of the desired random processes, and then using the fast Fourier transform (FFT) 
algorithm to obtain the actual random processes. The main advantage of this method of simulation 
over other methods is computation time; it appears to be more than an order of magnitude faster 
than present methods of simulation. One of the main uses of multicorrelated simulated random 
processes is in solving nonlinear random vibration problems by numerical integration of the governing 
differential equations. The response of a nonlinear string to a distributed noise input is presented as 
an example. 

Subject Classification: 45.40; 40.30, 40.22, 40.35. 

INTRODUCTION 

Many problems in mechanical and structural vibration 
can be included in the random vibration category. This 

category includes such problems as the response of air- 
craft to aerodynamic noise and turbulentboundary layers, 
the response of ground vehicles to rough roadways, and the 
response of tall buildings to wind loads. The forcing 
functions in these problems fluctuate in a random man- 
ner and in general only the statistical parameters which 
describe them are known. The theory of the linear re- 
sponse of structures subjected to random loads is well 
developed, •-3 however, in many cases the response of 
structures is not linear. For example, this can occur 
if the structural materials exhibits a nonlinear stress- 

strain relationship or if large deflections bring in-plane 
forces into play. 

There are several techniques for handling nonlinear 
random vibration problems. The better known tech- 
niques are (1) the application of the Fokker-Planck 
equation (Markov vector approach), (2) the perturbation 
method, and (3) the method of equivalent lineariza- 
tion. •.3-0 More recently, several investigators have 
used a method of computer simulation to solve nonlinear 
random vibration problems. 7-m Shinozuka's method 
consists of simulating a set of correlated random pro- 
cesses followed by numerical integration of the govern- 
ing differential equations. This technique is very useful 
because it overcomes some of the limitations of the 

other techniques. For example, problems where the 
nonlineartries involve velocities as well as displace- 
ments, problems involving correlated exciting forces, 
and problems in which the input spectra are not white 
cannot be solved by the Fokker-Planck equation. 4 Like- 
wise, the perturbation and equivalent linearization tech- 
niques are limited to problems where the nonlinearities 
are small. These limitations do not apply to the direct 
simulation method. 

The solution of anything more than a single-degree- 
of-freedom system by simulation requires that one be 

able to simulate correlated random processes. The work 
in this field has been done by Borgman, ? Shinozuka, ø'9 and 
Hoshiya. •0 Borgman used a filtered white-noise method. 
Shinozuka and Hoshiyaboth used trigonometric series, 
Shinozuka-with random phase and Hoshiya with random 
amplitude. The technique suggested in this paper is 
based upon generating discrete frequency functions which 
correspond to the Fourier transform of the time series, 
and then using the fast Fourier transform (FFT) algo- 
rithm to obtain the actual time series. The advantages 
of this method over the other methods are its simplicity 
and its speed. We demonstrate that the computation 
speed can be more than an order of magnitude faster 
for this method. -- 

In order to demonstrate one of the uses of multicor- 

related random processes, we have included as an ex- 
ample the problem of a nonlinear string subjected to a 
distributed random input. The correlated processes, 
which we simulated in this case, were the generalized 
forces for the first three modes. The generalized re- 
sponses of the first three modes were then found by nu- 
merical integration, and from these the rms displace- 
ments at the center of the string was obtained. 

I. SIMULATION TECHNIQUE 

Before we discuss the simulation technique, we wish 
to review some common notation used in digital data 
analysis. Let the time increment between discrete 
points in a time series be h, and let the total number 
of points in the series be N. The Nyquist folding fre- 
quency for such a sample is 1/2h. ll That is, the high- 
est frequency that can be investigated if you sample a 
time series at intervals of length h is 1/2h. The total 
length of the sample is Nh, and the usual frequency in- 
crement for FFT data analysis is 1/Nh. We will use 
nh for our running value of time, and k/N7z as our run- 
ning value of frequency. 

The starting point in simulating a set of M correlated 
time series is the cross-spectral density functions of 
the processes we wish to simulate. We need to know 
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the power spectral density of each process and the 
cross-spectral density between all the processes. These 
spectral density functions are usually arranged in the 
form of a matrix appropriately called the cross-spectral 
density matrix or simply the spectral matrix. We let 
G•g(k/Nh) represent the one-sided cross-spectral densi- 
by function between processx•(nh)andprocess)Q(nh), and 
we assume that the spectral matrix can be factored into 
a lower triangular matrix [H•g(k/Nh)] and its complex 
transpose. That is, we assume [H•(k/Nh)] exists such 
that 

[G t,, (k/Nh ) ] = [Ht,•,(k/Nh )][H•, (k/Nh)] v , (1) 
where * denotes the complex conjugate and T the trans- 
pose. It is a fairly straightforward operation to find the 
elements//• as outlined in Refs. 8 and 9. Equation 1 
can be written in summation notation as 

= , 

p,g = l, 2, . . . ,M . (2) 

We now demonstrate that a set of discrete time series 

can be simulated using the following model' 

xt,(nh)= • t•Xt,(k/Nh)ex p 2 (3) 
where Xt,(k/Nh ) are complex random numbers which are 
explained belowß Note that xt,(nh) is just the Fourier 
transform of Xt,(k/Nh). The FFT algorithm is used to 
find xt,(nh) for n = 0, 1, 2,..., N- 1 in one step, instead 
of doing the summation indicated in Eq. 3 for each n. 
To obtain the terms Xt,(k/Nh) we first generate a set of 
completely independent Gaussian random numbers • 
= •t• +j•lv, using a standard random number generator 
subroutine, such that 

E[•,•] = E[•/,•] =0 (4a) 
and 

] • = 'h•] =0.5 , (4b) 

where E is the expectation operator. Then 

Xp(k/Nh) (•-•) 1/g p = •Ht,,(k/Nh)•,• (5a) 

or, in matrix form, 

X 1 /Hll 0 oß. 0 
--- ½/ ß ß ß ß ß ß 

ß ß e ß ß ß 

HUl Huz ... Huu 

(5b) 

The terms Xt,(k/Nh) have an additional property that 
is necessary to point out. If we take the inverse Fouri- 
er transform of Eq. 3, we get 

Xt, {k /Nh ) = ,,__• xt, (nh ) exp j ' ß (6) 
It follows that 

X•(% k) =•x,,(nh)exp(j2•n) . rt=0 

Hence, if xt,(nh) is real, 

X t,(% k) = X} (k /Nh ). 
That is, the terms X• for N/2 < k -< N- 1 are found from 
the terms for 0-< k -<N/2. 

(8) 

Next we would like to demonstrate that the time series 

given by Eq. 3 do indeed have the proper power and 
cross-spectral densities. The cross correlation be- 
tween time series xt,(nh) and x•(mh), as given by Eq. 3, 
is 

Rt, g(m,n)=E k-• Xt,(k/Nh)X•*(l/Nh) 

x exp N ' 

where, since x,(mh) is a real function, it has been re- 
placed by its complex conjugate. Because only the X, 
and X, terms are random in nature, the e•ecmtion 
operator can be brought inside the summation. If •is 
is done, Eq. 9 reduces • 

R•,(m, n)= • •o ,•o 

2•r (kn - lm )] (10) xexp N ' 

Considering Eq. 5a and the properties of •, it follows 
t•at 

E [Xt, (klNh)X•* (l INh)] = •-• Y]• Hv, (k/Nh)H•*j (l/Nh) 

2h 

where 6• is the Kronecker delta function. From Eqs. 
10 and 11 we get 

1 N-1 P 

[j gxk{n - m q x exp N ' 

The right-hand side ot gq. lg is dependent upon only the 
difference between m and n, but not on their separate 
values. From •is we conclude that the time series 

generat• by •is tec•ique are s•onary. 

H we •e the Fourier transform of gq. lg in order 
• ob•in •e cross-spectral density be•een processes 
p and g, •d multiply by a facet of two to get a one- 
sided spec•um, we ob•in gq. 2. This confirms •at 
•e •me series given by gq. 8 does have •e required 
power and cross-spectral densi•es. 

The r•dom processes generated by gq. 8 are Gauss- 
ian. This follows from the central-limit •eorem, the 
fact •at the g• terms are Gaussian, •d because gq. 8 
•d gq. 5a are simple summa•ons. 

J. Acoust. Soc. Am., Vol. 58, No. 3, September 1975 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Fri, 08 May 2015 20:58:32



632 Witfig and Sinha: Simulation of multicorrelated random processes 632 

As has been pointed out several times, the FFT algo- 
rithm is used to perform the Fourier transform of Eq. 
3. The most common forms of this algorithm, such as 
the Cooley-Tukey procedure, require that the number 
of data points N in a sample function be a power of two. 
To perform a simulation by the technique described 
here, it is necessary to chop the spectral density func- 
tions up into N/2 slices, evaluate the H•g at each of these 
points, find the X•(k/Nh) at each of these points, find the 
X•(k/Nh) for N/2 < k <-N- 1 from Eq. 8, and finally carry 
out the Fourier transform of Eq. 3 using the FFT algo- 
rithm. 

Most of the computation speed of this method of simu- 
lation comes from using the FFT algorithm. The speed 
ratio between evaluating M (M + 1)/2 series of N cosine 
terms (as required by Shinozuka's method) and taking the 
FFT of M series each with N terms (as required by the 
method suggested here) is 

NM+I 

speed ratio- 4P 2 ' (13) 
where P = log2N. • For example, if we wish to simulate 
ten series each with 2x2= 4096 time points, then the 
speed ratio is 

4096 (10+1) 
speed ratio- 4(12) -•----• 470 . 

This speed ratio is based on the number of addition 
and multiplication operations that the computer must 
carry out. 

(14) 

II. NONLINEAR STRING 

In order to demonstrate one of the uses of correlated 

random processes, we present here a Monte Carlo solu- 
tion for the responses of a nonlinear string due to a dis- 
tributed noise input. Although this example can be found 
elsewhere, 0 we think it is worth repeating here in order 
to show how the correlated generalized forces can be 
simulated using our method. The governing differential 
equation for such a nonlinear string is 

Pb-•y+C• -= o+•-[ o •,•-] d •-•x +gtx, t) , (15) 

where p is the mass per unit length, u the displacement, 
c the damping coefficient, T o the initial tension, E the 
elastic modulus, A the string's cross-sectional area, 
L the string's length, and g(x, t) the random distributed 
load. We have assumed that the damping is linear, 
viscous, and uni]formly distributed along the string. 
Our boundary conditions are 

u(O, t)= u(œ , t)= o ß (16) 

We assume that the solution can be expanded in terms of 
the normal modes of a linear string which satisfy Eq. 
16, that is, 

u(x, t)= •u,(t)sin(n•x/L). (,17) 

If we substitute Eq. 17 into Eq. 15, multiply through by 
sin(m•x/L), and integrate over the length of the string, 
we get 

- pL g (x , t )sin(rn •rx/L )dx . (18) 
This is a set of coupled, nonlinear differential equations. 
The correlated forces that we simulated to solve this 

problem are the generalized forces on the right-hand 
side of Eq. 18. 

Our first step is to find the power and cross-spectral 
densities for the generalized forces. Let 

gin(t)= fo g(x•,t)sin(m•x•/L)dx• , (19a) 
.L 

gn(t + *)= Jo g(x•., t + ,)sin(nwx•./L )dx•. . (19b) 
Then the cross correlation •etweenthese two generalized 
force s is 

R,•(r) = •0 R(r,x•,xa) 0 

x sin(rn•rx•/L)sin(n•rxa/L )dx •,dxa, (20) 

where R (% x•, xs) is the cross correlation between g(x•, t) 
and g(xs, t). Taking the Fourier transform of both sides 
of Eq. 20 gives 

/., 

0 

x sin(rn•rxfL)sin(n•rx•/L )dx •,dx• , (21) 

where f is the frequency in hertz. Thus, if we know the 

FIG. 1. Displacement time histories for a nonlinear string. 
(a) nondimensional generalized displacement for the first 
mode; (b) nondimensional generalized displacement for the 
second mode. (c) nondimensional generalized displacement 
for the third mode; and (d) nondimensional displacement time 
history at the center of the string. 
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cross-spectral density between the forces at any two 
points on the string, we can find the cross-spectral 
density between the generalized forces, and then go on 
to simulate these forces. 

For this example, so that we could compare our work 
with Shinozuka's work, 8 we used the following spectral 
density function: 

C[f,x•,x•.)=-•- 2+ 47r•. exp(- 2flx,-x.l) , (22) 
where a and a are constants, and (r •' is the mean-square 
value of the force at any point along the string. The 
next step is to substitute G (f, x•,x•.) from Eq. 22 into Eq. 
21 and carry out the integration. This gives a some- 
what cumbersome result, although the integration itself 
is fairly straightforward. The result is 

2(r•' (a a ){,4 (f)= + + , (23) 
where 

A = 27r afL (2xaf).+ , 

' 
C = 1 + (- 1)=*"+ [(- 1)=*•+ (- 1)"*']exp(- 2xafL) . 

Having obtained the above expression for the cross- 
spectral densities, we proceeded to simulate the gen- 
eralized forces. We then solved the set of coupled, 
nonlinear equations numerically using a predictor-cor- 
rector difference-equation method. Our example was 
carried out for the ease where c/p = 0.4x/see, a = 
see, aL = 0.70 see, To/AE = 0.050, L = 25 in., T o = 100 
lb, p = 0. 040 lb/in., and E = 30.10 ø psi. Because the 
generalized forces drop off quickly with higher mode 
number and because we were looking for arms displace- 
ment instead of a velocity or an acceleration, we con- 
sidered only the first three modes. 

The solution to Eq. 18 for a single set of generalized 
forces is shown in Fig. 1. The top three curves show 
the response of the first three modes, and the bottom 
curve shows the response at the midpoint of the string. 

Figure 2 shows how the rms nondimensional response 
at the midpoint of the string is related to the rms non- 
dimensional excitation force. These nondimensional 

quantities are defined by 

•(L/2, t)=u(L/2, t)/(L/10) , (24a) 

if(x, t)=g(x, t)/(To/L) . (24b) 

The rms value ofif(x, t) is independent of x. Also shown 
in Fig. 2 is the response of a linear string which we 
found using the above technique and dropping the nonlin- 
ear terms in Eq. 18. The linear string problem was 
done to satisfy ourselves that the computer programs 
were working properly. For a more detailed explanation 
of our work on this problem see Ref. 12. 

III. CONCLUSION 

We have developed a new method for simulating sets 
of multicorrelated random processes with specified 
cross-spectral densities. This method is both straight- 
forward and fast. For large sets of correlated proces- 
ses, it is orders of magnitude faster than other methods. 
This method gains its speed by using the FFT algorithm 
to obtain the random processes. We have used this 
method of simulation to study the random vibration of a 
nonlinear string. This technique of solving nonlinear 
random vibration problems overcomes most of the draw- 
backs inherent in other methods, as mentioned in the 
Introduction. 
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