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Abstract- This paper describes the design and the simulation of a non-linear controller for an aircraft using the 

backstepping method. The aim is to find the expressions of the elevator deflection in order to control the flight path 

angle. Backstepping controller uses the non-linear equations of motion of an aircraft, the Lyapunov analysis and the 

errors between the real and the desired values. The advantage of the backstepping method is to work with cascaded 

structures. Compared to the PID method, there is no need of tuning gains to ensure the stability. Furthermore, 

compared to the dynamic inversion there is no linearization and no approximations of the system; it works with the 

true non-linear system using virtual controls. Compared to other works, this paper deals with very accurate equations 

of motion and a very detailed non-linear coefficient aerodynamic model. This technique does not control only the 

angle of attack or the pitch Euler angle but particularly the flight path angle allowing a steady, climb or descent flight. 

The controller has been implemented in Matlab/Simulink and FlightGear.  
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1. Introduction 
An aircraft is a non-linear system. Controlling it is achieved by moving the ailerons, the elevator, the 

rudder (Figure 1), and the throttle. In this paper, only the elevator is dealt. The throttle is constant, the 

ailerons and the rudder are null. 

 

 
Fig. 1. Actuators: Rudder, Elevator, Aileron  

 

The flight control complexity is due to the fact that for similar input values, the same results are not 

obtained with respect to the altitude, the speed, the temperature, etc.(Stengel, 2014).  

For instance, considering two identical airplanes with the same actuators’ deflection and the same 

throttle, only a difference in altitude will imply two different behaviours. Indeed, higher the altitude is, 

smaller are the air flow, the friction on the wings, the drag and much smaller is the airspeed (bigger is the 
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ground speed). Thus, the flight path angle will be different due to it is direct dependency on the airspeed. 

In this paper, we will consider the aircraft as a non-linear model.  

In order to resolve this problem in the classical method, a controller is designed on linear control theory 

due to the wealth of tools for linear design and analysis. This method is to simplify the non-linear aircraft 

model by several linear models according to the altitude, the speed and the temperature (Nelson, 1997), 

(Toumes and Johnson, 1998). Thus, this technique uses a multiple modelling approach. In fact, several 

controllers are used for several equilibrium points. The most well-known methods are PID, gain-scheduled 

and nested saturation. These methods can be completed with a neural network technique (Steck et al, 1996), 

(Puttige et al, 2009).  

In this paper, due to the non-linear equations of motion of the model, classical method is not possible 

to implement. Therefore a single controller is used for the non-linear aircraft dynamics. It allows 

manoeuvres outside the region where the flight dynamics are linear. In this method, the aircraft is stabilized 

regardless of the altitude, the speed or the temperature. The most well-known non-linear aircraft dynamics 

control methods are feedback linearization, backstepping and slide mode control, (Landry et al, 2012), 

(Espinoza et al, 2013). 

In this research, the backstepping method is used to control the non–linear system with virtual laws 

(Borra, 2012), (Lungu, 2012), (HarkegArd and Glad, 2000). As per Brian M. Borra (2012), “Backstepping 

is a recursive, control-effort minimizing, constructive design procedure that interlaces the choice of a 

Lyapunov function with the design of feedback control. It allows the use of certain plant states to act as 

intermediate, virtual controls, for others breaking complex high order systems into a sequence of simpler 

lower-order design tasks”. 

The rest of the paper is organized as follows. Section 2 presents the aircraft model. The backstepping 

approach is explained in section 3. Simulations and results are shown in section 4. Finally, a conclusion is 

given in section 5. 

 

2. Aircraft model 
In this section, all variables, their symbols and equations of motion are described. 

 

2. 1. Nomenclature 
Table.1. Nomenclature 

 

γ Flight path angle (rad). δe Elevator deflection (rad). 

μ Bank angle (rad). V Airspeed (m/s). 

α Angle of attack (rad). Lift Lift force (N). 

β Sideslip angle (rad). D Drag force (N). 

Q Pitch rate (rad/s). T Thrust (N). 

L Roll moment (N.m). Y Side force (N). 

M Pitch moment (N.m). MT Engine momentum (N.m). 

N Yaw moment (N.m). m Mass (kg). 

CM Pitch aerodynamic coefficient. q̅ Dynamic pressure (N/m2). 

CM0 Pitch aerodynamic coefficient. S Wing area (m2). 

CMq Pitch aerodynamic coefficient. c Mean aerodynamic chord (m). 

CMδe
 Pitch aerodynamic coefficient. c5,6,7 Inertial terms. 

 

2. 2. Equations of motion 
The following equations express the elevator deflection 𝛿𝑒 given in equation 1 to the flight path angle 

(equation 11). (Borra, 2012), (Landry et al, 2012). Figure 2 shows the main three variables used for the 

backstepping method (γ, α and Q). 

The pitch aerodynamic coefficient is: 

 

http://digitalcommons.calpoly.edu/do/search/?q=author_lname%3A%22Borra%22%20author_fname%3A%22Brian%22&start=0&context=374206
http://digitalcommons.calpoly.edu/do/search/?q=author_lname%3A%22Borra%22%20author_fname%3A%22Brian%22&start=0&context=374206
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 CM = CM0
(α, β) + CMq

(α)
c

2V
Q + CMδe

(α)δe           (1) 

 
The pitch moment is: 

 

 M = q̅ScCM                   (2) 

 

The derivate of pitch rate is: 

 

 Q̇ = (c5P − c7MT)R − c6(P2 − R2) + c7M            (3) 

 

 Q̇ = fP(γ, α, Q) + gP(γ, α, Q)δe               (4) 

 

 fP(γ, α, Q) = (c5P − c7MT)R − c6(P2 − R2) + c7qSc (CM0
(α, β) + CMq

(α)
c

2V
Q)   (5) 

 
 gP(γ, α, Q) = c7qScCMδe

(α)               (6) 

 

The derivate of angle of attack is: 

 

 α̇ =
−Lift

mVcosβ
+

1

mVcosβ
(−Tsinα + mgcosγcosμ) + Q − tanβ(Pcosα + Rsinα)    (7) 

 
 α̇ = fα(γ, α) + gα(γ, α)Q                (8) 

 

 fα(γ, α) =
−Lift

mVcosβ
+

1

mVcosβ
(−Tsinα + mgcosγcosμ) − tanβ(Pcosα + Rsinα)    (9) 

 
 gα(γ, α) = 1                   (10) 
 

The derivate of flight path angle is: 

 

 γ̇ =
sinμ

mV
(−Dsinβ − Ycosβ) +

1

mV
(Tcosαsinβsinμ − mgcosγ) +

cosμ

mV
(Lift + Tsinα)   (11) 

 
 γ̇ = fγ(γ) + gγc(γ)cosα + gγs(γ)sinα             (12) 

 

 fγ(γ) =
sinμ

mV
(−Dsinβ − Ycosβ) +

1

mV
(cosμLift − mgcosγ)        (13) 

 

 gγc(γ) =
Tsinβsinμ

mV
                 (14) 

 

 gγs(γ) =
cosμ

mV
T                  (15) 
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Fig. 2. Flight path angle 𝛾, Angle of attack 𝛼, and Pitch rate 𝑄. 

 

3. Backstepping control 
 

3. 1. Controller design for the flight path angle 
The objective is to find the elevator expression that corresponds to the desired flight path angle. The 

approach is to create an error and derivate it in order to zero it out. The process is summarized in figure 3: 

 
 

 

 

 

 
 

 

 

 

 

Fig. 3. Controller block diagram 
 

The first step is to derivate the flight path angle in order to get the desired angle of attack. Both of these 

angles are described in figure 2. 

 

 

 

 

Fig. 4. Flight path angle 

 

 𝑒𝛾 = 𝛾 − 𝛾𝑑𝑒𝑠                  (16) 

 
 𝑒�̇� = �̇�                    (17) 

 
 𝑒�̇� = −𝑘𝛾𝑒𝛾 + 𝑘𝛾𝑒𝛾 + 𝑓𝛾(𝛾) + 𝑔𝛾𝑐(𝛾)𝑐𝑜𝑠𝛼 + 𝑔𝛾𝑠(𝛾)𝑠𝑖𝑛𝛼        (18) 

 

If α was an input of this system, it should be chosen such as: 

 

 𝑘𝛾𝑒𝛾𝑓𝛾(𝛾) + 𝑔𝛾𝑐(𝛾)𝑐𝑜𝑠𝛼 + 𝑔𝛾𝑠(𝛾)𝑠𝑖𝑛𝛼 = 0           (19) 

Derivate  
𝛾𝑑𝑒𝑠 𝑒𝛾 = 𝛾 − 𝛾𝑑𝑒𝑠 𝑒𝛾 = 𝑓(𝛼) 

𝛼 Controller 𝛾 Controller F16 Model 𝑄 Controller 

𝑄𝑑𝑒𝑠 𝛿𝑒  

𝛾 𝛼 𝑄 

𝛾𝑑𝑒𝑠  𝛼𝑑𝑒𝑠  
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Thus the equation (18) would be linear: 

 

 𝑒�̇�′ = −𝑘𝛾𝑒𝛾                   (20) 

 

A Lyapunov function is defined to stabilize the system (18). The system is stable if the derivate of 

Lyapunov function Vγ̇(eγ) is negative: 

 

 𝑉𝛾(𝑒𝛾) =
1

2
𝑒𝛾

2                  (21) 

 

 𝑉�̇�(𝑒𝛾) = 𝑒𝛾 . 𝑒�̇�                  (22) 

 

 𝑉�̇�(𝑒𝛾) = −𝑘𝛾𝑒𝛾
2 < 0  𝑘𝛾 > 0                             (23) 

 

The derivate of the Lyapunov function Vγ̇(eγ) is definite negative. Thus, the system eγ̇ = −kγeγ is 

asymptotically stable. The system (18) can be written: 

 

 𝑒�̇� = −𝑘𝛾𝑒𝛾 + 𝑒𝛼                 (24) 

  

With the error eα that converges to zero. 

 

 𝑒𝛼 = 𝑘𝛾𝑒𝛾𝑓𝛾(𝛾) + 𝑔𝛾𝑐(𝛾)𝑐𝑜𝑠𝛼𝑑𝑒𝑠 + 𝑔𝛾𝑠(𝛾)𝑠𝑖𝑛𝛼𝑑𝑒𝑠          (25) 

 

And the desired angle of attack is: 

 

 𝛼𝑑𝑒𝑠 = 2 atan (
𝑔𝛾𝑐(𝛾)±√𝑔𝛾𝑐(𝛾)2+𝑘𝛾𝑒𝛾𝑓𝛾(𝛾)2−𝑔𝛾𝑠(𝛾)2

𝑘𝛾𝑒𝛾𝑓𝛾(𝛾)+𝑔𝛾𝑠(𝛾)
)          (26) 

   

The second step is to derivate the angle of attack in order to get the desired pitch rate:  

 

 

 

 
 

 

Fig. 5. Angle of attack 

 

 𝑒𝛼 = 𝛼 − 𝛼𝑑𝑒𝑠                  (27) 

 
 𝑒�̇� = �̇� − �̇�𝑑𝑒𝑠                  (28) 

 
 𝑒�̇� = −𝑒𝛾 − 𝑘𝛼𝑒𝛼 + 𝑘𝛼𝑒𝛼 + 𝑒𝛾 + 𝑓𝛼(𝛾, 𝛼) + 𝑔𝛼(𝛾, 𝛼)𝑄 − �̇�𝑑𝑒𝑠       (29) 

 

If Q wax an input of this system, it should be chosen such as: 

 

 𝑘𝛼𝑒𝛼 + 𝑒𝛾 + 𝑓𝛼(𝛾, 𝛼) + 𝑔𝛼(𝛾, 𝛼)𝑄 − �̇�𝑑𝑒𝑠 = 0           (30) 

  

Derivate  
𝛼𝑑𝑒𝑠 𝑒𝛼 = 𝛼 − 𝛼𝑑𝑒𝑠 𝑒𝛼 = 𝑓(𝑄)) 
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Thus the equation (29) would be linear: 

 

 𝑒�̇�′ = −𝑘𝛼𝑒𝛼                  (31) 

 

A Lyapunov function is defined to stabilize the system (29). The system is stable if the derivate of 

Lyapunov function Vα̇(eγ, eα) is negative: 

 

 𝑉𝛼(𝑒𝛾 , 𝑒𝛼) =
1

2
𝑒𝛾

2 +
1

2
𝑒𝛼

2                (32) 

 

 𝑉�̇�(𝑒𝛾 , 𝑒𝛼) = 𝑒𝛾 . 𝑒�̇� + 𝑒𝛼 . 𝑒�̇�               (33) 

 

 𝑉�̇�(𝑒𝛾 , 𝑒𝛼) = −𝑘𝛾𝑒𝛾
2 − 𝑘𝛼𝑒𝛼

2 + 𝑒𝛼(𝑒�̇� + 𝑒𝛾 + 𝑘𝛼𝑒𝛼) < 0  𝑘𝛼 > 0                    (34) 

 

In order to have a negative derivate Lyapunov function Vα̇(eγ, eα), it is necessary to cancel the non-

negative terms: 

 

 𝑒�̇� + 𝑒𝛾 + 𝑘𝛼𝑒𝛼 = 0                 (35) 

 

Thus, the desired pitch rate becomes: 

 

 𝑄𝑑𝑒𝑠 =
�̇�𝑑𝑒𝑠−𝑘𝛼𝑒𝛼−𝑓𝛼(𝛾,𝛼)−𝑒𝛾

𝑔𝛼(𝛾,𝛼)
               (36) 

 

 The system (29) can be written: 

 

 𝑒�̇� = −𝑘𝛼𝑒𝛼 + 𝑒𝑄 − 𝑒𝛾                (37) 

  

With the error eQ that converges to zero. 

 

 𝑒𝑄 = 𝑘𝛼𝑒𝛼 + 𝑓𝛼(𝛾, 𝛼) + 𝑔𝛼(𝛾, 𝛼)𝑄𝑑𝑒𝑠 − �̇�𝑑𝑒𝑠           (38) 

 

The third step is to derivate the pitch rate in order to get the desired elevator deflection: 

 

 

 

 

 
Fig. 6. Pitch rate 

 

 𝑒𝑄 = 𝑄 − 𝑄𝑑𝑒𝑠                  (39) 

 

 𝑒�̇� = �̇� − �̇�𝑑𝑒𝑠                  (40) 

 

 𝑒�̇� = −𝑘𝑄𝑒𝑄 + 𝑘𝑄𝑒𝑄 + 𝑓𝑃(𝛾, 𝛼, 𝑄) + 𝑔𝑃(𝛾, 𝛼, 𝑄)𝛿𝑒 − �̇�𝑑𝑒𝑠        (41) 

 

If δe wax an input of this system, it should be chosen such as: 

 

 𝑘𝑄𝑒𝑄 + 𝑓𝑃(𝛾, 𝛼, 𝑄) + 𝑔𝑃(𝛾, 𝛼, 𝑄)𝛿𝑒 − �̇�𝑑𝑒𝑠 = 0           (42) 

Derivate  
𝑄𝑑𝑒𝑠 𝑒𝑄 =Q- 𝑄𝑑𝑒𝑠 𝑒𝑄 = 𝑓(𝛿𝑒)) 
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Thus the equation (41) would be linear: 

 

 𝑒�̇� = −𝑘𝑄𝑒𝑄                   (43) 

 

A Lyapunov function is defined to stabilize the system (41). The system is stable if the derivate of 

Lyapunov function VQ̇(eγ, eα, eQ) is negative: 

 

 𝑉𝑄(𝑒𝛾 , 𝑒𝛼 , 𝑒𝑄) =
1

2
𝑒𝛾

2 +
1

2
𝑒𝛼

2 +
1

2
𝑒𝑄

2              (44) 

 

 𝑉�̇�(𝑒𝛾 , 𝑒𝛼 , 𝑒𝑄) = 𝑒𝛾 . 𝑒�̇� + 𝑒𝛼 . 𝑒�̇� + 𝑒𝑄 . 𝑒�̇�            (45) 

 
 𝑉�̇�(𝑒𝛾, 𝑒𝛼 , 𝑒𝑄) = −𝑘𝛾𝑒𝛾

2 − 𝑘𝛼𝑒𝛼
2 − 𝑘𝑄𝑒𝑄

2 + 𝑒𝛼𝑒𝛾 − 𝑒𝛼𝑒𝛾 + 𝑒𝛼𝑒𝑄 + 𝑘𝑄𝑒𝑄
2 + 𝑒𝑄. 𝑒�̇� < 0     𝑘𝑄 > 0    (46) 

  

In order to have a negative derivate Lyapunov function VQ̇(eγ, eα, eQ), it is necessary to annul the non-

negative terms: 

 

 𝑒𝑄(𝑒�̇� + 𝑒𝛼 + 𝑘𝑄𝑒𝑄) = 0                (47) 

 

The system (41) can be written: 

 

 𝑒�̇� = −𝑘𝑄𝑒𝑄                   (48) 

 
The desired elevator deflection is: 

 

 𝛿𝑒 =
�̇�𝑑𝑒𝑠−𝑘𝑄𝑒𝑄−𝑓𝑃(𝛾,𝛼,𝑄)−𝑒𝛼

𝑔𝑃(𝛾,𝛼,𝑄)
               (49) 

 

4. Simulations and Results 
Simulation was completed with Matlab/Simulink. Results are shown in Figure 7. The simulation 

duration time is 30s. Figure 7.a shows the desired value, identified with stars and the real value that follows 

the reference signal. The flight path angle oscillates the first two seconds, then takes 5 seconds to reach the 

5° degrees, and finally takes 5 seconds to return to 0°. Changes in the flight path angle leads to changes in 

the angle of attack (figure 7.b) that causes modifications in the pitch rate (figure 7.c). In order to follow the 

desired flight path angle, the elevator deflection (figure 7.d) oscillates the first two seconds, deflects to the 

bottom at 10 seconds, and deflects to the top at 12 seconds.  

 

  
                                          (a)                                                                            (b)  
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                                          (c)                                                                            (d)  

Fig.7. (a): Flight path angle and desired flight path angle, (b): Angle of attack, (c): Pitch rate, (d): elevator 

deflection. 

 

5. Conclusion 
In this paper, backstepping method is applied to control the flight path angle.  

The process derivates first the desired flight path angle in order to get the desired angle of attack, then, 

it derivates the desired angle of attack to obtain the desired pitch rate, and finally, derivates the desired pitch 

rate in order to have the elevator deflection through the aerodynamic coefficient and the pitch moment. The 

control is achieved by acting the elevator. The throttle is constant, the ailerons and the rudder are null.  

As indicated in the introduction, the classical techniques need a linearization. This is not the case for 

backstepping method that works for every condition at any moment. As seen in the results, the backstepping 

method is very efficient to control a non-linear system. It avoids gain adjustment, and adjustment is made 

only to improve the performances. 
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