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Simulation of sharp gas–liquid interface using VOF method
and adaptive grid local re�nement around the interface
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SUMMARY

The volume of �uid (VOF) method is used to perform two-phase simulations (gas–liquid). The govern-
ing Navier–Stokes conservation equations of the �ow �eld are numerically solved on two-dimensional
axisymmetric or three-dimensional unstructured grids, using Cartesian velocity components, following
the �nite volume approximation and a pressure correction method. A new method of adaptive grid local
re�nement is developed in order to enhance the accuracy of the predictions, to capture the sharp gas–
liquid interface and to speed up the calculations. Results are compared with experimental measurements
in order to assess the e�ciency of the method. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: VOF; droplet impact; adaptive grid local re�nement

INTRODUCTION

There are mainly two di�erent approaches for the simulation of free surfaces and �uid
interfaces [1]: surface methods and volume methods.
In the surface method, the interface is tracked explicitly either by marking it with marker

points or by attaching it to a mesh that follows the movement of the interface. The advantage
of this approach is that the exact position of the interface is always known during the simu-
lation, and that the interface remains sharp as it moves through the mesh. Several methods of
marking the interface have been used. The most obvious way is to represent the interface with
a sequence of massless points which are transported in a Langrangian way (i.e. Reference [2]).
That idea has been extended by relating these marker points with a height function which

∗Correspondence to: G. Bergeles, Laboratory of Aerodynamics, National Technical University of Athens, 9 Heroon
Polytehneiou, 15773 Athens, Greece.

†E-mail: bergeles@�uid.mech.ntua.gr
‡Research engineer.
§Professor.

Contract=grant sponsor: European Community; contract=grant number: ENK6-CT2000-00051

Received 18 November 2002
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 15 November 2003
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calculates the distance of the points from a reference plane or point (i.e. Reference [3]).
Another variation of that method is the level set method, where an equation is solved for
the whole domain, representing the minimum distance from each point to the interface (i.e.
Reference [4]). The values of this function lie between (−∞) to (+∞) and the interface is
considered to lie in the region where � has the value of 0. Another variation of the surface
method is the surface �tted method, where deformable numerical mesh is used, which follows
the shape of the liquid droplet or the interface. Following this approach the outer boundaries
of the mesh are moved and the mesh is deformed in every time step in a Langrangian manner
thus following the liquid movement. Most of the times a fully unstructured mesh is used. This
technique has proven quite successful in predicting small droplets impact on walls, with pos-
sible solidi�cation of the liquid phase (i.e. Reference [5]). The disadvantages of the method
is that it should be extremely di�cult to be applied in cases of very sharp and deformed in-
terfaces, with possible splashing or break-up and secondary droplets generation. For the case
of relative simple liquid interfaces (interfacial waves of moderate height) a similar technique
has been presented, with the use of two di�erent grids, for the two liquid phases with the
two grids sharing a common boundary edge (i.e. Reference [6]). Both grids are deformed in
time.
In the second approach (volume method), the �uid in the whole computational domain

(not only the interface) is marked. In most of these methods, the continuum surface force
model (CSF [7]) is used to calculate the surface tension forces. The �rst approach to this
method is to use particle in �uids to identify the presence of liquid inside the gas phase.
The second approach, and probably most widely used today, is the volume of fraction (VOF)
method. The method is based on the solution of a transport equation for variable ‘�’ (often
also referred as indicator or colour function) for the liquid phase. Variable � takes value 0 in
the region of pure gas and value of 1 in the region of pure liquid. Although this method is
very simple, �exible and economical and has proven reliable in simulating a wide variety of
problems, it has the inherited disadvantage that the transitional region between the liquid and
the gas phase (which in reality should be close to zero or at least in the order of magnitude
of the distance of the molecules) at the best case is equal to the grid distance (without
considering any possible arti�cial di�usion problems of the transport variable �). This lowers
the accuracy of the predictions concerning the shape of the interface. In order to maintain
a well de�ned and sharp interface several methods have been presented. For example, line
techniques (such as simple line interface calculation, SLIC, [8]) have been used in order to
approximate the interface in each mesh cell. Another category of proposed solutions to that
problem involves the use of more accurate di�erencing scheme for the solution of the indicator
function. These are either higher-order di�erencing scheme (i.e. STOIC [9], a second- and
third-order interpolation for convection, based on the normalized variable diagram (NVD)
[10]), or di�erencing schemes that fall in the category of donor–acceptor scheme (i.e. [11]),
where the volume fraction value of the downwind cell of a cell face is used to predict the
level of the volume fraction transported.
In this work the VOF method is used. For the indicator function a di�erencing scheme

based on the donor–acceptor method is used. The continuum surface force model (CSF) is
used to calculate the surface tension forces.
The method proposed here for the further enhancement of the accuracy of the predicted

interfaces and the speed-up of the calculations is based on the adaptive grid local re�nement
around the gas–liquid interface.
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In general, the major categories of mesh adaptation are the following:

• h-re�nement: where computational points are inserted inside the computational domain
(i.e. References [12–17]).

• r-re�nement: where the number of computational points inside the computational domain
is kept constant, but their location is rearranged (i.e. References [18, 19]).

• p-re�nement: where the local order of descritization is adjusted (mainly used in FEM).
• Hybrids of the above methods.
The criterion for the mesh re�nement is usually the solution accuracy and/or the gradient of

a variable. h-re�nement is usually simpler and more widely used than r-re�nement technique.
The work here also falls in the category of h-re�nement.
Many works about mesh re�nement have been published. Only few of them will be men-

tioned here.
Chang and Haworth [14] presented a methodology for local solution-adaptive mesh re�ne-

ment using cell-level and global kinetic energy balances. It is demonstrated that local kinetic
energy imbalance correlates with local solution accuracy, and thus is it used as a criterion
for halting the mesh re�nement, lowering in that way the computational time needed for
the simulation, while retaining the same level of accuracy, when compared with the results
obtained by using a uniform �ner mesh. Results are presented for two-dimensional steady
incompressible laminar benchmark problems.
Chen et al. [15] presented a multi-level �ow-adaptive mesh re�nement strategy which

has been formulated and implemented within a structured grid. Although the locally re�ned
irregular grid portions are organized as block structured patches, a special data structure allows
high memory storage economy, to be achieved. The e�ectiveness of this approach, especially
in terms of CPU and memory storage resources, is examined by reference to several test cases
simulated.
Papadakis and Bergeles [16] presented a local re�nement method, which they applied to

three-dimensional turbulent recirculating �ow. In their method, the computational domain is
covered by block-structured subgrids of di�erent re�nement levels, while the variables ar-
rangement on those grids is staggered. They reported a 62% gain in computer time compared
with a case with single �ne mesh, while the results accuracy is signi�cantly improved when
compared with a case of single coarse mesh.
Jasak and Gosman [17] presented an automatic adaptive h-type mesh re�nement and coars-

ening procedure with directional sensitivity, based on the estimated error and solution gradient.
Mesh adaptation operates on hexahedra cells by hierarchically splitting cells into two, four or
eight new cells. The method is tested on two test cases in 2D to examine its error reduction
rate and the quality of the re�ned meshes.
In the present work, the simplicity of the original VOF method is retained, while the use

of a generalized �uid solver capable of handling unstructured meshes which has numerical
cells with an arbitrary number of faces permits the handling of locally re�ned regions without
any modi�cations.
The governing Navier–Stokes conservation equations of the �ow �eld are numerically solved

on an unstructured grid, using Cartesian velocity components, following the �nite volume
approximation and a pressure correction method.
In the next paragraphs, the solution method and the adaptive grid local re�nement technique

will be presented. Following that, results are presented for the convection and rotation of a
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rectangular bubble, as well as results for a real case micrometric droplet impingement on
walls (2D and 3D) with comparison to experimental measurements.

THE SOLUTION METHOD

The governing equations

The equations for the mass, momentum and the indicator function �, for the time-dependent
problem, are expressed for an arbitrary co-ordinate system and for Cartesian velocity compo-
nents. These can be written as follows:

Mass conservation equation. Conservative form

@�
@t
+∇ ·�u=0

Non-conservative form for incompressible �uid is ∇ · u=0 where � is the density, t the time,
u the velocity vector.

Momentum conservation equation.

@�u
@t

+∇ · (�u⊗ u − �T )=Su �T =−
(
P +

2
3
�∇ · u

)
�I + �(∇⊗ u+ (∇⊗ u)T)

where �T is the stress tensor, P the pressure, � the dynamic viscosity of the �uid, �I is the
unit tensor and Su is any added source terms.

Conservation equation for any scalar variable ’.

@�’
@t

+∇ · (�u’− q)= S’ q=�’∇’

where S’ is any added source terms, q is the di�usion �ux vector and �’ is the di�usion
coe�cient.

Indicator function � conservation equation (incompressible �uid).

@�
@t
+∇ · �=0

Description of the descritized procedure

The VOF method is well established and documented, and here only the key features of the
method shall be discussed very brie�y. According to our experience, the main requirements
for employing the VOF method are the following:

• The non-conservative form of the equation for the mass should be used for deriving the
pressure equation.
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• For the indicator equation, � a special di�erencing scheme should be used that can handle
the density changes across the interface and reduce numerical di�usion in these areas.
In this study the CICSAM scheme is used [20].

• A second-order time di�erencing scheme should be used for all variables. The Crank–
Nicholson implicit time di�erencing is used in the present study.

• Time step should be adjusted so that local courant number does not exceed a value
between 0.2 and 0.4.

• Local radii of curvature of the interface should be calculated and used to derive the
surface tension forces, which are added to the momentum equations. Moderate smoothing
of the radii of curvature maybe needed. The surface tension is calculated according to
the method of the continuum surface force model (CSF [7]).

The transport equations are integrated and discretized over the common control volume
following the �nite volume method.
The grid that is used for the cases simulated in this work, although looks like a local re�ned

Cartesian structured grid, it is actually treated as an unstructured mesh, where every cell can
have an arbitrary number of faces and neighbouring cells. In this way, no special treatment is
needed when applying local re�nement in a region (i.e. a two-dimensional cell neighbouring to
a ‘splitt’ cell is treated as a cell with �ve faces and thus having �ve neighbouring cells instead
of 4). The grid arrangement is collocated, where all the unknown variables are stored in the
centre of the computational cell. In order to avoid pressure–velocity decoupling problems,
arising from the fact that pressure and velocities are calculated in the same location, the
convective �ux through each cell face is calculated using the modi�cation �rst proposed
by Rhie and Chow [21] for Cartesian grid and extended here for generalized curvilinear co-
ordinates. The key feature of this approach is that the velocity used to calculate the convective
�ux through a cell face, is not calculated by a linear interpolation of the adjacent cells
velocities, but is modi�ed to be directly linked to the two adjacent pressure nodes. Following
this procedure, a pressure prediction–correction method (resembling the well-known SIMPLE
algorithm [22]) is used in order to derive the pressure equation from the continuity equation.
The convective and normal di�usion terms are discretized using the BSOU scheme (Bounded

Second Order Upwind, [23]). The cross di�usion terms and the second-order derivatives are
discretized using standard central di�erence scheme. These terms are moved to the right-hand
side of the conservation equation, and are treated explicitly in the iterative procedure.
The set of the linear equations that result after the discretization of the conservation equa-

tions, are solved iteratively using a preconditioned conjugate gradient method solver.

Description of the local grid re�nement method

The grid re�nement technique is as follows:

• Step 1: First decide if a new locally re�ned grid has to be created. Depending on the time
step used, usually in the cases that shall be presented afterwards, a new local re�ned mesh
is created every 10–20 time steps. The desired requirement is that the interface always
lies in the densest grid region. Ideally the procedure should be performed in every time
step. But because it is a slightly time consuming procedure, it is preferred alternatively to
extend the re�ned region (within a given cell distance around the interface, as explained
in step 4 below) and perform the new grid generation at every 10–20 time steps.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:421–439



426 A. THEODORAKAKOS AND G. BERGELES

• Step 2: The solution of the previous time step is remapped in the coarse level grid. The
method of variables remapping from one numerical mesh to another shall be explained
later.

• Step 3: The cells of the coarse grid where the � indicator function variable lies between
�min and �max are marked. Values used for those limits are �min =0:2 and �max =0:8.

• Step 4: The cells that are marked, plus some additional cells around them (neighbouring
cells within a given cell distance, usually including 3–4 cell layers around the actual
interface) are locally re�ned by a factor of 2 (i.e. in 3D case a cell is splitt into eight
cells). In that way, a new grid with 1 level of local re�nement, is created.

• Step 5: Remap the solution of the previous time step in this new mesh (grid with 1
level of local re�nement).

• Step 6: Again the cells of this grid where the � indicator function variable lies between
�min and �max are marked.

• Step 7: The cells that are marked (plus some additional cells around them) are locally re-
�ned by a factor of 2. In that way a new grid with 2 levels of local re�nement, is created.

• Step 8: The above procedure can be repeated as many times as desired, with the limi-
tation of the available computer resources.

• Step 9: The solution of the previous time step is remapped in the new local re�ned mesh.
The remapping of the variables is done by interpolating the values of the variables in the
cells of the grid of the previous time step closest to the cell of the new grid. If the cells
of the 2 grids coincide, the exact value of the variables are transferred (this is the case
for the cells in the vicinity of the interface, where the new grid remains re�ned to the
highest re�nement level). For example, and in reference with Figure 1, for creating a local
re�ned grid (3 levels of re�nement) around a droplet, the following steps are performed:

• Step 10: Grid ‘old’ is the grid and the solution for variable � for the previous time step
(or the beginning of the calculations). The values of variable � are remapped from ‘old

“old grid” 

 “grid 0” (“base grid”) “grid 1”    “grid 2”    “grid 3” 

Figure 1. Grid creation sequence.
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grid’ to ‘grid 0’ (‘base grid’). It is evident that the �eld of variable � in ‘grid 0’ is
smoothed, and the interface is much thicker than in the ‘old grid’. In all the plots of
Figure 1, contours are plotted for �=0:2 and 0.8.

• Step 11: Cells that are inside or close to the region of the contours (i.e. near the inter-
face) are divided, and ‘grid 1’ is constructed.

• Step 12: The values of variable � are remapped again from ‘old grid’ to ‘grid 1’.
• Step 13: Cells that are inside or close to the region of the contours are divided, and
‘grid 2’ is constructed.

• Step 14: The values of variable � are remapped again from ‘old grid’ to ‘grid 2’.
• Step 15: Cells that are inside or close to the region of the contours are divided, and
‘grid 3’ is constructed.

• Step 16: Finally, the values of variable � are remapped again from ‘old grid’ to ‘grid
3’, which is the �nal grid that will be used for the calculations of the new time step.

Figure 2 shows the procedure of successive local re�nements around the interface.
The remapping or transfer of the variables from one grid to another is done by interpolating

the values of the closest cells, using the inverse distance between the cell centres. For example,
and in reference with Figure 3, when the value at a cell of the new grid is to be calculated

Figure 2. Successive local re�nement around the interface.

Figure 3. Transfer of variables from one grid to another.
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(cell with thick lines with cross hatch), the cells of the old grid which have centres that
surround the centre of the cell of the new grid are found. The value ‘’’ of a variable at the
centre of the new cell is estimated as

’p=
∑

i’i=‘ip∑
i 1=‘ip

where ‘i’ all the surrounding cells of the old grid, ‘p’ the cell of the new grid and ‘ip
the distance of the centres of cells ‘i’ and ‘p’. When the centres ‘i’ and ‘p’ coincide, then
’p=’i. This method is not conservative, but it is fast, especially when using unstructured
meshes. Moreover, and because the grid in the vicinity of the interface does not change when
creating the grid for the new time step (because it is always re�ned up to a distance around
the interface), the variables in the region of interest are transferred without modi�cations.
Although this procedure is triggered only by the presence of the interface inside the �ow

�eld, it could as well be used for capturing i.e. sharp velocity gradients (i.e. in step 3 of
the above procedure, cells are marked for re�nement using a di�erent criterion). Or both
mechanisms could as well be combined.

RESULTS AND DISCUSSION

The �rst 2 test cases presented involve the simulation of a square bubble convection and a
rectangular bubble rotation and are typical for examining the accuracy of the VOF method
and its ability to capture sharp interfaces. For both cases the simulation is 2D, the velocity
�eld is diagonal to the grid lines and is supposed to be steady and is not solved, and the
surface tension forces are not simulated (surface tension is zero).
For the �rst case, a square bubble is convected across a velocity �eld, in a diagonal

direction. The initial and �nal position of the bubble inside the �uid �eld is shown in Figure 4.
The test cases simulated are shown in Table I. The �nal positions of the bubble for all cases
simulated are shown in Figure 5. In Figure 6, the grid for test case A5 for a time step

Figure 4. Initial and �nal bubble position for square bubble convection.
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Table I. Test cases for square bubble convection.

Level of Total
Grid (coarse local Courant of number Cells in Time Total CPU time

Case level) re�nement cells number droplet steps (s)

A0 28× 28 0 784 0.2 2× 2 235 46.4
A1 28× 28 1 900–950 0.2 4× 4 432 92.1
A2 28× 28 2 1150–1250 0.2 8× 8 828 256.4
A3 28× 28 3 1850–2000 0.2 16× 16 1624 886.8
A4 28× 28 4 3200–3500 0.2 32× 32 3220 3537.4
A5 28× 28 5 6100–6800 0.2 64× 64 6416 13970.2
B0 56× 56 0 3136 0.2 4× 4 432 394.6
C0 112× 112 0 12544 0.2 8× 8 828 3805.6
D0 224× 224 0 50176 0.2 16× 16 1624 29963.3
A4b 28× 28 4 3200–3500 0.4 32× 32 1624 2483.9
A4c 28× 28 4 3200–3500 0.6 32× 32 1093 1857.1

Figure 5. Results for square bubble convection with uniform �ow �eld (isolines are plotted for
values of �=0:1, 0.3, 0.5, 0.7, 0.9).

approximately at the middle of the simulation is shown. It is worth mentioning that the results
for cases with the same grid re�nement around the interface are almost identical (i.e. case B0
with A1, C0 with A2, D0 with A3).
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Figure 6. Mesh and predicted bubble shape for case A5, approximately at the middle of its trajectory.

Figure 7. Initial bubble position for rectangle bubble rotation.

For the second case, a rectangular bubble is rotated inside a solid body rotation velocity
�eld. The initial position and the direction of rotation of the bubble is shown in Figure 7.
The test cases simulated are shown in Table II. The position of the bubble after a complete
rotation for all cases simulated are shown in Figure 8. In Figure 9, the grid for test case A5r
for rotation 7�=4 is shown. From the observation of the results of each case is concluded that
local re�nement does not introduce any thickening or distortion in the shape of the interface,
when compared to the results obtained by using a very �ne uniform mesh. Further to that, the
computational time needed is signi�cantly lower when using local re�nement. From another
point of view, by using an adaptive local grid re�nement technique, for the same computational
resources, a substantial increase in the accuracy of the predicted interface, can be achieved,
without using any surface reconstruction method.
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Table II. Test cases for rectangle bubble rotation.

Grid Level of Total CPU time
(coarse local Total number of Courant Cells in Time for a complete

Case level) re�nement cells number droplet steps rotation (s)

A0r 28× 28 0 784 0.2 8× 4 223 35.4
A1r 28× 28 1 1100–1200 0.2 16× 8 406 117.2
A2r 28× 28 2 1950–2200 0.2 32× 16 786 446.2
A3r 28× 28 3 3600–4400 0.2 64× 32 1550 1979.5
A4r 28× 28 4 7200–9900 0.2 128× 64 3085 9699.2
A5r 28× 28 5 11000–14000 0.2 256× 128 6163 27199.9
B0r 56× 56 0 3136 0.2 16× 8 405 317.0
C0r 112× 112 0 12544 0.2 32× 16 786 2803.5
D0r 224× 224 0 50176 0.2 64× 32 1550 24624.5

Figure 8. Results for rectangle bubble rotation (isolines are plotted for values
of �=0:1, 0.3, 0.5, 0.7, 0.9).
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Figure 9. Mesh and predicted bubble shape for case A5r, at rotation angle 7�=4.

The use of successive local re�nements around the interface does increase the total number
of cells of the computational domain, but still it is far more economical in terms of computa-
tional resources, than using a uniform mesh of the same re�nement. It must be said though,
that the increase of the computational time required for a simulation when using more than
4–5 levels of re�nement around the interface does not come from the increase of computa-
tional points, but mainly from the subsequent decrease of the time step that should be used,
in order to keep the local courant number in the prescribed region. As happened with the
previous case, the results for cases with the same grid re�nement around the interface are
almost identical (i.e. case B0r with A1r, C0r with A2r, D0r with A3r).
In the �rst 2 cases considered the relative position of arbitrary pair of points in the �ow

remains unchanged, and thus the simulation was made in order to make sure that the shape
of the rectangular bubble is not a�ected by the technique that was employed.
The third case examined however, is also made with prede�ned velocity, but this time the

�ow contains shear. A circle (radius 0.15) is centred at a location x=0:50, y=0:75, in a
unit square computational domain. A single vortex is imposed with a velocity �eld de�ned
by the stream function

�=
1
�
sin2(�x) sin2(�y); u=−@�

@y
; v=

@�
@x

When the circular �uid body is placed in this �eld, it stretches and spirals about the centre
of the domain. This is a rather stricter test case for this kind of calculations (i.e. References
[24, 25]).
In Figure 10, the time evolution of the exact solution is shown. This is obtained by initially

placing 105 marker points inside the circle in random positions. Those marker points are
transported in a Lagrangian manner using a quite small time step.
In Table III, the test cases that were simulated are shown. For all simulations the time

step was kept constant (keeping the Courant number approximately at a value of 0.2) and
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Figure 10. ‘Exact’ solution for the single vortex �ow �eld case, for: (a) t=0; (b) t=0:5;
(c) t=1:0; (d) t=2:0; (e) t=4:0; and (f) t=6:0.

Table III. Test cases for the single vortex �ow �eld case.

Level of
Grid (coarse local Total number Courant Time Total CPU

Case level) re�nement of cells number steps time (s)

A0s 32× 32 0 1024 0.2 1200 469
A1s 32× 32 1 1450–2650 0.2 2400 2309
A2s 32× 32 2 2550–9250 0.2 4800 15897
A3s 32× 32 3 4850–28500 0.2 9600 96359
B0s 64× 64 0 4096 0.2 2400 4449
C0s 128× 128 0 16384 0.2 4800 44350

calculation were performed until t=6. Three cases were considered using �xed grids (32× 32,
64× 64 and 128× 128). Another three cases with adaptive grid local re�nement were also
simulated (1, 2 and 3 levels of local re�nement, starting from the coarse 32× 32 grid).
Table IV presents also information about the number of cells and the corresponding CPU
time for the complete simulation. It must be noted that the CPU time reported for each
of the three cases (bubble convection, bubble rotation and single vortex �ow �eld) are not
comparable to each other, as di�erent types of PC computers were used.
In Figures 11 and 12, the results of the test cases at selected times are shown. It is evident

the improvement that the adaptive local re�nement technique o�ers to the accuracy of the
predictions, as well as the saving in computational time. It is also noted that the introduction
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Figure 11. Results for the single vortex �ow �eld case, for: (a1, a2, a3) Case A0s, t=0:5, 2.0, 4.0; (b1,
b2, b3) Case B0s, t=0:5, 2.0, 4.0; and (c1, c2, c3) Case C0s, t=0:5, 2.0, 4.0. (Isolines are plotted

for values of �=0:1, 0.3, 0.5, 0.7, 0.9.)

of local re�nement does not introduce any additional distortion in the shape of the predicted
shape (i.e. comparing the results of cases A1s–B0s and A2s–C0s, which have the same cell
size around the interface, it is evident that the resulting shapes are almost the same).
The third case examined was the water droplet impingement on pyrex glass when the

surrounding gas is air. The main parameters of the impact of a single droplet onto a solid
wall taken into account are droplet diameter D0, initial impact velocity U0 surface tension
� and dynamic contact angles, representing wettability i.e. advancing and receding. For the
examined case where D0 = 3:76mm, U0 = 1:5m=s and �=0:076Nt=m, the Reynolds and Weber
numbers are Re=3010, We=58:4. This case was investigated experimentally by Fukai et al.
[26]. The advancing and receding angles are reported to be 60 and 22◦, respectively.
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Figure 12. Results for the single vortex �ow �eld case, for: (d1, d2, d3) Case A1s, t=0:5, 2.0, 4.0;
(e1, e2, e3) Case A2s, t=0:5, 2.0, 4.0; and (f1, f2, f3) Case A3s, t=0:5, 2.0, 4.0. (Isolines are plotted

for values of �=0:1, 0.3, 0.5, 0.7, 0.9.)

The �ow domain is axisymmetric (along the x-axis) and extends three droplet diameters
in all directions around the impingement point. Two cases were considered: for the �rst case
the numerical grid used was 100× 100 cells without the use of local re�nement, while for
the second case the grid size was 50× 50 cells with two levels of local re�nement around
the interface. For the second case the saving in computational time, compared to the �rst
case without local re�nement, reached approximately 70%. On the other hand, the accuracy
by which the shape of the interface was captured, was enhanced. Figure 13 shows the pre-
dicted droplet shape for the second case, for various non-dimensional times T . It is also
shown a magni�cation of the tip of the droplet for non-dimensional time T =8. It is evident
that the indicator function numerical di�usion is kept minimum, and the transitional region
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Figure 13. Time evolution of predictions for a droplet splashing on wall.
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Figure 14. Comparison of droplet spreading radius.

from the cells where �≈ 1 to the cells where �≈ 0 is maybe 1–2 cells. In Figure 14, the
predicted splashing non-dimensional radius versus non-dimensional time is shown. Wetta-
bilitty advancing and receding angles were supposed constant during the evolution of the
phenomenon. Without entering to the details of the simulation and about the in�uence of
the wettabilitty angles for the simulation of similar cases (which falls outside the scopes of
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Figure 15. 3D view of the simulated droplet impinging on wall.

Figure 16. Slice of the 3D grid used for the simulation at 4 time steps.

this paper), it is evident the improvement that local re�nement o�ers to the accuracy of the
predictions.
The fourth case examined was the three-dimensional simulation of a micrometric water

droplet impinging normally on a dry wall. The diameter of the droplet is 34:7 �m, its initial
velocity 21 m=s, while the surface tension of the liquid is 0:00965 Nt=m and the density is
597 kg=m3; the corresponding Reynolds and Weber numbers are Re=157:6 and We=473:4,
respectively. The surrounding gas is air of ambient conditions. In Figure 15, the predicted
evolution of the phenomenon is shown. In Figure 16, slices of the numerical mesh along
the symmetry plane, for di�erent time steps are shown. The numerical grid that was used
was 20× 20× 10 with �ve levels of local re�nement around the gas–liquid interface. The
total number of cells inside the calculation domain varied during simulation between 110 000
and 180 000 cells. That number of cells is realistic for performing three-dimensional time
dependent simulations of cases of practical interest in low cost personal workstations. Although
for this case the predictions are not compared with experimental measurements, the results
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for the droplet’s shape seem reasonable. The use of a very re�ned mesh around the interface
helps to minimize arithmetic di�usion of the indicator function, keeping the transitional region
within 1–2 cells and retaining the predicted interface sharp.

CONCLUSIONS

An adaptive grid local re�nement method has been presented. This technique is used to
re�ne the region around the interface in two-phase simulations, using the well-known and
established VOF method. It is shown that this approach helps to reduce the computational
time needed for the simulation, while achieving a very good prediction for the gas–liquid
interface, with minimal transitional region (with values of the indicator function between 0
and 1) and numerical di�usion.

NOMENCLATURE

D0 initial droplet diameter
�I unit tensor
‘ip the distance of the centres of cells ‘i’ and ‘p’
P pressure
q di�usion �ux vector for a general scalar variable ’
R0 initial droplet’s radius
Re Reynolds number Re=�R0U0=�
Su source term for the momentum equation
S’ source term for the conservation equation of a general scalar variable ’
t time
�T stress tensor
T non-dimensional time T = tU0=R0
u velocity vector
u; v velocity components
U velocity
U0 initial droplet impact velocity
We Weber number We=�R0U 2

0 =�

Greek symbols

� indicator function
�’ di�usion coe�cient of a general scalar variable ’
� viscosity
� density
� liquid surface tension
’ general scalar variable
� stream function
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