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Simulation results for the motion of flexible fibers modeled as rigid spheres connected by ball
and socket joints are presented. Simulations of isolated stiff fibers reproduce such features of Jeffery
orbits as orbit stability, the dependence of the dimensionless orbit period on only the fiber aspect
ratio ~independent of shear rate and orientation!, and trajectories identical to those of prolate
spheroids of the same equivalent aspect ratio. Simulations of stiff fibers ‘‘pole-vaulting’’ near
a bounding surface qualitatively reproduce experimental observations. Fiber trajectories are
very sensitive to the short-range interactions between a fiber and a bounding surface. In contrast to
rigid fibers, flexible fiber orientations drift in unbounded simple shear and parabolic shear flows.
The drift direction and rate depend on fiber stiffness, initial orientation, as well as the ambient flow
field. A wide variety of configurational dynamics are observed, which also depend on the fiber
stiffness, initial orientation, and the ambient flow field. These results agree with previous
experimental observations of flexible fibers in shear flows. ©1997 American Institute of Physics.
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I. INTRODUCTION

The translational and rotational dynamics of rigid a
flexible fibers are important in a variety of diverse field
Fiber orientation and spatial distributions play a significa
role in such properties of fiber-reinforced composites as e
tic moduli, thermal and electrical conductivities, and therm
expansivities. In pulp and paper processing, fiber dynam
and microstructure evolution during the sheet forming p
cess are among the most important factors controlling s
properties as sheet strength and optical characteristics. M
previous investigations of fiber dynamics, both experimen
and theoretical, have focused on the dynamics of rigid fib
while relatively little attention has been paid to the mo
complicated dynamics of flexible fibers. In a previous pap1,
we presented a mechanical model for flexible fibers an
simulation technique for studying their dynamics in flowin
suspensions. The purposes of this paper are to verify tha
model and simulation method accurately reproduce a w
variety of theoretical predictions and experimental obser
tions of isolated rigid and flexible fiber dynamics, and
illustrate some of the complicated dynamics of flexible
bers.

Jeffery2 analyzed the motion of ellipsoids in uniform
creeping shear flow in a Newtonian fluid. For a prola
spheroid of aspect ratioar ([ major axis length 2a/minor
axis length 2b) in an ambient simple shear flow
U`5(ġy,0,0), the angular motion of the spheroid is d
scribed by

a!Electronic mail: klingen@neep.engr.wisc.edu
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Aar
2cos2f1sin2f

, ~1!

tanf5ar tanS 2p
t

TD , ~2!

whereu is the angle between the fiber’s major axis and
vorticity axis (Z axis!, f is the angle between theY-axis and
theXY-projection of the fiber axis~see Fig. 1!, T is the orbit
period,

T5
2p

ġ
S ar1

1

ar
D , ~3!

andC is the orbit constant, determined by the initial orie
tation,

C5tanu0Acos2f01
1

ar
2sin2f0.

This analysis predicts that a prolate spheroid will repeate
rotate through the same orbit, that the orbit period is in
pendent of the initial orientation or orbit constantC, and that
the particle will not migrate across streamlines.

To compare experimental observations with Jeffer
predictions, it is convenient to observe a spheroid’s proj
tion in theXY, XZ or YZ planes. The spheroid projection o
the XZ plane rocks back and forth about theZ axis to a
maximum anglelxz ,3 where

tanlxz5Car . ~4!
/107(6)/2108/14/$10.00 © 1997 American Institute of Physics
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2109Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
lxz approachesp/2 asC→`, where the fiber rotates entirel
in the XY plane. The spheroid projection on theYZ plane
also rocks back and forth about theZ axis, to a maximum
anglelyz5tan21C.

While the spheroid rotates in its elliptic orbit, it als
spins around its major axis with an angular veloc
ċ5(ġ/2)cosu. Experimentally monitoringċ is very chal-
lenging. A more accessible measure is the number of a
spins,n, completed during one rotational period4,5

n5
2

pE0

T
4ċ~ t !dt5

ar
211

parAC2ar
211

K~k!, ~5!

where k5AC2(ar
221)/(C2ar

211) and K(k)5*0
p/2 dz(1

2k2sin2z)21/2 is the complete elliptic integral of first kind.
Bretherton6 showed that Jeffery’s analysis is valid fo

any axisymmetric particle. For axisymmetric shapes ot
than prolate spheroids, however, the aspect ratio is repla
by an equivalent aspect ratioar e

defined in terms of the
actual periodT via Eq. ~3!. Chwang7 showed that Jeffery’s
analysis also applies for prolate spheroids in quadratic,
raboloidal flows, provided that the shear rateġ is replaced by
the ambient shear rate evaluated at the particle center. Y
et al.8, however, have recently shown that some nonaxisy
metric elongated bodies deviate from Jeffery’s predictio
exhibiting chaotic orientation dynamics.

The dynamics of flexible fibers are significantly mo
complicated. Much of the current knowledge of flexible fib
dynamics has come from the experimental observation
Mason and co-workers.4,9,10 Arlov et al.9 divided their ex-
perimental observations of flexible fiber dynamics into th
classifications.

~i! Group 1 ~‘‘flexible spin’’ !. Fibers nominally oriented
along the vorticity axis spun about this axis, and be
into arcs. The maximum curvature occurred when

FIG. 1. Schematic diagram defining the orientation of a prolate sphero
a uniform shear flow.
J. Chem. Phys., Vol. 107
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plane of the arc was in theXZ plane, and the mini-
mum curvature occurred when the arc was in t
YZ plane.

~ii ! Group 2 ~‘‘flexible spin-rotation’’!. Here fibers ex-
hibited the flexible spin defined above, superimpos
on an elliptic orbit. The likelihood of this motion de
creased with increasing flexibility.

~iii ! Group 3. This most common classification was d
vided into three sub-groups. All fibers in this cla
nominally aligned with theX axis when rotating
through theXZ plane.

Group 3A ~‘‘springy rotations’’!. While rotating in the
XY plane, a fiber bent like a leaf spring when the ends w
in the second and fourth quadrants, and straightened
when aligned with the flow.

Group 3B ~‘‘snake turn’’!. We refer to this type of mo-
tion as aU turn. This type of dynamics was exhibited b
more flexible fibers than those in group 3A. Initially, the
fibers were aligned along theX axis and appeared straigh
when viewed along theY axis. One end would start bendin
in theXY plane, and the bend would move from the leadi
end of the fiber to the other, then straighten out in the cou
of a half period. For longer fibers, the leading end wou
start bending again before the fiber straightened out.

Group 3C ~‘‘S-turns’’ !. These types of motions wer
observed for fibers whose major axes had a slight curva
in theXZ plane when aligned with theX axis. Starting from
this orientation, both ends would start bending in oppos
directions. The fiber would form an S shape when view
along theZ axis, and a loop when viewed along theY axis.
We refer to this as anS-loopturn. Arlov et al. observed that
some very uniform fibers would bend to form an S sha
entirely in theXY plane. We call this apure S-turn.

Arlov et al.9 also observed that rigid fibers rotated
periodic orbits with constantC, but that for flexible fibers in
Couette flow, the orbit constant drifted with time. For sm
C, the fibers tended to drift towardC50, while for large
C, the fibers tended to drift towardC5`. However, for a
given initial orbit constant, drift was not always in the sam
direction, nor was the drift always monotonic. The autho
speculated that the initial fiber orientation may play a role
the orbit constant drift. The fibers tended to reach their u
mate orbits at a rate that depended on the initial orientat

Forgacs and Mason4 examined the hydrodynamic force
acting to deform extensible flexible fibers in simple she
flow. The axial hydrodynamic force on a straight fiber at
constant shear rate was approximated asF5constant3M ,
where the orientation factorM is

M5
C2ar e

2 sinfcosf

C2ar e

2 1ar e

2 cos2f1sin2f
. ~6!

For C5`, the maximum compressive force occurs when
fiber is aligned with the principal axis of compression of t
simple shear flow (f5245°). As the orbit constant de
creases, the maximum compressive force decreases
shifts toward orientations in theXZ plane. This suggests tha

in
, No. 6, 8 August 1997
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2110 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
the dynamics of flexible fibers, particularly the bending a
twisting motions, are expected to depend on the fiber or
tation and conformation.

Investigations of flexible fibers are well-suited for sim
lation methods. Yamamoto and Matsuoka11–14 developed a
method for simulating such fibers in shear flow, where
fiber is modeled as a chain of rigid spheres connec
through springs, with potentials to mimic resistance to be
ing and twisting. Chain connectivity is maintained by co
straints, producing equations that must be solved iterativ
and simultaneously with the equations of motion. Th
method has been shown to reproduce certain dynamic
isolated fibers11, and has been employed to investigate
single fiber contribution to the suspension viscosity12, flow-
induced fiber fracture of isolated fibers13, and fiber suspen
sion behavior14.

In a previous paper1, we presented a different particle
level simulation method for the structural evolution of fle
ible fiber suspensions in shear flow. The fiber model is si
lar to that used by Yamamoto and Matsuoka11, except that
the fiber was modeled as an inextensible chain of rigid p
late spheroids connected through ball and socket joints. T
model eliminates the need for iterative constraints to ma
tain fiber connectivity, and can represent large-aspect r
fibers with relatively few bodies. These features help to
duce computations, facilitating simulation of concentra
suspensions1.

The purposes of the present paper are to verify that
model developed in Ref. 1 reproduces a wide variety of t
oretical predictions and experimental observations of flex
fiber dynamics as described above, and to illustrate the c
plicated dynamics of flexible fibers. In Sec. II, the fib
model and simulation method presented in Ref. 1 is brie
reviewed. Inertia and hydrodynamic interactions betwe
beads are neglected, but hydrodynamic interactions with
bounding surfaces are included in certain cases. Simula
results are presented in Sec. III. In Sec. III A, we show t
the fiber model accurately reproduces numerous feature
Jeffery’s analysis for stiff fibers. In Sec. III B, we illustrat
that this fiber model can accurately simulate the ‘‘po
vaulting’’ motion of stiff fibers near rigid bounding surface
but that the results depend sensitively on the short-range
teractions between the fiber and the surface. In Sec. III C,
describe simulation results for the motion of isolated flexi
fibers in shear flows. In contrast to Jeffery’s analysis for rig
fibers, flexible fiber orbits drift, and the orbit period depen
on the fiber orientation. The configurational dynamics
these model fibers closely follow those observed experim
tally by Arlov et al.9 Finally, the main conclusions from thi
work are summarized in Sec. IV.

II. MODEL AND SIMULATION METHOD

A. Fiber model connectivity

The fiber is composed ofN rigid bodies connected by
N hinges as illustrated in Fig. 2. Arbitrarily shaped rig
bodies can be employed in the general method prese
here, but for simplicity, we restrict attention to spheric
J. Chem. Phys., Vol. 107
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beads of diameters ~radiusa). N21 of the hinges are real
with one fictitious hinge connecting the fiber to a referen
frame. The degrees of freedom in each hinge may be va
between 0 and 6; for theN21 real hinges, we use ball an
socket joints, each having 3 rotational degrees of freed
and thus limiting our model to inextensible fibers. The fic
tious hinge coupling the fiber to the reference frame p
sesses 6 degrees of freedom allowing the fiber to trans
and rotate freely.

The fiber connectivity and kinematics, described by t
methods discussed by Wittenburg15, have been presented i
detail in Ref. 1. Here we outline the features pertinent to t
paper. Bodies are referred to with greek indic
(n,h,k,l, . . . 51, . . . ,N) and hinges are referred to wit
latin indices (a,b,c, . . . 51, . . . ,N). The interconnected fi-
ber model is described by sets of vertices~the rigid bodies!
and directed arcs~the hinges!. Arc a emanates from vertex
i 1(a), and is directed toward vertexi 2(a). For the linear
collection of beads considered here, these integer funct
arei 1(a)5a21, andi 2(a)5a. Body 1, termed thebase, is
connected to the reference frame through the fictitious hin
body N is termed thetip. The integer functionsi 1(a) and
i 2(a) give the indices of the body inboard~towards the
base! and outboard~away from the base! of the hinge, re-
spectively.

The elements of the connectivity matrixS and its in-
verse, the topology matrixT, are defined by

Sna5H 21 if ~a! is the inboard hinge on body~n!

11 if ~a! is the outboard hinge on body~n!

0 if hinge~a! is not on body~n!
,

Tan5H 21 if body ~n! lies outboard of hinge~a!

0 otherwise . ~7!

The two matrices are related through the identities

T•S5S•T5d, ~8!

whered is theN3N identity matrix.

B. Kinematics

For convenience, the fiber kinematics are described
terms of three sets of body-fixed vectors. The first set
vectors,cna , connect the center of mass of bodyn to hinge

FIG. 2. A portion of a model fiber, illustrating the geometry of the fib
subunits. A massless rod with a ball at one end and a socket at the
passes through the center of mass of a sphere. The rod is positioned s
the ball and socket protrude distances ofk1 andk2 from the sphere surface
respectively.
, No. 6, 8 August 1997
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2111Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
a, if hingea is attached to bodyn; otherwisecna is zero. The
connectivity of two contiguous bodies is described by
vector equation

@r i 2~a!1ci 1~a!a#2@r i 1~a!1ci 2~a!a#50, ~9!

where r n is the position of the center of mass of bodyn.
Using the connectivity matrixS, these constraint equation
may be combined into a single matrix equation,

S†
•r1C†

•1N50, ~10!

wherer5@r1•••rN#†, 1N is anN31 matrix of ones, andC is
an N3N matrix with vector componentsCna5Snacna ~the
superscript† denotes the transpose!. Premultiplying Eq.~10!
with T† and using Eq.~8!, the bead positions may be ex
pressed as

r52$C•T%†
•1N or r n52 (

h51

N

dhn , ~11!

where we have introduced a second set of body-fixed vec
dhn5$C•T%hn . There are 2(N21) distinct body-fixed vec-
torsdhn , which have a simple interpretation: ifh5n, dhn is
the vector on bodyh directed from its center of mass to th
inboard hinge; if bodyn lies outboard of bodyh, thendhn is
the vector directed from the outboard hinge to the inbo
hinge of bodyh; otherwise it is zero.

It is convenient to change the frame of reference in E
~11! from the reference frame to the fiber center of ma
using

r n5Rn1r cm , ~12!

whereRn is the position of beadn relative to the fiber cente
of mass,r cm . Substituting Eq.~12! into Eq.~11! and premul-
tiplying by theN3N matrix m (mnh5dnh2mn /mf , where
mn and mf are the masses of beadn and the fiber, respec
tively!, the bead positions relative to the center of mass

R52$C•T•m%†
•1N or Rn5 (

h51

N

bhn , ~13!

where the third set of body-fixed vectors arebhn

52$C•T•m%hn . Substituting Eq.~13! into Eq.~12!, the ab-
solute particle positions are expressed

r n5 (
h51

N

bhn1r cm . ~14!

The translational velocity of bodyn is

ṙ n5 (
h51

N

vh3bhn1 ṙ cm , ~15!

wherevh is the absolute angular velocity of bodyh. The
absolute angular velocity of bodyh is related to the relative
angular velocities of the other bodies through the matrixT,

vh52 (
a51

N

TahVa , ~16!

where Va is the angular velocity of the body outboard
hingea relative to the body inboard of hingea.
J. Chem. Phys., Vol. 107
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The transformation between the reference frames of
contiguous bodies connected by hingea is given by
ei 1(a)5Ga•ei 2(a), where ei 1(a) and ei 2(a) are the matrices
whose columns are the Cartesian base vectors of the b
fixed reference frames of the two bodies connected by hi
a. The orthogonal transformation matrixGa is given in terms
of Euler parameters in Refs. 1 and 15.

C. Dynamics

The free body diagram for beadn is shown in Fig. 3.
Fn is the resultant external force acting through the cente
mass,M n is the resultant external torque,Xb andXc are the
internal constraint forces in jointsb andc respectively, and
Yb and Yc are the resultant internal torques in the cor
sponding joints.

1. Linear momentum balance

Newton’s second law for beadn takes the form

mn r̈ n5Fn1 (
a51

N

SnaXa , ~17!

where r̈ n is the translational acceleration of beadn. The re-
sultant external force is a combination of hydrodynam
forcesFn

(h) , and interparticle forcesFn
(p) . Body forces may

also be included, but are ignored in this investigation.
Neglecting hydrodynamic interactions between differe

beads, as well as fluid inertia, the hydrodynamic force
beadn suspended in a Newtonian fluid may be expresse

Fn
~h!5zn

t
•@Un

`2 ṙ n# , ~18!

whereṙ n andUn
` are the translational velocity of beadn and

the ambient fluid velocity at the center of mass of beadn.
The hydrodynamic translation resistance tensorz n

t , de-
scribed in more detail below, may be anisotropic and po
tion dependent.

The interparticle forceFn
(p) describes any intrafiber inter

actions such as colloidal forces and short-range repuls
~i.e., excluded volume!, as well as repulsion from system
boundaries~only single fibers are considered in this pape!.
The intrafiber force is represented here by a short-ra
function of the form

FIG. 3. Free body diagram of subunitn. Constraint forces2Xb and Xc ,
and hinge torques2Yb andYc act at the ball and socket joints. The resulta
external forceFn and torqueM n act through the center of mass of th
sphere.
, No. 6, 8 August 1997
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2112 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
Fnm
~p, f !52F0expS 210

ur n2rmu
s Denm , ~19!

whereF0 is the magnitude of the short-range repulsive for
andenm5(r n2rm)/ur n2rmu is the unit vector along the line
joining the centers of beadsn andm. The excluded volume
interaction with the system boundaries is expressed s
larly,

Fn
~p,b!52F0expS 210

~hn2a!2dshi f t

s Dnb , ~20!

wherehn is the normal distance between the center of b
n and the bounding surface,dshi f t is a shift factor for the
repulsive force~discussed below!, andnb is the surface nor-
mal of the boundary with which beadn is interacting.

Inserting Eq.~15! into Eq. ~18! and substituting into Eq
~17!, the motion of the fiber center of mass is obtained
summing the resulting set of translational equations of m
tion for each bead. Neglecting inertia,

ṙ cm52µ•(
n51

N

(
m51

N

z n
t
•@vm3bmn#

1µ•(
n51

N

~zn
t
•Un

`1Fn
~p!# , ~21!

whereµ5$(h51
N z h

t %21. As the translational resistance te
sors and the ambient fluid velocity profile will be specifie
Eqs.~15! and~21! express the bead and center of mass tra
lational velocities, respectively, in terms of the bead po
tions and absolute angular velocities. The angular veloci
are determined by the angular momentum balance descr
below.

2. Angular momentum balance

The angular momentum balance for bodyn is

Ḣn5M n1 (
a51

N

Sna@cna3Xa1Ya#, ~22!

whereḢn is the time rate of change of angular momentum
beadn. The resultant external torqueM n is a combination of
the hydrodynamic torqueM n

(h) , and torques produced by ex
ternal moments or interparticle forces not acting through
bead center of mass,M n

(p) .
If inertia is again neglected, the hydrodynamic torq

acting on beadn in a Newtonian fluid with vorticityVn
` at

the bead center of mass may be represented by

M n
~h!5z n

r
•~Vn

`2vn!. ~23!

The hydrodynamic rotation resistance tensorz n
r will be de-

scribed below.
Fiber bending and twisting elasticity is incorporated in

the model through resultant internal torques in the join
Ya (a52, . . . ,N). Bending and twisting torques are define
independently and superposed. The bending torque,Ya

(B) ,
J. Chem. Phys., Vol. 107
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defined in terms of the angleua between vectorsci 1(a)a and
2ci 2(a)a , is assumed to be proportional to the differen
between this angle and its equilibrium value

Ya
~B!52k~B!~ua2ua

eq!npb , ~24!

wherenpb5(ci 2(a)a3ci 1(a)a)/(uci 2(a)a3ci 1(a)au) is the unit
vector normal to the plane of bending, andua is given by
cosua52(ci 2(a)a•ci 1(a)a)/(uci 2(a)auuci 1(a)au). The bending
constantk(B) describes the bending stiffness of the fiber, a
is related to the bending stiffness of an equivalent ela
cylinder ~Young’s modulusE, moment of inertiaI , and ra-
dius a) for small deformations viak(B)5(EI)/(2a). The
twisting torqueYa

(T) is defined in terms of the twist angl
fa between two contiguous bodies about the axis defined
ci 1(a)a , and is again assumed to be proportional to the d
ference betweenfa and its equilibrium valuefa

eq ,

Ya
~T!52kT~fa2fa

eq!npt , ~25!

where npt5ci 1(a)a /uci 1(a)au. In order to calculate the twis
angle, the body-fixed unit vectorui 1(a)a directed along the
x axis of the local coordinate system attached to bo
i 1(a) is employed. The angle fa is given by
cosfa5(ui 2(a)a

8 •ui 1(a)a)/(uui 2(a)a
8 uuui 1(a)au), where

ui 2(a)a
8 :5ui 2(a)a2(ui 2(a)a•npt)npt . The torsional rigidity

of the fiber k(T) is related to the torsional rigidity of an
equivalent elastic cylinder~shear modulusG, polar moment
J) for small deformations viak(T)5(GJ)/(2a). The above
relations for the hinge torques are assumed to hold for
deflections. Nonuniform fiber properties may be modeled
allowing k(B) and k(T) to vary along the fiber. Permanen
deformations may be modeled by alteringua

eq andfa
eq . For a

straight, nontwisted fiber,ua
eq50 andfa

eq50.
Neglecting bead inertia, the angular momentum bala

reduces to

M n
~h!1M n

~p!1 (
a51

N

Sna~cna3Xa1Ya!50. ~26!

The constraint forces appearing in Eq.~26! are eliminated by
rewriting theN vector equations in Eq.~17! in matrix form
~neglecting inertia!, solving for the constraint forces, an
substituting the result into Eq.~26!. Further substituting Eq
~18! for the hydrodynamic force, and Eq.~15! for the bead
translational velocities, yields

(
h51

N

Znh•vh5tn , ~27!

where

Znh :5dnhz n
r 1 (

k51

N

d̃nk•z k
t
• b̃hk2 (

k51

N

(
l51

N

d̃nk•z k
t
•µ

•z l
t
• b̃hl , ~28!
, No. 6, 8 August 1997
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2113Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
tn :5M n
~p!1 (

a51

N

SnaYa1z n
r V n

`2 (
k51

N

dnk3~z k
t
•U k

`

1F k
~p!!1 (

k51

N

dnk3S z k
t
•µ•(

l51

N

z l
t
•U l

`1F l
~p!D ,

~29!

where matricesã are definedã i j 52e i jkak , wheree i jk is the
permutation operator. Eq.~27! represents a coupled set
linear vector equations. SinceZnh and tn are functions of
only the bead positions and orientations, Eq.~27! can be
solved numerically for the absolute bead angular velociti

The dynamic simulation algorithm consists of using t
solution for the absolute angular velocities to update the b
positions and orientations. Using the relative angular velo
tiesVn determined from Eq.~16!, the time derivatives of the
Euler parameters may be computed via

F q̇1n

q̇2n

q̇3n

q̇4n

G5
1

2F 0 2V n
x 2V n

y 2V n
z

V n
x 0 V n

z 2V n
y

V n
y 2V n

z 0 V n
x

V n
z V n

y 2V n
x 0

G •F q1n

q2n

q3n

q4n

G
.

~30!

The Euler parameters give the orientation of bodyn relative
to body n21, and thus the relative angular velocities mu
be transformed to the local coordinate system of bodyn. The
bead orientations are updated via numerical~Euler! integra-
tion of Eq.~29!. The Euler parameters should be periodica
normalized during the simulation to prevent propagation
computer round-off error. The fiber center of mass is upda
by numerical~Euler! integration of Eq.~21!, and the bead
positions are updated directly through their relationsh
with the bead orientations,

r n
new5r cm

new1 (
m51

N

bnm . ~31!

Dimensionless variables are obtained by choosing ti
length and force scales. In this work, the length scale is
J. Chem. Phys., Vol. 107
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bead diameter,s52a, the time scale is the inverse of th
characteristic shear rate,ġ21, and the force scale is the cha
acteristic hydrodynamic force,ps2h0ġ (h0 is the continu-
ous phase viscosity!. Dimensionless variables will be indi
cated with a superscripted asterisk.

D. Hydrodynamic resistance tensors

In the limit of zero particle Reynolds number, R
5ra2ġ/h0, the hydrodynamic resistance tensorsz h

t and
z h

r are functions of all the bead positions as well as
positions of the bounding surfaces. For isolated sphe
these tensors are

z h
t 56ph0ad, ~32!

z h
r 58ph0a3d. ~33!

At finite separations between the beads and between
beads and the walls, these expressions are modified by
drodynamic interactions16–18.

In this study, we ignore hydrodynamic interactions b
tween beads, but in some cases~discussed below! approxi-
mate the hydrodynamic interaction between each bead a
bounding surface. We employ asymptotic far-field or ne
field forms for the interactions16–18, depending upon the rela
tive separation between the bead and the wall. Choosing
y axis normal to the wall, the resistance tensors are
pressed

z h
t 56phsaF z ih

t ~ehb! 0 0

0 z 'h
t ~ehb! 0

0 0 z ih
t ~ehb!

G , ~34!

z h
r 58phsa

3F z ih
r ~ehb! 0 0

0 z 'h
r ~ehb! 0

0 0 z ih
r ~ehb!

G ~35!

with the scalar functionsz ih
t , z 'h

t , z ih
r andz 'h

r given by
z ih
t ~ehb!55 2

8

15
ln~ehb!10.9588 ehb,e i

t

S 12
9

16

1

11ehb
1

1

8

1

~11ehb!3 2
45

256

1

~11ehb!4 2
1

16

1

~11ehb!5D 21

ehb.e i
t

z 'h
t ~ehb!5H 1

ehb
1

1

5
ln~ehb!10.971264 ehb,e'

t

S12
9

8

1

~11ehb!
1

1

2

1

~11ehb!
3D21

ehb.e'
t
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z ier~eeb!5H 2
2

5
ln~ehb!10.3817 ehb,e i

r

11
5

16

1

~11ehb!3 ehb.e i
r ,

z 'h
r ~ehb!51;ehb . ~36!
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Here,ehb5(hn2a)/a, wherehn is the distance between th
center of spheren and the wall. The crossover separatio
e i

t , e '
t and e i

r are 0.941374, 0.034382, and 0.122728,
spectively.

E. Flow fields

Two different flow fields are investigated in this paper
simple shear flow driven by a moving upper plate,

U`5F ġHS 1
21

y

H D ,0,0G
and a parabolic pressure-driven shear flow,

U`5F ġHS 12S 12
y

H D 2D ,0,0G .
Unbounded flows are implemented by neglecting all inter
tions with the bounding surfaces@Eqs.~35!#, and the dynam-
ics of fibers close to a wall are implemented by employ
interactions with the closest wall only@located at
y52(1/2)H]. The distance between the bounding surfac
is always larger than the fiber contour length.

III. RESULTS

A. Stiff fibers in unbounded flow

Simulations in unbounded flows were performed for
bers composed ofN spheres with N P $4, . . . ,20%,
F 0* 51.0, and for the combinations of the model paramet
(k 1* ,k 2* )5$(0.1,0),(0.1,0.1)%. The bending and twisting
stiffnesses werek(B)* 52500 andk(T)* /k(B)* 52/3, ensuring
that the fibers remained rigid~i.e., the end-to-end distanc
changed by less than 0.2% during an orbit!. Simulations
were performed for a series of orbit constantsC
P $0.05,0.1,0.2,0.5,2,10,`%, and the motion was monitore
for four full periods, with selected runs of up to 20 period
No visible drift could be observed when plotting the orb
traced out by the end-to-end vector, in agreement w
predictions2,6,7.

The dimensionless periodTġ is plotted as a function o
aspect ratioar511(N21)*(11k 1* 1k 2* ) in Fig. 4, along
with Jeffery’s predictions and experimental data reported
Trevelyan and Mason3 for bundled glass fiber cylinders. Th
period is independent of orbit constant, and identical
simple shear and parabolic velocity profiles, as predicted.
visible drift in the period or orbit constant was observ
J. Chem. Phys., Vol. 107
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during the simulations. We will return to this issue in Se
III C, where the drift is investigated as a function of bendi
stiffness.

The simulated periods in Fig. 4 increase with aspect ra
in a manner qualitatively similar to Jeffrey’s predictions a
the experimental data. Quantitative differences arise fr
two different features. First, different shapes~e.g., prolate
spheroids, cylinders, etc.! produce different orbit periods
and thus chains of osculating bodies should not have
same period as a single prolate spheroid of the same as
ratio. Using an approximate analysis, Burgers19 found that
periods of long, blunt-ended cylinders were about 26
smaller than those of prolate spheroids of the same as
ratio. Using boundary integral methods to accurately de
mine the rotational motion of rigid, elongated bodies, Ingb
and Mondy20 found that the rotational period of a blun
ended cylindrical rod was about 20% less than that of a p
late spheroid of the same aspect ratio. Second, our sim
tions neglect hydrodynamic interactions between the be
The relative contributions of these two features in the dev
tion of the simulated periods from those of prolate sphero
is not known.

The equivalent aspect ratio of a fiber,ar e
, is found by

FIG. 4. The dimensionless orbit period,Tġ, as a function of aspect ratio
ar . Open squares—simulation results withk15k250.1; open circles—
simulation results usingk150.1 andk250; filled circles—experimental
data for rigid cylinders3; solid curve—Jeffery’s analysis for a prolate sphe
oid. Results are identical for simple and parabolic shear flows.
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2115Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
substituting the experimental or simulated value forTġ into
Eq. ~3!. The ratioar e

/ar is commonly reported, and a valu
of .0.74 is expected for long cylinders19. Experiments with
real fibers3,5 show that ar e

/ar decreases with increasin
ar . This trend is also observed in our simulation resu
illustrated in Fig. 5, wherear e

/ar is plotted as a function o

ar for $k 1* ,k 2* %5$0.1,0.1% and $0.1,0%. The equivalent as-
pect ratio is identical for simple shear and parabolic veloc
profiles, but depends on the details of the fiber model~e.g.,
the values ofk 1* andk 2* ).

Simulated fiber orbits are again compared to Jeffer
predictions in Fig. 6, where the trajectories of the normaliz
end-to-end vectors~open circles! are plotted forC50.05,
0.1, and 0.5. The solid curves are Jeffery’s predictions for
aspect ratio equal to the equivalent aspect ratio of the si
lated fiber. The agreement is excellent, implying that hyd
dynamic interactions influence the value of the equival
aspect ratio, but not the trajectories.

The comparison between the simulation results and
fery’s analysis for stiff fibers withN515 andk 1* ,k 2* 50.1
is summarized in Table I for a series of orbit constants.

B. Stiff fibers near a bounding surface

Stover and Cohen21 investigated the behavior of singl
rigid fibers near a plane wall in a pressure-driven Hele–Sh
flow, in both Newtonian and non-Newtonian liquids. Fibe
whose elliptic orbits would penetrate the wall performed
‘‘pole-vault,’’ with the fiber center of mass translating irre
versibly to approximately one half of a fiber length aw
from the wall~for C'`). The orbit period for fibers close to
the wall increased, which was reported as an apparen
crease inar e

/ar . Examination ofḟ andu̇ suggested that the
slowdown was uniform in time.

FIG. 5. Ratio of equivalent to actual aspect ratio as a function of ac
aspect ratio. Squares—fiber model usingk15k250.1; circles—k150.1 and
k250; solid line—approximate value obtained by Burgers~see Ref. 19! for
rigid cylinders. Results are identical for simple and parabolic shear flow
J. Chem. Phys., Vol. 107
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Since such irreversible fiber dynamics arise from non
drodynamic forces, simulations in simple shear flo
(H/s550) with three different treatments of the fiber–wa
interaction were performed. First, the wall interaction i
cluded only a short-range repulsive force@Eq. ~20! with
dshi f t50], neglecting hydrodynamic interactions betwe
the beads and the wall. Fiber parameters wereN515,
k(B)* 52500, k(T)* /k(B)* 52/3, k150.0, k250.1, and
F 0* 51.0. This produces pole-vaulting, but no period slo
down. Sequences of fiber snaphots during pole-vault
simulations are illustrated in Fig. 7. We note that when
fiber end is close to the wall, the fiber bends significan
more than in unbounded shear flow. This is due to a la
compressive axial force arising from the repulsion from t
wall.

In the second treatment, hydrodynamic interactions
tween the beads and the wall were added to this repul
force. Hydrodynamic interactions between the beads w
not included. Using this approach, the fiber does not po
vault irreversibly as observed experimentally@Fig. 7~b!#. The
fiber bends even more than in the first treatment, due t
larger compressive axial force resulting from hydrodynam
lubrication at the wall. As the fiber completes a rotation

al

.

FIG. 6. Comparison between simulated orbits~open circles! and Jeffery’s
predictions ~solid curves!. Three orbit constants are shown
C50.05,0.1, and 0.5. The nonuniform spacing of the simulated values i
artifact of the periodic sampling of the fiber configurations. Data shown
from the fourth full period after starting the simulation. Results are ident
for simple and parabolic shear flows.

TABLE I. Comparison between simulations and predictions from Jeffre
analysis. Tabulated are the ratios of various simulated to analytical qu
ties ~for the same equivalent aspect ratio!.

C n lxz lyz axy bxy

` 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00
0.05 1.00 1.00 1.00 1.00 1.00
, No. 6, 8 August 1997
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2116 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
180°, it does not translate to half of a fiber length away fro
the wall, but rather continues to rotate toward the wall. T
suggests that the relative contribution of our approximat
for hydrodynamic interaction to the fiber motion is too larg

Bossis and Brady22 observed that the character of sho
range repulsive forces can have a significant influence on
structure and dynamics of suspensions of spherical partic
In particular, for sufficiently short-range repulsive forces, t
suspension structure was controlled by lubrication forc
when the range of the repulsive force was increased s
ciently, the structure changed, apparently by attenuating
lubrication forces. To further investigate the influence of t
short-range repulsive force on pole-vaulting, a third tre
ment was employed where the short-range repulsive fo
was altered by varying the value ofdshi f t in Eq. ~20! ~and
equivalent to the second treatment in all other respects!. A
value of dshi f t50.05s was sufficient to observe both pole
vaulting and period slowdown@Fig. 7~c!#. This treatment
was employed for all other investigations. The simulated v
ues ofar e

/ar are shown in Fig. 8 as a function of the di
tance between the fiber center of mass and the boun
surface,dcm. Experimental data from Refs. 21 and 23 a
also included in the figure. The simulations agree fairly w
with the experimental results.

It is tempting to ascribe the ability of a small value
dshi f t to reproduce experimental observations to an effec
fiber and wall surface roughness on the lubrication forc
Indeed, for real fiber diameters on the order of 1025 m,
dshi f t50.05s corresponds to a length scale of 500 nm,
the order of roughness dimensions for many surfaces. H
ever, we note that our simulations only use an approxima
to the many-body hydrodynamic problem, and our mo
fiber differs from real fibers, especially near the ends. At t
stage, we can only state that fiber dynamics near a s
surface are sensitive to the nature of the wall interactio
More conclusive statements about the role of surface rou

FIG. 7. Pole-vault of fibers near a wall in simple shear flow (C5`,
k(B)* 52500, H/s550). ~a! No hydrodynamic interactions between fib
and wall, no shift in excluded volume.~b! Hydrodynamic interactions in-
cluded, no shift in excluded volume.~c! Hydrodynamic interactions in-
cluded,dshi f t50.05s. In ~c! the pole-vault is essentially complete during th
first half period, but the fiber center of mass oscillates for several peri
This is expected since the fiber continues to interact hydrodynamically
the wall. Peak oscillations are pronounced forf50° andf5180°, indicat-
ing that lubrication is the dominant factor. Ifdshi f t is increased, the oscilla
tions and the fiber curvature are reduced. Oscillations are likely too s
~amplitude'0.2s) to be seen experimentally.
J. Chem. Phys., Vol. 107

Downloaded 05 Apr 2007 to 128.104.198.190. Redistribution subject to A
s
n
.

he
s.

s;
fi-
he
e
t-
e

l-

ng

ll

f
s.

-
n
l
s
lid
s.
h-

ness require more realistic fiber model shapes, and more
curate treatments of the short-range forces.

Depending on the initial orbit constant and center
mass, the fibers pole-vault into orbits with larger or smal
orbit constants. The displacement of the center of mass a
from the wall is typically accompanied by a displacement
the vorticity direction. The lateral displacement was larg
for fibers pole-vaulting into smaller orbit constants th
those pole-vaulting into larger orbit constants. The displa
ment also increased with decreasing separation between
center of mass and the wall. Such effects have yet to
investigated experimentally, but could be of interest wh
considering fiber dynamics and suspension structure n
walls.

The deviation in rotation rate in pole-vaulting simul
tions, relative to the same fiber in unbounded flow, is plot
as a function off in Fig. 9 (C5`). The fiber rotation rate
decreases as it aligns with the flow, relative to that of a fi
in unbounded shear flow. This is consistent with Ingber a
Mondy’s20 boundary element simulations of a spheroid
shear flow near both shearing surfaces. Although our sim
lated rotation rates, averaged over a period, indeed show
increase in the orbit period, the observed slowdown is n
uniform, in contrast to the experimental observations of S
ver and Cohen21. The discrepancy may arise from our a
proximate hydrodynamic interactions, or from differences
the nonhydrodynamic interactions between the fiber a
wall.

s.
th

ll

FIG. 8. ar e
/ar as a function ofdcm/(ar /2), wheredcm is the separation

between the fiber center of mass and the bounding surface. Simulatio
sults are forC05$0.05,0.1,0.5,̀ % anddcm,05$l ,2l %, wherel is the orbit-
dependent separation at which a fiber will just contact the surface. O
circles—simple shear flow,k(B)* 530; open triangles—simple shear flow
k(B)* 52500; open squares—parabolic shear flow,k(B)* 52500; filled
circles/squares—experimental data, small/large initial orbit constants~see
Ref. 21!; filled triangles—experimental data~see Ref. 5!; solid line—
simulated value obtained in unbounded flow.
, No. 6, 8 August 1997

IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



an
a

on

of
th

no

ry
re
u

t
-

le
th

a

ov
E

of
s
he
r

r

re

ne

r
g

-

is
at

the
at
s

d.
o
the
nd
if-
may

lly

ra

2117Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
C. Flexible fibers

Flexible fibers exhibit more complicated dynamics th
rigid fibers. In this section we restrict our attention to ide
flexible fibers in unbounded shear flows (H/s525), com-
posed ofN515 spheres withk15k250.1 (ar517.8), and
varyingk(B)* (k(T)* /k(B)* 52/3; F 0* 51.0). We examine the
orbital drift, the transient orbit period, and the classificati
of configurational dynamics.

1. Orbital drift

Recall the following main features of the rotation
rigid, axisymmetric particles: the orbits are stable, and
dimensionless periodTġ does not depend onC or ġ. In
contrast, we find that flexible fiber orbits are, in general,
stable, and thatTġ depends on bothC and ġ.

Orbital drift is illustrated in Fig. 10, where the trajecto
of the normalized fiber end-to-end vector is plotted in th
dimensions for two different initial orientations. These sim
lations were started with straight fibers in theXZ plane, with
an initial orbit constantC0. For C050.05, the orbit drifts
slowly towardC50 (lxz50). For C050.2, the orbit drifts
more rapidly towardC5` (lxz590°), approaching an orbi
entirely within theXY plane. This is consistent with the ex
perimental observations of Arlovet al.9 who reported a ten-
dency for fiber orbits to drift towardC50 or `, with inter-
mediate values occasionally observed.

The concept of orbit constants is ill-defined for flexib
fibers whose geometries vary with time. We characterize
orbital drift for flexible fibers with the rock anglelxz , de-
fined as the angle between the fiber end-to-end vector
the Z axis, as the end-to-end vector passes through theXZ
plane. This is equivalent to the definition employed by Arl
et al.9 Apparent orbit constants can then be defined using

FIG. 9. Deviation of the rotation rate of a simulated fiber (ḟsim ; C5`)
from that predicted by Jeffery’s analysis for the same equivalent aspect

(ḟeq). The fiber is aligned with the flow whenf590°.
J. Chem. Phys., Vol. 107
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~4! with an equivalent aspect ratio. Although the meaning
this orbit ‘‘constant’’ is unclear for a flexible fiber, it doe
serve to discriminate between orbits lying nominally in t
XY plane (C@1) and those fibers rotating with their majo
axes near theZ axis (C!1).

The orbital drift of fibers with differentk(B)* is illus-
trated in Figs. 11~a! and 11~b! for simple and parabolic shea
flows, respectively, where the rock anglelxz is plotted as a
function of the rotation period. Again, simulations we
started with the fiber straight in theXZ plane. For
k(B)* <50 in simple shear flow, the fibers drifted toward o
of two preferred orientations. ForC0,0.06, fibers drifted
toward smallerC; for C0.0.1, fibers drifted toward large
C. For all C0, the drift rate increases with decreasin
k(B)* . Drift toward smallerC (C0,0.06) is slower than the
drift toward largerC. This dependence of drift rate on stiff
ness and drift direction was also observed by Arlovet al.9

The strong correlation between drift rate and stiffness
expected, since rigid fibers should not drift. Flexible fibers
largeC experience large axial hydrodynamic forces, and
resulting deformations allow the orbit to drift. Fibers
smaller C remain relatively straight, since the axial force
are smaller@Eq. ~6!#, and the drift rate is therefore reduce

Arlov et al.9, however, found that the fibers drifted t
their ultimate orientations faster than we observe in
simulations—within 1 period for larger orbit constants, a
within about 20 periods for smaller orbit constants. The d
ferences between their observations and our simulations
arise from differences in fiber flexibility, aspect ratio@Arlov
et al. employed fibers withar;O (102)], or shear rate. De-
termining drift rates for large aspect ratios is computationa
expensive~when the beads are spheres!, and thus is post-
poned for future publications.

Fibers in simple shear flow that drift toward largerC do
not drift completely into theXY plane@Fig. 11~a!#. As dis-
cussed below, the orbit fluctuations nearlxz590° are asso-

tio

FIG. 10. Orbit trajectories for flexible fibers. ForC050.2, the fiber drifts
toward theXY plane (k(B)* 530). ForC050.05, the fiber drifts toward the
Z axis (k(B)* 520).
, No. 6, 8 August 1997
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2118 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
ciated with flexing motions of the fibers. For fibers wi
50,k(B)* ,200 in simple shear flow, the dynamics and dr
depend onk(B)* as well asC0. For some intermediate orbit
with large C0, some fibers drift toward smallerC, but then
remain indefinitely at an intermediate value.

Stiffer fibers (k(B)* >200) rotate like rigid rods when
C05`, and exhibit very slow drift for finite values ofC0.
For k(B)* 52500 andC050.1, the drift inlxz is less than
0.28° during the first 10 periods, which may in part be due
round-off error. Although fibers withk(B)* 5` have not
been simulated, the trend clearly suggests that fibers ap
to rotate in stable orbits in the limit ask(B)*→`.

Flexible fibers in parabolic shear flow exhibited simil
trends, with a few exceptions@Fig. 11~b!#. For k(B)* ,50,
fibers with C0,0.1 andC0.0.2 drift toward smaller and
largerC, respectively. Fibers that drift toward largerC drift
completely into theXY plane (lxz590°). Thus, in contras
to the predictions by Chwang7 for rigid prolate spheroids
flexible fiber dynamics depend on the ambient flow.

FIG. 11. Rock angle,lxz , as a function of the number of rotation period
for flexible fibers in~a! simple shear and~b! parabolic shear flow.~a! The
top part of the figure is for an initial orientation ofC050.1, where the fibers
drift to larger orbit constants. The solid line is for a simulation wi
k(B)* 52500. The lower part of the figure is for an initial orientation
C050.05, where the fibers drift to smaller orbit constants.~b! The top part
of the figure is for an initial orientation ofC050.2, where the fibers drift to
larger orbit constants. The lower part of the figure is for an initial orientat
of C050.05, where the fibers drift to smaller orbit constants.
J. Chem. Phys., Vol. 107
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The dependence of drift onk(B)* andC0 is summarized
in Table II for fibers in simple and parabolic shear flows.

2. Orbit period

Tġ is plotted as a function of the number of periods
Figs. 12~a! and 12~b! for simple and parabolic shear flows
respectively, for fibers with different stiffnesses and init
orientations. Several general trends for the behavior
t→` are discernible. Dimensionless periods for largeC are
smaller than those of rigid fibers, and they decrease w
decreasingk(B)* . This is consistent with the observation fo
rigid fibers thatTġ decreases with decreasing aspect ratio
the effective aspect ratio of a flexible fiber bent in theXY
plane is smaller than its nominal value. Fibers at smallC
have dimensionless periods larger than those of rigid fib
which increase with decreasingk(B)* .

During drift, Tġ does not always vary monotonicall
with time, especially for fibers drifting toward largerC in
simple shear@Fig. 12~a!#, and those that settle into interme
diate orbit constants. ForC050.1, a fiber withk(B)* 550 in
simple shear drifts slowly towardC5` @Fig. 11~a!#. Al-
though the trend suggests that its period will eventually
crease below that of a rigid fiber,Tġ is still slightly greater

FIG. 12. Dimensionless orbit period,Tġ, as a function of the number o
rotation periods for fibers with various flexibilities in~a! simple shear and
~b! parabolic shear flow. The solid horizontal lines indicate the dimensi
less period for a rigid fiber.
, No. 6, 8 August 1997
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2119Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
than that of a rigid fiber after 20 periods. The larger interm
diate period is consistent with a finite intermediate orbit co
stant.

More complex transients are observed for flexible fib
with k(B)* 510 andC050.1 in simple shear flow. The fibe
rapidly drifts towardC5`, although never drifting com-
pletely into theXY plane@Fig. 11~a!#. Tġ fluctuates signifi-
cantly with time as it drifts@Fig. 12~a!#. Such fluctuations are
associated with complex configurational dynamics, discus
below. For fibers drifting towardC5` in parabolic shear
flow, the limiting periods are identical to those of fibers in
tially in the XY plane.

3. Classification of configurational dynamics

Configurational dynamics observed for flexible fibe
can be described in terms of the classifications defined
Arlov et al.9 Examples of various orbits are illustrated
Figs. 13–17, where snapshots of the fiber projection onto
YZ, XZ, and XY planes are shown during one half of a
orbit, with time increasing from left to right.

Flexible fibers with smallC exhibit flexible spin-rotation
orbits ~Group 2! for both simple and parabolic shear flow
Deformation is minimal, as expected, since axial hydro
namic forces are small. Furthermore, for such fibers rota
with small orbit constants, the extent of deformation depe
only weakly onlxz andk(B)* . We have not observed Grou
1 dynamics~flexible spin! for the range of flexibilities and
the aspect ratio investigated.

FIG. 13. Springy rotation~Group 3A) configurational dynamics exhibited
by relatively stiff fibers (k(B)* 570) rotating inC5` orbits. These snap-
shots~as well as those in following figures! are for the last half-period in a
simulation to a shear strain of 1900~evaluated at the fiber center of mass!.
The behavior, depicted here for simple shear flow, is the same in simple
parabolic shear flows.

TABLE II. Dependence of drift on fiber orientation and flexibility, for fibe
in simple shear flow~results for parabolic shear flow are given in parenth
ses!. Symbols:↑—the fiber drifted to larger orbit constants;↓—the fiber
drifted to smaller orbit constants;3—the fiber settled in an intermediat
orbit, or no drift occurred (C5`).

Bending stiffnessk(B)*
C0 10 20 30 50 70 100

` 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)
0.5 ↑(↑) ↑(↑) ↑(↑) ↑(↑) 3(↓) ↓
0.2 ↑(↑) ↑(↑) ↑(↑) ↑(↑) ↑(↑) ↓(↑)
0.1 ↑(↓) ↑(↓) ↑(↓) ↑(↓) ↓(3) ↑
0.06 ↓
0.05 ↓(↓) ↓(↓) ↓(↓) ↓(↓) ↓(↓) ↓
0.01 ↓ ↓
J. Chem. Phys., Vol. 107
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Fibers initially in theXY plane (C05`) exhibit springy
rotations~Group 3A, Fig. 13! or pure S-turns~Group 3C2,
Fig. 14!, with a gradual transition from the latter to th
former ask(B)* increases from about 50 to 70. These m
tions were observed for both simple and parabolic sh
flow.

More complex dynamics are observed for fibers as th
drift toward larger orbit constants in simple shear flow. T
results for this category are summarized in Table III. Rec
that these fibers do not drift completely into theXY plane,
and the value oflxz fluctuates in time. Very flexible fibers
(k(B)* 510,20,30) drift rapidly toward theXY plane, exhib-
iting S-loopturn rotations~Group 3C1; Fig. 15!. Fibers with
intermediate flexibilities (k(B)* '50) eventually rotate
through U-turns~Group 3B; Fig. 16!. U-turns were also ob-
served during the initial periods for more flexible fibers th
eventually display S-loopturns. However, the initial loo
turns of the more flexible fibers are markedly sharper th
those of stiffer fibers. Stiff fibers (k(B)* 570) that settle into
intermediate orbit constants display flexible spin rotatio
~Group 2; Fig. 17!. The deformation in this case is muc
larger than that exhibited by flexible fibers that drift towa
smallerC.

The fluctutations inlxz with time for fibers approaching
C5` in simple shear flow@Fig. 11~a!# are associated with
fluctuations in the transient configurations; the fibers do
repeat the same motion precisely through each rotat
These fluctuations persist for at least 20 full period
Whether or not these dynamics reach a steady-state is
clear.

IV. CONCLUSION

In this paper, we presented simulation results for
motion of flexible fibers modeled as rigid spheres connec

nd

FIG. 14. Pure S-turn~Group 3C2) configurational dynamics exhibited by
relatively flexible fibers (k(B)* 520) rotating inC5` orbits. The behavior,
depicted here for parabolic shear flow (C050.5), is the same in simple and
parabolic shear flows.

FIG. 15. S-loopturn~Group 3C1) configurational dynamics exhibited by
very flexible fibers (k(B)* 510, C050.5) drifting towardC5` orbits in
simple shear flow. In parabolic shear flow, such a fiber drifts entirely i
the XY plane, exhibiting pure S-turns.

-
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2120 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
by ball and socket joints. Resistance to bending and twis
was included through potentials prescribed in the joints. T
purposes of this paper were to verify that this model ac
rately reproduces known results for fiber dynamics, and
illustrate the complicated dynamics of flexible fibers.

Simulations of isolated stiff fibers reproduced such fe
tures of Jeffery orbits as orbit stability, the dependence
Tġ on only thear ~independent ofġ andC), and trajectories
identical to those of prolate spheroid of the same equiva
aspect ratio. Orbit periods were unchanged in parabolic s
flow, as predicted by Chwang7.

Simulations of stiff fibers pole-vaulting near a boundi
surface qualitatively reproduced experimental observati
of Stover and Cohen21. Fiber trajectories are very sensitive
the short-range interactions between a fiber and a boun
surface. This suggests that very detailed knowledge
modeling of the fiber shape~especially at the ends! and in-
teractions are required to quantitatively reproduce exp
mental observations.

In contrast to rigid fibers, flexible fiber orientations dr
in simple and parabolic shear flows. Fibers at relatively sm
C0 drift towardC50, while fibers at relatively largeC0 drift
toward C5`. The drift direction and rate depends o
k(B)* , C0 orientation, as well as the ambient flow field.
wide variety of configurational dynamics are observe
which also depend onk(B)* , C0, and the ambient flow field
These results agree with the experimental observation
Arlov et al.9

Hydrodynamic interactions between the beads withi
fiber were neglected in this study to reduce computat
time. Including them will certainly quantitatively alter th
results. Interestingly, simulations of rigid fibers reprodu
almost all aspects of isolated rigid fiber motion when the
interactions are neglected. Hydrodynamic interactions
apparently only required to accurately determine the o

FIG. 16. U-turn~Group 3B) configurational dynamics exhibited by flexibl
fibers (k(B)* 550, C050.5) drifting towardC5` orbits in simple shear
flow.

FIG. 17. Flexible spin-rotation~Group 3B) configurational dynamics exhib
ited by relatively stiff fibers (k(B)* 570, C050.5) that settle into interme-
diate orbits in simple shear flow.
J. Chem. Phys., Vol. 107
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period, or equivalently, the equivalent fiber aspect ratio. T
influence of hydrodynamic interactions on flexible fiber d
namics is unknown.

Hydrodynamic interactions are but one feature that
been neglected in this study. Real fibers, especially w
pulp fibers, are often not straight~permanently deformed!,
their stiffnesses are not uniform along the contour, th
cross-sections are not circular or uniform, and they can h
fibrils and other asperities extending from their surfac
Each of these features will influence flexible fiber dynam
to some extent, and each must be examined to accura
describe the behavior of real fibers.

Flexible fiber dynamics have practical relevance in s
eral areas, and the results presented here help to illus
how flexibility can impact processes. Fiber flocculation~e.g.,
in wood fiber suspensions! arises from fiber entanglement i
flowing liquids24,25. The aggregate strength is believed to
dominated by the elastic forces exerted by deformed fib
within the flocs26–29. Fiber collisions, entanglement, and d
formation within flocs will certainly depend on fiber confo
mational dynamics. The properties of fiber reinforced co
posites depend on the fiber orientations, which have b
shown here to depend on such variables as fiber flexibi
Simulation methods are attractive tools for studying su
problems, where configurational complexities effective
prohibit analytical treatments.
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