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ABSTRACT 
When interest is in estimating long-term design loads for 

an offshore wind turbine using simulation, statistical 
extrapolation is the method of choice.  While the method itself 
is rather well-established, simulation effort can be intractable 
if uncertainty in predicted extreme loads and efficiency in the 
selected extrapolation procedure are not specifically 
addressed.  Our aim in this study is to address these questions 
in predicting blade and tower extreme loads based on 
stochastic response simulations of a 5 MW offshore turbine.  
We illustrate the use of the peak-over-threshold method to 
predict long-term extreme loads.  To derive these long-term 
loads, we employ an efficient inverse reliability approach 
which is shown to predict reasonably accurate long-term loads 
when compared to the more expensive direct integration of 
conditional load distributions for different environmental 
(wind and wave) conditions.  Fundamental to the inverse 
reliability approach is the issue of whether turbine response 
variability conditional on environmental conditions is 
modeled in detail or whether only gross conditional statistics 
of this conditional response are included.  We derive design 
loads for both these cases, and demonstrate that careful 
inclusion of response variability not only greatly influences 
long-term design load predictions but it also identifies 
different design environmental conditions that bring about 
these long-term loads compared to when response variability 
is only approximately modeled.  As we shall see, for this 
turbine, a major source of response variability for both the 
blade and tower arises from blade pitch control actions due to 
which a large number of simulations is required to obtain 
stable distribution tails for the turbine loads studied. 

INTRODUCTION 
Statistical extrapolation of extreme loads is being 

increasingly used in the design of offshore wind turbines 
 

against ultimate limit states, and a recent draft [1] of design 
guidelines from the International Electrotechical Commission 
(IEC) also recommends its use.  Statistical extrapolation 
involves integration of the distribution of turbine loads given 
specified environmental states with the likelihood of 
occurrence of the different environmental states; the 
(conditional) load distributions are obtained by means of 
turbine response simulations. 

While extrapolation methods are relatively better 
understood for onshore wind turbines [e.g., 2-4], they present 
several challenges for offshore turbines.  For one, the offshore 
environment involves, as a minimum, the consideration of 
waves in addition to wind; hence, the number of random 
variables describing the environment increases.  As a result, 
the domain of integration increases and it can often become 
impractical to perform computationally expensive simulations 
over the entire domain if one uses the basic extrapolation 
approach that involves direct integration.  It is thus of interest 
to explore efficient alternative extrapolation techniques for 
offshore wind turbine design.  A second challenge is that 
extrapolation of turbine loads needs to recognize the 
dependence on two (or more) random processes representing 
the environment—wind and waves, say—each of which 
influence turbine loads in distinct ways.  Several studies in 
recent years have focused on the complexity of these issues in 
the offshore environment and have addressed comparisons of 
alternative methods to extract turbine load extremes [5], 
possible reduction in simulation effort by careful selection of 
critical environmental states [6], use of the environmental 
contour method [7], and use of a suitable percentile of the 
wave-related random variable (conditional on wind speed) in 
lieu of the full joint wind-wave distribution [8]. 

On related matters to those highlighted in these previous 
efforts, we attempt here to answer several open questions 
regarding how the peak-over-threshold method should be used 
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with environmental contour method; whether or not the 
environmental contour method, which requires considerably 
less simulation effort is as accurate as direct integration in 
statistical load extrapolation; and whether or not variability in 
turbine loads must be carefully accounted for in order to yield 
accurate long-term design loads.  To address these issues, we 
derive design loads using a model of a utility-scale 5MW 
offshore wind turbine that was developed at the National 
Renewable Energy Laboratory (NREL), and assumed to be 
sited in 20 meters of water.  Stochastic time-domain 
simulations of turbine response form the basis for this study.  
While the inflow turbulence describing the wind field is 
simulated using similar procedures to those for onshore 
turbines, excitation from waves is simulated assuming 
simplified linear irregular wave kinematics that may not  be 
suitable for this shallow-water site. 

The outline of this work is as follows: after describing the 
extrapolation methods and the simulation model, we examine 
turbine response statistics for several representative 
environmental conditions.  We then discuss application of the 
peak-over-threshold (POT) method to derive probability 
distributions of turbine loads.  We illustrate how long-term 
loads can be derived using the environmental contour  (EC) 
method, first by omitting and then by accounting for turbine 
load variability (given environmental state).  Comparison of 
these EC-based design load predictions with those obtained by 
direct integration is discussed.  We also discuss how turbine 
control actions influence variability in long-term loads.  
Finally, we compare predictions of rare (long-term) load 
fractiles based on the POT and global maxima methods. 

LOAD EXTRAPOLATION METHODS 
Design Load Case 1.1b of the IEC 61400-3 draft design 

guidelines recommends the use of statistical extrapolation 
methods to predict extreme turbine loads [1].  Direct 
integration and the EC method are two common extrapolation 
methods.  These are discussed briefly next. 

In direct integration which is most often employed in 
statistical extrapolation for wind turbine extreme loads, one 
seeks to estimate the turbine design load, lT, associated with an 
acceptable failure probability, PT, or equivalently with a target 
service life of T years, using the following equation: 

[ ] [ ]∫ =>=>=
X

X xxxX dflLPlLPP TTT )(|        (1) 

where fX(x) is the joint probability density function of the 
environmental random variables, X.  For different trial values 
of load, lT, Eq. (1) enables one to compute the long-term 
probability of exceeding that load by integrating the short-
term load exceedance probability conditional on X, 
[ ]xX => |TlLP , with the relative likelihood of different 

environmental conditions, X.  This method, while exact, is 
generally expensive as one is required to integrate over the 
entire domain of all random variables; moreover, the load 
level, lT, is adjusted until the target probability, PT, results 
 

from the integration.  In this study, two environmental random 
variables comprise X and are taken to be the ten-minute mean 
wind speed, V, at hub height in the along wind direction and 
the significant wave height, Hs. 

Another extrapolation procedure is the environmental 
contour (EC) method [9], a simplified version of the inverse 
first-order reliability method, which requires one to search for 
the point of maximum load or response (i.e., the design point) 
by only considering environmental states defined on an  
“environmental contour” associated with a target return 
period.  If there are two environmental random variables, X = 
{X1, X2}, representing wind speed and wave height, as is the 
case here, then the search domain in a transformed two-
dimensional independent standard normal space, U, amounts 
to search on a circle of radius β, the target reliability index 
corresponding to PT.  The reader is referred to other studies [3, 
7] for details of the environmental contour method applied to 
wind turbines.  It can be easily shown that the environmental 
contour method essentially approximates the solution for lT in 
Eq. (1) by replacing the conditional distribution of L given the 
two-dimensional vector, X, by a step function, H(fL(X)), where 
fL(X) = Lmed(X) – lT, and H(y) = 1, if y > 0, and 0 otherwise; 
also Lmed(X) represents the “median” load given X.  Thus, the 
EC method does not utilize the full distribution of load given 
environmental random variables (as established from 
simulations) but only the median value.  It is possible to 
account for load variability fully by resorting to a search, in 
this case, of all combinations on a sphere of radius, β, based 
on the inverse first-order reliability method (inverse FORM); 
then, the derived load, lT, is more accurate and differences 
between this value and one obtained using direct integration 
per Eq. (1) result only due to assumed linearization of the 
limit state function associated with this problem. 

SIMULATION MODEL 
A 5MW wind turbine model developed at NREL closely 

representing utility-scale offshore wind turbines being 
manufactured today is used in our simulation studies.  The 
turbine is assumed to have a hub height of 90 meters above  
the mean sea level, and a rotor diameter of 126 meters.  The 
turbine is a variable-speed and collective pitch-controlled 
machine, with a maximum rotor speed of 12.1 rpm.  The rated 
wind speed is 11.5 m/s.  The turbine is assumed to be sited in 
20 meters of water and has a monopile support structure, 
which is assumed to be rigidly connected at the mudline.  The 
turbine is assumed to be installed at an IEC Class 1B wind 
regime site [1, 10].  A Kaimal power spectrum and an 
exponential coherence spectrum are employed to describe the 
turbulence random field over the rotor plane, which is 
simulated using the computer program, TurbSim [11].  For the 
hydrodynamic loading on the support structure, irregular 
linear long-crested waves are simulated using a JONSWAP 
spectrum [12].  Hydrodynamic loads are computed using 
Morison’s equation; Wheeler stretching is used to account for 
the influence of the instantaneous sea surface elevation on 
2 Copyright © 2007 by ASME 



kinematics and hydrodynamics.  Stochastic time-domain 
simulations of the turbine response are performed using the 
computer program, FAST [13]. 

TURBINE RESPONSE 
We are interested in the response of the turbine only while 

it is in an operating state.  Accordingly, we perform response 
simulations for mean wind speeds ranging from cut-in to cut-
out wind speeds (i.e., 3 m/s to 25 m/s, here).  As a function of 
the mean wind speed in each simulation, the turbulence 
intensity is assumed per IEC Class IB site conditions using the 
Normal Turbulence Model (NTM) [10].  The peak spectral 
period is modeled as a function of significant wave height 
based on one year’s data from the National Data Buoy 
Center’s Buoy 44007, where the water depth is 19 meters.  We 
discretize the domain of the two environmental random 
variables using a two-dimensional interval or bin of 2 m/s for 
mean wind speed and 1 m for significant wave height.  We 
will focus on the out-of-plane blade moment (OoPBM) at the 
blade root and the fore-aft tower base moment (TBM) at the 
mudline as the two turbine load variables whose extreme 
values are of interest in this study. 

In order to derive statistics or distributions of turbine 
loads conditional on wind speed and wave height, multiple 
simulations have to be carried out for selected pairs of mean 
wind speed and significant wave height values.  Figure 1 
shows the average of ten-minute maximum loads from six 
simulations for each V-Hs bin considered.  It is observed that 
the maximum out-of-plane blade moment increases with wind 
speed, up to the rated wind speed of 11.5 m/s, and then 
decreases, as is expected due to blade-pitch control actions.  
Also blade loads are seen to be relatively insensitive to wave 
height.  On the other hand, the maximum fore-aft tower base 
moment, while it also peaks at the rated wind speed, is seen to 
increase almost linearly with the wave heights. 

To investigate the effect of wind on turbine loads in 
greater detail, we compare the turbine response for mean wind 
 

 

speeds of 3.7 m/s, 12.1 m/s, and 24.2 m/s, while the 
significant wave height is held constant at 4.2 m.  Figures 2 
and 3 suggest that in general blade and tower loads have 
increased energy (variance) with increasing wind speed.  Even 
though maximum blade moments are higher around the rated 
wind speed (see Fig. 2(b) and Fig. 1(a)), the variance is 
smaller there than at 24.2 m/s (Fig. 2(c) and Fig. 3(b)).  Tower 
load variance differences between rated and very high wind 
speeds are smaller than is the case for blade loads.  Important 
peaks in the power spectra of the loads are seen at 1P 
(corresponding to the rotor rotation rate of 0.2 Hz at and 
above the rated wind speed) and multiples as well as at 
resonant frequencies associated with edgewise and flapwise 
modes (both of which are present in the OoPBM process) and 
with tower fore-aft bending. 

The effect of waves is studied by comparing the turbine 
response for significant wave heights of 0.5 m, 4.2 m and 9.4 
m, while the mean wind speed is held constant at 12.1 m/s.  
Figure 4 clearly shows larger peaks in the TBM time series 
with increasing wave heights.  Blade loads are seen to be 
insensitive to wave height variation.  Accordingly, power 
spectra for tower loads alone are presented in Fig. 5 where no 
significant influence of wave height is noted, except at 
frequencies below around 0.2 Hz where wave energy is 
dominant, with sea surface elevation peak spectral frequencies 
being 0.14, 0.10 and 0.08 Hz for significant wave heights of 
0.5, 4.2 and 9.4 m, respectively. 

Table 1 summarizes statistics of the blade and tower loads 
obtained from six simulations each for the wind and wave 
conditions discussed in Figs. 2-5.  OoPBM statistics, as was 
discussed before, are insensitive to wave height.  Also, the 
mean, SD (standard deviation), and maximum OoPBM are all 
systematically higher around the rated wind speed compared 
to other wind speeds.  Interestingly, too, the skewness, 
kurtosis, and peak factor are seen to vary greatly with wind 
speed; peak factors are lowest around rated wind speed. 
 
(a) 

 
(b) 

Figure 1.  Variation with mean wind speed and significant wave height of the mean of the maximum values 
from six simulations of (a) the  out-of-plane blade root moment; and (b) the fore-aft tower base moment. 
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(a) 

 
(b) 

 
(c) 

Figure 2.  Representative time series of wind speed, sea surface elevation, out-of-plane blade moment, and tower bending 
moment for mean wind speeds of (a) 3.7 m/s, (b) 12.1 m/s and (c) 24.2 m/s.  The significant wave height is fixed at 4.2 m. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.  Variation of power spectral density with mean wind speed for (a) wind speed, (b) out-of-plane blade moment, and  
(c) tower bending moment.  The significant wave height is fixed at 4.2 m. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.  Representative time series of wind speed, sea surface elevation, out-of-plane blade moment, and tower 
bending moment for significant wave heights of (a) 0.5 m, (b) 4.2 m and (c) 9.4 m.  The mean wind speed is fixed at 

12.1 m/s. 
 

Table 1.  Ten-minute statistics of turbine loads for different wind speed and wave height bins. 
Out-of-plane moment at the blade root Fore-aft tower base moment 

Max Mean SD Skew. Kurt. PF Max Mean SD Skew. Kurt. PF 
V 

(m/s) 
Hs 
(m) (all in MN-m) - (all in MN-m) - 

12.0 0.5 12.5 8.2 1.5 -0.05 2.64 2.85 97.3 65.2 10.9 0.11 2.41 2.96
12.0 4.5 12.7 8.3 1.6 -0.25 2.74 2.80 106.6 66.3 12.7 -0.03 2.76 3.17
12.0 9.5 12.2 8.2 1.5 -0.14 2.61 2.60 124.2 66.2 16.1 0.18 3.08 3.61

4.0 4.5 4.5 2.3 0.6 0.49 2.83 3.65 39.4 12.3 8.6 0.07 2.79 3.16
12.0 4.5 12.7 8.3 1.6 -0.25 2.74 2.80 106.6 66.3 12.7 -0.03 2.76 3.17
24.0 4.5 9.3 3.0 2.0 -0.14 2.89 3.07 78.4 32.8 12.3 0.07 3.07 3.73

Note: V: Mean wind speed, Hs: Significant wave height, Max: Ten-minute maximum, SD: Standard deviation,  
Skew.: Skewness, Kurt.: Kurtosis, PF: Peak Factor = (Max – Mean)/SD. 
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Figure 5.  Variation of power spectral density of fore-

aft tower bending moment with significant wave height.  
The mean wind speed is fixed at 12.1 m/s. 

The TBM process statistics are also interesting—when 
studied with variation in wave heights, it is seen that mean and 
SD levels change only very slightly, yet maximum values 
change to a greater degree suggesting that the loads processes 
have significant differences in higher-order moments and 
associated peak factors, also reflecting different degrees of 
non-Gaussian character as a function of wave height. 

From the preceding results, it can be concluded that: (1) 
blade and tower loads are largest around the rated wind speed, 
but peak factors are lowest there; (2) blade loads are 
independent of wave height; and (3) maximum tower loads 
increase systematically with wave height.  Hence, turbine 
design loads are expected to be governed either by mean wind 
speeds near rated (as the mean, SD, and maximum response 
are all higher there) or by higher-than-rated wind speeds 
where larger variability in loads and associated large peak 
factors could lead to large extreme values.  Also, tower design 
loads are likely to result from larger wave heights. 

SHORT-TERM EXTREME LOAD DISTRIBUTIONS 
The short-term distribution of turbine extreme loads, 

FL|X(l), which enables prediction of long-term loads for design 
according to Eq. (1), requires data on load extremes.  The 
global maximum and peak-over-threshold methods are 
commonly used to extract load extremes from time series data.  
We use the peak-over-threshold method here, as it can provide 
a large number of load extremes from a given number of 
simulations, resulting in better definition of distribution tails 
which is important when extrapolating loads to rare fractiles 
or low probability of exceedance levels. 

In the peak-over-threshold (POT) method, the maximum 
load from each segment of a time series that lies between two 
successive upcrossings of a chosen threshold is retained as a 
load extreme.  While the choice of threshold may be 
optimized [4], here we choose a threshold fixed at a mean plus 
1.4 SD level [2].  The mean and standard deviation used are 
based on all the load time series simulations carried out for a 
wind speed and wave height bin (X).  The cumulative 
distribution function for load extremes, ( )lFL xX =| is: 

( ) ( )[ ]nLL lFlF
POT xXxX == = ||        (2) 
 

where n is the expected number of peaks (above the chosen 
threshold) in ten minutes, and ( )lF

POTL xX =|  represents the 

cumulative distribution function of POT-based load extremes.  
This distribution is established non-parametrically here since 
distribution tails from a limited number of simulations—six, 
here—are not stable enough to allow parametric model fits. 

Equation 2 is based on the assumption that the peaks 
above the chosen threshold in a bin are independent.  If a load 
non-exceedance level of probability, p, is of interest, the 
corresponding load fractile, lp, based on the POT distribution, 
is associated with a non-exceedance probability, p1/n, and may 
be estimated as: 

[ ]n
Lp pFl

POT

11
|

−= X    (3) 

Note that as the selected threshold level is increased, the 
expected number of peaks that are retained decreases, and 
when this number is unity, the POT method approaches the 
global maximum method, since then on average, one peak is 
extracted from each simulation.  For typical threshold levels, 
the expected number of retained peaks is significantly larger 
than unity and, as a result, p1/n can approach values that are 
close to unity.  As an example, if the expected number of 
peaks above a chosen threshold is 80, then the non-
exceedance fractile level for POT data corresponding to the 
ten-minute median extreme load is 0.51/80 = 0.99137.  If loads 
corresponding to this probability level are to be established 
non-parametrically from simulations, at least 1/(1 – 0.99137) 
or 116 peak values above the chosen threshold must be 
available for the wind speed and wave height bin representing 
X.  For tight confidence intervals on such rare load levels, the 
number of peaks (and thus simulations) might even need to be 
an order of magnitude higher.  Note that extrapolation may 
often be required then for two reasons: (1) to estimate rarer 
fractiles (such as, say, the 80th percentile of the ten-minute 
extreme load instead of the median) as the minimum number 
of required data may exceed the amount of POT data available 
from limited simulations; and (2) to have tight confidence 
intervals on predicted POT load fractiles.  Extrapolation is 
discussed further when addressing long-term loads in the 
context of the inverse first-order reliability method. 

LONG-TERM LOADS 
With the inverse first-order reliability method, long-term 

loads may be estimated by using simulations to establish the 
full conditional distribution for the turbine load variable given 
wind speed and wave height and then turning the integral 
equation of Eq. (1) into a search for the maximum load on a 
locus of points in a 3-D space (representing, V, Hs, and L) 
associated with the target failure probability.  A reduced effort, 
though less exact, is possible with the environmental contour 
method where the 3-D locus searched is reduced to a 2-D one 
and, additionally, only the conditional median value of L given 
V and Hs must be estimated for points on the locus rather than 
the full distribution.
5 Copyright © 2007 by ASME 



 

Table 2:  Comparison of 20-year design loads for blade and tower loads estimated by different methods,  
when load extremes data are based on the peak-over-threshold method 

20-year design for OoPBM 20-year design for TBM 
V Hs OoPBM V Hs TBM Method 

m/s m MN-m m/s m MN-m 
2-D Environmental Contour 12.0 6.2 12.8 12.0 6.2 105.2 
2-D Environmental Contour with corrections 12.0 6.2 13.2 12.0 6.2 107.9 
3-D Inverse First-Order Reliability Method 14.0 5.5 13.6 16.0 5.5 119.9 
 
We first estimate long-term design loads using the 2-D 

formulation, also referred to as the environmental contour 
method.  Then, we compare 2-D design loads with those 
obtained from a full 3-D inverse reliability approach.  We start 
by using six ten-minute turbine response simulations for each 
environmental state to establish turbine load statistics, and 
subsequently investigate the effect of number of simulations 
on design load predictions.  All the design loads discussed 
hereinafter correspond to a return period of 20 years. 

To derive long-term loads at the site of interest, we 
require information on the joint distribution of environmental 
random variables.  For the IEC Class 1B wind regime (for 
which our turbine model is being considered), we assume that 
the ten-minute mean wind speed, V, at hub height has an 
average value of 10 m/s and that it can be described by a 
Rayleigh distribution.  We choose to truncate this distribution 
below the cut-in wind speed of 4 m/s and above the cut-out 
wind speed of 24 m/s, since we are interested only in studying 
turbine loads during operation.  The significant wave height, 
Hs, conditional on the mean wind speed, is assumed to be 
represented by a two-parameter Weibull distribution.  The 
expected value of Hs given V is based upon the JONSWAP 
correlation between wind and waves [12], while a coefficient 
of variation for Hs given V is assumed to be constant at 0.2. 
The 2-D Environmental Contour (EC) Method 

In the 2-D formulation with the EC method, the median 
turbine load given X is required.  It is obtained from POT data 
by setting p to be 0.5 in Eq. (3).  The estimated 20-year design 
loads are presented in Table 2.  The OoPBM design load is 
12.8 MN-m which is associated with a mean wind speed of 12 
m/s and a significant wave height of 6.2 m.  The TBM design 
load is 105.2 MN-m and it also results from the same wind 
speed and wave height.  That the “design” wind speed is close 
to the rated wind speed is expected as median extreme turbine 
loads are largest there, as was discussed earlier.  The design 
wave height of 6.2 meters is the larger of the two possible 
wave heights on the 20-year environmental contour that 
accompanies the mean wind speed of 12 m/s. 
Table 3: Required fractiles for the design environmental states 

for the 2-D environmental contour method. 

Load 
Average 

number of 
peaks, n 

Required 
fractile, 
0.51/n 

Largest 
empirical 
fractile 

OoPBM 87.2 0.9921 0.9981 
TBM 80.2 0.9914 0.9979 
The accuracy of the derived EC design loads may be 
evaluated by determining whether the desired fractile for the 
POT load requires extrapolation, given the number of peaks 
above the threshold retained from six simulations.  Table 3 
shows that for both blade and tower loads, the required POT 
fractiles are smaller than the largest available empirical 
fractile, 1-1/(6n+1).  This suggests that extrapolation is not 
necessary to arrive at turbine design loads with the EC 
method; nevertheless, the method has accuracy limitations 
both because it does not employ the full distribution of turbine 
loads conditional on X and because even the non-extrapolated 
fractile is subject to statistical uncertainty due to limited data.  
To assess both these sources of inaccuracy, we estimate design 
loads using direct integration.  We model the conditional load 
distribution in Eq. (1) as a step function that attains a unit 
value at the median load.  To yield the desired probability of 
failure, the design loads are found to be 12.7 MN-m and 110.2 
MN-m, respectively, for OoPBM and TBM, which are very 
close to those obtained from the environmental contour 
method.  Hence, we conclude that the EC method is not 
grossly inaccurate relative to an exact integration approach 
that works with the same data.  Still, there are other reasons 
why the EC-based design loads might not be correct; these 
reasons have to do with incomplete modeling of the 
conditional distribution of turbine loads given wind speed and 
wave height.  This is addressed next. 
Correction to the EC Design Loads 

While the full distribution of loads (given environmental 
conditions) can be employed in a 3-D inverse FORM 
approach, this requires far more computational effort.  An 
alternative strategy is to apply a correction to the 2-D EC 
design loads [14], as has been successfully applied for 
onshore turbine design loads [4].  This correction accounts for 
(1) response variability, at a given environmental state (X), by 
quantitative comparison of different fractiles of the load at the 
EC design point, and (2) background variability which reflects 
sensitivity of the EC design load to changes in the return 
period from the original value (20 years).  After applying this 
correction, design loads are estimated to be 13.2 MN-m and 
107.9 MN-m for OoPBM and TBM, respectively (see Table 
2).  Response variability is largely responsible for the change 
in design loads here.  However, the corrected blade and tower 
design loads are only about 3% larger than the 2-D EC values. 
6 Copyright © 2007 by ASME 



3-D Inverse FORM 
If instead of only seeking the median extreme load given 

X, the full probability distribution of the turbine extreme load, 
L, is established by simulations, a search is needed for the 
maximum value of a different p3 fractile on load extremes 
consistent with each environmental state (V, Hs) and with the 
specified target probability of failure, PT (or associated 
reliability index, β, where Φ(-β) = PT): 

( )( )( ) ( )( )( ) 2
1

2
|

1212
3 ΦΦΦ ⎥⎦

⎤
⎢⎣
⎡ −−= −− hFvFβp VHV     (4) 

where Φ( ) and Φ-1( ) refer to the standard normal cumulative 
and inverse cumulative distribution functions, respectively, 
and FV(v) and FH|V(h) refer to the cumulative distribution 
functions for wind speed and for significant wave height 
(given wind speed), respectively.  For POT data, the load 
fractiles are estimated according to Eq. (3).  Note that with the 
EC method, effectively, p3 is the median (i.e., p3 = 0.5). 

With this 3-D inverse FORM approach, the design loads 
(here obtained by searching only on gridded V-Hs pairs where 
simulations were carried out) are 13.6 MN-m and 119.9 MN-
m for the blade and tower loads, respectively (see Table 2).  
These same loads are obtained using direct integration 
method, which establishes the accuracy of the 3-D inverse 
FORM results.  These 3-D design loads are roughly 6% and 
14% larger, respectively, for the blade and tower loads than 
those obtained with the 2-D method.  Interestingly, the design 
wind speed with the 3-D formulation, which is 14 m/s for the 
blade load and 16 m/s for the tower load, is no longer near the 
rated wind speed, as was the case with the 2-D formulation.  
This implies that the full conditional load variability (as a 
function of wind speed and wave height) is important. 

Note that for a pitch-controlled turbine, the rated wind 
speed is expected to be the design wind speed.  Furthermore, 
in order to reduce the simulation effort, a limited number of 
wind speeds (as few as three), near rated, may be selected for 
 

 

simulations, as is also suggested in Annex G of the draft IEC 
guidelines for offshore wind turbines [1].  If we used this 
criterion, with a small wind speed bin size of 1 m/s, we might 
miss design wind speeds of 16 m/s that were found here.  
Ignoring load variability may lead to misleading design loads. 

We should note that the 2-D EC design loads and the 3-D 
inverse FORM design loads were calculated based on 
simulations for a discrete set of gridded values of V and Hs.  In 
subsequent discussions, we examine the environmental state 
(i.e., V and Hs values) at the 3-D design point in Table 2.  For 
the blade and tower loads, these environmental states 
correspond, respectively, to V = 14 m/s, Hs = 5.5 m and V = 16 
m/s, Hs = 5.5 m in the 3-D approach, are studied in greater 
detail in the following. 

In order to assess the accuracy of estimated p3-load 
fractiles for the design environmental state in this 3-D inverse 
FORM approach, it is useful to first determine if the required 
fractile needed to be extrapolated from the POT data.  Table 4 
shows that for both loads the required POT fractiles are 
significantly higher than the largest available empirical 
fractile.  In our non-parametric model for load distributions, 
we assume saturation of the tail and somewhat simplistically 
estimate the required fractile as the largest observed value.  
The load distribution (Fig. 6), however, shows that the 
assumption of saturation of tails cannot be justified.  As a 
result, 3-D inverse FORM design loads based on this non-
parametric approach here are clearly low and unconservative. 
Table 4:  Required fractiles for design environmental states for 

the 3-D inverse FORM approach. 

Load Required load 
fractile, p3 

Average 
no. of 

peaks, n 

Required 
fractile for 
POT, p3

1/n 

Largest 
empirical 
fractile 

OoPBM 0.99998997 66.2 0.99999985 0.9975 
TBM 0.99999613 74.2 0.99999995 0.9978 
 
(a) 

 
(b) 

Figure 6.  Load distributions of the POT data for governing environmental states based on 6 simulations for (a) a mean 
wind speed of 14 m/s and significant wave height of 5.5 m for OoPBM; and (b) a mean wind speed of 16 m/s and a 

significant wave height of 5.5 m for TBM. 
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Control Actions and Number of Simulations 
An interesting aspect that may be seen from Fig. 6 is that 

the maximum observed load value, which determines the 
required extrapolated fractile, is significantly larger than other 
load values in the tail of distribution.  To investigate what 
conditions bring about this large load, we study in Fig. 7 
relevant time histories of wind speed, OoPBM, and TBM 
series along with that of blade pitch angle for a single ten-
minute simulation (out of six for the design bin) that included 
this large load.  The maximum loads were seen to occur when 
the blade pitch angle suddenly reduced to zero at time instants 
of roughly 20 sec, 100 sec, and 175 sec.  This is due to the 
control system for this pitch-controlled turbine, which is such 
that the blade starts to pitch when the instantaneous wind 
speed exceeds the rated wind speed of 11.5 m/s.  At instants 
when the wind speed falls below rated, the pitch angle reduces 
to zero, and if the wind speed increases before the blade can 
pitch back, large loads result. 

 
Figure 7.  Time series of wind speed, blade pitch, OoPBM, 
and TBM for a mean wind speed of 14 m/s and significant 

wave heights of 5.5 m. 
Since these large loads due to control actions are 

observed only in one out of six simulations, the distribution 
tails may only saturate and have better definition than in Fig. 6 
if more such large load values result upon performing more 
simulations.  We therefore carry out more simulations for the 
governing environmental states and find that at least 60 and 
150 simulations, respectively, are needed for the blade and 
tower loads. The corresponding distributions, shown in Fig. 8, 
also illustrate how the distribution tails fill in, and hence 
become more reliable.  Clearly, due to blade pitch-control 
actions, performing only six simulations per environmental 
state may be inadequate to obtain reliable distributions by 
means of parametric model fits to the data; this is why non-
parametric fractiles were employed with the 2-D and 3-D 
approaches that were based on only six simulations. 

With the more reliable POT load distribution tails 
possible only due to the larger number of simulations, we 

 

 

attempt fits with parametric models.  With a two-parameter 
Weibull distribution on the tails and a least squares basis, Figs. 
9a and 10a shows that for the required fractiles of Table 4, 
loads of 15.3 MN-m and 147.1 MN-m result for the blade and 
tower loads, respectively.  These loads are about 13% and 
23% larger for blade and tower loads, respectively, than those 
from the non-parametric approach and based on only six 
simulations.  This is expected since the non-parametric 
unconservatively assumed saturation of distribution tails.  As 
seen, a large number of simulations is required to yield 
reliable distribution tails and more accurate design loads. 

COMPARISON OF POT AND GLOBAL MAXIMA 
In the preceding discussions, we used the peak-over-

threshold (POT) data to extract load extremes.  An alternative 
approach is to use global (or epochal) maxima in which only 
statistics of the single largest load value from each simulation 
are used.  It is of interest to examine how design load 
predictions differ from the two methods.  We fit two-
parameter Weibull distributions to the tails of global maxima 
data for the design environmental states, and estimate load 
fractiles required with the 3-D inverse FORM approach.  
Figures 9b and 10b show these fits for the blade and tower 
loads, respectively.  Design load predictions obtained using 
the global maxima method are 14.5 MN-m and 136.6 MN-m 
for the blade and tower load, respectively; they differ only 
slightly from those obtained with the POT method with 
parametric distribution fits (Fig. 9a and 10a).  Larger 
differences in predictions for the tower loads are likely due to 
relatively poor distribution fits with both methods. 

Finally, an important issue when using the POT method is 
related to the selection of threshold.  As the threshold level is 
increased, the number of peaks decreases and, at an 
appropriately high threshold, the POT method may result in 
the same number of load extremes, on average, as the global 
maxima method.  We now estimate required fractiles for the 
governing environmental state with the 3-D inverse FORM 
approach using different thresholds and two-parameter 
Weibull parametric fits for POT distribution tails.  Table 5 
shows computed fractiles for blade and tower loads.  For 
blade loads, it can be seen that the variation in load fractiles 
with different thresholds is not significant.  The reason is that 
very good parametric fits, such as those shown in Fig. 9a, are 
obtained for all threshold levels.  For tower loads, the required 
load fractiles show slightly greater variation with different 
threshold choices which may be partly due to less evident and 
stable trends in distribution tails for these loads(as seen, for 
example, in Fig. 10a).  Based on these observations, we 
conclude that the agreement between design loads using the 
POT and global maxima methods is generally good and is 
independent of threshold choice as long as distribution tails 
are reliable enough to allow a good parametric fit. 
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(a) 

 
(b) 

Figure 8.  Load distributions of the POT data for governing environmental states based on (a) 60 simulations of OoPBM 
for a mean wind speed of 14 m/s and a significant wave height of 5.5 m; and (b) 150 simulations of TBM for a mean wind 

speed of 16 m/s and a significant wave height of 5.5 m. 
 

 
(a) 

 
(b) 

Figure 9.  Two-parameter Weibull distribution fits (a) to POT data, and (b) to global maxima data based on 60 simulations 
with a mean wind speed of 14 m/s and a significant wave height of 5.5 m for out-of-plane blade moment. 

 

 
(a) 

 
(b) 

Figure 10.  Two-parameter Weibull distribution fits (a) to POT data, and (b) to global maxima data based on 150 
simulations with a mean wind speed of 16 m/s and a significant wave height of 5.5 m for fore-aft tower base moment. 

 

Table 5:  Effect of threshold level on the estimate of load fractile for the design environmental state for  
OoPBM (p3 = 0.99998997) and TBM (p3 = 0.99999613).  Threshold = Mean + Nσ ×(Standard deviation) 

OoPBM (V = 14 m/s, Hs = 5.5 m) TBM (V = 16 m/s, Hs = 5.5 m) 

Threshold Level, 
Nσ 

Ave. no. 
of  

peaks, n 

Required 
exceedance  
probability,  

1 – p3
1/n 

Load 
fractile 

(MN-m) 

Ave. no. 
of peaks, 

n 

Required 
exceedance  
probability,  

1 – p3
1/n 

Load 
fractile 

(MN-m) 

1.4 66.8 1.50×10-7 15.3 85.6 4.52×10-8 147.1 
1.7 44.7 2.24×10-7 14.9 56.4 6.86×10-8 148.1 
2.0 28.9 3.47×10-7 14.8 34.9 1.11×10-7 145.9 
2.3 17.1 5.86×10-7 14.7 20.2 1.91×10-7 143.0 
2.7 8.1 1.23×10-6 14.6 9.7 3.97×10-7 139.7 
3.0 4.0 2.51×10-6 14.6 4.9 7.97×10-7 142.4 

MAX 1.0 1.00×10-5 14.5 1.0 3.87×10-6 136.6 
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CONCLUSIONS 
Our objective in this study was to derive long-term design 

loads for a utility-scale 5MW offshore wind turbine sited in 20 
meters of water.  The focus was on the out-of-plane blade 
bending moment at a blade root and the fore-aft tower base 
moment at the mudline.  Load extremes data needed to 
establish short-term load distributions were extracted from 
time series of turbine response simulations using the peak-
over-threshold method.  Design loads were estimated using 2-
D and 3-D inverse first-order reliability method approaches 
(the former is also referred to as the environmental contour or 
EC method) and compared with direct integration.  The 
following are general conclusions for the offshore wind 
turbine studied: 
• The EC method is efficient compared to direct integration 

but design load predictions are based on limited 
consideration for turbine response variability and can be 
inaccurate and unconservative. 

• The variability in turbine loads for a given environmental 
state is found to be significant, due to which design loads 
based on median values (2-D EC method) of loads given 
mean wind speed and significant wave height are smaller 
than those based on higher-than-median fractiles (3-D 
inverse FORM). 

• Importantly, the design wind speed is not the rated wind 
speed (as is often the case) but is above rated when load 
variability is considered. 

• A chief source of load variability results from blade-pitch 
control actions that result in large loads such that the tails 
of the short-term load distribution are not reliable unless a 
large number of simulations are performed. 
While the above results are based on the peak-over-

threshold method, a comparison of predictions based on the 
global maxima and POT methods were close as long as 
distribution tails are reliable and well defined. 

These conclusions, while particular to the turbine model 
studied, are useful to consider for any simulation-based 
exercise that seeks to predict design loads for extreme 
(ultimate) limit states.  This study also suggests that the effect 
of control actions on extreme loads needs careful study; in 
particular it is of interest to investigate methods to account for 
variability due to control actions since such they can alter the 
tails of load distributions in different ways than loads that 
result from uncontrolled turbine states. 
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