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Simulation of non-Abelian gauge theories
with optical lattices
L. Tagliacozzo1, A. Celi1, P. Orland2, M.W. Mitchell1,3 & M. Lewenstein1,3

Many phenomena occurring in strongly correlated quantum systems still await conclusive

explanations. The absence of isolated free quarks in nature is an example. It is attributed to

quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter

at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally,

we have no definitive theory of high-temperature superconductivity. Though we have theories

that could underlie such physics, we lack the tools to determine the experimental con-

sequences of these theories. Quantum simulators may provide such tools. Here we show how

to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we

consider have several applications: they can be used to mimic quark confinement or to

study dimer and valence-bond states (which may be relevant for high-temperature

superconductors).
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G
auge theories (GTs)1 provide the basis of modern physics.
In the standard model of particle physics2, GTs describe
three of the four fundamental interactions (namely

electromagnetic, weak and strong interactions). The last is
described by the GT known as quantum chromo-dynamics
(QCD)3). Gauge symmetry has also a role in general relativity. At
the same time, GT are present in many effective models of
condensed matter, for example, antiferromagnets4 and high-
temperature superconductors5,6. Recently, the study of phase
diagrams of various GT has gained new attention, because of the
discovery of topological order. Owing to their stability against
perturbations, topologically ordered phases may help to design
quantum computers7–11.

Despite the enormous importance of GT, they defy solution.
Wilson’s formulation12 of lattice gauge theories (LGTs), where
continuous space–time is replaced by a discrete set of points,
provided the first numerical tool to study the strong-coupling
regime. Monte-Carlo (MC) simulations of LGT is the main
tool to compare aspects of QCD at strong coupling with
experiments13. What is hard or impossible to compute with MC
remains out of reach. For example, the mechanism of charge
confinement14, invented to explain the absence of isolated
quarks15, is still debated four decades since first proposed.
Furthermore, MC simulations cannot yet provide definite
predictions for hot and dense nuclear matter16,17, probed by
heavy nuclei collisions at CERN and RHIC18,19. GT are also
invoked in explanations of spin-liquid phases of antiferro-
magnets4 and high-temperature superconductivity20.

Recent progress in the experimental control of quantum
systems makes possible to engineer systems that perfectly mimic
theoretical models. This is the idea of quantum simulators21–26,
whose ultimate goal is to simulate GT, for example, QCD,and
provide access to their phase diagrams at finite temperature and
density. A more modest goal is to emulate QCD, that is, to find a
model sharing its interesting properties, whose realization may be
simpler than the full theory. The first steps of this emulation
programme were to describe quantum simulations of Abelian
LGT27–32. The presence of many-body interactions, beyond
nearest neighbours, has been the main technical obstacle. This
obstacle has been addressed in29, by using mesoscopic Rydberg
gates33.

Here we show how to simulate non-Abelian gauge magnets
(GMs) or link models, introduced in (refs 34–36) using Rydberg
atoms37,38. The models have both strong- and weak-coupling
regimes. We discuss here the origin of charge confinement in
both regimes, stressing the different physical origin in each. We
propose how to identify the flux tubes connecting static external
charges in each of these regimes, and provide the experimental
protocol to observe these flux tubes. We conclude by discussing a
qualitative technique, based on energy landscapes around static
charges, to identify in a generic LGT whether chromo-electric
strings, that is, charge confinement, is present.

Results
The model. Here we want to analyse a specific non-Abelian GT
that can be simulated with ultra-cold atoms. GTs were originally
introduced in the context of relativistic field theories as general-
ization of quantum electrodynamics (QED), the theory of pho-
tons and electrons, and hence formulated through a Lagrangian
density that does not distinguish between space and time. In
order study them with quantum simulators, we need their
Hamiltonian formulation39,40 on the lattice. There, the
constituents representing the gauge bosons (generalization of
photons) live on the links of the lattice and those representing the
charged matter (generalization of electrons) live on the sites.

The Hamiltonian of a LGT is manifestly invariant under a
group of local transformations. These transformations encode the
generalization of the Gauss law, that physically enforces the
charge conservation. The choice of the symmetry group
determines if we are dealing with an Abelian (for example,
QED) or non-Abelian LGT. One of the simplest non-Abelian
LGT is the SU(2) LGT. The specific form of the Hamiltonian and
the Hilbert space of the constituents determines which SU(2)
LGT one considers. The standard SU(2) LGT, called Yang–Mills
(YM) theory, involves an infinite dimensional Hilbert space for
the gauge bosons and an Hamiltonian obtained directly from the
original Wilson action12.

In a quantum simulation, we encode the states of the
constituents in hyperfine levels of the atoms. For this reason,
we want to study first the simplest SU(2) LGT having as small as
possible local Hilbert space. This leads to the family of the SU(2)
GM. Although their physical properties are quite different from
the one of the YM theory, the SU(2) GM we analyse here shares
with YM theory the phenomenon of confinement of charges. In
the following, we briefly motivate the construction of these
models but we invite the reader interested in obtaining a deeper
understanding to directly refer to either the original papers34–36

or to the existing reviews on the subject29,41.
In the SU(2) GM, gauge bosons have four states, so that their

Hilbert space is isomorphic C2#C2. In order to impose the
Gauss law, we first need to define the operators that implement
the rotation of an arbitrary group element. An element of SU(2)
can be written as exp[ia � r] where a¼ (a1, a2, a3) is the real
three-component vector and r¼ (s1, s2, s3) are the Pauli
matrices.

The rotation of a link state through a group element is obtained
with the two operators

�ðaÞ ¼ j 0ih 0 j � expðia � rÞþ j 1ih 1 j � I; ð1Þ

~�ðaÞ ¼ j 0ih 0 j � Iþ j 1ih 1 j � expðia � rÞ: ð2Þ
In this way, we can define a local transformation in the absence

of external charges as

GsðaÞ ¼ ~�ðaÞs1 � ~�ðaÞs2 � �ðaÞs3 � �ðaÞs4 ; ð3Þ
on the crosses, which consist of the four spin states adjacent to
given site s (labelled s1,y,s4; see Fig. 1b). The operators are
unitary, fulfil X(a1)X(a2)¼X(a1a2), so to provide a representa-
tion of SU(2), and only act locally. We thus identify them as a set
of local symmetry transformations. The gauge-invariance con-
straint, having the role of the QED Gauss law, selects those states
invariant under the above local symmetry transformations,

cj if g : GsðaÞ cj i ¼ cj i; 8s; a; ð4Þ
which are the only physical states of the LGT. It is sufficient to
impose this condition for a equal to î¼ (1, 0, 0), ĵ¼ (0, 1, 0) and
k̂¼ (0, 0, 1).

We can derive the physical consequences of equation (4). We
interpret the local Hilbert space as P � S, describing one qubit
(the right factor, S) moving between the two ends of the link (the
left factor, P). We identify the basis of P, 0j i and 1j i, with the
left-end (lower end) or the right end (upper end) of a link in the x
(y) direction. In this way, given a generic state vj i in S, we
represent 0j i vj if g 1j i vj ið Þ as a solid dot on the left (right) part of
the link, cf. Fig. 1c). The operator X(a) acts on those vectors in the
left (down) two-dimensional subspace 0j i vj if g of the x (y)-
oriented link (rotating them by exp(ia � r)). The operator ~�(a)
acts similarly on the other subspace of that link. Hence, the
physical-state condition (4) forces the total spin of the qubits
adjacent to the site s to be zero, that is, to consists of singlet
among pairs of those, Sij � ð1=

ffiffiffi
2

p
Þ "# � #"ð Þ, cf. Fig. 1d).
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Charges are encoded by additional qubits on the sites of the
lattice. Different spin representations S¼ 1/2, 1, 3/2, 2 require the
addition of a different amount of qubits. The presence of charge
at the site ~s implies that the gauge transformations at ~s induce a
rotation of the state

G~sðaÞ cj i ¼ expðia � SÞ cj i; 8a: ð5Þ

Here we focus on the case of spin-1/2 charges, that is, S�r. In
this case, the charge is encoded by a qubit located at ~s and
equation (5) can be expressed as follows:

Gext
~s ðaÞ cj i ¼ cj i; 8a; ð6Þ

with Gext
~s ðaÞ ¼ G~sðaÞ � expðia � r~sÞ.

We now turn to the form of the Hamiltonian H. We built H as
a sum of plaquette, Hp, and link, Hl, operators as for ordinary
LGT (p and l label the plaquettes and the links of the lattice). The
former corresponds to the magnetic term (B2 in electro-
dynamics), whereas the latter is the analogue of the electric term
(E2). A convenient set of operators to write Hp and Hl is (see ref. 35)

G0 ¼ s1 � I; Gj ¼ s2 � sj; j ¼ 1; 2; 3; G5 ¼ s3 � I: ð7Þ

Gauge invariance, that is, [Gs, H]¼ 0,8s, fixes Hl and Hp. It
immediately implies [X(a), Hl]¼ 0, thus, HlpG5 (plus trivial
identity term). Hp can be written as trV(Up1#Up2#Up3

w #Up4
w ),

p1,y ,p4 being the links around the plaquette p, ordered as in
Fig. 1b). At each link, the U acts on (P � S � V), where V is an
auxiliary bookkeeping spin-1/2 space on which the trace is
performed. V is not physically implemented in the simulator and
is introduced only to write covariant expression easily. The gauge-

invariance requirement for U reads

½�ðaÞ;U � ¼ expðia � sÞU ; ½U ; ~�ðaÞ� ¼ U expð� ia � sÞ; ð8Þ
where tj, j¼ 1, 2, 3 is a Pauli matrix on V. Again, equation (8) has
the same form as in standard LGT. A solution of equation (8) is
U ¼ G0 � 1� i

P3
j¼1 G

j � tj, that is, the one we consider here.
Thus,

H
D

¼
X
l

G5
l þ

1
g

X
p

trV Up1 � Up2 � U
y
p3 � U

y
p4

� �
þH:c:; ð9Þ

where D is an energy scale. The coupling constant g determines if
the system is in the weak- or in the strong-coupling regime (g-0
and g-N, respectively).

The confinement phase. The phases of LGT are commonly
characterized through the force induced by gauge bosons on the
charges. Here we are interested in studying the confinement
phase, that is, the phase where the attractive force between two
charges, does not depend on their distance. In this case, the
ground state energy of the system in the presence of two charges,
increases linearly with their separation.

At weak coupling, H in equation (9) reduces to its plaquette
terms. In analogy with the Abelian case29, we exploit the bi-
partite nature of the lattice. We imagine colouring the plaquettes
red and black in a checker-board pattern. Next we consider the
Hamiltonian equation (9), but including only half the terms, for
example, those on the black plaquettes. With this choice, the
model becomes exactly solvable. As illustrated in Fig. 2a), the
ground state Oj i0 is a product state of single plaquette
configurations,

Oj i0¼
Y
p

fj ipwith fp

��� E
¼ 1ffiffiffi

2
p lp

�� �
þ rp
��� E� �

; ð10Þ

where jrpi ¼ 1j ip1 0j ip2 0j ip3 1j ip4Sp1,p2 Sp3,p4 and lp
�� �

¼
0j ip1 1j ip2 1j ip3 0j ip4Sp1,p4 Sp2,p3. We separate the position part of
the Hilbert space from its spin part by writing the states as
elements of P#4#S#4. Both rj i and lj i are represented in
Fig. 1c). The state Oj i0 factorizes into resonating-dimer states.
Furthermore, each link, as a consequence of gauge invariance, is
entangled with the rest of the system.

We now turn to confinement. Adding a pair of spatially
separated external charges rearranges the singlets into strings
connecting the charges. Each string causes long-range entangle-
ment (LRE) between the charges, a distinctive feature of non-
Abelian LGT. In an Abelian LGT, indeed, a single string does not
induce entanglement, as typically it involves flipping a line of
spins42. There, the unique source of LRE between charges is
caused by the linear superposition of several orthogonal string
states, present also here.

The ground state is indeed a superposition of string states
along paths determined by both gauge invariance and energy
minimization. A string passing through a plaquette increases its
energy by dEpD/g. Hence, strings touch as few plaquettes as
possible. The number of excited plaquettes is proportional to the
inter-charge distance, that is, the charges are confined with a
string tension proportional to D/g. This phenomenon is
equivalent to the chromo-electric flux tube expected in QCD
between two coloured charges. The simplest system exhibiting
such behaviour consists of only two plaquettes (Fig. 2b).

At strong coupling, the plaquette term in equation (9) may be
neglected. The ground state is the configuration with all the
position qubits in the state 0j i. Hence at any site s, the spin qubits
on s3,s4 form a singlet, see Fig. 2c left. This is a product state of
entangled half-plaquettes, of the form

Q
s 0j is3 0j is4Ss3;s4 .

s1
s2

|1〉|�〉

|0〉|�〉

s4

s3
p1

p3

p2

p1

ps

Figure 1 | The basics of non-Abelian GM. (a)Hilbert space, we assign to

each link of an oriented lattice (left), the Hilbert space of two qubits, each of

them represented by a sphere (right). (b) Notation, a link may be labelled in

either of two equivalent ways: by adding a subscript referring to the

adjacent site (left panel), or to the adjacent plaquette (right panel). We

number these labels anticlockwise. (c) Physical interpretation,

representation of position and spin degrees of freedom, a red sphere on the

left of a link represents the state 0j i vj i, whereas a red sphere on the right of

a link represents the state 1j i vj i (left panel). Gauge-invariant space for a

plaquette, gauge-invariance forces qubits adjacent to a site to form singlets

(yellow ovals around them) (right panel). (d) Gauge-invariant states,

example of gauge-invariant state for a generic lattice.
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If we now insert two static charges, a line of singlets must
readjust. As consequence of equation (6), the two spin qubits Q~s3 ,
Q~s4 , originally forming the singlet at ~s, rearrange. One qubit, say
Q~s4 forms a singlet with the external charge, whereas the position
state associated to the other qubit Q~s3 changes from 0j i to 1j i, that
is, the qubit moves to the opposite end of the link. There, by
equation (4), it is forced to form a singlet with one of the two
qubits of the same cross. The process repeats until one of the
displaced qubits reaches the second external charge. The result is
a gauge-invariant string, stretching between the charges. The
string is a line of qubits in state 1j i. The energy of each of them
increases by 2D; therefore, the static charges are confined. Note
that the the actual ground state is a superposition of orthogonal
strings states inducing LRE between the external charges.
However, each single string already entangles the two charges,
footprint of a non-Abelian LGT.

Realization through Rydberg atoms. We implement the SU(2)
GM using cold atoms loaded in an optical lattice. We start by
describing a generic scheme that works for arbitrary values

of g, and then consider a simplified scheme suited to study the
g-N limit.

Generic scheme. We distinguish two cases. (i) The pure GT
where atoms only encode the gauge boson degrees of freedom on
the links and (ii) gauge fields interacting with matter, where we
need extra atoms to encode the charges at the sites. We
generically refer to all these atoms as ensemble atoms. As all
local Hilbert spaces are tensor product of qubits, each of them is
represented by two (long-lived) hyperfine states of one atom.

The Hamiltonian (equation (9)) and symmetry projections
operators (equation (4)) act on at least eight neighbouring atoms.
We engineer both sets of operators using the mesoscopic Rydberg
gates33,37. The idea is to add an auxiliary two-level system as a
control atom. The control acts as a switch that turns on and off
the interaction between the ensemble atoms, that is, simultaneous
Rabi transfer (SRT) between two hyperfine levels of each of the
atoms. Such operations are induced by laser pulses. In practice,
when the control is initialized in the logical state 0j ic nothing
happens, while, once initialized in 1j ic, the control is excited to a
specific Rydberg state, and causes SRT on the ensemble atoms
within its blockade radius. The operators in both equations (9)
and (4) can be decomposed in linear combination of these SRT
(see below and Methods). As we only use internal degrees of
freedom, the atoms are assumed to be frozen in a Mott state. Note
that the (Zeeman) energy splitting between the logical states
(which can be controlled with a magnetic field) and the lattice
depth (controlled by laser intensity) can be taken sufficiently large
to minimize imperfections due to the temperature of atomic
sample (see Methods). In fact, for ideal gates the simulated
temperature of the GM would be zero.

Thus, the requirements for the implementation of eqautions 4
and 9 through Rydberg gates are: (a) deep optical lattice loaded
with (b) two ensemble atoms per link, that is, the four states of
the gauge boson, and with the appropriate number of matter
atoms at each site; (c) one control atom for each cross (at each
site) and plaquette (inside it); (d) both ensemble and control
atoms have two logic (sufficiently split hyperfine) states that can
be excited to (different) Rydberg states by laser pulses; (e) the
lattice spacing should be tuned such that the ensemble atoms of
crosses and plaquettes are physically located inside the blockade
radius of their respective control.

One way to obtain the desired optical lattice for both (i) and
(ii) is sketched in Fig. 3a,b, respectively, is to use holographic
techniques43. In Fig. 3a, atoms are represented as spheres,
ensemble atoms are red and control atoms are blue. The required
blockade radii are indicated by shaded regions in cyan and
orange. In presence of matter, a possible lattice configuration is
shown in Fig. 3b. Effective sites (shaded in green) now involve
four atoms. Three of them encode the charges (black), whereas
the fourth is a control atom (blue). Links (shaded in green)
connect these effective sites. Again the desired blockade radii are
represented by shaded regions, cyan for crosses and yellow for
plaquettes.

The experiment we propose aims to detect confinement by
measuring the energy of the system as a function of the distance
between external charges. A linear growth of the energy is the
footprint of confinement29. We need to prepare the ground state
of the system for any g in the absence and presence of static
external charges separated by different distances. We then
measure the ground-state energy for each realization, obtaining
its dependence on the charges separation.

Before running the experiment for the full 2D GM, we propose
to validate the simulator by comparing its outcomes with the
known ones for the exactly solvable scenario described in
the previous section, where the Hamiltonian contains only half
of the plaquettes.

Figure 2 | Confinement of charges. (a,b) Weak coupling. (a) In the

absence of external charges, dimers resonate on configurations allowed by

gauge invariance. (b) When two static charges (black spheres) are inserted,

plaquettes are entangled by strings of singlets. In this way, a

macromolecule or polymer, as large as the separation of the charges, is

formed (yellow oval). The energy of such a state rises linearly with the

inter-charge separation, thereby confining charges. (c) Strong coupling. The

ground state of equation (9) is the ordered configuration where all position

qubits are in the state 0j i and spin qubits are forced by equation (4) to

form singlets (left panel). When two external charges are inserted (black

spheres), the singlets have to rearrange (right panel). Some of the position

qubits are flipped to 1j i with an associated energy cost. Pictorially the

corresponding spin qubits shift right-up on the x–y links. A string can be

identified by position qubits in state 1j i. The energy cost of a string is

proportional to its length, hence, the charges are confined.
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The ground states are prepared using the adiabatic evolution
implemented with the Rydberg gates (see eqaution 4). In order to
apply this procedure, we need to start with a simple state with
non-zero overlap with the final ground state. We also need to
modify the Hamiltonian by adding HG ¼ � ~D

P
s;a¼̂i; ĵ; k̂

ðGsðaÞþGsðaÞyÞ that separates of more than ~D gauge-invariant
states from the non-invariant ones. At low energies, for ~DcD/g,
where D/g is the energy scale of equation (9), the spectrum is
restricted to the physical states.

For example, in the validation step, the product state Oaj i �Q
lh

þj i � 1j ið Þ
Q

lv
ð þj i � 0j iÞ is a good initial state as it has

non-zero overlap with O0j i of (10). Here, lh and lv are the
horizontal and the vertical links of the lattice, respectively, and
þj i � ð1=

ffiffiffi
2

p
Þ 0j i þ 1j ið Þ.

Note that for the full model (9), we can use O0j i as the initial
state for the adiabatic evolution, which is now performed by
slowly switching on the remaining half-plaquettes29.

The evolution is performed for a time T ð/ g=DÞT using the
Hamiltonian H(t)¼ (1� l(t))Haþ l(t)(HþHG), with the
smooth function l(t) that fulfills l(0)¼ 0,l(T)¼ 1, and Ha is a
gapped Hamiltonian having as a unique ground state the starting
configuration.

The adiabatic approximation is justified by choosing T large
enough compared with the inverse of the gaps of H(t) which stays
finite during the evolution. In practice, as described in detail in
Methods, the time-evolution operator is applied as a stroboscopic
sequence. We divide the evolution time in a sequence of N
short enough intervals dt¼T /N such that exp iðdtHðtÞÞ ’Q

I expðidtlIðtÞHIÞþOðdt2Þ, where HðtÞ ¼
P

I lIðtÞHI and HI

are product of Pauli matrices. Each exp(idtlI(t)HI) can be
implemented by a sequence of SRT on eight qubits (atoms),
precisely, with two Rydberg gates and several single-qubit
rotations (cf. equation (4) and ref. 29). Even if Rydberg gates
are not perfect and have a finite fidelity, the gap of the
Hamiltonian and the adiabatic theorem guarantee that for large
enough simulation times the final state is in the desired phase, see
equation (4).

The same procedure is used to obtain the ground state with
two, or more, static charges. Their presence is accounted by
placing new atoms on the sites of the lattice, for instance, in the
lattice scheme of Fig. 3b, and enforcing equation (6) with a
modified HG.

In order to measure the ground-state energy of the system, we
use again Rydberg gates. As discussed in Methods, they allow to
map the eigenstates of each HI to states of the control atoms,
which can be then read out by selective fluorescence44 (coupling
for example with a laser the state 0j ic to short-lived state).
Sufficient repetitions provide a measurement of the HI

contribution to H. By iterating the same procedure for all the
contributions HI, we can sum them up to H and measure the total
energy of the system. However, a qualitative detection of the
string of singlets joining the two charges, responsible of the
confinement, can be done via spin-polarization spectroscopy45.

What we have described so far is experimentally challenging
but can be used to probe confinement in any regime, even away
from g-0 where the confinement is expected from analytical
predictions35.

In the strongly coupled regime, the decomposition P#S of
links makes manifest that the energy depends only on the
position qubit with the state 0j i 1j ið Þ favoured (penalized) by D.
We exploit this to design a simplified experiment based on a
partial analogue encoding of links. Each spin qubit is still
represented by one atom loaded in a super-lattice producing a
double-well potential V on each link, see Fig. 3c). P is now
encoded by its position in the two wells, split by an energy 2D.

When two static charges are added to the system, we need to
introduce two extra atoms above the half-filled ground state. The
creation of the strings described in the previous section can be

mimicked by driving the system with e� i
R T

0
lðtÞHGdt, ~D42D, while

simultaneously inducing in-well atom oscillations via AC-
shaking46 of the lattice at 45�. Adjusting the intensity of the
shaking, we allow for the adiabatic adjustment of the atoms, which
then freeze in minimal energy configurations compatible with gauge
invariance. The strings can be observed by direct imaging of the
atoms’ positions, for example, by joining those atoms found at the
right (up) end of the x (y) links. This also provide the quantitative
measurement of the energy needed to assess confinement.

The hybrid encoding of gauge bosons allows to reduce the
complexity of the simulation at the level of the digital proposal for

v

l
2Δ

Figure 3 | Lattices of Rydberg atoms needed for simulating SU(2) GM.

(a) Holographic lattice scheme for the simulation of the pure LGT at weak

coupling. Blue spheres represent the control two-level atoms, whereas red

spheres are the ensemble two-level atoms. The blockade radii for a

plaquette-control atom and the cross-control atom are shaded in cyan and

orange, respectively. (b) A different lattice scheme has to be used to

introduce static charges. It is made from super-sites including four two-

level atoms (shaded green circle). One of these is a cross-control atom

(blue), whereas the other three are used to encode static charges (black).

The links of the gauge magnets, which connect these effective sites, have

two atoms each (red spheres on shaded green oval). Atoms used inside the

blockade region are shaded in cyan and orange. (c) Simplified lattice for

strong-coupling simulations. There is one atoms per link (encoding the spin

qubit) and a double-well potential at each link (whose wells encod the

position qubit); following equation (9) the relative height of the two

potential wells differs by 2D. As spin qubits in the ground state are in 0j i,
corresponding to the left (lower) well of the potential for x (y) links, the

right (up) well is empty and the system is at half-filling. In order to

implement equation (4), the blockade radius of the cross-controls can be

limited to the first four wells around a site (shaded in cyan).
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simulating Abelian theories29,37. Contrary to the generic regime,
the simplified set-up implies the existence of an upper bound on
the acceptable atomic temperatures T, KBTooDo~D. However,
this condition can be satisfied in current state-of-art experiments
(see equation (4)).

Discussion
The simulation proposed here (for similar proposals see47,48) is
only the first step towards the full quantum simulation of full-
fledged QCD. Note that a slight modification of the model
considered here allows for a relativistic dispersion relation as
required by QCD35. This is only the first proposal for a generic
experimental implementation of non-Abelian LGT, and as such
its realization is, in its present form, very challenging.
Nevertheless we do believe that this work will set the basis and
serve as an inspiration for further researches that will certainly
lead to simplifications and improvements. The physics we
described here is dominated by the presence of singlets that
have a fundamental role in high-temperature superconductivity.
We foresee that the experiments we propose provide also new
insights in this area (see also refs 49,50). An interesting
development would be to apply the ideas of Abanin and
Demler51 and Cardy52to measure in the experiments the
intrinsic LRE carried by a single chromo-electric string and to
perform a careful analysis of other possible error sources such as
atom losses.

Methods
Using Rydberg gates. Mesoscopic Rydberg gates are used both for the ground-
state preparation and its energy measurement. The ground state for different
charge backgrounds Oj i, is obtained as the ground state of a generalized
Hamiltonian that include a term forcing gauge invariance, ~H¼HþHG (see
main text). We start the adiabatic preparation from an easy-to-prepare unique
ground state Oaj i of an Hamiltonian Ha, such that Oaj i Oj ia0, for example,
Ha ¼

P
lh
G0 �G5ð Þþ

P
lv
G0 þG5ð Þ. During the evolution, Ha is slowly

substituted by ~H, ~HðtÞ ¼ ð1� lðtÞÞHa þ lðtÞ~H during total time Tc1/D.
In order to implement the time evolution under ~H(t), we decompose it in tensor

products of Pauli operators. For simplicity, let us focus just on a single plaquette.
It acts on eight atoms encoding eight qubits

~HðtÞ ¼
X
I

lIðtÞHI ; HI ¼ s1i1 � � � � � s8i8 ; ð11Þ

I¼ (i1?i8), and i¼ 0, 1, 2, 3, with s0¼ 1. For each HI, the plaquette state
decomposes as

cj i ¼ cIþ cI
þ

�� �
þ cI� cI

�
�� �

; ð12Þ

with HI c
I
�

�� �
¼ � cI

�
�� �

and j cI� j2 þ j cIþ j2¼ 1.
The evolution is approximated by a sequence of short steps, of a duration

dt¼T /N each

WðT Þ ¼ e� i
R dt

0
~HðtÞdt

� �N

¼
Y
I

e� ilI
R dt

0
HI ðtÞdt

 !N

þO E2
	 


¼
Y
I

WIðdtÞ
 !N

þO E2
	 


; ð13Þ

where E � maxI;tðEðI; tÞÞ and E(I,t)¼ lI(t)dt.
The energy is measured by determining each of the j cIþ j as

hHi ¼
X
I

lIhHIi ¼
X
I

lI 2 j cIþ j2 � 1
	 


ð14Þ

with the l’s from equation (11). Experimentally, we determine a single j cIþ j by
acting with

~GI ¼ e� i�4s
2
cGIe

i�4s
2
c ¼ 1c � 1þHI

2
þs1c � 1�HI

2
ð15Þ

on the state 0j ic# cj i. This gives cIþ 0j i � cþ
�� �

þ cI� 1j i � c�j i, with cj i
defined in equation (12). Up to single-qubit rotations of the ensemble
qubits, GI ¼ j 0ih 0 jc � 1þ j 1ih 1 jc �HI is the Mesoscopic Rydberg gate
G ¼ j 0ih 0 jc � 1þ j 1ih 1 jc �s1� 8 responsible of the SRT on all the eight
qubits conditioned on the state of the control33. Thus, at the price of iterating
the process enough times, we can couple 0c to a short-lived metastable state
and measure j cIþ j by fluorescence.

A single WI(dt) of equation (13), acting on c(t) produces

cðtþ dtÞj iI¼ cIþ e� iEðI;tÞ cI
þ

�� �
þ cI� eþ iEðI;tÞ cI

�
�� �

: ð16Þ
Experimentally, we realize it by applying the gate

~GIe
� iEðI;tÞs3c ~GI ¼ e� i�4s

2
cGIe

� iEðI;tÞs1cGIe
i�4s

2
c ð17Þ

to 0j ic# cðtÞj i37.
The complete experimental sequence is the following: (a) obtaining the ground

state by iterative applications of the WI(dt) and (b) measuring each one of the HI

contributions to the energy. The latter inevitably disrupts the ground state, thus,
the sequence (a) and (b) needs to be repeated several times.

Temperature of the atomic sample. Here we discuss the effects of the environ-
ment on the temperature of the atomic sample. In full digital simulation (for
mixed-analogue see Methods), thermal excitations of the atomic sample can be
decoupled from GM. Indeed, the logical (hyperfine) states can be Zeeman split by
an energy dEcKBT. Note that by taking dEc~D, the phase difference due to dE is
quickly oscillating and cancels from the time-evolution of logic states. Furthermore,
by working with a sufficiently deep optical lattice potential V0, we can suppress any
excitation due to laser pulses, that is, the gap to the first lattice mode w can be
much larger than ER, the recoil associated to Rydberg excitation, as w � 2

ffiffiffiffiffiffiffiffiffiffi
V0Er

p
,

with Er ¼ �h2k2=2m, the recoil energy of lattice lasers. Note that in typical two-
photon excited Rydberg nS states in Rb with nB50 (typical pulses, 480–780 nm), by
taking counterpropagating pulses, ERBEr, and ordinary values of V0\25Er for
Mott regime are sufficient. Thus, the real temperature of the sample is not
increased by laser pulses, whose recoil energies are dispersed by the lattice itself.
Thus, the digital temperature of GM is zero.

Spontaneous decay of Rydberg and logical states of atoms. Here we discuss
how the environment affects the spontaneous decay of the Rydberg atoms. The
atoms are in the Rydberg states only when the gates are working. As the typical
time scale tG needed to perform the gate is of ms a life time tD of tens of ms is
sufficient. For the typical Rydberg states mentioned above, which can be excited
relatively fast and with high fidelity (Rabi frequencies of 500 kHz with line widths
of 3 kHz are realized), tD\50ms, thus exp �ðtG=tDÞ½ �t10� 5 and the sponta-
neous decay is quite rare during the whole experiment. To conclude, we note that
the coherence time, that is, the time for which the simulator can work is only
limited by the life time of the metastable logical states. Such time is of order 0.1–1 s,
thus in principle 105–106 Rydberg gates can be safely applied.

Fidelity of realistic Rydberg gate. Here we discuss how the environment affect
the fidelity of the Rydberg gate. In the main text, we have assumed that Rydberg
gate to be ideal. The functioning of a realistic Rydberg gate and its fidelity were first
discussed in the original paper33, where the major source of infidelity was re-
conducted to the imperfect blockade due to the mutual interaction of two or more
ensemble atoms simultaneously excited to Rydberg states. As argued in37, such
imperfection together with possible others can be modelled as follows:

GIðfÞ ¼ j 0ih 0 jc � eifQI þ j 1ih 1 jc �HI ¼ RðfÞGI ¼ GIRðfÞ; ð18Þ
where RðfÞ ¼ j 0ih 0 jc � eifQI þ j 1ih 1 jc � 1 and GI was given above. We may
fix the norm of operator QI to 1 such as the parameter f measures the infidelity of
the gate. Some consideration on the form of QI. We may expect that the operator
decomposes in a systematic error part (which still depends on HI), and a
fluctuating random part, which is different each time the gate acts (and which we
may suppose independent of HI). Hence, we distinguish the QI at different time
with a prime (for simplicity below we omit the suffix I). It follows that for a realistic
unitary evolution, there is non-zero probability, once initialized the control in the
state 0j ic, of ending in 1j ic. Thus, to avoid error propagation, we have to force
radiative decay of the control from 1j i to 0j i, at the price that the process becomes
dissipative. The evolution is

r ! CrCy þDrDy; ð19Þ
where

C ¼ 1
2

cos l 1þ eifQ
0
I eifQI

� �
� i sin l eifQ

0
I HI þHIe

ifQI

� �� �
;

D ¼ 1
2

cos l 1� eifQ
0
I eifQI

� �
þ i sin l eifQ

0
I HI �HIe

ifQI

� �� �
:

Note that the evolution is dissipative already at first order in f. Indeed,

CþD ¼ e� ilHI þf sin lHIQI þO½f2�; ð20Þ
and, by neglecting l2 terms, we have on average

o _r4 / � il HI þ
i
2
f HI ; �QI½ �;r

� �
þ 1

2
lf HI ; �QIf g;rf g; ð21Þ

where �QI represents the systematic error, which depends on the HI. Note that at
first order the evolution of the system under the total Hamiltonian ~H is simple
obtained by summing over I.
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Thus, the infidelity of the gate has two consequences. First, we are not preparing
the ground state of ~H but of a perturbed one. However, as we are interested in a
gapped phase, the adiabatic theorem ensures that the two states are very similar, so
that error is only linear in f for foo1. Note that f depends on the efficiency of
the electromagnetic-induced transparency employed in the Rydberg gate and can
be about 10� 2 (ref. 33).

The second consequence is dissipation. After the adiabatic evolution, we have a
mixed state. As HI and Q have finite norm, |{HI,�QI}| admits one or more states
which are eigenvectors with maximum eigenvalue. Thus, each dissipative term tries
to drive the system to such states. As the different {HI,�QI } are expected to be not
commuting for different I, we may conjecture that their action is to drive the
system to thermal state of the deformed Hamiltonian above, with a temperature of
order fD, and, thus, negligible.

Strong-coupling experiment. The strong-coupling scheme that we propose
involves the digital simulation of HG ¼ ~D

P
s Hs only, Hs�cross operator at site s.

Owing to the analogue encoding of the position qubits of the links, each Hs acts
only on four atoms:

Hs ¼
X3
j¼1

eis
j

� �� 4
¼ 2ðcos aÞ4s0� 4 þ � 2ðcos a sin aÞ2 sj� 2 � s0� 2 þ 5 perm:

	 


þðsin aÞ4sj � 4;

thus, we have to engineer only 18 terms with Rydberg gates.
The analogue encoding of the position qubit and of its dynamics has also other

two consequences. First, thermal fluctuations of the atomic sample are coupled to
the GM, thus, contrary to the fully digital scheme above, the absolute value of D
and ~D does matter. Second, the digital time T corresponds to the physical time.
Thus, we may estimate the highest ~D we can engineer by identifying dt as the time
employed to perform e� iEHs , tstep. According to Trotter, ~D ¼ E=tstep. As each SRT
requires two Rydberg gates, tstep¼ 18	 2	 tRB10� 5 s, where we assume the delay
of the Rydberg gate tRB1 ms. It follows that we can neglect the temperature T of the
sample for KBTooDoo~DB10� 7�K.

We conclude with few comments on AC-shaking procedure. The adiabatic
modulation of AC-periodic forcing of the lattice provides the hopping the atoms
need to adjust to the ground state. Such hopping is controllable and selective, as it
appears only if the frequency of the forcing o is commensurable with 2D53. This
avoids unwanted tunnelings as, for instance, of the control atom to the link wells
and vice-versa. Next-to-nearest neighbour hoppings between different links are
strongly suppressed by the exponential decay of Wannier functions. In order to
induce the same rate of in-well oscillations for horizontal and vertical links, the
periodic forcing F is chosen to be parallel to the plane at a 45� angle, F8(1,1,0).
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