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Abstract: Silicon surface barrier detectors (SSBDs) are normally used to detect high-energy particles
due to their excellent properties. For better charge collection efficiency (CCE), the SSBD device should
be operated at higher reverse voltages, but this can lead to device breakdown. Therefore, we used a
PN junction as a guard ring to increase the breakdown voltage of the SSBD. The structures of two
SSBD devices are drawn and simulated in this work. Compared with a conventional SSBD (c-SSBD),
the use of a PN junction as a guard ring for an SSBD (Hybrid-SSBD) achieves higher breakdown
voltages, of over 1500 V under reverse bias. This means that Hybrid-SSBD devices can operate at
higher reverse voltages for better charge collection efficiency (CCE) to detect high-energy particles.
Then, we simulated the different structure parameters of the Hybrid-SSBD guard rings. Among them,
the doping depth and gap width of the guard ring (between the innermost guard ring and the active
area) have a greater impact on the breakdown voltage. Finally, for Hybrid-SSBD devices, the optimal
characteristics of the guard ring were 1 × 1019 cm−3 doping concentration, 1 µm doping depth, and
innermost guard ring width and gap width of 5 µm and 3 µm, respectively.

Keywords: surface barrier detector; guard rings; device simulations; breakdown voltage

1. Introduction

In early high-energy physics experiments, silicon surface barrier detectors (SSBDs)
were used to detect the high-energy particles due to their relative ease of fabrication, room
temperature operation, and good long−term stability [1–4]. The energy resolution of an
SSBD device is closely related to charge collection efficiency and leakage current. To reduce
the leakage current, many works to have attempted to modify the metal–semiconductor
interface and enhance the Schottky barrier height [5–7]. For excellent detection efficiency,
the detectors should operate at a high electric field or reduce the thickness of substrate.
However, thinner substrates have higher process requirements, so increasing the electric
field is an effective way to improve the charge collection efficiency. Thus, the detectors
should be designed for higher breakdown voltage on high resistivity silicon [8]. Schottky
diodes have a low breakdown voltage due to the edge effects caused by discontinuities in
the metal electrodes. Currently, there is much ongoing research into designing reasonable
edge termination to relieve the effect of electrical field crowding, such as field plates, guard
rings, and junction termination extension [8–10]. Among these, guard rings, as a means
of edge termination, can effectively improve the breakdown voltage of power devices.
Typically, the guard ring should surround the active area, to establish a gradual potential
drop between the active area with ground potential and the cutting edge with backside
potential. This avoids the risk of breakdown induced by the high electric field at the edge of
the device [11]. In recent research on guard rings, overlapping metal structures, implanted
edge termination, and diffusion guard rings have been proposed to prevent discontinuities
in metal electrode that preclude generating the high electric field [12–15]. SSBD devices are
usually formed directly by metal deposition and the preparation of the guard ring is rarely
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considered. However, SSBD detectors should work on the higher reverse bias voltage to
obtain a good charge collection efficiency. Currently, SSBDs have a low breakdown voltage,
less than 300 V, so the guard rings should be added to the device to increase the breakdown
voltage. Different structures for guard rings have been reported in power devices; however,
there has been no such report on the simulation of SSBDs adopting a PN junction guard
ring for edge termination.

Technology computer−assisted design (TCAD) can be used to design the device
structure and to solve the partial differential equations to extract physical parameters such
as charge carrier motion, the distribution of the electric field, and the electric potential. This
simulator can be used to explore different device structure designs, and the influence of the
parameters can also be simulated by using this simulator. In this paper, a hybrid structure
of SSBD detector, which uses a Schottky diode as the active area and guard ring adopting a
PN junction as the edge termination, is proposed to increase the breakdown voltage. We
compared the breakdown voltage and analyzed the performance of conventional SSBDs,
which use Schottky diodes as the active area and guard rings. For the hybrid SSBD, the effect
of various structure parameters on the electrical performance, such as guard ring doping
depth, guard ring doping, innermost guard width, and innermost guard ring−to−active
area gap, were investigated.

2. Device Structure and Simulation Method

In order to simplify the simulation process and improve the calculation efficiency, a
semi−infinite and symmetric device structure was used in this study, as shown in Figure 1.
For the conventional SSBD (c-SSBD), both the guard rings and the active area are formed
by Schottky diodes. For the Hybrid-SSBD structure, in Figure 2, the active area at the
central place of the device is formed by a Schottky contact, but the guard rings around the
active area are formed by p+ ion implantation or p+ diffusion. The two devices are based
on the high−resistance n−type silicon substrate; the doping concentration is lower than
1 × 1012 cm−3 and the thickness is 525 µm. Both have an active area width of 250 µm, and
the number of guard rings is fixed at 7. In this paper, the innermost guard ring width is
varied from 2 to 12 µm, and the distance between it and the active area varied from 3 to
10 µm. The doping concentration and depth of the p+ region varied in the range of 1 × 1017

to 1 × 1021 cm−3 and 0.1 to 2 µm, respectively.
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ture consisting of a Schottky diode as the sensor surrounded with 7 guard rings.
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Figure 2. Simulation geometry, 2−D view of half−infinite and symmetric Hybrid-SSBD structure
consisting of a Schottky diode as the sensor surrounded with 7 PN junction guard rings (the blue
area of the p+ implantation area).

The simulations were performed using 2−D TCAD device simulators, which is a finite
element semiconductor simulation capable of simulating the processing and device per-
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formance in some physical situations [16–18]. In the simulation, the high−field saturation
model and mobility degradation at interfaces were used. For recombination, doping− and
temperature−dependent Shockley–Read–Hall and Auger models were included. For the
high−resistance silicon substrate, the device breakdown was driven by the electric field,
and avalanche breakdown would appear in the device edge or junction edge. This can be
described by Equation (1); in this formula, G is the generation rate of the electron–hole pair
caused by the avalanche generation, αn and αp are the ionization coefficients, and Jn and Jp
are the absolute value of electron and hole current density vectors.

G =
1
q

(
αnJn + αpJp

)
(1)

Several avalanche models can be activated to simulate the free carrier generation
mechanism leading to avalanche breakdown. The avalanche model suggested by Okuto
and Crowell was used to evaluate the breakdown behavior of the two kinds of structure [19].

3. Results and Discussion
3.1. c-SSBD and Hybrid-SSBD Performance Compared

Figure 3 displays the results of two structural simulations of the I–V curves. The
1500 V reverse sweep voltage was applied to both two devices while guard rings were
kept floating and the current in the active area was measured. It was observed that there
was a significant difference in the breakdown voltage of the two devices. For c-SSBD
device, the leakage current reached saturation as the reverse voltage increased, and then
the device broke down with a rapid increase in leakage current as the reverse bias voltage
continued to increase (breakdown voltage ~231 V). However, the breakdown voltage of the
Hybrid-SSBD device was higher than ~1450 V and the leakage current was lower than that
of the SSBD device. The simulated I–V curves suggest that using PN junction guard rings
could effectively prevent the breakdown of the Schottky barrier detector at higher reverse
voltages.
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Figure 3. The simulated I−V curve of the two devices; the breakdown voltage is the current at rapidly
rising points.

As shown in Figure 4, the impact ionization rates of the two devices were used to
analyze the location of the avalanche breakdown in the structure. In the figures, different
colors correspond to different impact ionization rate intensities; the red areas appear at
the edges of the active area and the guard rings, indicating that stronger impact ionization
rates occurred in these areas. When comparing the two simulation results, there was
significant different between the active area and the guard rings. The c-SSBD device had
a higher impact ionization rate than the Hybrid-SSBD device at the edge of active area,
which implied that, under the same bias voltage, c-SSBD devices broke down more easily.
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We further analyzed the electric field distribution of the two devices, as shown in
the Figure 5. It can be seen that the electric field distribution of the c-SSBD device is
concentrated at the edge of the active area, which can easily cause breakdown. However,
using the PN junction as the edge termination (Hybrid-SSBD) flattens the electric field across
the device edge. In Figure 6, the electric field distribution of the two devices was extracted,
and the uniform electric field distribution in the guard rings region is beneficial, improving
the breakdown voltage of the Hybrid-SSBD device. Because the built−in potential of the
PN junction is higher than that of the Schottky diode, the higher electric field at the edge
of the active area can be evenly distributed on the guard rings to avoid breakdown of the
active area.
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Figure 5. The electric field distribution of the (a) c-SSBD and (b) Hybrid-SSBD devices at a reverse
bias of 1500 V. The stronger electric field is concentrated on the edge of the active area for c-SSBD, but
more homogenously distributed on the guard rings for Hybrid-SSBD.

Figure 7a,b shows how the breakdown voltage of the c-SSBD device is influenced by
guard ring design. As the gap width between the innermost guard ring and active area
increases, the breakdown voltage of the c-SSBD device increases. In addition, as the width
of innermost guard ring increases, the breakdown voltage of the c-SSBD device decreases.
Therefore, guard ring design within a proper range can increase the breakdown voltage
of the c-SSBD device, such as a 10 µm gap between the active area and innermost guard
ring, and a 2 µm width of the innermost guard ring. However, although a proper guard
ring design can increase breakdown voltage of c-SSBD device to some extent, it remains
lower than that of the Hybrid-SSBD device. In Figure 7c,d, we analyze the electric field
distribution of the different designs of the c-SSBD guard ring. It can be seen that the electric
field distribution at the edge of active area decreases as the gap increases, so the breakdown
voltage would increase. However, increasing the innermost guard ring width would lead
to increasing electric field at the edge of the active area. The higher electric field always
leads to the breakdown occurring at the edge of the active area.
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3.2. Effect of Guard Rings on Hybrid-SSBD Parameters

The breakdown voltage of the device is sensitive to the design of the guard rings. In
this section, we investigated the different guard ring designs with the aim of obtaining an
optimal parameter. The simulated results are shown in Figure 8. The breakdown voltage
changed with the guard ring doping depth, doping concentration, innermost ring width,
and gap from the innermost ring to sensor. Figure 8a,b present the breakdown voltage as a
function of guard ring doping depth and concentration. As the doping depth increases, the
breakdown voltage of the device follows the trend of first increasing and then decreasing,



Micromachines 2022, 13, 1811 6 of 10

and the optimum value for the guard ring doping depth was 1 µm. A similar pattern
was observed for the function of doping concentration and breakdown voltage, but as the
doping concentration exceeds 1 × 1019 cm−3, the breakdown voltage decreases slowly
and tends to become saturated. We therefore consider 1 × 1019 cm−3 the optimal doping
concentration to obtain a higher breakdown voltage. Figure 8c,d shows that breakdown
voltage was influenced by the innermost guard ring width and the distance between the
innermost guard ring (gap width) and active area. It was shown that breakdown voltage
first increased and then decreased, and decreased as the gap width increased. From the
simulation results, it can be concluded that the optimal innermost guard ring width and
gap width were 5 µm and 3 µm, respectively.
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Figure 8 shows the simulated electric field distribution at the avalanche breakdown
voltage point for different guard ring designs of the Hybrid-SSBD device. The electric field
distribution by guard ring doping depth is shown in Figure 9a; it can be seen that increased
doping depth increasing to the expansion in the intensity of the electric field to the outer
guard rings. We observed a stronger breakdown appearing the outside guard rings as the
doping depth increased. However, when the doping depth is shallow, the breakdown site
is still located at the edge of the active area. This is the reason why the breakdown voltage
first increased and then decreased as the doping depth increased. Figure 9b suggests that
the electric field intensity on the guard rings became saturated as the doping concentration
increased, so when the doping concentration is greater than 1 × 1019 cm−3, the breakdown
voltage exhibits a slow change. Figure 9c,d shows the electric field distribution over the
different widths and gaps of the guard ring. It can be seen that the innermost guard ring
width shifts the electric field outward. The electric field peak position on the guard rings
reduced the electric field at the edge of the active area and avoided the breakdown caused
by high electric fields. However, when the width exceeds 5 µm, the breakdown voltage
would keep a small change (Figure 9c). As the gap width increased, the electric field on
the guard rings would also move to the outside direction; moreover, the peak amplitude
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(p1p1’) increased (Figure 8d). This result would lead to easier breakdown at the edge of
active area due to the increased electric field.
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Based on the above observations, we believe that the guard ring structure changes
the electric field distribution at the active area and guard ring edges, thereby affecting the
breakdown voltage. Furthermore, the results show that the guard ring doping depth and
guard ring gap greatly influence the breakdown voltage.

The simulation results of the total current density of the device with different guard
ring doping depths are shown in Figure 10a. When the guard ring doping depth is shallow,
the region with the highest current density is concentrated at the edge of the active area.
However, when the doping depth exceeds 1 µm, breakdown occurs at the outer guard ring, so
the current density at the outer guard ring increases. An increase in the guard ring gap results
in stronger breakdown at the edge of the active area, and in Figure 10b, the current density
increases with increasing gap width. Therefore, we can modify the breakdown voltage of the
device by adjusting the structure of the guard ring, which is a good way to overcome the
disadvantage of the low breakdown voltage of Schottky barrier diode detectors.

The principal source of radiation damage in semiconductor detectors is from non−ionizing
energy loss (NIEL). Radiation damage introduces defects in the bulk and surface of the material
that modify its behavior. In the simulation, we added three types of traps of two acceptors and
one donor on the interface of silicon/SiO2 [20]. In order to show the difference in breakdown
voltage after irradiation, the density of traps was changed from 1011 to 1015 cm−2. The simula-
tion results are shown in Figure 11a,b. It can be seen that the breakdown voltage first increased
and then decreased for the c-SSBD device. The breakdown voltage of the Hybrid-SSBD device
also increased after radiation because irradiation generates deep level defects or banded tail
states on the silicon surface. At a higher bias voltage, the surface charge will induce the
opposite charge under the silicon surface. The opposite charge would generate the electric
field in the opposite direction to reduce the built−in potential. Therefore, the electric field
at the edge of the active area and the guard ring would reduce, increasing the breakdown
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voltage. However, with increasing defects, recombination would lead to increased leakage
current and soft breakdown would occur in the c-SSBD device [21]. The electric field
distribution of the device post−irradiation is shown in Figure 11c,d. It can be seen that the
edge electric field of the c-SSBD changed with the concentration of traps. When the surface
traps concentration reached 1015 cm−2, the electric field at the edge of active area was
stronger, leading to a decrease in the breakdown voltage. Therefore, after the irradiation,
the Hybrid-SSBD device can still maintain a higher breakdown voltage than the c-SSBD
device.
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Table 1 shows the comparison of surface barrier detector or radiation detector with
different guard rings designed to improve the breakdown voltage. The device was re-
ported in the references and uses an ion−implant B/P at the metal border as the edge
termination [9,22–26]. The device can obtain a breakdown voltage of more than 500 V. The
field plate structure is commonly used to increase the breakdown voltage of the radiation
detector, as reported in works by Boughedda [22] and Bortoletto [24]. However, in this
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work, it is more convenient to improve the breakdown voltage using the hybrid structure,
which can obtain a breakdown voltage of more than 1500 V.

Table 1. Summary and comparison of surface barrier detector performance.

Reference Sample Name Substrate Resistance
(Ω·cm)

Breakdown Voltage
(V)

This work
c-SSBD

>10 k
<400 V

Hybrid-SSBD >1500 V

B.W. Liou [9] Schottky barrier
diodes 10 148

A.Boughedda [22] Planar radiation
detectors >10 k <700 V

M.H. Joo [23] Au/n−Si Schottky
diode 1 <400 V

D. Bortoletto [24] Multi−guard ring
p−type bulk diodes >10 k <1000 V

H. G. Li [25] PtSi/Si−nanostructure
detectors 20–30 100 V

F. Semendy [26] Si−GaAs Schottky
detectors 6.9 × 107 <1000 V

4. Conclusions

In this paper, we simulate different guard ring structures for Schottky barrier diode
devices. The Hybrid-SSBD device has been designed to increase the breakdown voltage of
the Schottky barrier diode. The Hybrid-SSBD device uses a PN junction as a guard ring to
effectively increase the electric field strength at the edge of the active area, consequently
increasing the breakdown voltage of the device to more than 1500 V. Afterwards, we
investigated different guard ring designs for Hybrid-SSBD devices, and found the guard
ring doping depth and gap width have a critical impact on the breakdown voltage. These
designs all affect the breakdown voltage of the device by changing the distribution of the
fringing electric field in the active area. Therefore, for Hybrid-SSBD devices, the optimal
characteristics of the guard ring are 1 × 1019 cm−3 doping concentration, 1 µm doping
depth, and innermost guard ring width and gap width of 5 µm and 3 µm, respectively.
We simulated the device breakdown voltage after irradiation, the Hybrid-SSBD retained a
higher breakdown voltage than the c-SSBD.
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