
 Open access Proceedings Article DOI:10.1109/WD.2017.7918115

Simulation of partial replication in Distributed Transactional Memory
— Source link

Diogo Lima, Hugo Miranda, François Taïani

Institutions: University of Lisbon, University of Rennes

Published on: 29 Mar 2017

Topics: Distributed database, Scalability, Replica, Concurrent computing and Relational database

Related papers:

 A data replication for mobile environment

 Improving accuracy of context aware data replication in mobile computing application

 Distributed Database System (DSS) Design Over a Cloud Environment

 Replicated Data Management for Mobile Computing

 Location based placement of whole distributed systems

Share this paper:

View more about this paper here: https://typeset.io/papers/simulation-of-partial-replication-in-distributed-
191qsork7o

https://typeset.io/
https://www.doi.org/10.1109/WD.2017.7918115
https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o
https://typeset.io/authors/diogo-lima-vzctqjiool
https://typeset.io/authors/hugo-miranda-2z4qp72mm7
https://typeset.io/authors/francois-taiani-59yru3frxl
https://typeset.io/institutions/university-of-lisbon-3b47pom9
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/topics/distributed-database-2oer89i1
https://typeset.io/topics/scalability-239v0xhx
https://typeset.io/topics/replica-2ifwfwk0
https://typeset.io/topics/concurrent-computing-1ltisuq0
https://typeset.io/topics/relational-database-19y2gfcl
https://typeset.io/papers/a-data-replication-for-mobile-environment-1pf1fn3hnv
https://typeset.io/papers/improving-accuracy-of-context-aware-data-replication-in-1c7efwrnw1
https://typeset.io/papers/distributed-database-system-dss-design-over-a-cloud-ees4nsvkgh
https://typeset.io/papers/replicated-data-management-for-mobile-computing-3uamp20y3b
https://typeset.io/papers/location-based-placement-of-whole-distributed-systems-56ql12ilzi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o
https://twitter.com/intent/tweet?text=Simulation%20of%20partial%20replication%20in%20Distributed%20Transactional%20Memory&url=https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o
https://typeset.io/papers/simulation-of-partial-replication-in-distributed-191qsork7o

HAL Id: hal-01620360
https://hal.inria.fr/hal-01620360

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Partial Replication in Distributed
Transactional Memory

Diogo Lima, Hugo Miranda, François Taïani

To cite this version:
Diogo Lima, Hugo Miranda, François Taïani. Simulation of Partial Replication in Distributed
Transactional Memory. 2017 Wireless Days Conference , Mar 2017, Porto, Portugal. pp.54 - 59,
฀10.1109/WD.2017.7918115฀. ฀hal-01620360฀

https://hal.inria.fr/hal-01620360
https://hal.archives-ouvertes.fr

Simulation of Partial Replication in Distributed

Transactional Memory

Diogo Lima1,2

1 Escola Superior de Hotelaria

e Turismo do Estoril, Portugal

Email: dlima@lasige.di.fc.ul.pt

Hugo Miranda2

2 LaSIGE, Faculdade de Ciências,

Universidade de Lisboa, Portugal

Email: hamiranda@ciencias.ulisboa.pt

François Taı̈ani3

3 Université de Rennes 1, IRISA,

ESIR, Rennes, France

Email: francois.taiani@irisa.fr

Abstract—Distributed Transactional Memory (DTM) is a con-
currency mechanism aimed at simplifying distributed program-
ming by allowing operations to execute atomically, mirroring the
well-known transaction model of relational databases. DTM can
play a fundamental role in the coordination of participants in
mobile distributed applications.

Most DTM solutions follow a full replication scheme, in spite
of recent studies showing that partial replication approaches
can present gains in scalability by reducing the amount of data
stored at each node. This paper investigates the role of replica
location in DTMs. The goal is to understand the effect of latency
on the DTM’s system performance in face of judicious replica
distribution, taking into consideration the locations where data
is more frequently accessed.

I. INTRODUCTION

To mitigate mobile devices’ computing power limitations,

applications can delegate their most computing intensive tasks

on external servers, creating mobile distributed applications.

Such applications need to mediate the interaction between a

variety of actors, efficiently managing and exchanging state.

On the other hand, the system can benefit from a replica

deployment in proximity to the mobile devices, which allows

reducing latency from data access. This implies the usage of

concurrency control mechanisms that guarantee a safe access

by different actors to the same dataset.

Concurrent programming is a challenging task. Developers

need to guarantee consistent access to information by mul-

tiple threads or processes. The traditional solution to ensure

such safe access relies on using locks or semaphores, which

carry a number of well-know software engineering challenges.

Transactional Memory is a concurrency mechanism aimed

at simplifying the development of concurrent applications by

allowing operations to execute in an atomic way. Analogous to

database transactions, transactional memory defines a specific

sequence of tasks that are considered a transaction, that either

commits (and all changes produced by the tasks become visi-

ble) or aborts (and no change is visible). Originally proposed

as a hardware architecture [1] for shared memory access,

Transactional Memory was later extended to address paral-

lelism in multiprocessor systems, being named as Software

Transactional Memory (STM) [2], [3].

Distributed Transactional Memory (DTM) [4]–[11] has

been motivated as an extension of STM to distributed sys-

tems, addressing new issues such as data replication and

node failure. It provides an additional abstraction level to

the programmer, where traditional distributed programming

details (e.g. socket management or data serialization) become

transparent and integrated with concurrency in a unique and

coherent approach. Most of the existing DTM solutions follow

a full replication scheme where all nodes in the system keep a

replica of every object. However, recent studies show that the

reduction of data stored at each node provides to the partial

replication approach additional scalability gains [9].

Motivated by recent commercial applications, in particular,

large scale, augmented reality games (i.e Ingress and Pokemon

Go), this paper assumes mobile distributed applications run-

ning over multiple servers and client mobile devices, sharing

data. In such scenario, servers and the client mobile devices

are expected to be geographically dispersed among different

regions. Intuition suggests that, as participants may be more

geographically dispersed, the latency and message concur-

rency to validate and commit transactions between a group

of nodes increase, hampering system performance.

This paper evaluates the role of latency in partial replication

in the context of DTM. In particular, it shows that the system’s

performance is affected by the node partitioning policies

applied.

II. RELATED WORK

Implementing a transactional memory framework requires a

considerable software engineering effort, for example in defin-

ing how applications can declare the scope of transactions. In

most systems (e.g. [8], [9], [12]–[14]) byte-code is rewritten,

changing the underlying virtual machine or compiler to in-

terpret the “@Atomic” method annotation that delimits the

transactions. Transactional code usually provides methods to

start, abort and commit transactions, maintaining isolation, as

found in relational databases. Libraries are extended to include

a validation algorithm, needed to decide which concurrent

transactions to commit and which to abort. This algorithm

must provide an appropriately consistent view of the shared

memory to all participants, either static or mobile. There are

several alternatives to guarantee such consistency.

A. Single-copy Model

In single-copy model [5], [11], there is only one writable

copy of each object in the system and transactions are serial-

ized so that there is at most one manipulating those objects

in each moment. This can be achieved by preventing other

transactions to access data through distributed queuing.

Unfortunately the latency to acquire the objects of each

transaction may be an issue. Moreover, the single-copy model

is inherently non fault-tolerant: the failure of an object’s owner

means the object becomes unreachable to the rest of the

system, at least until some root node assigns a new owner to

the object and recovers its state from some previous version.

B. Multiversioning Models

Multiversioning models trade off the complexity of detect-

ing collisions with the latency in the execution of read-only

operations. Multiversioning consists in maintaining different

versions of each data item and can be achieved by either

having different versions of the same object on different

nodes (replica-based), or by keeping a history of each object’s

updates (history-based).

1) Replica-based multiversioning: To maintain a consistent

order over committed transactions, the Distributed Multiver-

sioning (DMV) system [7] requires each transaction to obtain

a unique system-wide token at the beginning of its execu-

tion. At commit time, a writing transaction follows a voting

protocol where all nodes agree before the transaction is able

to successfully commit. Different versions of the same data

item arise from the fact that the voting nodes explicitly delay

the application of remote transactions updates to decrease the

chance of invalidating the snapshot of the currently active local

read-only transactions.

However, due to the system wide token acquisition at the be-

ginning of each transaction execution, transaction serialization

still exists in DMV. The token allows a consistent transaction

order, but represents a considerable overhead and transaction

serialization hampers concurrency of the DTM system.

2) History-based multiversioning: History-based multiver-

sioning was originally proposed in the context of the JVSTM

framework [12] to provide concurrency control for multipro-

cessor computers. JVSTM follows a multi-version concurrency

control scheme using the versioned box (VBox) abstraction

that keeps a history of values for each object. The VBox

is a container that keeps a sufficient number of versions of

each transactional data item so that read-only transactions are

never aborted. Each version contains the changes made by

successfully committed transactions and the timestamp of the

corresponding transaction.

This scheme was extended to the context of DTMs in

the Dependable Distributed Software Transactional Memory

(D2STM) system [4], built on top of JVSTM. D2STM was

motivated as a fault-tolerant DTM, following a fully replicated

scheme. All data items are replicated to all nodes and updating

transactions are validated through a non-voting certification

scheme, where both the write-set and read-set of a transaction

need to be atomically broadcast to all other nodes. Since the

authors expect the read-set to be larger than the write-set,

the D2STM protocol encodes the transaction’s read-set using

Bloom Filters to reduce the communication overhead. The

read-set is validated against transactions that have committed

since the beginning of the committing transaction, and update

transactions are validated once their broadcasts are delivered.

C. Clock Validation

The DTM framework HyFlow [8] introduced a new vali-

dation algorithm, called Transactional Forwarding Algorithm

(or TFA) [15], based on the happened before ordering through

the use of Lamport’ logical clocks [16].

In TFA each node maintains a local clock which is incre-

mented whenever a local transaction successfully commits.

This solution also relies on object versioning. However, in

contrast with other approaches, objects’ versions are based

on the value of the node’s local clock at the time of the last

update of that object instead of a globally defined clock. When

an object is accessed in the scope of a transaction, the object’s

version is compared to the transaction’s starting time. If the

object’s version is newer than the transaction’s starting time,

the transaction is aborted and restarted as it indicates that some

other transaction using the object has committed.

Clock values are included in all messages sent by a node.

If a remote node’s clock value is older than the received value

in a transaction request, the remote node advances its clock

to the newer value. Instead, if the local node observes in the

reply message that the remote node’s clock is newer, the local

node must execute an early validation, called the transactional

forwarding operation. This operation evaluates if none of the

objects in the transaction’s read-set have been updated after

the transaction’s starting time. If true, the operation advances

the transaction’s starting time and the latter can proceed.

Otherwise the transaction is aborted and restarted.

III. REPLICATION IN DTM

Replication of objects in DTMs can serve two purposes: to

improve availability in the presence of faults and to improve

performance by making the data locally available at the

interested nodes.

A. Full Replication

All the solutions discussed in Section II-B follow a full

certification-based replication scheme: all nodes in the system

keep a replica of every object and transactions are locally

executed, synchronizing objects state with the other replicas

at commit time. This synchronization can be achieved either

through a voting or non-voting certification. As observed in

the DMV system [7], in the voting certification approach, a

committing transaction needs to broadcast its updates to the

other nodes and will only commit if they vote favorably.

On non-voting approaches however, a communication round

is saved as the decision can be taken locally and therefore,

replicas do not need to reply to the transaction’s issuer. The

need to vote is exchanged in a trade-off with the amount

of data provided in the first round [17]. In particular, the

transaction owner must provide both the transaction’s write

and read sets. The D2STM [4] follows a variant of this non-

voting certification-based replication, where bloom filters are

used to reduce the size of broadcasted messages.

Since the non-voting certification approach allows replicas

to independently validate transactions and every data item is

replicated among all nodes, the failure of nodes in the system

does not harm consistency. However, coordination of all nodes

imposes a considerable communication overhead. Namely,

broadcasting transactional read/write sets is inherently non-

scalable, as messages broadcasted grow quadratically with the

number of nodes present in the system [6].

B. Partial Replication

In partial replication, the full application’s dataset is sub-

divided into n partitions and each partition is replicated in

a group of m nodes. Partial replication is more scalable as

committing transactions only need to reach the groups storing

data items accessed in the transaction.

To the best of our knowledge, SCORe [18] is the only partial

replication protocol developed for DTM systems. SCORe

combines the Two Phase Commit (2PC) algorithm [19] with

Skeen’s total order multicast [20] to form a commit protocol

that ensures that only the replicas that maintain data accessed

by a transaction participate in its outcome. SCORe relies on

logical clocks where each node keeps two scalar timestamps:

the commitId which is the timestamp of the last update

transaction committed on that node, and the nextId which

indicates the next timestamp the node will propose for a

remote commit request.

At commit time, the transaction issuer triggers a 2PC

instance by total order multicasting a validation message to

all involved replicas. Every replica that receives this message

validates the transaction by attempting to acquire exclusive and

shared locks for the transaction’s write and read sets, respec-

tively. If the validation is confirmed, the nextId is piggybacked

on the reliably unicasted vote message and the transaction is

locally stored in a pending buffer. The transaction issuer then

collects all vote messages (aborting the transaction in case one

of the contacted node does not respond within a predefined

timeout), sets the transaction’s final commit timestamp as the

maximum of the proposed nextId and multicasts back the de-

cide message with the transaction’s outcome and the commitId.

If the outcome is positive, the receiving replicas buffer the

transaction in a queue of stable transactions. Otherwise, the

transaction is aborted and the previously acquired locks are

released. A transaction T is finally committed only if there

are no other transactions in both pending and stable buffer

with a timestamp less that T’s commitId.

However, the distribution of the data items by replication

groups follows a pseudo-random algorithm and therefore does

not exploit data and node partitioning to its full extent. For

example, as participants are more geographically disperse

within a group, the increased latency and message concurrency

induced to validate and commit transactions may hamper

the system’s performance. By exploring more judicious dis-

tribution of replicas such as the locations where data are

more frequently accessed, partial replication can more actively

contribute to improve DTMs’ performance.

Geographical distribution has already been addressed in dis-

tributed transactional SQL databases such as CockroachDB 1,

where the user is able to define replica locations. Cock-

roachDB builds its SQL database on top of a transactional

and strongly consistent sorted monolithic key value store map.

Each record on that key value store represents a column value

in a row of a SQL table, and consists on a triplet <key;commit

timestamp; value>. The key value store is then partitioned

into continuous ranges that are distributed among replicas,

guaranteeing that each range is replicated in at least 3 replicas.

However, replica location in CockroachDB is based on the

types of failures a user wants to tolerate, e.g. replication in

different servers within a datacenter to tolerate power failures,

or different servers in different datacenters to tolerate large

scale network or power outages. In opposition, we aim at

using replica location to reduce latency and improve system

performance by storing data in partial replication groups

formed in proximity to their users.

IV. EVALUATION

To understand the impact of replica geographical distri-

bution in partial replication DTMs, we prepared a simple

scenario where group replicas are either kept in the same

server or interconnected via an Ethernet network.

For the experiments we assume a vehicle traffic scenario,

where two adjacent regions of a city are managed by a pair

of traffic controllers, thus creating a distributed application

with 4 processes. Each region is further divided in 3, 30, 50

or 500 locations. The (simplified) role of these controllers

is to receive location advertisements from vehicles and to

consistently move them from one location to another, ensuring

that the number of vehicles in the system is constant.

In the experiments, each process simulates 10000 vehicle

location transfers. This scenario is modeled in a DTM appli-

cation with partial replication by associating the data of each

region to an integers array, managed by a partial replication

group. Each element of the array represents the number of

vehicles in one of the locations of the region associated to the

array. Therefore, DTM transactions consist in transferring one

unit between array elements, knowing that a transfer between

elements of the same array represents a transfer between two

locations of the same region (i.e. partial replication group). The

implementation does not repeat aborted transactions. This is

in contrast with the expected behaviour of a realistic system

but provides relevant evaluation metrics.

Experiments were conducted on two servers. One (hereafter

named Nonio) has a Dual-Core Intel Xeon 3060 CPU at

2.4GHz and 2GB of RAM. The other (Pati) is a Quad-

Core Intel Xeon X3370 CPU at 3.0GHz and 8GB of RAM.

Hardware heterogeneity is not considered to negatively impact

the results given that results only consider the overall sys-

tem performance. Servers run a Debian GNU/Linux v6.0.10

operating system and a Java Virtual Machine v. 1.6.0 26.

Evaluation was conducted using the ReDstm framework [9]

1https://www.cockroachlabs.com/

with the SCORe partial replication multi-version algorithm.

JGroups [21] provides the underlying group communication

service. All simulations equally divided the 4 processes by

the 2 servers. Two distinct combinations can be devised. These

experiments are named in the form (G G), where G will list

the name of the servers hosting processes for partial replication

group G. Following this rationale, in NP NP experiments, each

partial replication group process is run on a distinct server.

Correspondingly, in NN PP experiments, each server will host

the two processes of the same group. NN PP experiments are

expected to reflect a lower latency given that the processes

of each partial replication group can communicate using in-

memory networking features of the Linux kernel.

Throughout this evaluation, we are interested in comparing

the system’s performance in the presence of distinct probabil-

ities of a transaction staying in the issuer’s partial replication

group. Two configurations were simulated:

70-10 With 70% probability, a transfer will be between

two locations managed by the issuer’s partial group

controller, 20% of the transfers are made between

locations of different regions and 10% between lo-

cations not managed by the controller.

10-70 There is only 10% probability of a transfer being

between two locations managed by the issuer’s par-

tial group controller, and 70% between locations

managed by the other partial group controller. The

value of 20% is kept for transactions made between

locations of different regions.

All results presented are the average of 10 simulations,

performed in comparable conditions. Plot’s error bars show

the distance of the average to the standard deviation. It should

be noted that the uneven distribution of transfers performed

by the controllers will force each process to interact more

frequently with one of the partial replication groups (regions).

A. Commit Ratio

The proportion of transactions that successfully committed

is depicted in Fig. 1. The simulations confirm that the through-

put improves as the number of available location increases.

From 30% of committed transaction with 6 possible locations

to 98% with 1000 locations. Having more locations means

that there is a higher probability that transactions do not ran-

domly select the same objects, avoiding transaction conflicts.

Moreover, all simulations converge to a similar throughput in

respect to the worst and best conflicting scenarios (with 6 and

1000 locations, respectively) meaning that, at those extremes,

is the system’s concurrency level the major factor impacting

performance. However, in the more balanced scenarios of 60

and 100 locations results are more dispersed. The commit

ratio of both 10-70 tests are near identical, however they

remain consistently above the NN PP 70-10 test with around

2,5% more committed transactions and more 4% than the

NP NP 70-10 configuration. This result looks, at first glance,

surprising as suggestion would indicate that the system would

benefit from keeping most of its transactions in the same

partial replication group with lower latency.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

C
o
m

m
it

 R
a
ti

o
 (

%
)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 1. Ratio of committed transactions upon the number of locations
available.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 10 100 1000

M
e
s
s
a
g
e
s
 S

e
n
t

(x
1

0
0

0
)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 2. Total number of messages sent.

B. Network Traffic

In order to understand the previous result, we further

investigated the total number of messages sent by the system

and the average waiting time for a node to collect all validation

responses for a committed transaction.

Fig. 2 depicts the volume of messages sent by the sys-

tem. Nodes can send the following type of messages: data

read request, data read return, transaction validation request,

transaction validation vote, and transaction final decision. We

observe that, for the 70-10 configurations, as the concurrency

level drops by having more locations available for transactions,

the volume of messages sent drops as well. This can be

explained by the fact that, with higher concurrency levels, mul-

tiple transactions access the same object. Once one commits,

all the remaining abort and extra read requests and responses

are created in the system. In opposition, as more locations are

available, it is more likely to have non concurrent transactions

that already have the most up-to-date data version locally, thus

preventing the need to send additional requests.

On the other, the 10-70 configurations show the exact

opposite behaviour. In fact, as the number of locations increase

the volume of messages sent also increases. This can be

explained by the fact the majority of the transactions issued

manipulate data that the originating node does not have, so

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 10 100 1000

A
v
e
ra

g
e
 W

a
it

in
g
 F

o
r

V
o
te

s
 T

im
e
 (

m
s
)

Nº Locations (log scale)

NN_PP_10-70
NP_NP_10-70
NN_PP_70-10
NP_NP_70-10

Fig. 3. Average waiting time to receive all validation votes for committed
transactions.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

Tr
a
n
s
a
c
ti

o
n
s
 /

 S
e
c
o
n
d

Nº Locations (log scale)

NNPP10-70
NPNP10-70
NNPP70-10
NPNP70-10

Fig. 4. Average test duration. Continuous lines represent transaction
throughput and the dashed lines represent their respective commit throughput.

read requests are necessary in the majority of the transaction

to obtain that data from the other partial replication group.

This is confirmed by the 2/1 ratio of messages sent from the

10-70 to the 70-10 tests: each transaction manipulates two

objects, thus the 10-70 scenario need to read request those two

objects before all other transaction related messages. In each

configuration, the volume of messages sent remains similar for

the 60, 100 and 1000 location scenarios, which is expected, as

the workload (i.e., the number of transactions) remains similar

for all simulations. The exception is the worst concurrency

level scenario (6 locations available) where the number of

messages increase 100 000 (i.e. 2.5 messages per transaction)

for the 70-10 tests and decreases around 75 000 messages

for the 10-70 tests (i.e. 1.9 messages per transaction). This

can be explained by having more conflicts, which lead to a

greater number of aborts. In the case of the 70-10 tests, this

results on requiring more messages to obtain the most up-

to-date versions of two conflicting objects manipulated in a

transaction. For the 10-70 tests, the volume of read requests

remains constant, however the volume of messages sent is

reduced by having fewer validation and commit phases since

nodes are able to detect early that their objects are already

outdated and that the respective transaction must be aborted.

Nevertheless, Fig. 2 proves that the volume of message sent

is not directly influencing the system’s throughput.

Fig. 3 depicts the average waiting time for a node to collect

all validation responses for a committed transaction. Recall

that the SCORe algorithm relies on a voting certification to

validate transactions. When taking in consideration the group

composition, we can observe that NN PP configurations are

on average 0.5 ms faster than the NP NP configurations. This

result evidences the penalty of latency in partial replication

groups. On the other hand, the waiting vote period for the 70-

10 configurations remain consistently below the 10-70 tests.

This result emerges as the consequence of the increasing

network traffic induced in the 10-70 scenarios.

However, Fig. 3 also does not explain the counter intuitive

commit ratios obtained in Fig. 1 as waiting for a longer period

of time to validate a transaction would theoretically increase

the probability of having concurrent transactions modifying

the accessed data items and leading the transaction to abort

due to an inconsistent data view.

C. Transaction and Commit Throughputs

The transaction throughput is defined by the ratio of transac-

tions issued divided by test duration. The commit throughput is

the ratio of committed transactions per test duration. Results

are depicted in Fig. 4. Each scenario is represented by an

unique symbol, while the continuous lines represent their

transaction throughput and the dashed lines their respective

commit throughput.

Fig. 4 shows that transaction throughputs tend to stabilize

as the number of available location increases, indicating the

presence of an upper bound that can not be surpassed by

the simulations in respect of the number of transaction issued

per second. On the other, commit throughputs increase with

more locations available, as expected, until converging to the

transaction throughput upper bond. As observed in Fig. 1,

this is explained by the 98% commit ratio for the more

concurrency favourable 1000 location test case, where almost

every transaction issued is a committed transaction.

However, Fig. 4 clearly distinguishes 70-10 from 10-70

configurations. The 70-10 configuration is able to respectively

issue and commit 20 more transactions per second than the

10-70 configuration on average. This means that the same

workload (40 000 transactions) takes approximately an ad-

ditional 150 seconds to be completed in the 10-70 than in

the 70-10 configuration, indicating that the latter is preventing

concurrency in the system. In fact, as shown in Fig. 1,

the 10-70 configuration is able to commit more transactions

in absolute number, however the system’s performance is

hampered since the same workload takes 30% more time

to executed in such configuration. Thus, the system does

benefit from locality, i.e. keeping group replicas close, since

configurations that heavily rely on the network have smaller

transaction and commit throughputs.

V. FUTURE WORK

The evaluation showed that replication location directly

influences partial replication DTM’s performance. Both the

number of transaction and successfully committed transaction

throughput improve when members of the same partial repli-

cation group have lower latency. However, such model brings

additional research challenges. A first research challenge to be

addressed in the scope of this work consists in extending the

DTM interfaces to efficiently and dynamically map resources

on partial replication groups.

A second research challenge consists in optimizing the

underlying group communication service, benefiting from the

partial groups defined at the DTM level. A technique that will

be pursued consists in having different groups sharing com-

mon resources, a technique previously named Light-Weight

Groups (LWGs) [22]. The idea is to create a light-weight

group abstraction where many groups that share common

characteristics are mapped to the same underlying virtually

synchronous group. LWGs would lead to a two-tier group

membership, where full and partial membership groups can

share resources, reducing the number of messages delivered

to each member.

Moreover, this two-tier architecture would also be helpful

for highly dynamic applications where the objects manipulated

and the membership suffer frequent changes, such as in mo-

bile applications. Membership change is a time and resource

consuming operation, likely to impact performance due to

its mandatory definition of synchronization points. LWGs are

expected to play an important role as well as they are able

to mitigate the impact of changes in the upper tier of group

membership, hiding them from the lower tier, which would

include all the participants and where membership changes

negatively impact the overall system performance.

VI. CONCLUSION

This paper discusses the role of replica location in DTMs,

in order to understand if a judicious distribution of the

replicas, that takes into consideration the locations where

data is more frequently accessed, can contribute to improve

DTMs’ performance. The paper evaluated the role of node

and data distribution in partial replication. In particular, we

observed that the system’s performance is affected by the

replica location, where configurations that heavily rely on the

network have smaller transaction and commit throughputs.

Results show that locality plays a major role in a trans-

actional systems, and that it should be exploited at group

configuration level. A possible solution that we intend to

explore is the possibility of implementing the concept of Light-

Weight Groups in the underlying communication service in

order to optimize groups membership operation costs.

ACKNOWLEDGMENT

Work described in this paper was partially supported by

Fundação para a Ciência e Tecnologia, Portugal, under project

PTDC/EEI–ESS/5863/2014 - doit.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
vol. 21, no. 2, pp. 289–300, May 1993.

[2] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software
transactional memory for dynamic-sized data structures,” in Proc. of

the 22nd Annual Symposium on Principles of Distributed Computing

(PODC’03), 2003, pp. 92–101.
[3] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for im-

plementing software transactional memory,” SIGPLAN, vol. 41, no. 10,
pp. 253–262, Oct. 2006.

[4] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM:
Dependable distributed software transactional memory,” in Proc. of the

2009 15th IEEE Pacific Rim Int’l Symposium on Dependable Computing

(PRDC’09), 2009, pp. 307–313.
[5] M. Herlihy and Y. Sun, “Distributed transactional memory for metric-

space networks,” in Proc. of the 19th Int’l Conference on Distributed

Computing (DISC’05), 2005, pp. 324–338.
[6] J. Kim and B. Ravindran, “Scheduling transactions in replicated dis-

tributed software transactional memory,” in Proc. of the 13th IEEE/ACM

Int’l Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2013, pp. 227–234.

[7] K. Manassiev, M. Mihailescu, and C. Amza, “Exploiting distributed
version concurrency in a transactional memory cluster,” in Proc. of the

11th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’06), 2006, pp. 198–208.
[8] M. M. Saad and B. Ravindran, “Hyflow: A high performance distributed

software transactional memory framework,” in Proc. of the 20th Int’l

Symposium on High Performance Distributed Computing (HPDC’11),
2011, pp. 265–266.

[9] J. a. A. Silva, T. M. Vale, R. J. Dias, H. Paulino, and J. a. M. Lourenço,
“Supporting multiple data replication models in distributed transactional
memory,” in Proc. of the 2015 Int’l Conf. on Distributed Computing and

Networking (ICDCN’15), 2015, pp. 11:1–11:10.
[10] A. Turcu, B. Ravindran, and R. Palmieri, “Hyflow2: A high performance

distributed transactional memory framework in scala,” in Proc. of the

2013 Int’l Conference on Principles and Practices of Programming on

the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’13),
2013, pp. 79–88.

[11] B. Zhang and B. Ravindran, “Relay: A cache-coherence protocol for
distributed transactional memory,” Principles of Distributed Systems, pp.
48–53, 2009.

[12] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory
transactions,” Science of Computer Programming, vol. 63, no. 2, pp.
172–185, 2006.

[13] G. Korl, N. Shavit, and P. Felber, “Noninvasive concurrency with
java stm,” in Workshop on Programmability Issues for Heterogeneous

Multicores, Jan. 2010.
[14] M. M. Saad and B. Ravindran, “Distributed hybrid-flow stm,” , Tech.

Rep., Dec. 2010.
[15] M. Saad and B. Ravindran, “Transactional forwarding: Supporting

highly-concurrent stm in asynchronous distributed systems,” in 24th Int’l

Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), Oct. 2012, pp. 219–226.
[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[17] B. Kemme and G. Alonso, “A suite of database replication protocols

based on group communication primitives,” in Proc. of the 18th Int’l

Conference on Distributed Computing Systems, May 1998, pp. 156–163.
[18] S. Peluso, P. Romano, and F. Quaglia, “Score: A scalable one-copy

serializable partial replication protocol,” in Proc. of the 13th Int’l

Middleware Conference (Middleware’12), 2012, pp. 456–475.
[19] J. Gray, “Notes on data base operating systems,” in Operating Systems,

An Advanced Course, 1978, pp. 393–481.
[20] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and mul-

ticast algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36,
no. 4, pp. 372–421, Dec. 2004.

[21] B. Ban, “Design and implementation of a reliable group communication
toolkit for java,” Tech. Rep., 1998.

[22] L. Rodrigues, K. Guo, P. Verssimo, and K. P. Birman, “A dynamic light-
weight group service,” Journal of Parallel and Distributed Computing,
vol. 60, no. 12, pp. 1449 – 1479, 2000.

