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1 Introduction

Plate theories such as the Mindlin-Reissner, or shear deformable, and Kirchoff, or classical, have seen
varied and wide use throughout engineering practice to simulate the mechanical response of structures
that are far larger in their planar dimensions than through their thickness [2]. Meshless methods such as
the EFG method [1] have been used to construct approximation spaces for the solution of the plate and
shell governing equations.
This extended abstract is designed to give background information to supplement the main presentation.
It begins with outlining the more mathematical aspects of the Reissner-Mindlin model, its relationship
with the Kirchoff model and the well-known shear locking problem. It then goes on to give a review
of existing methods to alleviate locking in the literature for both FE and Meshless methods. Finally
an overview of the meshless Maximum Entropy shape functions is given [9, 10]. Initial results to be
presented suggest that Maximum Entropy shape functions have the potential to match the performance
of MLS based methods whilst being significantly easier to implement.

2 The Reissner-Mindlin Plate Model

The Reissner-Mindlin Plate Model [2] can be derived from the full 3D equations of elasticity by making
a set of geometrical and kinematical assumptions. The key reason behind making these assumptions is
that we can trade integration over the domain Ω ∈R3 for a cheaper integration over the domain Ω0 ∈R2

representing the mid-plane of the plate. The Reissner-Mindlin assumptions are as follows [2]:

Geometry The elasticity problem domain Ω has one thin dimension, in this case in the x3 direction.
The plate mid-surface is then described by the domain Ω0 ⊂ R2 and the thickness by a function
t : Ω0→ (0,∞). Therefore the whole domain Ω⊂ R3 can be written as [2]:

Ω≡
{
(x1,x2,x3) ∈ R3 : (x1,x2) ∈Ω0, x3 ∈ [−t(x1,x2)/2, t(x1,x2)/2]

}
(1)

Mechanics Plane stress assumptions apply σ33 = 0

Kinematics We assume that the displacement vector u : Ω→ R3 can be written in the form [2]:

u(x1,x2,x3) = (z1(x1,x2)−θ1(x1,x2)x3, z2(x1,x2)−θ2(x1,x2)x3, z3(x1,x2)) (2)
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Weak Form of the Reissner-Mindlin Plate Problem: Find the transverse deflection and rotations
(z3,θ) ∈ V3×R such that [2]:

t̄3
∫

Ω0

Lε(θ) : ε(η) dΩ+λt
∫

Ω0

(∇z3−θ) · (∇y3−η) dΩ =
∫

Ω0

p3y3 dΩ ∀(y3,η) ∈ V3×R (3a)

L[ε]≡ D [(1−ν)ε+νtr(ε)I] (3b)

D =
E

12(1−ν2)
(3c)

λ =
Ek

2(1+ν)
(3d)

where ν is Poisson’s ratio, E is Young’s modulus and k = 5/6 is a shear correction factor accounting
for the difference in shear energy produced by the assumed displacement field and the full equations
of elasticity. The exact specification of the Dirichlet or essential boundary conditions on Γd leads to
different function spaces for V3 and R .

3 Shear Locking in the Thin Plate Limit

The thin plate limit describes the asymptotic behaviour of the Reissner-Mindlin plate model as t → 0.
On an intuitive level, we would assume that given that the Reissner-Mindlin theory describes thick plate
behaviour, as t̄→ 0 the solution for a given t̄ (zt̄

3,θ
t̄) should tend towards that of a model describing thin

plate behaviour, such as the Kirchoff model, with solution (z0
3,θ

0).
We begin by re-writing Reissner-Mindlin plate problem in the following equivalent bilinear form with
loading p3 scaled with t̄3 to ensure the problem is well behaved as t̄→ 0 : Find the transverse deflection
and rotations (z3,θ) ∈ (V3,R ) such that [2]:

a(θ,η)+λt̄−2b(∇z3−θ,∇y3−η) = f (y3) ∀(y3,η) ∈ V3×R (4)

The locking problem can be demonstrated as follows [2]. The obvious (but naïve) choice is to introduce
the approximation space for the solution (zh

3,θ
h) of the piecewise linear Lagrangian finite elements P1

such that zh
3 ∈ V h

3 ⊂ V3 and θh ∈ R h ⊂ R . The clearest case is if we apply hard clamped boundary
conditions on Γd such that z3 = 0 ∀x ∈ Γd and θ = 0 ∀x ∈ Γd . We know that in the thin plate limit t̄→ 0
that ∇θh = z3h. If θh = 0 on the boundary, then using P1 elements ∇θh must be zero everywhere in
Ω. Thus z3h = 0 everywhere in Ω also, and our finite element problem has converged to (0,0). This
behaviour is known as shear locking.

4 Alleviating Locking

The vast majority of successful treatments of locking in the finite element literature are treated through
the application of mixed variational formulations. Popular techniques that can be viewed as mixed for-
mulations include (but are not limited to) reduced integration methods and the Mixed Interpolation of
Tensorial Components (MITC) elements. In mixed formulations the shear stress vector γ = (γxz,γyz) is
treated as an independent variable [2]:

γ = λt̄−2(∇z3−θ) (5)

giving the equivalent mixed problem as: Find the transverse deflection, rotations and transverse shear
stresses (z3,θ,γ) ∈ (V3,R ,S) such that [2]:

a(θ,η)+b(γ,∇y3−η) = f (y3) (6a)

λt̄−2
∫

Ω0

(∇z3−θ) ·ψ dΩ−
∫

Ω0

γ ·ψ dΩ = 0 ∀(y3,η,ψ) ∈ (V3,R ,S) (6b)

The above mixed formulation is known to be well-behaved in the limiting case as t̄→ 0, however at the
cost of introducing two extra variables representing the transverse shear stresses into the problem.
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The MITC family [3] of elements works by defining a discrete reduction operator that takes values in the
discretised rotation space Rh ⊂ R and maps them into the discretised shear space Sh [3]:

Rh : Rh→ Sh (7)

so the original weak form can be re-cast in terms of the displacement variables only: Find the transverse
deflection and rotations (z3,θ) ∈ (V3h,Rh) such that [3]:

a(θh,ηh)+λt̄−2b(∇z3h−Rh(θh),∇y3h−Rh(ηh)) = f (y3) ∀(y3h,ηh) ∈ V3h×Rh (8)

In theory the operator Rh alleviates the shear locking by allowing the Kirchoff constraint to be satisfied
for choices other than θ = 0 and z3 = 0 as t̄→ 0. In practice this is achieved by a cleverly chosen ‘tying’
of the two transverse shear strains to the usual nodal displacements at the edge of the element [3].
In meshless methods a variety of approaches has been undertaken to eliminate locking in Mindlin-
Reissner plates. This overview is by no means exhaustive:

Higher Order Monomial Basis This approach is amongst the most widely used eg. [4, 5] to eliminate
locking. By increasing the monomial basis to higher orders m > 2 in the approximation, locking is
gradually eliminated because the displacement and rotation space V3×R can better approximate
the Kirchoff constraint ∇z3h = θh. However, locking is typically only eliminated satisfactorily
by using monomial basis of order m > 4 [4]. The higher order basis can be introduced either
intrinsically with meshless shape functions, or extrinsically, using PU concepts.

Matching Rotation and Displacement Spaces This approach was originally introduced in [6]. By ap-
proximating the displacement space V3 using the meshless shape functions φi and the rotation
space R using the derivatives of the shape functions ∇φi then the Kirchoff constraint is met ex-
actly. However as pointed out in [7] using the derivatives of the shape functions to approximate R
produces a linearly dependent stiffness matrix.

Mixed Methods It is possible to construct the spaces (Vh,Rh,Sh) are constructed using MLS shape
functions solve for each field directly. This eliminates locking, however it produces non-positive
definite system matrices with more unknowns than a displacement approach.

Nodal Integration Techniques This technique can be seen as a form of reduced integration, and there-
fore shares some of the same issues such as spurious modes. These can be alleviated with tech-
niques such as curvature smoothing [8].

5 Maximum Entropy Basis Functions

Maximum Entropy (MaxEnt) basis functions are one of the most recent developments in the construction
of meshless approximation schemes [9, 10]. A brief overview of their mathematical formulation and
properties is given here.
Consider a set of n nodes X . Each node i has a position xi ∈ Rd associated with it. The convex hull of
the set of nodes X is denoted D ≡ conv(X). For a function u(x) : D→ R, the numerical approximation
uh(x) can be written in terms of a set of shape functions φi : D→ R and values ui at the nodes X [10]:

uh(x) =
n

∑
i=1

φi(x)ui (9)

Typically we wish the shape functions to satisfy the well known partition of unity condition as well as
first order consistency:

∀x ∈ D,
N

∑
i=1

φi(x) = 1
N

∑
i=1

φi(x)xi = xi (10)

These two conditions alone are not enough to specify a unique approximation scheme. To this end,
Shannon’s concept of informational entropy is introduced. The Shannon entropy S(p) of a discrete
probability distribution with n events xi with probabilities pi is [ref]:

S(p) =−
n

∑
i=1

pi ln pi (11)
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The principle of maximum entropy was proposed by Jaynes;

p←→ φ (12)

This analogy naturally implies that the shape functions are always positive:

φi(x)≥ 0 ∀x ∈ D, i = 1, . . . ,n (13)

Therefore we can find a unique set of shape functions by maximising the entropy S(φ) subject to the
constraints outlined above [9]:

max
φ∈Rd

+

(
S(φ) =−

n

∑
i=1

φi lnφi

)
n

∑
i=1

φi = 1 ∀ x ∈ D
n

∑
i=1

φixi = x ∀ x ∈ D (14)

The objective function −S(φ) is strictly convex on RN
+ and the two constraints are affine, so the above

problem can be solved using standard duality methods from the field of convex optimisation [10].
The above problem creates globally supported shape functions. To compute compactly supported shape
functions we use a more general form of entropy measure that includes a prior distribution wi that esti-
mates φi [10]:

H(φ,w) =−
n

∑
i=1

pi ln
(

φi

wi

)
(15)

The prior distribution can take the form of cardinal spline functions or Radial Basis Functions (RBF)
such as the Gaussian associated with each node.
The primary advantage of the MaxEnt scheme over standard MLS scheme is that it produces shape
functions with a weak Kronecker-delta property [10]. This makes the imposition of Dirichlet boundary
conditions trivial as in the Finite Element method without resorting to modified variational forms [12].
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