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1 Introduction

What can be achieved in lattice QCD computations in terms of observables and their

accuracy depends to a large extent on the availability of suitable ensembles of gauge field

configurations. For reliable results, many sources of error have to be controlled: fine lattices

are needed for minimal discretization effects, the quark masses have to be close to their

physical values and the volume of the lattices has to be large enough for finite size effects to

be small. The final precision also depends on the quark flavor content of the sea. On top of

these systematic effects come statistical uncertainties: simulations have to be long enough

such that the statistical errors can be estimated reliably, and with statistical uncertainties

getting smaller, the need for control over systematic effects increases.

Since the generation of gauge field configurations is computationally the most demand-

ing part of the whole computation, a careful evaluation of the physics parameters needs to

be made in view of the target precision of the observables — as far as this is possible at this

stage. The goal is to balance the various sources of systematic and statistical uncertainties

in the final result: in light of the findings of ref. [1], for example, we do not include a

dynamical charm quark in the sea as we do not anticipate to be able to reach an accuracy

comparable to its effect on typical low-energy observables after taking the continuum limit

and the chiral extrapolation. On the contrary, including the charm might introduce large

lattice artifacts and would make the tuning procedure more difficult.

Recent year’s advances have led to a re-evaluation of the requirements for a reliable

lattice computation regarding the control over statistical errors. Notably, it has been

known for a while that the global topological charge freezes on fine lattices with periodic

boundary conditions [2–4]. However, with the advent of the gradient flow in lattice com-

putations [5, 6] it has been discovered that at moderate lattice spacing other quantities

constructed from smoothed fields evolve even slower in Monte Carlo time [7, 8]. To ex-

clude uncontrolled biases in any observable, Monte Carlo histories much longer than the

exponential autocorrelation time are required, i.e. much longer than the times observed in

these smoothed observables and therefore longer than previously thought.

In this paper, we give an overview of the first round of the CLS (Coordinated Lattice

Simulations) effort to generate configurations with Nf = 2+1 flavors of non-perturbatively

improved Wilson fermions. In some of its aspects it is a continuation of the Nf = 2 flavor

project: we use a non-perturbatively improved Wilson fermion action, we do not employ

link smearing, simulations are done using a public code and we focus on small lattice

spacings for a controlled continuum limit [9].

By adding the additional flavor to the sea, one naturally aims at higher accuracy than

with two flavor simulations. In order to achieve this, there are also improvements over the

previous project. We use open boundary conditions in the time direction which prevent

the topological charge from freezing [5, 7] and twisted-mass reweighting to avoid the sector

formation due to zero eigenvalues of the Wilson fermions and the resulting instabilities in

the simulation [10].

The simulations are performed using the openQCD code version 1.2 [11] whose general

algorithmic setup is described in ref. [12]. The code provides broad flexibility with re-
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spect to the algorithms used, starting from the determinant decomposition, the molecular

dynamics integration and the methods employed for solving the Dirac equation. In this

paper we give the physics and algorithmic parameters of these simulations and report on

our experiences with this new setup. Furthermore we present first measurements of basic

physics observables: the masses of the pion and the kaon as well as the scale parameter

t0 [6] on which we base the tuning of the runs.

Similar large-scale simulations of QCD have recently been performed by the PACS-

CS simulating improved Wilson fermions [13], the QCDSF collaboration with Nf = 2 + 1

flavors of NP improved, smeared Wilson fermions [14], the Hadron Spectrum collaboration

using Nf = 2 + 1 flavors of tree-level improved, smeared Wilson fermions on anisotropic

lattices [15], as well as the ETM collaboration using twisted-mass fermions [16] and the

BMW collaboration with tree-level improved smeared fermions [17]. Also domain wall

fermions are employed by RBC-UKQCD [18] and overlap fermions by JLQCD [19] as

well as smeared rooted staggered fermions by MILC [20]. Our simulations are unique by

their use of open boundary conditions and, among the simulations with standard Wilson

fermions, twisted-mass reweighting as a safeguard against the effects of near-zero modes of

the Dirac operator.

The paper is organized as follows: in section 2 we give the details of the action, the

tuning strategy and the parameters of the runs. The algorithmic setup is described in

section 3. Autocorrelations observed in the simulations are the subject of section 4, while

the two types of reweighting used in the light and the strange quark sector are discussed

in section 5. This is followed in section 6 by the measurement of the pseudoscalar masses

and the scale parameter t0 and a discussion of discretization effects in section 7.

2 Physical parameters

The simulations are done on lattices of size Nt × N3
s , with open boundary conditions

imposed on time slice 0 and Nt − 1. Lattices with Nt points in the temporal direction

therefore have a physical time extent of T = (Nt − 1)a in conventional notation, with a

being the lattice spacing.

2.1 Action

The general setup of the lattice actions which can be simulated with the openQCD code

has already been given in detail in ref. [12]. In particular it is described there how the

boundary conditions are imposed. Therefore, here we only give details of the bulk action.

Throughout, the coefficients of the boundary improvement terms are set to their tree

level values.

For the gauge fields, we use the Lüscher-Weisz action [21] with tree level coefficients —

which is different from the earlier reference [12] where the Iwasaki action has been employed.

In the bulk, the plaquette and rectangle terms are multiplied by their respective coefficients

c0 = 5/3 and c1 = −1/12

Sg[U ] =
β

6

(
c0

∑
p

tr{1−U(p)}+ c1

∑
r

tr{1−U(r)}

)
, (2.1)
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where the sums run over the plaquettes p and the rectangles r contained in the lattice and

β = 6/g2
0 with the bare gauge coupling g0.

For the fermions, the Wilson Dirac operator [22] including the Sheikholeslami-Wohlert

term needed for O(a) improvement of the action [23] is used

DW(m0) =
1

2

3∑
µ=0

{γµ(∇∗µ +∇µ)− a∇∗µ∇µ}+ acSW

3∑
µ,ν=0

i

4
σµνF̂µν +m0 (2.2)

with ∇µ and ∇∗µ the covariant forward and backward derivatives, respectively. The im-

provement term containing the standard discretization of the field strength tensor F̂µν [24]

comes with the coefficient cSW whose value has been determined non-perturbatively in

ref. [25].

The three flavor fermion action then reads

Sf [U,ψ, ψ] = a4
3∑

f=1

∑
x

ψf (x)DW(m0,f )ψf (x) , (2.3)

where we take the up and down quark masses to be degenerate m0,ud ≡ m0,u = m0,d. The

strange-quark mass m0,s is tuned as a function of the light quark mass. In the following,

we frequently quote the hopping parameters κf instead of the bare quark masses

m0,f =
1

2a

(
1

κf
− 8

)
. (2.4)

2.2 Choice of parameters

Since we do not simulate the full Standard Model but restrict ourselves to Nf = 2 + 1

flavor QCD, electromagnetic and isospin breaking effects as well as the contributions from

the heavy sea quarks, among others, are not included in this calculation. Therefore the

point of “physical” quark masses is not unique even in the continuum and we have to fix

observables which define it. For the tuning of our runs, we set the scale through t0 defined

by the Wilson flow [6], see section 6.3. The quark masses are set using the masses of the

pion and the kaon. While this choice is convenient during the tuning of the runs, it can be

changed in the future once more observables are available.

The lattices at different cutoff are matched via the dimensionless parameters

φ2 = 8t0m
2
π and φ4 = 8t0

(
m2
K +

1

2
m2
π

)
, (2.5)

where all quantities are the ones measured at the parameter values of the ensemble in

question. Note that in leading order of Chiral Perturbation Theory (ChPT) they are

proportional to the sum of the quark masses, φ2 ∝ (mu +md) and φ4 ∝ (mu +md +ms) [26,

27]. The advantage of this strategy is that we obtain all quantities involved with high

statistical accuracy from the simulated ensembles, without further need of renormalization

constants or chiral extrapolation.

Particular drawbacks of this strategy are the significant cutoff effects which we ob-

serve in the various definitions of t0/a
2 on our largest lattice spacings, as discussed in
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section 7.1. Furthermore, the value of t0 is not an experimentally accessible observ-

able and only known from other lattice simulations. In the literature one finds
√

8t0 =

0.4341(33) fm by the ALPHA collaboration using Wilson fermions in two-flavor QCD [28]

and
√

8t0 = 0.4144(59)(37) fm by the BMW collaboration using Nf =2+1 flavors [29]. In

a 2 + 1 + 1 flavor setup with rooted staggered fermions, the HPQCD collaboration finds√
8t0 = 0.4016(23) fm [30]. As has been observed in ref. [28], these numbers exhibit a sig-

nificant flavor content effect, which however is monotonic in the number of flavors. Since

our simulation setup is also with Nf = 2 + 1 flavors, we choose the value of ref. [29].

The QCD values of mπ = 134.8(3) MeV and mK = 494.2(4) MeV in the isospin limit

and without electromagnetic contributions are taken from the analysis of ref. [31]. The

correction of the experimental masses is based on ChPT at NLO with input from other

lattice calculations showing a suppression of the contribution from the combination of

low-energy constants relevant to this case. This leads to a physical point estimate

φphys
2 = 0.0801(27) , φphys

4 = 1.117(38), (2.6)

where errors have been added in quadrature.

From this choice and our measurements of t0/a
2 presented below, we estimate for our

three values of β = 3.4, 3.55 and 3.7 lattice spacings a of a ≈ 0.086 fm, 0.064 fm and

0.05 fm, respectively.

2.3 Quark mass trajectory

In order to achieve O(a) improvement, the bare coupling — as all bare parameters — has

to be improved with a mass-dependent term [24]

g̃2
0 = g2

0

1 +
bg
3
a
∑
f

(m0,f −mcr)

 , (2.7)

with mcr the critical quark mass whose precise value is not known at this stage. To keep

the lattice spacing constant as we change the sea quark masses, this modified coupling

constant g̃0 has to be kept constant.

While the coefficient bg is small at one loop in perturbation theory [32], bg =0.012Nf g
2
0,

a non-perturbative result is not known for any action. To keep g̃0 fixed, we therefore keep

the sum over the subtracted quark masses fixed, a strategy already proposed in ref. [14].

Note that this is equivalent to keeping the sum over the bare quark masses m0,f fixed

a
3∑

f=1

(m0,f −mcr) = const ⇔ a
3∑

f=1

m0,f = const ⇔
3∑

f=1

1

κf
= const . (2.8)

Up to effects of order O(amud), this also implies a constant sum of improved PCAC quark

masses [33].

We can therefore define chiral trajectories by a point in the φ2–φ4 plane, at which

different lattice spacings are matched and the requirement that the sum of the bare quark
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masses is constant. For each value of β, the lattice spacing is constant along these lines

and a continuum limit can be performed for each value of φ2.

As explained in the next section, we match lattices with different lattice spacings at

mπ = mK ≈ 420 MeV, where we will also show first results concerning the size of the

O(am) cutoff effects introduced by this choice.

2.4 Tuning strategy

By choosing the chiral trajectories of eq. (2.8), the tuning process can be highly simplified:

keeping β fixed, for each chiral trajectory we match the lattices at the flavor symmetric

point, i.e. where all quarks have equal masses.

Determining the slope of φ4 as a function of φ2 at β = 3.4 from a set of preliminary

runs, not shown here, we estimate the target value on the symmetric line

φ4

∣∣
mud=ms

= 1.15 . (2.9)

With the final statistics, we are able to reach better than 1% accuracy in this quantity

and a matching of the target value within one standard deviation. In the chiral limit this

translates into an accuracy of about 1 MeV in the strange-quark mass. In the future, we

plan to have more chiral trajectories which will allow us to study the consequences of the

remaining mistuning.

The result of the tuning effort and the resulting trajectory in the φ2–φ4 plane is

shown in figure 1 with results from the ensembles given in table 1. Within the statistical

accuracy, we do not observe significant cutoff effects. The one point at β = 3.7 is still

under production and its error therefore not yet trustworthy. We observe, the quark mass

effect on φ4 along this trajectory is moderate, around 5% between the chiral limit and the

symmetric point, as expected from ChPT.

3 Algorithmic parameters

The basic algorithmic setup has already been described in detail in ref. [12], but since we

are presenting simulations with larger lattices, statistics and a different action, the various

settings needed to be reconsidered. Here we give the parameters at which the runs were

performed and the reasoning behind the various choices.

3.1 Twisted-mass reweighting

Since the Wilson Dirac operator is not protected against eigenvalues below the quark mass,

field space is divided by surfaces of zero eigenvalues. These barriers of infinite action cannot

be crossed during the molecular dynamics evolution, at least if the equations of motion are

integrated exactly.

While at a sufficiently large volume and quark mass this might not be a problem

in practice [34], it can lead to instabilities during the simulation and meta-stabilities in

the thermalization phase. Lüscher and Palombi [10] therefore suggested to introduce a

small twisted-mass term into the action during the simulation and compensate for this by

reweighting.

– 6 –
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Figure 1. Position of our ensembles in terms of the dimensionless variables φ2 and φ4 defined

in eq. (2.5). The rightmost points are on the symmetric line mud = ms. The fact that the point

with the smallest φ2 at β = 3.7 is above the range indicated by coarser lattices might be an effect

of mistuning at the symmetric point or an indication for underestimated errors due to the low

statistics indicated by the dashed error bars.

id β Ns Nt κu κs mπ[MeV] mK [MeV] mπL

B105 3.40 32 64 0.136970 0.13634079 280 460 3.9

H101 3.40 32 96 0.13675962 0.13675962 420 420 5.8

H102 3.40 32 96 0.136865 0.136549339 350 440 4.9

H105 3.40 32 96 0.136970 0.13634079 280 460 3.9

C101 3.40 48 96 0.137030 0.136222041 220 470 4.7

D100 3.40 64 128 0.137090 0.136103607 130 480 3.7

H200 3.55 32 96 0.137000 0.137000 420 420 4.4

N200 3.55 48 128 0.137140 0.13672086 280 460 4.4

D200 3.55 64 128 0.137200 0.136601748 200 480 4.2

N300 3.70 48 128 0.137000 0.137000 420 420 5.1

N301 3.70 48 128 0.137005 0.137005 410 410 4.9

J303 3.70 64 192 0.137123 0.1367546608 260 470 4.1

Table 1. List of the ensembles. In the id, the letter gives the geometry, the first digit the coupling

and the final two label the quark mass combination. We give rounded values of mπ and mK using

the t0/a
2 of the ensemble and

√
8t0 = 0.4144 fm. Using t0/a

2 extrapolated to the physical light

quark masses, we estimate lattice spacings of a ≈ 0.086 fm, 0.064 fm and 0.05 fm for β = 3.4, 3.55

and 3.7, respectively.
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In the present simulations, we use the second version of the reweighting suggested in

ref. [10], which is less affected by fluctuations in the reweighting factor from the ultraviolet

part of the spectrum of the Dirac operator. Contrary to the original proposal, we do

not apply it to the Hermitian Dirac operator Q = γ5DW but to the Schur complement

Q̂ = Qee −QeoQ
−1
oo Qoe of the asymmetric even-odd preconditioning [35]. This amounts to

replacing the determinant of the light quark pair by

detQ2 = det2Qoo det Q̂2 → det2Qoo det
Q̂2 + µ2

0

Q̂2 + 2µ2
0

det
(
Q̂2 + µ2

0

)
. (3.1)

The reweighting factor which needs to be included in the measurement of primary observ-

ables then reads

W0 = det
(Q̂2 + 2µ2

0) Q̂2

(Q̂2 + µ2
0)2

. (3.2)

The choice of the parameter µ0 will be discussed in section 5.1.

3.2 Determinant factorization

The fluctuations in the forces have to be reduced further than what can be achieved by

introducing an infrared cutoff by the twisted mass µ0. To this end we use Hasenbusch’s

mass factorization [36] with a twisted mass [37] applied to the last term in eq. (3.1) [38]

det
(
Q̂2 + µ2

0

)
= det

(
Q̂2 + µ2

Nmf

)
×
Nmf∏
i=1

det
Q̂2 + µ2

i−1

Q̂2 + µ2
i

(3.3)

with a tower of increasing values of µ0 < µ1 < · · · < µNmf
. The values of these masses

can significantly influence the performance of the algorithm. Here we roughly set them at

equal distances on a logarithmic scale as suggested in ref. [12]. The precise values of the

µi are listed in table 2, which implicitly gives also the number of factors in eq. (3.3).

The combination of twisted-mass reweighting and mass factorization leads to an effec-

tive action for the light quark pair with Nmf + 2 terms

Sud,eff [U, φ0, . . . , φNmf+1] =

(
φ0,

Q̂2 + 2µ2
0

Q̂2 + µ2
0

φ0

)
+

Nmf∑
i=1

(
φi,

Q̂2 + µ2
i

Q̂2 + µ2
i−1

φi

)

+

{(
φNmf+1,

1

Q̂2 + µ2
Nmf

φNmf+1

)
− 2 log detQoo

}
.

(3.4)

The single term with the largest twisted mass and the one from the diagonal determinant

detQoo are always integrated together and are therefore counted as one term.

3.3 RHMC

The strange quark is simulated using the RHMC algorithm [39, 40], where the matrix

square root is approximated by a rational function

detQ = detQoo det

√
Q̂2 = detQoo det

A−1

Np∏
i=1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

×W1 . (3.5)
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id aµ0 aµi Nmf,2 Np [ra, rb] N ′p Np,2 Ns,2 MDU 〈Pacc〉
B105r002 0.001 {0.005, 0.05, 0.5} 1 10 [0.0200, 7.00] 3 2 8 1984 0.99

B105r003 0.001 {0.005, 0.05, 0.5} 1 10 [0.0170, 7.80] 3 2 8 4120 0.96

H101r000 0.001 {0.005, 0.05, 0.5} 2 12 [0.0056, 7.50] 5 2 10 4028 0.95

H101r001 0.001 {0.005, 0.05, 0.5} 2 12 [0.0056, 7.50] 5 2 10 4036 0.95

H102r001 0.001 {0.005, 0.05, 0.5} 1 12 [0.0070, 7.40] 6 4 10 4116 0.97

H102r002 0.001 {0.005, 0.05, 0.5} 1 12 [0.0080, 7.60] 6 4 10 4032 0.97

H105r001 0.001 {0.005, 0.05, 0.5} 1 11 [0.0100, 7.30] 4 2 10 4108 0.97

H105r002 0.001 {0.005, 0.05, 0.5} 1 11 [0.0100, 7.30] 4 2 10 4168 0.98

H105r005 0.0005 {0.005, 0.05, 0.5} 1 13 [0.0032, 7.60] 6 3 7 3348 0.89

C101r010 0.0006 {0.007, 0.05, 0.5} 1 12 [0.0085, 7.80] 5 2 9 1404 0.84

C101r013 0.0003 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 13 868 0.95

C101r014 0.0006 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 12 2100 0.95

C101r015 0.0003 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 13 2402 0.90

D100r002 0.0001 {0.00016, 0.0005, 1 14 [0.0030, 8.15] 7 2 18 178 0.69

0.0055, 0.06, 0.7}
H200r000 0.001 {0.005, 0.05, 0.5} 1 12 [0.0050, 6.50] 6 3 10 4000 1.00

H200r001 0.001 {0.005, 0.05, 0.5} 1 12 [0.0050, 6.50] 6 3 10 4000 1.00

N200r000 0.00065 {0.005, 0.05, 0.5} 1 12 [0.0100, 7.10] 6 3 7 3424 0.94

N200r001 0.00065 {0.005, 0.05, 0.5} 1 12 [0.0100, 7.10] 6 3 7 3424 0.94

D200r000 0.0003 {0.00075, 0.005, 1 13 [0.0060, 7.80] 6 2 8 3572 0.94

0.05, 0.5}
N300r002 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 7.20] 6 3 6 6162 0.94

N301r000 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 6.00] 6 3 6 1944 0.95

N301r001 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 6.00] 6 3 6 1852 0.95

J303r003 0.00075 {0.002625, 0.009188, 1 13 [0.0080, 7.00] 7 3 6 2328 0.88

0.032156, 0.112547, 0.5}

Table 2. Parameters of the algorithm: we give the twisted masses used in the reweighting and

mass factorization, the Nmf,2 lightest of which are integrated on the coarsest time scale, the number

of poles Np and the range used in the RHMC, with N ′
p put on single pseudofermions , Np,2 of which

are integrated on the outer level. Ns,2 is the number of steps of the outer level of the MD integrator

used for one trajectory. The total length of the Markov chain and the acceptance rate are also given.

– 9 –



J
H
E
P
0
2
(
2
0
1
5
)
0
4
3

Zolotarev’s optimal approximation to the inverse square root in the interval [ra, rb] with a

given number of poles Np determines the parameters A and {µ̄i, ν̄i}. The strange-quark

mass as argument of Q and Q̂ has been suppressed for readability. W1 is the reweighting

factor, implicitly defined by eq. (3.5), which has to be included in the measurement. The

values used in the various runs are specified in table 2.

The openQCD code gives the option to split the determinant of the rational function

in eq. (3.5) into several factors. In our simulations, we represent the N ′p terms with the

smallest µ̄i of the product eq. (3.5) by single pseudofermions, whereas the determinant of

the remaining factors is expressed as a single pseudofermion integral

Ss,eff [U, φ0, . . . , φN ′p ] =

N ′p−1∑
i=0

(
φi,

Q̂2 + ν̄2
Np−i

Q̂2 + µ̄2
Np−i

φi

)
+

φN ′p ,Np−N ′p∏
j=1

Q̂2 + ν̄2
j

Q̂2 + µ̄2
j

φN ′p


− log detQoo .

(3.6)

Here again, the contribution from the two final terms is always considered together.

This decomposition has several advantages. First of all, the small residues frequently

can be integrated on a larger time scale, due to a small coefficient decreasing the forces.

Furthermore, while the multi-shift conjugate gradient algorithm [41] is efficient for the

combined solution of the systems in the last factor with the large shifts, it turns out to be

advantageous to employ the deflated solver for the terms involving the smaller µ̄i. In this

case it is no longer necessary to use a single pseudofermion field for all shifts.

The range of the rational approximation is given by the smallest and the largest eigen-

value of Q̂2 over typical gauge field configurations. On thermalized configurations, esti-

mates of these numbers can be obtained in openQCD by the power method applied to Q̂−2

and Q̂2, respectively. Typically, O(20) iterations proved sufficient for the lower bound,

whereas the largest eigenvalue required O(100) iterations. In particular the smallest eigen-

value turned out to be sensitive to thermalization effects and exhibit larger fluctuations

than expected. This made it necessary to monitor it carefully at the beginning of each

production run.

3.4 HMC and the integration of the molecular dynamics

In the algorithm the action is split into different components: the gauge action, the de-

terminants from the Hasenbusch splitting for the light quarks and the various contribu-

tions to the strange-quark determinant from the rational approximation described above,

Nmf +N ′p+4 components in total. The complete action is simulated with the Hybrid Monte

Carlo (HMC) algorithm [42]; the classical equations of motion are solved numerically for

trajectories of length τ = 2 in all simulations. This leads to Metropolis proposals which

are accepted with an acceptance rate 〈Pacc〉, given for our runs in table 2.

The goal of the splitting of the action, and the forces deriving from it, is the reduction of

the computational cost needed to obtain a high acceptance rate at the end of the trajectory.

The gauge forces are much cheaper to compute than the fermion forces, whose components

differ by orders of magnitude in size and fluctuations. It is therefore natural to use a

hierarchical integration scheme for the molecular dynamics of the HMC to reflect this [43].
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We use the setup described in ref. [12], i.e., a three-level scheme with the gauge fields

integrated on the innermost level with the fourth order integrator suggested by Omelyan,

Mryglod, and Folk (OMF) [44] and implemented in the openQCD code. Most of the fermion

forces are on the intermediate level, again integrated with the fourth order integration

scheme. Only particularly small components of the fermion forces, that contribute little to

energy violation, are integrated on a larger scale with the second order OMF integrator [44],

whose parameter λ is set to 1/6.

Since one step of an inner level integration scheme is done for each outer step, there are

three parameters which define the scheme: the number of outermost steps per trajectory

Ns,2 and the number of poles Np,2 as well as the number Nmf,2 of terms of eq. (3.3)

integrated on the outermost level. In the latter two cases the numbers refer to the terms

with the smallest twisted-mass shifts. The values chosen in our runs can be found in table 2.

The choice of the trajectory length affects the autocorrelation times and is therefore

not easily studied. In general, longer trajectories have proven to be beneficial [4], but

in particular with dynamical fermions one might prefer shorter trajectories because of

instabilities of the integrator. As a compromise, we use τ = 2. Asymptotically, this leads

to autocorrelations growing with τint ∝ a−2. Note, however, that this scaling behavior is

also expected if the length of the trajectory is scaled [45].

3.5 Solver

The extensive use of the locally deflated solver [46–48] is an important part of the progress

that made the presented simulations possible. It removes the largest part of the cost

increase as the quark mass is lowered, thereby circumventing the significant slowing down

observed in the past. The increase in performance of the solver comes at the price of a

more complex setup and many additional parameters which have to be chosen.

Fortunately, relatively little tuning of the local deflation subspace was necessary here

and we therefore do not list the parameters in detail. For most runs, we used deflation

blocks of size 44. The parallelization of the Ns = 48 lattices required one or two dimensions

to be set to 6; also blocks of 8× 43 have been used.

The number of deflation modes per block has been chosen between 20 and 32, in order

to balance the higher efficiency provided by the larger subspace and the cost associated

with the application of the preconditioner.

For the smaller lattices with L/a = 32, we set the solver accuracy (the ratio between

the norm of the residue to the norm of the right hand side of the equation) to 10−11 in

the action and 10−10 in the force computation. To ensure the value of the action and

the reversibility of the integration of the equations of motion are sufficiently precise, more

stringent residues have been used for the lattices of larger volume.

3.6 Production cost

To give an idea of the cost of the various ensembles, we show in table 3 the average wall-

clock time per molecular dynamics unit, along with the machine on which the run has

been performed, the local lattice geometry, and the total number of cores used. Most

of our production runs were carried out either on SuperMUC, a petascale cluster of IBM
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id machine Vlocal Ncores Nppc min/MDU

H101r000 SuperMUC 8× 4× 82 1536 1 9

H102r002 SuperMUC 8× 4× 82 1536 1 8

H105r002 SuperMUC 8× 4× 82 1536 1 10

C101r013 SuperMUC 84 2592 1 27

H200r000 SuperMUC 8× 4× 82 1536 1 8

N200r000 SuperMUC 8× 12× 62 4096 1 12

D200r000 JUQUEEN 8× 42 × 8 8192 4 59

N300r002 SuperMUC 82 × 6× 12 3072 1 13

J303r003 FERMI 12× 43 16384 4 33

Table 3. Production setup of selected runs. The last column shows the wall-clock time in minutes

per molecular dynamics unit on the specific machines used in this project. The other columns give

the local lattice size per MPI process (Vlocal), the number of cores used (Ncores), and the number

of MPI processes run on each core (Nppc). Since execution times also depend on the actual system

software and on the run-time environment, the last column can provide only a rough indication of

the cost of the simulations.

System x iDataPlex servers with Intel Sandy Bridge-EP processors (Xeon E5-2680 8C) and

Infiniband network (FDR10), or on IBM BlueGene/Q systems at CINECA (FERMI) and

JSC (JUQUEEN). Since our code is not multi-threaded, we launch four MPI processes per

core on the BlueGene/Q machines to maximize overall performance.

Note that the execution times of the simulations do not only depend on the algorithmic

parameters (even for a single specific trajectory), but also on the particular hardware on

which the code has been run, as well as on the system software (e.g. compiler and library

versions) and on the run-time environment. The latter may — and usually do — change

during the months of production. Therefore, the times quoted here can only serve as an

indication of the approximate cost of the simulations and have to be taken with care.

4 Autocorrelations

Markov Chain Monte Carlo algorithms, like the Hybrid Monte Carlo used here, produce

field configurations which exhibit autocorrelations characterized for an observable A by the

autocorrelation function

ΓA(t) = 〈AtA0〉 − 〈A〉2 , (4.1)

where t is the Monte Carlo time. The integral over the normalized autocorrelation function

ρ(t) enters the error analysis. This is the integrated autocorrelation time

τint(A) =
1

2
+

∞∑
t=1

ρA(t) ≡ 1

2
+

∞∑
t=1

ΓA(t)

ΓA(0)
. (4.2)

To estimate τint(A) with a finite variance, it is necessary to cut the summation at a window

W [50, 51]. In order to choose the window for our final error estimates and to account for
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Figure 2. Scaling of the integrated autocorrelation time of Q2(t0) and E(t0). For the energy, we

observe very good scaling, whereas for the charge, significant violations are observed. At coarser lat-

tices the topological charge decorrelates significantly faster than predicted by the scaling hypothesis,

very similar to the pure gauge case [7].

the thereby neglected tail, we employ the method described in ref. [4]. Its essential input

is an estimate for the exponential autocorrelation time, which we discuss in the following.

4.1 Scaling of the autocorrelations

As we approach the continuum limit, the autocorrelation times are expected to grow due

to critical slowing down. The open boundary conditions used in our setup should prevent

catastrophic scaling due to the freezing of the topological charge. Since we have chosen the

trajectory length constant in all our runs, we expect Langevin scaling τint ∝ a−2.

In figure 2 we show autocorrelation times of notoriously slow observables: the global

topological charge and the action density averaged over the plateau region, both con-

structed from links smoothed by the Wilson flow integrated to flow time t0. They are both

defined in eq. (6.2). We find a situation similar to that encountered in pure gauge theory [7].

While the energy density shows very good scaling, the topological charge decorrelates faster

on coarser lattices.

The fast growth of the integrated autocorrelation time of the charge does not mean

that the 1/a2 scaling is not valid. In pure gauge theory, the behavior could very well be

fitted with τint ∝ a−2(c + da2). In this picture, there are significant cutoff effects to the

scaling, but no catastrophic behavior in the a→ 0 limit. This is expected when simulating

with open boundary conditions.

4.2 Cost of the simulation

Note, in two-flavor QCD with periodic boundary conditions at a lattice spacing of roughly

a = 0.05 fm [8] the topological charge does not decorrelate slower than the smoothed

energy. Rather, it shows similar autocorrelations for quark masses around 400 MeV. This

means that we are not yet in the position to fully profit from the effect of the open boundary
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conditions, however, going to finer lattice spacings the freezing observed in two-flavor QCD

at a ≈ 0.03 fm [52] will be avoided.

In the sense of fast decorrelations and minimal requirements on the number of units

of molecular dynamics time (MDU), the presented simulations are not cheap, nevertheless.

The exponential autocorrelation time of τexp ≈ 14(3) t0/a
2 is consistent with what is found

in figure 2. For biases to be small and a simulation to be reliable we need a total Monte-

Carlo history of at least O(50)×τexp. For β = 3.4 this translates to 2000 MDU, whereas for

β = 3.55 and β = 3.7 a statistics of 3600 MDU and 6000 MDU, respectively, is necessary.

For most of our ensembles listed in table 1, we exceed these numbers, but for some, which

are still in production, they are not yet reached. Those quoted results therefore have to be

taken with care in these cases.

5 Reweighting factors

The simulations are not done with the exact QCD action as given by eqs. (2.1) and (2.3),

but differ due to the twisted-mass reweighting eq. (3.4) and the inaccurate rational function

in the RHMC eq. (3.6). The observables are reweighted to the target theory, for which the

reweighting factor W = W0W1 needs to be computed. The factors W0 and W1, as defined

in eqs. (3.2) and (3.5) respectively, contain ratios of determinants which are estimated

stochastically as described below.

Expectation values 〈A〉 of primary observables A can then be computed from expec-

tation values in the theory with the modified action 〈· · · 〉W , according to

〈A〉 =
〈AW 〉W
〈W 〉W

. (5.1)

5.1 Twisted-mass reweighting factor

The twisted-mass reweighting plays an important role in our setup. From a conceptual

point of view, it removes barriers of infinite action created by zero eigenvalues of the Wilson

Dirac operator. Together with Hasenbusch factorization, it also reduces the fluctuations of

the forces which makes the simulations cheaper and more reliable in practice [38].

This situation is especially favoured for a large value of µ0 in eq. (3.2). It might,

however, also lead to significant fluctuations in the reweighting factor and as a consequence

to a larger statistical error of certain observables.

As a consequence, what constitutes the optimal choice of the parameter µ0 will in

general depend on the observable. As can be seen in figure 3, W0 is close to a constant

for most configurations; only on some configurations the value will be much smaller. For

observables with little or no correlation to the reweighting factor, like the gluonic ones we

consider below, this effectively amounts to a reduction in statistics [53]. This reduction is

negligible for our ensembles since 〈var(W )〉 � 〈W 〉2 in all cases.

For observables with a strong correlation with W0, the situation is more delicate. Even

after reweighting, this can lead to large fluctuations in the measurements and significantly

increased statistical error. In particular in the case of anticorrelation, the situation is more

problematic due to the stochastic estimation of W and, possibly, the observable. The

– 14 –



J
H
E
P
0
2
(
2
0
1
5
)
0
4
3

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

W
/<

W
>

aµ0=3 ⋅10-4 aµ0=6 ⋅10-4

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

10

30

100

300

1000

f P
P
 ⋅1

06

10

30

100

300

1000

1

3

10

30

100

 0  1000  2000

W
/<

W
>

 f P
P

⋅1
06

MDU

1

3

10

30

100

 0  1000  2000

MDU

Figure 3. Time history of the reweighting factor (top), the pseudoscalar correlator fPP(x0) (center)

and the product WfPP(x0) (bottom) on two C101 ensembles with different values of the reweighting

parameter, aµ0 = 0.0003 and aµ0 = 0.0006, respectively, evaluated on time-slice x0 = (T + a)/2.

The error bars indicate the uncertainty due to the stochastic estimation of these quantities.

cancellation between, e.g. a large value of the observable and a small value of W might

require a rather precise determination of the two.

5.2 Reweighting and the pseudoscalar correlation function

The pseudoscalar correlation function is an observable showing a strong anticorrelation

between its value and the reweighting factor. This can be easily understood by noting

that at small quark masses both receive significant contributions from the smallest (in

magnitude) eigenmodes of the Hermitian Dirac operator. It is precisely this region where

the reweighting term has the largest effect.

To illustrate the cancellation between the fluctuations in W and fPP(x0), figure 3

displays the time series of the two (top and central panel) at x0 = (T + a)/2 together with

the product WfPP(x0); see eq. (6.7) for its definition. Data for C101 and two values of µ0

is shown. As we can see, the larger µ0 leads to larger fluctuations in W and fPP(x0), as

expected. In the product, however, they cancel and the average value 〈WfPP(x0)〉/〈W 〉 is

then consistent within the statistical errors between the two ensembles.

5.3 Computation of W0

Since the determinant ratios needed for the computation of W0(µ0) cannot be computed

directly, a stochastic estimator is taken instead. This can either be done by directly esti-

mating the determinant ratio in eq. (3.2) or by first splitting it up and then using stochastic
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estimates for the individual factors [54], a strategy already successful in Hasenbusch’s mass

factorization.

Among the many possibilities, we here restrict ourselves to splitting the interval be-

tween µ = 0 and µ = µ0 into Nsp smaller steps µ0 = µ̃0 > µ̃1 > · · · > µ̃Nsp = 0

W0(µ0) =

Nsp∏
i=1

detR(µ̃i−1, µ̃i) ; R(µ1, µ2) =
(Q̂2 + µ2

2)2

(Q̂2 + µ2
1)2

(Q̂2 + 2µ2
1)

(Q̂2 + 2µ2
2)
. (5.2)

Now each of the factors is evaluated stochastically with Nr complex-valued Gaussian ran-

dom fields η of unit variance

R̃(µ1, µ2, Nr) =
1

Nr

Nr∑
i=1

exp{−
(
ηi, (R

−1(µ1, µ2)− 1)ηi
)
} , (5.3)

such that up to an irrelevant constant factor the determinant is retrieved by averaging over

the noise fields

detR(µ1, µ2) ∝ 〈R̃(µ1, µ2, Nr)〉η. (5.4)

Following the initial proposal of ref. [12], it is sufficient to use a single step Nsp = 1 with

a suitably chosen value of Nr. Its value along with the other parameters of the reweighting

can be found in table 4. This is the method implemented in openQCD-1.2.

Once the fluctuations in the reweighting factor increase, it is advisable to use interme-

diate µ̃, a possibility given in openQCD-1.4. This is because the distribution of the results

for the reweighting factors become long-tailed once exceptionally small eigenvalues of the

Q̂2 are encountered. In this situation it is very difficult to argue about the uncertainty of

W0 [55]. By splitting the estimate into smaller intervals in µ̃, the distribution of each of

the factors becomes significantly more regular.

For ensemble H105r002 we find precisely such a situation. While with a single step in

µ̃ the smallest reweighting factors show a distribution which is far from Gaussian, using

ten intermediate µ̃ the individual factors can be computed reliably to O(15%) accuracy

using 15 sources each.

5.4 RHMC reweighting factor

Since the rational approximation has been chosen to a good accuracy, the fluctuations in

the reweighting factor are small and it turns out to be sufficient to estimate it with one

stochastic source per configuration. The associated variances are given in table 4. They

are seen to receive a considerable contribution from the stochastic estimation of W1.

In order to study the effect of more sources, we observe using five instead of one

stochastic estimate reduces the variance of W1 by more than a factor 4, on ensemble

H105r005. The same is true for the H200 ensembles. Still, even with one source per gauge

configuration the noise introduced by W1 is negligible for all observables we investigated.

Note that in some early runs we underestimated the upper bound of the interval in

which the rational function is accurate. Since the accuracy does not deteriorate quickly

outside the interval, the fluctuations of the reweighting factors nevertheless are suffi-

ciently small.
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id Nr
var(W0)
〈W0〉2 · 103 var(W1)

〈W1〉2 · 105

H101 12 0.00047(9) 5.1(2)

H102 12 0.036(4) 1.88(5)

H105 36 3.2(4) 7.3(2)

H105r005 24 0.0032(9) 3.7(2)

C101 24 1.8(1.1) 1.6(2)

C101r014 24 5.1(2.1) 1.63(10)

H200 24 0.00018(5) 4.7(2)

N200 24 0.4(2) 2.23(7)

D200 48 0.15(5) 4.9(3)

N300 24 0.00018(2) 3.0(1)

J303 24 3.7(3.2) 1.3(2)

Table 4. Parameters of the reweighting. We give the number of sources Nr used to estimate the

twisted-mass reweighting factor W0 — for the RHMC reweighting factor W1 we always use one

source — and the resulting variances of W0 and W1. Nsp = 1 in all cases. H105 refers to runs

r001 and r002, whereas C101 to runs r013 and r015. J303 have not reached sufficient statistics for

a reliable result.

6 Observables

6.1 Wilson flow

The Wilson flow can be a very useful tool in lattice QCD from which quantities with a

finite continuum limit can be constructed [6, 56, 57]. The gauge fields U(x, µ) are subjected

to the smoothing flow equation

∂tVt(x, µ) = −g2
0{∂x,µSW(Vt)}Vt(x, µ) , Vt(x, µ)

∣∣
t=0

= U(x, µ) , (6.1)

with SW being the Wilson action. With clover-type discretization of the field strength

tensor Ĝµν(x, t) constructed from the smooth fields Vt, the time slice energy E(x0, t) and

the global topological charge Qtop(t) can be constructed

E(x0, t) = − a3

2L3

∑
~x

tr{Ĝµν(x, t) Ĝµν(x, t)} ,

Qtop(t) = − a4

32π2

∑
x

εµναβ tr{Ĝµν(x, t) Ĝαβ(x, t)} .
(6.2)

With the vacuum expectation value of the energy 〈E(t)〉, the scale parameter t0 is then

defined by

t2E(t)
∣∣
t=t0

= 0.3 . (6.3)

Throughout this paper we quote the observables of eq. (6.2) at flow time t0.
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Figure 4. In the vicinity of the boundary, significant cutoff effects in E(x0, t0) are observed. They

are noticable in the expected region: x0 = 4a is roughly at x0/
√
t0 = 2.3, 1.7 and 1.4 for β = 3.4,

3.55 and 3.7, respectively. At the same time, the dependence on the quark masses is negligible:

for each lattice spacing we plot the data for all available quark masses. The dotted lines represent

fits to eq. (6.4). They are used to set the lower bound of the plateau fit indicated by the vertical

dashed line.

6.2 Effects of the boundary

Due to the open boundary conditions in the temporal direction, time translational invari-

ance is lost. Sufficiently far away from the boundaries, local observables are expected to

assume their vacuum expectation values up to exponentially small corrections with a decay

rate equal to the lightest excitation with vacuum quantum numbers.

On top of this continuum boundary effect, large discretization errors are observed close

to the boundary. As an example we show in figure 4 the behavior of the smoothed energy

E(t, x0), defined in eq. (6.2). A further example for the pseudoscalar correlation function

with the sink approaching the boundary can be found in ref. [53].

In the case of the energy, it should be noted that it is at this point difficult to disentangle

the discretization effects in the underlying gauge field from the ones introduced by the

Wilson flow and the observable used to define the field strength tensor, but recent work

by Ramos and Sint might clarify this issue [58]. Also the Dirac operator used in the

measurement of the effective mass is only tree-level improved at the boundary. Still, the

effects of the finite lattice spacing are very prominent at our coarser lattices, but become

much less notable as the continuum limit is approached.

As can be seen in figure 4, no sizable dependence on the quark mass is observed in

t20E(x0, t0). This is trivial for the bulk, since its value is equal to 0.3 by definition. But also

the (cutoff) effects close to the boundaries show no quark mass dependence. Whether this

is a generic feature of the sea quark contribution being small or it is due to our particular

choice of chiral trajectory eq. (2.8) cannot be judged from the data presented here.

In the context of the present paper we will not discuss these effects in detail, but

perform the measurements in a region where they can be neglected. The determination
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of the plateau region is not always clear due to an effect already observed in ref. [12]:

in precise observables, like the examples above, long-range waves are visible. They are a

consequence of the limited statistics and do not exceed what is expected if the statistical

analysis is done properly, however, they do make the plateau determination more difficult.

For meson correlation functions, these waves have been discussed previously [59], see

figure 6 for an example from our simulations. In other simulations they are typically

not visible, because time translational invariance is used on the level of the correlation

function by using different source positions in time and averaging them before computing

effective masses. Again, this is not a principal problem. However, we need to ensure

sufficient statistics and that errors are under control and require a procedure to deal with

these waves.

6.3 Measurement of t0

For the determination of t0, we need to determine the plateau in E(x0, t) for t = t0. Since

we are looking at a smoothing radius of
√

8t0, the effects of the boundary visible in figure 4

are at the expected length scale. Discretization effects are large though, and it is therefore

difficult to argue about the expected functional form. In this situation, we use a two-stage

procedure: first we fit

E(x0, t) = E(t) + c0e
−mT

2 cosh

{
−m

(
x0 −

T

2

)}
(6.4)

in the range where this ansatz describes the data. This is only used to determine the

fit range by the condition that in the whole range the statistical uncertainty δE(x0) is

dominating over the systematic effect from a non-vanishing c0, i.e., we require for the fit

interval [x0,min, T − x0,min]

1

4
δE(x0,min, t) > c0e

−mT
2 cosh

{
−m

(
x0,min −

T

2

)}
. (6.5)

At the current accuracy of the data, the result of this investigation is that a single x0,min is

sufficient for each value of β, as might be expected from figure 4. The effect of the quark

mass is negligible. In particular we have

x0,min(β = 3.4)/a = 20 ; x0,min(β = 3.55)/a = 21 ; x0,min(β = 3.7)/a = 24 , (6.6)

and the final value of E(t) in the vicinity of t = t0 is determined by averaging E(x0, t) in

the corresponding interval. The value of t0/a
2 is then determined by eq. (6.3). The results

are listed in table 5.

In figure 5 the quark mass dependence of t0 is given for the three available lattice

spacings. Recall, the values are given in terms of the symmetric point which defines the

chiral trajectory at mud = ms. From a Taylor expansion around this point [14] as well

as ChPT [27] one expects a constant behavior to the respective leading order. This is

confirmed for the finer lattices to our level of accuracy. Only at the coarsest lattice spacing,

cutoff effects seem to cause some deviation, albeit on a rather small scale.
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Figure 5. Dependence of t0/t0,sym on φ2, where t0,sym is the value at mud = ms along our

trajectory. The dashed errorbars indicate the low statistics in the J303 ensemble.

6.4 Pseudoscalar masses

The masses of the pseudoscalar particles are computed from the pseudoscalar correlation

function projected to zero momentum. With quark fields of flavor r and s, and the pseu-

doscalar density P rs = ψ̄rγ5ψ
s, it is given by

fPP(x0, y0) = − a
6

L3

∑
~x,~y

〈P rs(x)P sr(y)〉 . (6.7)

Due to the open boundary conditions in time, the translational invariance in the temporal

direction is broken. However, we find that there is little to gain from using source fields at

different time slices [53]. The U(1) stochastic source fields are therefore put only at y0 = a

and y0 = T − a [60]. In the following we analyze

fPP(x0) ≡ 1

2
{fPP(x0 + a, a) + fPP(T − a− x0, T − a)} . (6.8)

In the continuum limit and for large volume and sink positions far away from the

source and boundary, x0 � 0 and x0 � T , the two-point function is expected to fall off

as [12]

fPP(x0) = A sinh(mPS(T̃ − x0)) . (6.9)

In line with ref. [12], T̃ is a free parameter. We follow a similar strategy as in section 6.3

to make sure that in our final fit the excited state contribution is negligible.

We show an example of an effective mass plot in figure 6, where we can see that this

fit works very well in a wide range of x0. The results for the masses are listed in table 5.

Even though we do not give results on decay constants, let us remark that also in

this case the sources can be put in the vicinity of the boundaries. Methods similar to

the ones already developed in the Schrödinger Functional [61] can be used to cancel the

matrix element of the source operator such that only the sink has to be sufficiently far away
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Figure 6. Left: pion propagator on the D200 lattice with the line representing a fit to eq. (6.9)

and the vertical line giving the upper bound of the fit interval. Right: effective mass of the same

correlation function, with the line representing a fit including one excited state.

id amπ amK t0/a
2 φ2 φ4

H101 0.18273(70) 0.18273(70) 2.8468(61) 0.7605(44) 1.1407(77)

H102 0.15437(70) 0.19164(57) 2.8799(73) 0.5490(44) 1.1206(69)

H105 0.12170(96) 0.20126(63) 2.9031(73) 0.3440(49) 1.1127(80)

C101 0.09751(93) 0.20639(40) 2.9085(51) 0.2212(38) 1.1017(54)

H200 0.13653(52) 0.13653(52) 5.150(23) 0.7680(60) 1.1520(88)

N200 0.09202(61) 0.15059(57) 5.1584(78) 0.3494(48) 1.1105(88)

D200 0.06542(44) 0.15640(25) 5.1681(68) 0.1769(26) 1.0998(39)

N300 0.10593(32) 0.10593(32) 8.580(27) 0.7702(53) 1.1553(79)

J303 0.0648(3) 0.1198(3) 8.63(3) 0.288(3) 1.136(6)

Table 5. Measured values for the pseudoscalar masses, the scale t0/a
2 and the two scaling variables

φ2 and φ4. The results in C101 are based on runs r013, r014 and r015. J303 has a statistics of

roughly 20τexp. The values on this ensemble are therefore not reliable.

from the boundaries. Various possibilities for open boundary conditions on the ensembles

presented are discussed in ref. [53].

6.5 Comparison to simulations with periodic boundary conditions

One possible concern regarding the open boundary conditions is that the region close to

the boundaries is large and as a consequence one loses a sizeable fraction of the statistics.

Which fraction of the lattice needs to be discarded depends on the observable and the

statistical accuracy of the data, with boundary effects expected to decay close to the chiral

limit as exp(−2mπx0). However, it should be noted that also the systematic finite volume

effects are parametrically similar with contributions proportional to exp(−mπL): a high

accuracy requires large lattices in both, the temporal and spatial directions, which is also

true for simulations with periodic boundary conditions in time.
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In any case, since we observe large cutoff effects close to the boundary, arguments based

on continuum physics are problematic at current lattice spacings. This is already visible

in the x0,min/a chosen in the measurement of E(t0), which has only a minor dependence

on the lattice spacing. On our smallest lattices at β = 3.4 with Nt = 96, the x0,min/a = 20

leads to a plateau average of almost 60% of the total time extent. On all other ensembles

we have an even larger fraction over which we can take the plateau average.

In our measurements of the pseudoscalar masses we typically start the plateau at

x0,min ≈ T/4, from where on the effects from the excited states can be neglected. As noted

before, moving the source away from the boundary has little effect, since the plateau is seen

to start at the same position. The minimal distance x0,max of the sink from the boundary

is typically around T/6, such that we have in total a plateau stretching between 50% and

65% of the lattice. Even if the other half of the lattice was completely decorrelated, this

would at most correspond to a factor of two in statistics.

7 Scaling violations

In the bulk, our action is fully O(a) improved, only for the boundary terms we use the

tree-level values. This guarantees leading scaling violations close to the continuum limit

to be of order a2, but at finite lattice spacings higher order terms will always be present

as well. How large their contribution is and whether one can safely neglect them given the

statistical uncertainties of the simulation is not a priori clear. In any case, once the higher

order terms become important, they limit the value of coarser lattices in the continuum

extrapolation.

7.1 Cutoff effects in t0

A particularly precise way to study discretization effects is to look at observables which

agree in the continuum limit but differ at finite lattice spacing. To this end, we take two

slightly different definitions of t0: both are given by the implict relation eq. (6.3), where in

one case we use the conventional “clover” discretization of the field strength tensor for the

the energy density E, eq. (6.2), in the other case the plaquette definition is used as given

in ref. [6].

Since the continuum value of t0 has to be the same, the ratio of tclov
0 and tplaq

0 has to be

one up to cutoff effects. As they are evaluated on the same gauge field configurations, the

two values of t0 are highly correlated such that their ratio can be evaluated to exceedingly

high accuracy.

As we can see in figure 7, the ratios at β = 3.7 and β = 3.55 agree with the a2

scaling hypothesis up to very high accuracy, with a total deviation of the ratio from its

continuum value of 4% and 6%, respectively. With the assumption that higher order effects

are negligible at β = 3.7, one concludes that at β = 3.55 higher orders contribute 0.4% to

this observable, while at β = 3.4 an additional O(2%) effect can be attributed to higher

orders on top of the 11% which come from the leading order scaling violation.
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Figure 7. Ratio of the values of t0 from two different discretizations (plaquette and clover) of the

field strength tensor used in E, which is constructed from the same smoothed gauge fields at flow

time t0 as given in table 5. From left to right we show the values at β = 3.7, 3.55 and 3.4, with the

straight line given by the continuum value and the point at β = 3.7. The point at β = 3.3 is not

shown, it lies at a2/t0 = 0.5 with the ratio on the y-axis at about 1.3.

While this additional O(2%) effect originating from the higher order terms is not of

concern for most observables in current lattice computations, it might impact studies of

certain high accuracy observables.

In any case, the large discrepancies between the two definitions of t0 are a problematic

finding in view of the fact that our tuning strategy is entirely based on this quantity to set

the scale. We therefore have to expect that for other scale setting strategies, the matching

of the chiral trajectories will differ on the order of the ratio observed at the level of 10%

at the coarsest lattice spacing.

7.2 Coarser lattices

In order to investigate the value of ensembles at coarser lattice spacings, we have also

generated some β = 3.3 lattices at the mud = ms matching point. After some tuning,

κud = κs = 0.136423 is found to match the φ4 = 1.15 point to reasonable accuracy.

However, the observation of large cutoff effects on 96×243 lattices, indicating this point no

longer being in the assumed a2 scaling region, has led us to abandon this coupling for now.

This decision is based on figure 7, where for this parameter point we find a2/t0 ≈ 0.5

and a ratio of tclov
0 /tplaq

0 ≈ 1.3, which is 16% above the leading order violations of 1.15. We

are therefore clearly no longer in the scaling regime and since we aim with most observables

at accuracies much below the 10% level, the points at this lattice spacing of roughly 0.1 fm,

do not meet our precision goals.

Furthermore, the autocorrelations observed in particular in the thin link plaquette were

very significant and also large fluctuations in the lower spectrum of the Dirac operator have

been observed. This makes these lattices difficult to simulate and poses another reason to

refrain from considering this value of β at this time.
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8 Conclusions

The generation of the gauge field configurations described here lays the ground for many

future lattice QCD calculations. It is the first time that open boundary conditions in time

and twisted-mass reweighting have been extensively used in such large scale calculations.

The two methods have been shown to work well. Keeping in mind simulations which

are on our roadmap for the future, the experience gained with the use of open boundaries

will prove very valuable as the lattice spacing is decreased, while not being strictly necessary

at the lattice spacings under investigation.

We could show, that no particular obstacle is posed by the boundaries themselves,

however, significant discretization effects are observed in their vicinity. Depending on the

observable and its correlation with the reweighting factor, we observe the twisted-mass

reweighting is under control. To study this in the future, we have generated ensembles

with different values of the reweighting parameter µ0.

It is noteworthy that similar data sets previously needed to be accumulated over many

years. However, due to advances in hardware and in algorithms, we could demonstrate the

progress that has been made, by generating the current, new data set within a year and a

half after the parameters of the action had been determined.

As of now, the covered parameter space is limited: we only have data on one chiral

trajectory, a limited range of quark masses and lattice spacings and typically only one

volume. In order to better control the associated systematic uncertainties, we therefore

plan to extend the current set of ensembles. We are certain the configurations presented

here will prove useful, and we are excited about the interesting physics results that will

be obtained.
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[6] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071

[Erratum ibid. 1403 (2014) 092] [arXiv:1006.4518] [INSPIRE].
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[10] M. Lüscher and F. Palombi, Fluctuations and reweighting of the quark determinant on large

lattices, PoS(LATTICE 2008)049 [arXiv:0810.0946] [INSPIRE].

[11] http://luscher.web.cern.ch/luscher/openQCD/.
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