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Abstract—Stresses on blood cellular constituents induced by
blood flow can be represented by a continuum approach
down to the lm level; however, the molecular mechanisms of
thrombosis and platelet activation and aggregation are on
the order of nm. The coupling of the disparate length and
time scales between molecular and macroscopic transport
phenomena represents a major computational challenge. In
order to bridge the gap between macroscopic flow scales and
the cellular scales with the goal of depicting and predicting
flow induced thrombogenicity, multi-scale approaches based
on particle methods are better suited. We present a top-scale
model to describe bulk flow of platelet suspensions: we
employ dissipative particle dynamics to model viscous flow
dynamics and present a novel and general no-slip boundary
condition that allows the description of three-dimensional
viscous flows through complex geometries. Dissipative phe-
nomena associated with boundary layers and recirculation
zones are observed and favorably compared to benchmark
viscous flow solutions (Poiseuille and Couette flows). Plate-
lets in suspension, modeled as coarse-grained finite-sized
ensembles of bound particles constituting an enclosed
deformable membrane with flat ellipsoid shape, show self-
orbiting motions in shear flows consistent with Jeffery’s
orbits, and are transported with the flow, flipping and
colliding with the walls and interacting with other platelets.

Keywords—Blood, Thrombosis, Platelet activation, Platelet

aggregation, Multi-scale modeling, DPD.

INTRODUCTION

Platelet-mediated thrombosis is a complex bio-

chemical process that involves platelet activation,

aggregation and adhesion.3,6 Platelets interact with

other blood constituents regulating thrombus forma-

tion and lysis through the complex coagulation cascade

in the hemostatic system of blood.5,29 Over the last

decades there has been a considerable effort to model

these processes by computer simulations. The most

common class of models treats blood as a homoge-

neous continuum and describes blood flow based on

Navier–Stokes equations solutions. Some modeling

strategies consider platelets as individual particles and

shear stress occurring along their trajectories is corre-

lated with platelet activation.23,52 Others consider

platelets as interconverting phase fields which in con-

junction with proteins relevant to thrombosis are

described by coupled diffusion–convection–reaction

equations: a multitude of models exist, ranging from

simpler ones (e.g., Fogelson,21 Sorensen et al.46,47) to

extensively detailed models with dozens of chemical

species describing the entire coagulation cascade.30

Most consider one-way coupling, i.e., the flow influ-

ences the biochemistry, whereas some others incorpo-

rate a two-way coupling, i.e., the biochemistry alters

the nature of the fluid.2 Although these traditional

continuum-based models can simulate platelet trans-

port, aggregation, adhesion, and interactions with

agonists/inhibitors of activation, a major drawback is

the need for various constitutive relations or, alterna-

tively, simplifying assumptions. At the same time, by

considering blood as a continuum (representing a gap

from the 10 nm to the 100 lm between microscopic

experimental biochemistry and the macroscopic scales

of fluid dynamics phenomena), these models are

unable to describe the behavior of the blood’s indi-

vidual constituents and active cells, their interactions,

and their effect on its rheological properties.

To gain an insight into the nature of the funda-

mental processes of platelet activation, aggregation
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and adhesion, it is advantageous to develop models

and methods able to simulate directly the disparate

length scales of the problem at hand and study the

functional and mechanistic relationships among the

intervening players of thrombosis, particularly plate-

lets, red blood cells, and the fibrin network. Several

numerical methods have been developed in recent

years with the objective of simulating deformable

bodies flowing immersed in a fluid. Analytical solu-

tions demonstrating the migration to regions of lower

shear stress in severely simplified settings date back to

1970s,10,51 but only advances associated with the

recovery of Navier–Stokes equations using lattice-gas

Boltzmann method have extended the ability to simu-

late large numbers of particles suspended in flu-

ids.1,31,32 These methods have shown encouraging

results in depicting the complex rheological behavior

of blood and its finite-sized constituents, particularly

red blood cells and platelets. Fluid–solid interaction is

usually achieved with the definition of a collision

function to account for the momentum exchange and

impose interaction forces on both fluid and suspended

particles, and multiple different approaches have been

employed ranging from lattice-spring models,9 two-

dimensional spring meshes,13 combinations with the

finite element method for the solid domain,36 to im-

merse boundary methods.11,12,22,48,49 A limitation of

these methodologies is associated to its multiple and

non-unique formulations, which render their advan-

tages difficult to assess and can result in their difficult

development, implementation, and extension. Usually,

highly expensive simulations in three dimensions are

common and prohibitive, and inherent fluctuations

and instabilities in the resolution of the particulate

motion due to the discrete nature of the lattice can

occur.

Multi-scale strategies with particle-based methods,

such as molecular dynamics (MD) and dissipative

particle dynamics (DPD), have been successfully em-

ployed to simulate complex processes at molecular

levels and various hydrodynamic phenomena of vis-

cous fluids at low-to-high Reynolds numbers at the

mesoscopic level, and have been touted as appealing

alternatives to develop models describing the hetero-

geneous nature of blood flow and its interacting par-

ticulates, e.g., Boryczko et al.,7 Filipovic et al.,20

Fedosov and Karniadakis.17 Recent advancements in

high performance computing, parallel processing, and

the rapid growth of computer power have led to the

development of large-scale simulation techniques to

overcome the challenges resulting from the enormous

computational requirements of such approaches.

Techniques for correct application of no-slip boundary

conditions have been recently developed.18,34 The

DPD paradigm possesses important properties at the

mesoscopic scale: complex fluids with heterogeneous

particles can be modeled, allowing the simulation of

processes which are otherwise very difficult, if possi-

ble at all, to tackle by continuum approaches. The

DPD approach has demonstrated to be a powerful

tool to simulate complex blood flow behavior, red

blood cells interaction, platelet activation, aggrega-

tion, adhesion, and to investigate platelet-mediated

thrombosis.7,16,20,35,43,44

In the present study, we extend on our previous

efforts of modeling viscous fluid flow in constricted 3D

geometries representing stenosed conduits.19 Instead of

the coarse-grained MD formulation we have previ-

ously employed (with modified Lennard–Jones poten-

tials), we use the DPD formulation to better describe

viscous flow behavior. We validate the operating range

of the approximation of incompressible flow by

analyzing the resulting fluid density and viscosity,

and velocity and shear stress profiles with periodic

Poiseuille flow for multiple velocities.4 To depart from

the cumbersome methodology which employs layers of

frozen particles and is known to introduce computa-

tional aberrations on the approximations of boundary

layers,41 we adapt the no-slip boundary condition of

Willemsen et al.50 to develop a general boundary

condition that allows the description of any complex

three-dimensional wall enclosing the DPD fluid con-

structed with triangular meshes. The no-slip boundary

condition methodology consists of the inclusion of

fictitious particles beyond the wall with reversed

velocity to develop an equilibrated shear layer and

thus naturally enforcing zero velocity at the wall

plane—Willemsen et al.50 method was restricted to two

dimensional problems with walls aligned with one

Cartesian axis, and to our knowledge, has never been

further pursued for developing a more general three-

dimensional setting and seems naturally suited to en-

force no-slip boundary conditions to complex DPD

fluids with immersed finite-sized particulate. Platelets

in suspension are modeled as ensembles of bound

particles constituting an enclosed membrane with an

ellipsoid shape following previously published particle

models for red blood cells,39,42 and their self-orbiting

motions under shear (Jeffery’s orbits28) and platelet–

platelet and platelet-wall interactions when flowing

through a stenosis are observed and analyzed. This

current modeling effort (flow of platelet suspensions) is

part of a full multiscale approach to flow-mediated

thrombosis composed of: (i) a bulk-scale model of bulk

flow of platelet suspensions with platelets modeled as

coarse-grained ensembles of bound particles (presented

here); (ii) a cellular-scale model based on coarse-

grained MD where a single platelet undergoes micro-

structural changes due to flow-induced activation

(microstructural cytoskeleton rearrangement, growth
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of pseudopodia, change of shape from discoid to

spherulitic); and (iii) two-way couplings of both scales,

i.e., flow field information passed down from (i) to (ii)

and platelet activation effects brought up from (ii) to

(i).

Our modeling choice of considering platelets alone

and at different volume fraction than in blood,

although not certainly directly applicable to in vivo

physiological situation, is motivated with its natural

aptness for experimental validation. This setting is the

basis of our model validation strategy to be conducted

by correlation with real-time observation of gel-filtered

platelet suspensions inmicro-fluidic channels. Although

this in vitro experimental model certainly does not truly

mimic the in vivo scenario, it is extremely well behaved

and controllable to analyze the mechanistic effect of

fluid stresses in platelet activation, aggregation and

adhesion and flow-mediated thrombosis.

METHODS

DPD is a mesoscopic particle-based simulation

method. Details of the DPD formulation have been

extensively described (Hoogerbrugge and Koelman,27

Espanol,14 Groot and Warren24). Briefly, each particle

represents ‘‘molecular clusters’’ rather than individual

atoms and interacts with surrounding particles

through three simple pair-wise-additive forces: con-

servative (repulsive), dissipative (friction), and random

(Brownian). Particle motion is governed by Newton’s

law. The DPD formulation is described in full detail

the Appendix.

In the current work we adapt LAMMPS45 to simu-

late platelets hemodynamics. The fundamental quan-

tities of the DPD system are its characteristic length rc
(particle radius of influence), particle mass m, and en-

ergy kBT. Dimensionless quantities are employed with

respect to these parameters for comparison with Na-

vier–Stokes solutions.25 Following Lei et al.,34 we work

with systems of number density n = 3.0, and we set

k = 0.25, a = 25.0, r = 3.0, c = 4.5 such that com-

pressibility of water, an approximation of blood plas-

ma, is obtained.24

Viscosity and Equation of State of the DPD Fluid

We employ the methodology of Backer et al.3 to

determine empirically the dynamic viscosity l of the

DPD fluid by fitting the parabolic velocity profiles

developed in periodic Poiseuille flow to the analytical

solution of the Navier–Stokes equations. A system of

size 40 9 20 9 20 (all lengths are dimensionless with

respect to rc) is divided into two regions onto each

concurrent body forces (ranging from g = 0.001 up to

g = 0.2, dimensionless with respect to kBT/rc) are im-

posed. Ordinary periodic boundary conditions support

the formation of parabolic flow fields (Fig. 1) and no

adverse features incur as no solid boundaries need to

be introduced. Fully developed flow velocity profiles

FIGURE 1. Exact solution of periodic Poiseuille flow. By applying two opposing body forces on all fluid particles and periodic
boundary conditions in all three directions, one obtains periodic Poiseuille flow without the need to incorporate no slip boundary
conditions and their DPD associated issues. The properties of the fluid, in particular its viscosity, can then be determined from the
Poiseuille flow analytical solution.
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are obtained after 400,000 time steps of Dt = 0.005

[time is dimensionless with respect to (mrc
2/kBT)

1/2] by

locally averaging quantities for 5,000 time steps in

cubic bins of size 2. The stress tensor is computed with

a stress volume formulation at the particle level with

the Irving-Kirkwood model (cf. Fan et al.15) and

pressure is one third of its trace. As an alternative

comparison of the measured viscosity, we employ a

theoretical estimate of viscosity obtained by Marsh

et al.37 with a analytical description of the DPD system

with Fokker–Planck equations.

Because of the potential for a breakdown of the

incompressible fluid flow approximation with DPD

systems (otherwise inherent in continuum based

methods for simulating viscous blood flow), we deter-

mine a ‘‘speed of sound’’ in the DPD fluid.18 This is

conducted empirically by analyzing the propagation

velocity of pressure pulses with a system of size

200 9 10 9 10 (as described above) and applying

periodic boundary conditions. The number density is

n = 3.0, except in the region 98.0 £ x £ 102.0 where

n = 6.0 is applied. The spatial domain is divided into

layers of size 2 (in the x direction) and particle velocity

is averaged at each time step. For comparison, speed of

sound is alternatively computed with c2 = ¶p/¶q at

constant temperature14—an equation of state, pressure

as a function of density p(q), is determined in a cube of

size 10 with periodic boundary conditions applied until

equilibrium is achieved (with n ranging from n = 3.0

up to n = 8.0).

No-Slip Boundary Conditions in Complex Geometries

We consider complex walls with a connected mesh

of triangular elements, each representing a planar solid

wall onto which no-slip conditions are applied. Only

particles with the triangular wall inside their radius of

influence are subjected to this solid boundary condi-

tion. Inward normals and isoparametric transforma-

tions are defined with consistent counter-clockwise

node numbering. Penetration of particles into the wall

is prevented by specular reflection. Double and triple

reflections on adjacent triangles might occur because

the connected mesh enclosing the DPD fluid is con-

cave, and are considered. To enforce no-slip and the

development of boundary layers, we adapt the meth-

odology of Willemsen et al.50 for each triangular ele-

ment in a local sense. The methodology is described in

full in the Appendix. Fictitious particles are generated

by reflecting fluid particles across the triangular plane

(filling the empty space beyond it) and viscous and

random interaction forces between the current particle

and the fictitious particles are included in the DPD

pair-wise computations. The velocities of the fictitious

particles are inverted such that equilibrated shear

layers are developed across the wall and velocity is zero

on the wall (Fig. 2). Velocities of individual particles

near the wall are not generally parallel to the wall, but

the resultant average transversal component of the

velocity field is approximately zero. If the wall is

moving (as in Couette flow), twice the wall velocity is

summed.50 A small random parallel shift is added since

in DPD no viscous interaction occurs between particles

with orthogonal velocity difference and relative

position.50 In order to eliminate the pressure imbalance

experienced by particles within the region of influence

of the wall (as space beyond it is empty), a normal

force that mimics the effect of fluid fictitiously occu-

pying the empty space is added: assuming a uniform

density in this region, the normal repulsive force is

given f ¼ apnð1� hÞ3ð1þ 3hÞ=12, where h is the nor-

mal distance of the particle to the wall.50

Complex Geometries

Meshes of complex wall geometries are constructed

using Gambit (Fluent Inc, New York). Curved shapes

need a sufficiently fine mesh; on the other hand, planar

walls necessitate only one triangle. Rectangular chan-

nels need only two triangles per wall (top and bottom)

and a three dimensional mild stenosis (64% stenosis

with R = 10 and entry/exit length of 12R for full flow

development) is defined with 2,106 triangular elements

(Fig. 3). Periodic boundary conditions along the flow

direction (on planes y = 0 and y = 140) are imposed.

FIGURE 2. Schematic of the implementation of the no-slip
boundary condition. Particles moving across the wall are re-
flected with specular reflection. Particles within the zone of
influence of the wall have viscous and random interactions
with fictitious particles such that an equilibrated shear layer is
developed and zero tangential velocity lies at the wall surface.
An extra repulsive force is considered accordingly to balance
the empty space across the wall and mimic existence of fluid.
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Body forces mimic pressure gradients driving the flow

(g = 0.005 for Poiseuille flow simulation and g = 0.015

for the stenosis respectively). Top and bottom wall

velocities of ±2 were considered for Couette flow

boundary conditions.

Fluid particle seeding for the initial condition of the

rectangular channels of size 40 9 10 9 10 (periodic on

y and z directions, width D = 40) employs a lattice of

size rc with three particles per element (one particle in

the middle of each lattice leftward face) and results in

12,000 particles. Whenever the domain assumes com-

plex shapes, a mesh generator is employed and we seed

particles on the vertexes of a uniform tetrahedral mesh

of the stenotic channel such that n � 3.

Platelet Model

Each platelet is modeled with 444 particles on a

triangular mesh of an ellipsoid of size 4 9 4 9 2 (an

oblate spheroid). This configuration is adapted from

existing red blood cell particle models to the platelets’

usual discoid shape.39,42 Harmonic bonds in between

platelet particles and dihedral angles between adjacent

triangles are defined (with potentials VB
= Kb(r –r0)

2

and VD ¼ Kdð1þ cos/Þ respectively, where r is bond

length and / the angle between two adjacent triangles).

We consider equilibrium length as the average of bond

length in the initial configuration, r0 = 0.3, and bond

and dihedral energies of kb = 104 and kd = 102 (non-

dimensional with respect to kbT/rc
2 and kbT respec-

tively). Harmonic bonds confer a solid like behavior

and an elastic ability to recover from deformation,

whereas dihedral angles grant the membrane with in-

plane bending stiffness. The tightly bound platelet

membrane particles prevent fluid particles from pene-

trating the platelets and result in a positive response to

the pressure force the fluid exerts on their exterior. We

have conducted parametric studies to determine the

coarse-grained platelet model, particularly to set up its

number of particles, their initial spatial locations and

bond mapping, and the specific forms of bond and

dihedral potential energies and their constants. Once

the geometric aspects of the platelet model were fixed

(with a triangular mesh of 444 particles, 2,652 bonds

and dihedrals per platelet) and the specific forms of

bond and dihedral potential energies were chosen

(harmonic potentials), constants Kb and Kd were

obtained with parametric and sensitivity analyses such

that the behavior of the platelet model possesses the

hallmarks of suspension flows and is consistent with

pre-existing limited experimental results of micropi-

pette aspiration26 and atomic force microscopy.33 We

incorporate 117 platelets with random orientation in-

side the stenotic channel at the vertexes of another

tetrahedral mesh of the fluid domain, resulting in a

total system of 153,162 particles.

RESULTS

DPD simulations demonstrate the hallmarks of

viscous fluid behavior and adequate hydrodynamic

characteristics: the system expands to fill void spaces,

transmits shear stresses across shear layers, and

maintains a clearly defined p vs. q equation of state.

Free expansion at constant temperature of the DPD

fluid allows the determination of an equation of state

(Fig. 4), which shows a strong correlation with a

quadratic form as previously reported by Groot and

Warren,24 increases with increasing density as ex-

pected, and at n = 3.0 yields c = 3.8180. Alternatively,

pressure wave propagation speed was determined

empirically as c = 4.2978 (Fig. 5). Marsh et al.37 esti-

mate for the viscosity of the DPD fluid results in

l = 1.7531. Backer et al.3 have shown that, although

the estimate is useful for parameter determination and

is able to describe general trends, it deviates consid-

erably from the actual viscosity inferred with the

periodic Poiseuille flow method by fitting velocity

profiles to the Poiseuille analytical solution, which

FIGURE 3. Geometry of a three-dimensional stenotic channel. A 64% stenosis with entry length/exit length 12R for fully devel-
oped flow is modeled using 2,106 triangular surfaces. No-slip boundary conditions are imposed on each of the triangles consti-
tuting the wall.
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results in the consistent value of l = 1.4971 when

g< 0.04 and maximum velocity remains small or sim-

ilar when compared with the measured ‘‘speed of

sound’’ (Figs. 6 and 7). We observed a breakdown of

the Poiseuille approximation for higher g and vy
max � c

values corresponding to increasing Reynolds numbers

(computed with the averaged maximum velocity at the

centerline of the parabolic velocity profile, l and n of

the DPD fluid, and the width of the channel D): the

parabolic shape is lost, shear stress is badly estimated,

and mild to severe density gradients appear in the DPD

solution (Fig. 6). The apparent viscosity determined by

fitting to the Poiseuille solution (Fig. 7) increases, and

DPD underestimates the velocity and shear stress

profiles if the consistent value of viscosity obtained for

lower regimes is considered for the exact solution (not

shown). The no-slip boundary condition does not

introduce any difficulty and boundary layers are

appropriately developed—the steady state Poiseuille

and Couette flow benchmarks are properly approxi-

mated for regimes with vy
max

£ c (Fig. 8).

The coarse-grained model for platelets shows

appropriate phenomenological response. The deform-

able membrane keeps its discoid shape after equilibra-

tion with the surrounding fluid particles while

preventing them from crossing in. When suspended

under shear flows, we observe a multitude of platelet

motions that can be identified as the three-dimensional

counterparts of the well-known Jeffery’s orbits of a two-

dimensional ellipsoid under shear (Fig. 9 and Movie

S1): the platelet turns and spins along its axes on the

direction of shear.28 Portion of this movement is cer-

tainly dictated by the random component of the DPD

forces and the complex nature of the system (e.g., the

instantaneous 3D orientation of the platelet), but peri-

ods of ordered and consistent flipping on its axes

are clearly observed (Fig. 9). Simulations of suspensions

of multiple platelets flowing across a stenosis show

remarkable behavior. Platelets are transported with the

flow (with Reynolds number ofRe � 20 computed with

averaged maximum velocity at the centerline of the inlet

cross-section, l and n of the DPD fluid, and inlet

diameter D), flipping and colliding with the wall and

with other platelets. Platelets accelerate through the

stenosis core flow, while near wall platelets and those

trapped in the recirculation zones show lower charac-

teristic velocities and longer residence times (Figs. 10

and 11, Movie S2). Platelet axial velocity is steady with

approximate value of 0.50 on the wider portion of the

channel and accelerates through the neck of the stenosis

up to 1.20 (Fig. 11). We do not observe any accumula-

tion or rarefaction of fluid in any region and density

FIGURE 4. Equation of state of the DPD fluid. Variation of
pressure vs. density upon expansion at constant temperature.
Speed of sound in the DPD fluid is obtained indirectly as the
square root of the slope of the curve describing the equation
of state,14 and at n 5 3.0 results in c 5 3.8180.

FIGURE 5. Propagation of a pressure pulse. A compression-type wave propagates through the fluid at constant speed. Dissi-
pation naturally occurs and the pressure pulse loses intensity and spreads across space as it travels. Speed of sound is inferred
directly and empirically from the simulation resulting in c 5 4.2978.
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remains approximately constant everywhere. When

only fluid is considered (no platelets suspended), the

DPD flow fully satisfies the continuity equation, i.e.,

A1v1
avg

= A2v2
avg describing constant flow rates at each

cross section of the channel at all cross-sections (not

shown). When individual platelet velocities are consid-

ered for computing an average representative velocity

across corresponding cross-sections (based on platelet

centroid velocity), one obtains 50 � 43.2, an acceptable

estimation/validation of the behavior of the heteroge-

neous flow of platelet suspensions (considering that

continuity is only valid for homogeneous incompress-

ible fluids, and only marginally applicable for an highly

heterogeneous platelet suspension such as modeled by

the DPD approach).

DISCUSSION

Our particle based model considers platelets as

deformable finite bodies, a significant advantage over

previous studies with platelets as point particles with

no surface or volume,41 and results in a built-in two-

way coupling between platelets and fluid. Coarse-

grained finite-sized platelet models allow for a natural

specification of diverse platelet–platelet, platelet-wall

interactions,38 and with other relevant constituents of

blood, particularly fibrinogen polymerizing into the

fibrin network.8 As opposed to the model of Yun

et al.,52 which considers platelets as finite-sized rigid

ellipsoids, ours deform in response to the surrounding

environment.

Flow-induced platelet activation occurs in response

to stress on platelet constituents, which can be repre-

sented to a certain extent by the continuum approach

up to the lm-level; however, the molecular mecha-

nisms of platelet activation and shape change are on

the order of nm. Coupling of such disparate length and

timescales between molecular and macroscopic trans-

port phenomena represents a major computational and

modeling challenge when using traditional continuum-

based approaches. A multi-scale approach based on

particle models for bridging the gap between macro-

scopic flow scales and the cellular scales is a more

efficient approach. In conjunction with the top-scale

model present here (Fig. 10) where multiple platelets

suspended in viscous fluid interact with the fluid, the

enclosing walls and with each other, we are currently

developing a cellular-scale model employing MD with

nm length scales (bottom-up model). A single platelet

is modeled with multiple sub-constituents (cytoskele-

ton, a finite thickness lipid bilayer as membrane, and

cytoplasm) evolving during activation as pseudopodia

grow and the platelets lose their natural discoid shape.

Coupling of the two models represents a true multi-

scale fundamental model of flow-induced thromboge-

nicity—information is passed between both scales:

individual platelet activation at the top-scale is

FIGURE 6. Velocity,shearstressanddensityprofilesdeveloped
with periodic Poiseuille for different body forces/pressure gradi-
ents/Reynolds numbers (dots—numerical simulations, line-
s—exact solutions). We observe a breakdown of the approxima-
tion of incompressible fluid flow as the maximum velocity
increases and becomes comprarable or higher than c. Although
parabolic profiles are obtainable up to high velocities and
Re � 750, shear stress across the fluid is poorly approximated at
thisvelocityrangeandmilddensitygradientsdevelopasvy

max � c.

SOARES et al.2324



obtained from evolution of the cellular scale occurring

in response to environment conditions at the top-scale

and communicated down to the cellular-scale.

Solid boundaries enclosing DPD systems with

appropriate no-slip boundary conditions pose a major

challenge for DPD simulations and diverse methodologies

have been developed over the years, each with their

own advantages and problems. Solid walls modeled as

layers of frozen particles15,19 introduce severe density

fluctuations near the wall and may allow the penetra-

tion of fluid particles.41 Other methodologies employ

adaptive forces,34,40 but their generalization to com-

plex geometries is quite cumbersome. We develop a

general no-slip boundary condition for broad appli-

FIGURE 7. Apparent viscosity calculated with periodic Poiseuille flow. Viscosity was determined by fitting the observed velocity
profile to the exact Poiseuille solution. We observe a consistent increase in apparent viscosity as body force and maximum
velocity increases, and the approximation of incompressible fluid breaks down.

FIGURE 8. Poiseuille and Couette flow in channels enclosed by solid walls. We have validated our methodology for imposing no-
slip boundary conditions with the Poiseuille and Couette flow benchmarks. The velocity profiles are well approximated. Shear
stress profiles shows excellent agreement with the analytical solutions for incompressible fluids (linear and constant respectively)
and density fluctuations near the wall do not occur remaing constant across the channel (not shown).
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cation to complex shaped walls by adapting the

methodology proposed by Willemsen et al.50 and the

concept of equilibrated shear layers (Fig. 2). Solid wall

boundaries should address the following conditions: (i)

prevent penetration of fluid particles; (ii) enforce no-

slip condition and develop a boundary layer; and (iii)

prevent imbalances that lead to spurious inhomoge-

neous fluctuations of density and pressure. Our meth-

odology satisfies these conditions, shows accurate

behavior as compared with the Poiseuille and Couette

flow benchmarks (Fig. 8), and is easily applied to

complex geometries by using triangular meshes

(Fig. 3).

As our goal is to employ the DPD formulation to

approximate incompressible fluid flow, in particular

the resulting density, velocity and stress fields resolved

with spatial and temporal averaging of the particle

simulations. We conducted simulations of benchmark

solutions (Poiseuille and Couette flow) under different

velocity regimes and we observed that the approxi-

mation of incompressible fluid flow breaks down

whenever velocities are comparable to or higher than

the speed of sound of the DPD system (Fig. 6).

Fedosov et al.18 have observed a deviation from the

Navier–Stokes solution on lid-driven cavity flow and

reported the existence of a velocity limit, particularly

associated with compressibility effects. Our analysis

was conducted with periodic Poiseuille flow such that

its culprit cannot be attributed to adverse features due

to the introduction of no-slip boundary conditions.

Although parabolic profiles in Poiseuille flow can be

achieved over a range of flow rates (up to Re � 750),

we observe a significant increase of apparent viscosity

when vy
max � c (as determined by fitting the velocity

profile to the analytical solution, Fig. 7). A consider-

able breakdown of the approximation of the linear

shear stress profile is noted, as well as mild to severe

gradients in density (Fig. 6). A finite limit on shear

stress in DPD systems seems to exist, beyond which

parabolic profiles may not be obtained. Under such

conditions we have observed in our stenosis model

sharp profiles usually associated with shear-thickening

fluids, and the development of a clearly defined shock

wave for extreme pressure differentials. These effects

might be attributed to the compressibility of the DPD

system and result in a breakdown of the approxima-

tion of the hydrodynamics of incompressible fluids. In

order to approximate accurately incompressible fluids

subjected to higher Reynolds number flows, a larger

system with a higher characteristic length and covering

greater computational distances (such that the ratio rc/

D is smaller) will be required, resulting in a significant

increase in the number of particles and computational

costs.

Our current modeling effort is hampered by several

limitations. Our coarse-grained platelet model does not

capture in full extent the behavior of platelets in sus-

pension. We model platelet membranes as ensembles of

bound particles composing a membrane with suffi-

ciently extensional and bending stiffness (platelets

behave almost rigidly prior to activation), but the lack

of experimental data on the mechanical response of an

individual platelet curtails the development of more

accurate and rigorous modeling. Notwithstanding, our

FIGURE 9. Coarse-grained finite-size platelet modeled suspended in shear flow. We employ 444 particles, defined with a trian-
gular mesh, to describe an ellipsoid platelet membrane connected by harmonic bonds and harmonic dihedral angles. The model
shows great phenomenological behavior and we observe the platelet undergoing three-dimensional counterparts of Jeffery’s
motions, flipping and spinning on its axes. Movie S1 of supplemental material depicts a portion of the simulated platelet self-
orbiting motion for 15,000 time steps.
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coarse-grained model compares favorably with existing

data sets of platelet mechanical deformation, and

demonstrates appropriate rheological behavior—self-

orbiting motions in shear flow and other hydrody-

namic and physiologic characteristics in a stenosis

model. Platelets are known to interact biochemically

with each other and with walls and we have not in-

cluded such effects at the current stage. The major

limitation of our current study for the in vivo descrip-

tion of thrombosis is the absence of red blood cells and

other key players in the complex rheological behavior

of blood and their role in flow-mediated thrombosis

and platelet activation, aggregation, and adhesion.

Platelets and red blood cells interact, and in order to

have a rigorous description of blood flow, it is neces-

sary to account for their presence and such interac-

tions. Consequently, our simulations should not be

observed as depicting the physiologic settings of blood

flow in the vasculature—in fact, we are modeling a

complex heterogeneous fluid composed of an incom-

pressible fluid phase and suspended particulate which

can be viewed as a suspension of platelets flowing in a

stenotic channel with inert walls.

SUMMARY AND CONCLUSIONS

The hydrodynamic characteristics of viscous fluid

flow obtained with the DPD methodology were studied

and compared favorably with continuum based viscous

flow solutions. To enable DPD simulation in complex

3D geometries such as found in the vasculature, we

have developed a no-slip boundary condition tailored

to render in a feasible manner complex three-

dimensional geometries enclosing the DPD fluid. A

breakdown of the validity of the incompressibility

approximation was observed with increasing velocities,

possibly due to the inability of DPD particles ensem-

bles to support and transmit properly large shear

stresses, indicating that larger simulations must be

considered to extend beyond the low Reynolds number

microfluidic flows to the arterial scales with their

characteristics medium-to-high Reynolds number

flows.

We further present a top-scale model of platelet

suspension flowing in three-dimensional stenotic

channels. The platelets are modeled as coarse-grained

finite-sized ensembles of particles. We were able to

observe well-established blood particulates unique

dynamics such as self-orbiting motions of platelets

under shear associated with Jeffery’s orbits, as well as

favorable platelet-wall and platelet–platelet interac-

tions in flow inside the stenosis.

Our current and future studies include validation

of our multiscale modeling effort to account for

platelet morphological and functional changes upon

activation. This is achieved by interfacing the current

DPD mesoscale model with a cellular nano-to-

microscale model of flow-induced platelet activation

(including the platelet cytoskeleton and bilayer

membrane, based on a coarse grained MD model) in

FIGURE 10. Suspension of platelets flowing in a three-
dimensional stenotic channel. The Reynolds number of this
flow is approximately 20 (computed with average maximum
velocity at the centerline of the inlet cross-section, l and n of
the DPD fluid and diameter D). Extraordinary phenomeno-
logical behavior is observed—platelets are transported with
the flow, flipping and colliding with other platelets and the
wall, accelerating across the stenosis neck and becoming
trapped in the recirculation zones distally. Movie S2 of sup-
plemental material depicts the transport of platelets in the
stenotic channel during 5000 time steps at 3 different stages
of the simulation (for t 5 [0; 5000Dt], t 5 [95,000Dt;
100,000Dt], and t 5 [195,000Dt; 200,000Dt].
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a fully coupled multiscale approached. The multiscale

model will be further developed to include other key

players of blood rheology (particularly red blood cells

and fibrin polymerization), and is intended to capture

platelet activation, aggregation and adhesion and

others aspects of flow-mediated thrombosis in an

attempt to render physiologic applicability to our

multiscale model.

APPENDIX

Dissipative Particle Dynamics Formulation

DPD is a mesoscopic particle method,24,27 where

each particle represents a molecular cluster rather than

an individual atom, and can be thought of as a soft

lump of fluid. The DPD system consists of N point

particles of mass mi, position ri and velocity vi. DPD

particles interact through three forces: conservative

(Fij
C), dissipative (Fij

D) and random (Fij
R) forces given by

FC
ij ¼ FC

ij ðrijÞeij; ð1Þ

FD
ij ¼ �cxDðrijÞðvij � eijÞeij; ð2Þ

FR
ij ¼ rxRðrijÞnijdt

�1=2eij; ð3Þ

where eij = rij/rij, with rij = ri 2 rj and rij = (rij Æ rij)
1/2,

is a unit vector in the direction of particles i and j, and

vij = vi 2 vj is the relative velocity of particle i with

respect to particle j. The coefficients c and r define the

strength of dissipative and random forces, respectively.

In addition, xD and xR are weight functions, and nij is

a normally distributed random variable with zero

mean, unit variance and nij = nji. All forces are trun-

cated beyond the cutoff radius rc, which defines the

length scale in the DPD system. The conservative force

is given by

FC
ij ðrijÞ ¼

aijð1� rij=rcÞ; if rij � rc
0; if rij>rc

�

; ð4Þ

where aij is the conservative force coefficient between

particles i and j. The random and dissipative forces

form a thermostat and must satisfy the fluctuation–

dissipation theorem in order for the DPD system to

maintain equilibrium temperature T.14 This leads to

xDðrijÞ ¼ ½xRðrijÞ�
2; ð5Þ

r2 ¼ 2ckBT; ð6Þ

where kB is the Boltzmann constant. The choice for the

weight functions is

xRðrijÞ ¼
ð1� rij=rcÞ

k; if rij � rc
0; if rij>rc

�

; ð7Þ

where k = 1 for the original DPD method. However,

other choices (e.g., k = 0.25) have been used in order

to increase the viscosity of the DPD fluid.15,18 To mi-

mic the effect of a pressure gradient driving the flow of

particles, a body force, given by

G ¼ gxex þ gyey þ gzez; ð8Þ

acts in particles located within certain regions of space.

Particle i can have Ni
B bonds with other particles. If

particle i is bound to particle k, there exists a force in

particle i acting in the eik direction with magnitude

determined by the gradient of the harmonic bond

potential

VB ¼
KB

ik

2
ðrik � r0Þ

2; ð9Þ

FIGURE 11. Axial velocity of platelet centroid vs. axial distance and radial distance. Platelet velocity is higher across the stenosis
neck and in core flow, whereas near-wall platelets and those trapped in the recirculation zones (Fig. 10) have lower velocities and
longer residence times. Direct comparison of platelet centroid velocity with the continuity equation for incompressible homoge-
nous fluids results in a decent estimation/validation of the behavior of platelets across the stenosis.
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where Kik
B is the force constant and r0 is the distance

when the force is null. Torsional energy is added with

the definition of proper dihedrals: particle i can be part

of Ni
D dihedrals. If particles i,j k, and l form a proper

dihedral, two planes with normal vectors m and n can

be defined with particles i, j and k, and j, k, and l,

respectively, i.e.,

m ¼ rij � rkl; ð10Þ

n ¼ rlk � rjk: ð11Þ

The torsional angle is defined as

/ijkl ¼ �arctan
sin/ijkl

cos/ijkl

 !

; ð12Þ

with the sine and cosine of the torsional angle being

given by

cos/ijkl ¼
m � n

mn
; ð13Þ

sin/ijkl ¼
ðn � rijÞrjk

mn
; ð14Þ

The harmonic dihedral potential is defined as

VD ¼ KD
ijkl½1þ cosðnijkl/ijkl � /0Þ�; ð15Þ

where Kijkl
D is the torsion constant, /0 is the angle of

minimum potential, and nijkl is the multiplicity of

minima in a full rotation. Finally, the forces exerted in

particle i due to the harmonic bond and dihedral

potentials are obtained with the computation of the

gradient of the potentials, on which the chain rule is

useful, i.e.,

FB
ij ¼ �

@VB

@ri
¼ �KB

ij ðrij � r0Þeij; ð16Þ

FD
ijkl ¼ �

@VD

@/ijkl

@/ijkl

@ri
: ð17Þ

The time evolution of velocities and positions of

particles is determined by Newton’s second law of

motion

d

dt
ri ¼ vi; ð18Þ

d

dt
ðmiviÞ ¼

X

N

j¼1;j 6¼i

ðFC
ij þFD

ij þFR
ij ÞþGþ

X

NB
i

k¼1

FB
ikþ

X

ND
i

p¼1

FD
ip ;

ð19Þ

which are integrated using the modified velocity—Ver-

let algorithm.24 Fluid particles will have no bonds or

dihedrals associated to them, i.e., Ni
B
= Ni

D
= 0 if par-

ticle i is a fluid particle. In our simulations, we consider:

(i) all particles have the samemass (i.e.,mi = m for all i),

(ii) share equal conservative force coefficients (i.e.,

aij = a for all i and j), (iii) a negative pressure gradient is

directed along the ey direction (i.e., gy = g and

gx = gz = 0), and (iv) all bonds and dihedrals are equal

(i.e., share the same functional form of potential, with

KB
ij ¼ Kb; KD

ijkl ¼ Kd; nijkl ¼ 1 and /0 ¼ 0).

No-Slip Boundary Condition Implementation

We have generalized and implemented Willemsen

et al.50 no-slip boundary condition into a three

dimensional framework. The boundary condition is

composed of three distinct components: (i) inclusion of

an additional conservative force to balance void space

beyond the wall, (ii) inclusion of additional dissipative

and random forces due to interaction with fictitious

particles, and (iii) specular reflection of particles

crossing a solid wall. Let us consider a particle i located

at ri ¼ ðrix; r
i
y; r

i
zÞ and let us consider a triangular wall P

composed of vertices (P1, P2, P3), each with coordi-

nates Pj ¼ ðPj
x;P

j
y;P

j
zÞ for j = 1, 2, 3 (Fig. 12a). With

the objective of treating triangles with any orientation,

we define a isoparametric transformation from the (x,

y, z) coordinate system into a general coordinate sys-

tem (n, g, f) and triangle P becomes triangle �P com-

posed of vertices ð�P
1
; �P

2
; �P

3
Þ with coordinates

�P
j
¼ ð �Pj

n;
�Pj
g;

�P
j
fÞ for j = 1, 2, 3 given by (0,0,0), (1,0,0),

and (0,1,0), respectively, in the general coordinate

system (n, g, f) (Fig. 12b). In order to compute the

transformation from P to �P, it is useful to define vec-

tors u ¼ P2 � P1, v ¼ P3 � P1; n ¼ ðu� vÞ= u� vj j;
�u ¼ u= uj j and �v ¼ ðv� ð�u � vÞ�uÞ= v� ð�u � vÞ�uj j such that

ð�u;�v; nÞ form an orthonormal basis. Vectors u and v

correspond to two edges of triangle P, �u is an unit

vector aligned with one triangular edge and n is a unit

normal defining the interior side of the triangular wall

(defined by counter-clockwise numbering of triangular

vertices). The Jacobian J of the transformation is given

by

J ¼ uxðvynz � vznyÞ � uyðvxnz � vznxÞ

þ uzðvynx � vynxÞ; ð20Þ

and the transformation matrix M is given by

Mð Þ ¼
1

J

vynz � vzny vznx � vxnz vxny � vynx
uzny � uynz uxnz � uznx uynx � uxny
uyvz � uzvy uzvx � uxvz uxvy � uyvx

0

@

1

A:

ð21Þ
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The first step of the boundary condition infers if

particle i is within the region of influence of the tri-

angular wall, defined as a layer of thickness rc above

the triangular wall (Fig. 12a)—if outside, the particle

does not suffer the influence of the wall, but if inside, it

does, and hence, additional interactions in the force

computation must be included. Three additional

interaction forces will be added to particle i: dissipative

and random interactions with fictitious particles be-

yond the wall and a conservative force that balances

particle i with the void space existing beyond the wall.

The position of the particle i with respect to vertex

P1 is given by vector mi
= ri 2 Pl, which transforms to

the general coordinate system simply by �mi ¼ Mmi and

results in coordinates ð �mi
n; �m

i
g; �m

i
fÞ. The necessary

conditions for particle i to be inside the region of

influence of triangular wall P are �mi
n 	 0, �mi

g 	 0,

1� �mi
n 	 �mi

g, and 0 � �mi
f � 1 (Fig. 12b).

The additional conservative force introduced to

particle i due to the boundary condition is quite

straightforward—note that �mi
f is the normal distance

of particle i to the wall and n is a unit vector normal to

the wall (and directed inwards), thus Fc
i ¼ fn with

h ¼ �mi
f (cf. ‘‘Methods’’—No-Slip Boundary Condi-

tions in Complex Geometries).

Particle i has M neighbors, i.e., particles k located at

rk with k = 1, 2,…,M whose distance to particle i is

lower than cut-off radius rc. These neighbor particles k

will originate fictitious particles ~k with which particle i

interacts if the fictitious particle lays within one cut-off

radius of particle i. Thus, the normal distance of par-

ticle i to the wall �mi
f will dictate the thickness of the

layer of neighbors that must be reflected beyond the

wall, i.e., hlayer ¼ rc � �mi
f (Fig. 2). The transformation

is applied to all neighbor particles k, i.e., mk ¼ rk � P1

and �mk ¼ Mmk such that �mk
f is the normal distance to

the wall of neighbor particle k. If �mk
f<hlayer, then a

reflected fictitious particle ~k will be considered and

dissipative and random interactions between fictitious

particle ~k and particle i included. The location of fic-

titious particle ~rk is given by ~rk ¼ ~rk � 2 �mk
fnþ hr where

hr is the random shift parallel to triangular wall P

(Fig. 2). The random shift hr is generated with the aid

of two random numbers, the random shift distance hr

and the random shift orientation hr both being gener-

ated with independent Gaussian random number

generators with zero mean and variance rc and p

respectively, and is given by

hr ¼ hrð�u cos hr þ �v sin hrÞ: ð22Þ

Random interaction forces are determined simply

by distance between fictitious particle ~k and particle i,

i.e., ri~k ¼ ri � ~rk, whereas dissipative interaction forces

take into account the relative velocity between both,

i.e., vi ~k ¼ vi � ~vk. The velocity ~vk of the fictitious par-

ticle ~k is the reflected velocity of neighbor particle k

with the tangential component reversed, and is given

by ~vk ¼ �vk � 2ðvk � nÞn (Fig. 2). A similar methodol-

ogy is employed to account for the interaction between

particle i and its corresponding fictitious particle ~i if

FIGURE 12. The generalization of Willemsen et al.50 no-slip boundary condition employs isoparametric transformations from all
triangular elements defining the complex wall geometry defined in the coordinate system (x, y, z) into coordinate system (n, g, f) ((a)
and (b)). Specular reflection is enforced to particles that cross the wall by reflecting their normal position and normal velocity
component (c). Walls enclosing the DPD fluid are concave; hence an algorithm to handle multiple reflections was developed (d).
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�mi
f<rc=2. To conclude, the additional conservative,

random and dissipative interaction forces added to

particle i by the imposition of the no slip boundary

condition on triangular wall P are

f
no�slip
i ¼ f nþ FD

i~i
þ FR

i~i
þ
X

~M

~k¼1

ðFD

i~k
þ FR

i ~k
Þ; ð23Þ

where ~M is the number of fictitious neighbors of par-

ticle i introduced.

Lastly, specular reflection of particles that cross the

triangular wall P is enforced. We employ the same

transformation to evaluate the location of a given

particle i with respect to the wall and we define a layer

of thickness rc above the wall (as for the force calcu-

lations) but with a clearance of size rc beyond the tri-

angle edges (Fig. 12b) to account for the possibility of

particles that are slightly offset with triangle P but

traveling towards it. Particle i is inside the region of

possible reflection on triangular wall P if satisfies all of

these conditions: �mi
n 	 �rc= uj j, �mi

g 	 �rc= vj j, ð1� �mi
nÞ

=ð1þ rc= uj jÞ 	 �mi
g=ð1þ rc= vj jÞ, and 0 � �mi

f � 1

(Fig. 12b). The location of particle i in the current time

step ritþDt and previous time step rt
i define the line of its

trajectory, i.e., rit þ kðritþDt � ritÞ with k 2� �1;1½. We

identify the location in the trajectory of the intersection

point between the line and the triangular wall plane by

evaluating k with

k ¼ �
n � ðrit � P1Þ

n � ðritþDt � ritÞ
; ð24Þ

which will translate into a valid intersection if

0< k< 1. Once k is determined, the location of the

intersection point is given by pi ¼ rit þ kðritþDt � ritÞ.
The intersection point is not guaranteed to be in the

triangular region, thus we employ the transformation

once again to obtain mp ¼ pi � P1, �mp ¼ Mmp and

evaluate if the intersection point is indeed in the tri-

angular wall, i.e., if and only if �m
p
n 	 0, �mp

g 	 0, and

1� �m
p
n 	 �mp

g (note that in this case �m
p
f ¼ 0).

If so, the particle should be reflected, i.e., its re-

flected current position ~ritþDt is updated by adding to

ritþDt twice the normal component of the trajectory

beyond the wall (Fig. 12c),

~ritþDt ¼ ritþDt þ 2 ðritþDt � piÞ � n
� �

n; ð25Þ

and the velocity is also updated by subtracting twice

the normal component (Fig. 12c),

~vitþDt ¼ vitþDt � 2ðvitþDt � nÞn: ð26Þ

Finally, because we consider walls composed of

multiple adjacent triangles defining a concave surface, it

is necessary to account for possible multiple reflections

occurring in the same time step (Fig. 12d), i.e., a particle

is reflected from one triangle in such a way that it should

be reflected by adjacent triangles. We implement such

multiple reflections for the cases on which the intersec-

tion point of the first reflection was located within one

cut-off radius inside the triangle (Fig. 12b) determined

by conditions �m
p
n � rc= uj j, or �mp

g � rc= vj j, or

ð1� �m
p
nÞ=ð1� rc= uj jÞ � �mp

g=ð1rc= vj jÞ, each condition

corresponding to one edge of the triangular wall. In such

case, the previous position is updated with the inter-

section point, i.e., rt
i
= pi, and the same algorithm is

performed with respect to the corresponding adjacent

triangles.
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