Simulation of single fiber dynamics
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Simulation results for the motion of flexible fibers modeled as rigid spheres connected by ball
and socket joints are presented. Simulations of isolated stiff fibers reproduce such features of Jeffery
orbits as orbit stability, the dependence of the dimensionless orbit period on only the fiber aspect
ratio (independent of shear rate and orientatjomnd trajectories identical to those of prolate
spheroids of the same equivalent aspect ratio. Simulations of stiff fibers “pole-vaulting” near

a bounding surface qualitatively reproduce experimental observations. Fiber trajectories are
very sensitive to the short-range interactions between a fiber and a bounding surface. In contrast to
rigid fibers, flexible fiber orientations drift in unbounded simple shear and parabolic shear flows.
The drift direction and rate depend on fiber stiffness, initial orientation, as well as the ambient flow
field. A wide variety of configurational dynamics are observed, which also depend on the fiber
stiffness, initial orientation, and the ambient flow field. These results agree with previous
experimental observations of flexible fibers in shear flows.1997 American Institute of Physics.
[S0021-96087)52330-0

I. INTRODUCTION

Ca,
The translational and rotational dynamics of rigid and tang JaZcogp+sirted’ @
flexible fibers are important in a variety of diverse fields.
Fiber orientation and spatial distributions play a significant
role in such properties of fiber-reinforced composites as elas- tang = artar< 277? ' @)

tic moduli, thermal and electrical conductivities, and thermal

expansivities. In pulp and paper processing, fiber dynamicwhere @ is the angle between the fiber's major axis and the
and microstructure evolution during the sheet forming pro-vorticity axis (Z axis), ¢ is the angle between thé-axis and
cess are among the most important factors controlling sucthe XY-projection of the fiber axi¢see Fig. 1, T is the orbit
properties as sheet strength and optical characteristics. Margriod,
previous investigations of fiber dynamics, both experimental

and theoretical, have focused on the dynamics of rigid fibers, T— 2_77
while relatively little attention has been paid to the more y
complicated dynamics of flexible fibers. In a previous paper

we presented a mechanical model for flexible fibers and andC is the orbit constant, determined by the initial orien-
simulation technique for studying their dynamics in flowing tation,
suspensions. The purposes of this paper are to verify that the 1
model and simulation method accurately reproduce a wide _ \/ L

variety of theoretical predictions and experimental observa- C=tand \/coS o+ ar25|n2¢0.

tions of isolated rigid and flexible fiber dynamics, and to

illustrate some of the complicated dynamics of flexible fi- This analysis predicts that a prolate spheroid will repeatedly
bers. rotate through the same orbit, that the orbit period is inde-

Jeffery? analyzed the motion of ellipsoids in uniform, Pendent of the initial orientation or orbit constaiitand that
creeping shear flow in a Newtonian fluid. For a prolatethe particle will not migrate across streamlines.
spheroid of aspect ratia, (= major axis length a/minor To compare experimental observations with Jeffery's
axis length ®) in an ambient simple shear flow, predictions, it is convenient to observe a spheroid’'s projec-

w_q: ; cy tion in theXY, XZ or Y Z planes. The spheroid projection on
U*= ,0,0), the angular motion of the spheroid is de- )
(7y.0.0) g P the XZ plane rocks back and forth about t#eaxis to a

1
a+—
al'

: ()

scribed by : 3

maximum angle\,,,” where
3Electronic mail: klingen@neep.engr.wisc.edu tam\,,=Ca, . (4)
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plane of the arc was in thEZ plane, and the mini-
mum curvature occurred when the arc was in the
Y Z plane.

(i)  Group 2 (“flexible spin-rotation”). Here fibers ex-
hibited the flexible spin defined above, superimposed
on an elliptic orbit. The likelihood of this motion de-
creased with increasing flexibility.

(iii)  Group 3. This most common classification was di-
vided into three sub-groups. All fibers in this class
nominally aligned with theX axis when rotating
through thexXZ plane.

> N

Group 3A (“springy rotations”). While rotating in the
XY plane, a fiber bent like a leaf spring when the ends were
in the second and fourth quadrants, and straightened out
when aligned with the flow.

Group 3B (“snake turn™). We refer to this type of mo-
tion as aU turn. This type of dynamics was exhibited by
"more flexible fibers than those in group 3A. Initially, these
fibers were aligned along th¥¢ axis and appeared straight
when viewed along th¥ axis. One end would start bending
in the XY plane, and the bend would move from the leading
\, approachesr/2 asC— o, where the fiber rotates entirely end of the fiber to the other, then straighten out in the course
in the XY p|ane_ The Spheroid projection on thez p|ane of a half period. For longer fibers, the leading end would

also rocks back and forth about tEeaxis, to a maximum start bending again before the fiber straightened out.
angle)\yzztanflc. Group 3C (“S-turns”). These types of motions were

While the spheroid rotates in its elliptic orbit, it also observed for fibers whose major axes had a slight curvature
spins around its major axis with an angular velocityin the XZ plane when aligned with th¥ axis. Starting from
= (v/2)cosd. Experimentally monitoringys is very chal- thls o'rlentatlon, poth ends would start bending in opposne
lenging. A more accessible measure is the number of axidfiréctions. The fiber would form an S shape when viewed

FIG. 1. Schematic diagram defining the orientation of a prolate spheroid i
a uniform shear flow.

spins,n, completed during one rotational perféd along thez axi_s, and a loop when viewed along tWeaxis.
We refer to this as aB-loopturn Arlov et al. observed that
2 (T 2,4 some very uniform fibers would bend to form an S shape
n= —J'Z{p(t)dt: V—K(k) (5) entirely in theXY plane. We call this gure S-turn
mJo Ta, \/Czar2+1 Arlov et al? also observed that rigid fibers rotated in

periodic orbits with constant, but that for flexible fibers in
where k=/C*(a7—1)/(C%a7+1) and K(k)=f5?d{(1  Couette flow, the orbit constant drifted with time. For small
—k?sir?) 12 is the complete elliptic integral of first kind. ¢, the fibers tended to drift towar@=0, while for large
Brethertofi showed that Jeffery's analysis is valid for C, the fibers tended to drift towar@=co. However, for a
any axisymmetric particle. For axisymmetric shapes othegiven initial orbit constant, drift was not always in the same
than prolate spheroids, however, the aspect ratio is replaceflrection, nor was the drift always monotonic. The authors
by an equivalent aspect ratia;  defined in terms of the speculated that the initial fiber orientation may play a role in
actual periodT via Eq. (3). Chwand showed that Jeffery’s the orbit constant drift. The fibers tended to reach their ulti-
analysis also applies for prolate spheroids in quadratic, panate orbits at a rate that depended on the initial orientation.
raboloidal flows, provided that the shear ratés replaced by Forgacs and Masdrexamined the hydrodynamic forces
the ambient shear rate evaluated at the particle center. Yarieting to deform extensible flexible fibers in simple shear
et al®, however, have recently shown that some nonaxisymflow. The axial hydrodynamic force on a straight fiber at a
metric elongated bodies deviate from Jeffery’s predictionsconstant shear rate was approximatedFasconstankM,

exhibiting chaotic orientation dynamics. where the orientation factdvl is
The dynamics of flexible fibers are significantly more .
complicated. Much of the current knowledge of flexible fiber Ca; singcosp
dynamics has come fr%rPO the experin;entgl obseryations of M= Czaf +ar2 codd+sinte’ (6)
Mason and co-worker5>1? Arlov et al® divided their ex- e e

perimental observations of flexible fiber dynamics into threeFo

o r C=o, the maximum compressive force occurs when the
classifications.

fiber is aligned with the principal axis of compression of the
(i) Group 1 (“flexible spin™). Fibers nominally oriented simple shear flow ¢=—45°). As the orbit constant de-
along the vorticity axis spun about this axis, and bentcreases, the maximum compressive force decreases and
into arcs. The maximum curvature occurred when theshifts toward orientations in th€Z plane. This suggests that
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the dynamics of flexible fibers, particularly the bending and K X2

twisting motions, are expected to depend on the fiber orien-

tation and conformation. Socket
Investigations of flexible fibers are well-suited for simu- —

lation methods. Yamamoto and Matsubka* developed a Ball

method for simulating such fibers in shear flow, where the

fiber is modeled as a chain of rigid spheres connecte@iG. 2. A portion of a model fiber, illustrating the geometry of the fiber

through springs, with potentials to mimic resistance to bendsubunits. A massless rod with a ball at one end and a socket at the other

ing and twisting Chain Connectivity is maintained by con- passes through the center of mass of a sphere. The rod is positioned so that
. o . . . the ball and socket protrude distances«@fand x, from the sphere surface,

straints, producing equations that must be solved |terat|velyespectively_

and simultaneously with the equations of motion. This

method has been shown to reproduce certain dynamics of

isolated fibers, and has been employed to investigate th

single fiber contribution to the suspension viscdgjtfiow-

induced fiber fracture of isolated fibéfsand fiber suspen-

sion behaviol”.

®eads of diameter (radiusa). N—1 of the hinges are real,
with one fictitious hinge connecting the fiber to a reference
frame. The degrees of freedom in each hinge may be varied
between 0 and 6; for thH—1 real hinges, we use ball and

In a previous papey we presented a different particle- ooy o joints, each having 3 rotational degrees of freedom
level simulation method for the structural evolution of flex- and thus limiting our model to inextensible fibers. The ficti-

ible fiber suspensions in shear flow. The fiber model is simiy; o hinge coupling the fiber to the reference frame pos-

lar to that used by Yamamoto and Matsubkaxcept that cocqes 6 degrees of freedom allowing the fiber to translate

the fiber was modeled as an inextensible chain of rigid proy, 4 rotate freely.

late spheroids connected through ball and socket joints. This The fiber connectivity and kinematics, described by the

model eliminates the need for iterative constraints to MaiNt ethods discussed by Wittenbﬂﬁ’ghave been presented in

tain fiber connectivity, and can represent large-aspect ratiea| in Ref, 1. Here we outline the features pertinent to this

fibers with relat_|vely few_ _bo@es. '.I'hese. features help to reo'paper. Bodies are referred to with greek indices
duce computations, facilitating simulation of concentrate (v, 7Kk, ...=1,...N) and hinges are referred to with

suspensiorts latin indices @,b,c, ...=1,... N). The interconnected fi-

The purposes of the present paper are to verify that thg, . -, 4el is described by sets of verti¢ése rigid bodies

model developed in Ref. 1 reproduces a wide variety of theand directed arc&he hinges Arc a emanates from vertex

oretical predictions and experimental observations of flexiblq+(a) and is directed toward vertex (a). For the linear

fiber dynamics as described above, and to illustrate the COm«)iection of beads considered here, these integer functions
plicated dynamics of flexible fibers. In Sec. I, the fiber arei*(a)=a—1, andi ~(a)=a. Body 1, termed thbase is

mofje' and simglation method presgntgd in R?f' lis bl’inchonnected to the reference frame through the fictitious hinge;
reviewed. Inertia and hydrodynamic interactions betweerbodyN is termed thetip. The integer functions* (a) and
beads are neglected, but hydrodynamic interactions with thre‘(a) give the indices of the body inboardowards the

bounding surfaces are included in certain cases. Simulatiogase and outboardaway from the bageof the hinge, re-
results are presented in Sec. Ill. In Sec. lll A, we show thag ectively '

the fiber model accurately reproduces numerous features o The elements of the connectivity matr and its in-
Jeffery’_s a_naly5|s for stiff fibers. In Sec._III B, we illustrate verse, the topology matriX, are defined by
that this fiber model can accurately simulate the “pole-

vaulting” motion of stiff fibers near rigid bounding surfaces, —1 if (@ is the inboard hinge on body)
but that the results depend sensitively on the short-range in- _ ] +1 if (@) is the outboard hinge on body)
teractions between the fiber and the surface. In Sec. IlIC, we Sia=

describe simulation results for the motion of isolated flexible 0 if hinge (@) is not on body(»)

fibers in shear flows. In contrast to Jeffery’s analysis for rigid ) _ )
fibers, flexible fiber orbits drift, and the orbit period depends —1 ifbody(») lies outboard of hingéa)
on the fiber orientation. The configurational dynamics of Tas=) 0  otherwise - (D
these model fibers closely follow those observed experimen-
tally by Arlov et al? Finally, the main conclusions from this The two matrices are related through the identities
work are summarized in Sec. IV.

T-S=S-T=94, (©)]

II. MODEL AND SIMULATION METHOD where é is theNX N identity matrix.

A. Fiber model connectivity

The fiber is composed dil rigid bodies connected by = Kinematics

N hinges as illustrated in Fig. 2. Arbitrarily shaped rigid For convenience, the fiber kinematics are described in
bodies can be employed in the general method presentadrms of three sets of body-fixed vectors. The first set of
here, but for simplicity, we restrict attention to spherical vectors,c,,, connect the center of mass of bodyto hinge
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a, if hingea is attached to body; otherwisec,, is zero. The F M,
connectivity of two contiguous bodies is described by the -Yp Y,
vector equation
[Fi-(a)t Ci+@al — [+t Ci-(aal =0, 9 )
Hinge b Hinge ¢

wherer, is the position of the center of mass of body
Using the connectivity matriXs, these constraint equations
may be combined into a single matrix equation,

St.r+Ct.1y=0, (10) X, Sphere v X

wherer=[r;---ry]", 1y is anNx 1 matrix of ones, an€ is FIG. 3. Free body diagram of subunit Constraint forces- X, and X,
an NXN matrix with"vector component€,,=S,,C,, (the  and hinge torques Y, andY, act at the ball and socket joints. The resultant

superscript denotes the transposéremultiplying Eq(10) ~ extemal forceF, and torqueM, act through the center of mass of the
with TT and using Eq(8), the bead positions may be ex- SPhe’e:
pressed as

N The transformation between the reference frames of two

r=—{C-T}" 1y orr,=— > d,., (1)  contiguous bodies connected by hinge is given by

B - 7=1 €+(a)=Ca' €-(a)» Whereg+, and -, are the matrices
where we have introduced a second set of body-fixed vectorghose columns are the Cartesian base vectors of the body-
d,,={C-T},,. There are 24— 1) distinct body-fixed vec- fixed reference frames of the two bodies connected by hinge
torsd,, , which have a simple interpretation:4f=», d,, is  a. The orthogonal transformation mati@, is given in terms
the vector on bodyy directed from its center of mass to the of Euler parameters in Refs. 1 and 15.
inboard hinge; if body lies outboard of body,, thend,, is
the vector directed from the outboard hinge to the inboardc, pynamics

hinge of body#; otherwise it is zero. , . N
It is convenient to change the frame of reference in Eq. '€ free body diagram for beaelis shown in Fig. 3.

(11) from the reference frame to the fiber center of masd v is the resultant external force acting through the center of

using massM, is the resultant external torqu¥, and X, are the
internal constraint forces in joints andc respectively, and
r=R,+rcm, (12 Y, and Y. are the resultant internal torques in the corre-

whereR, is the position of bead relative to the fiber center SPonding joints.
of massyr . Substituting Eq12) into Eq(11) and premul-
tiplying by theNXN matrixm (m,,= &,,—m,/m¢, where

1. Linear momentum balance

m, and m; are the masses of beadand the fiber, respec- Newton's second law for bead takes the form
tively), the bead positions relative to the center of mass are ) N
N mVrV: FV+ 2 Svaxav (17)
a=1
R=—{C-T-m}"-1y orR,= > b,,, (13) )
- - n=1 wherer , is the translational acceleration of beadThe re-

where the third set of body-fixed vectors are,, sultant external force is a combination of hydrodynamic
=—{C-T-m},,. Substituting Eq(13) into Eq.(12), the ab-  forces F  and interparticle forces” . Body forces may
solute particle positions are expressed also be included, but are ignored in this investigation.
N Neglecting hydrodynamic interactions between different
= 2 — (14) beads, as well as fluid inertia, the hydrodynamic force on
vogs e beadr suspended in a Newtonian fluid may be expressed

The translational velocity of body is |:<Vh>: & [us— U], (18
N .

=S b 41 15 wherer, andU; are the translational velocity of beadand

fv= =1 @52 DT Fem (19 the ambient fluid velocity at the center of mass of bead

The hydrodynamic translation resistance tengdy, de-
scribed in more detail below, may be anisotropic and posi-
tion dependent.

The interparticle forcéF(Vp) describes any intrafiber inter-
actions such as colloidal forces and short-range repulsion
w,=— 2 T,Qa, (16  (i.e., excluded volume as well as repulsion from system

a=t boundariegonly single fibers are considered in this paper
where ), is the angular velocity of the body outboard of The intrafiber force is represented here by a short-range
hingea relative to the body inboard of hinge function of the form

where w,, is the absolute angular velocity of body. The
absolute angular velocity of body is related to the relative
angular velocities of the other bodies through the matrix

N
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() r,—r,l defined in terms of the angle, between vectors; +(,), and
Fou = —Foexp —10———]€,,, (19 —Ci-(a)a, IS assumed to be proportional to the difference

] ) ) between this angle and its equilibrium value
whereF is the magnitude of the short-range repulsive force,

ande,,=(r,—r,)/|r,—r,| is the unit vector along the line (B)— _ 1(B) eq
L v Rzl R Y, =—=K®(0,— 6Ny, 24
joining the centers of beadsand u. The excluded volume é (62~ 62390 9

interaction with the system boundaries is expressed Slmmherenpf(Cr(a)axCi+(a)a)/(|0r(a)a><Ci+(a)a|) is the unit

larly, vector normal to the plane of bending, afd is given by
(o.b) (h,—a)— Sspift CO,=—(Gi~(aya" G+ (a)a)/ (|G~ (a)al |G+ (a)al). The bending
P =—Foexg —10———— |y, (200 constank(® describes the bending stiffness of the fiber, and

is related to the bending stiffness of an equivalent elastic

whereh,, is the normal distance between the center of beaaylinder (Young’s modulusE, moment of inertid, and ra-
v and the bounding surfacgs; is a shift factor for the dius a) for small deformations vi&k®=(El)/(2a). The
repulsive forcgdiscussed beloyandn, is the surface nor- twisting torqueY(" is defined in terms of the twist angle
mal of the boundary with which beadis interacting. ¢, between two contiguous bodies about the axis defined by

Inserting Eq.(15) into Eg.(18) and substituting into Eq. Gi+(a)a» and is again assumed to be proportional to the dif-
(17), the motion of the fiber center of mass is obtained byference betweerb, and its equilibrium valugpS?,
summing the resulting set of translational equations of mo-

tion for each bead. Neglecting inertia, Y= —KT(a— $SHN,e, (25)
N N
fem=—H- > 2 (- [e,xb,,] where npt=ci+(a)a_/|ci+(a)a_|. In order to c_alculate the twist
=1p=1 angle, the body-fixed unit vectar;+,), directed along the
N x axis of the local coordinate system attached to body
+H- 2 (§L-Uf+ ngp)], (21) i"(a) is, employed. Tbe angle ¢, is given by
v=1 COS‘z’a:(ui—(a)a'ui+(a)a)/(|ui—(a)a||ui+(a)a|)v where

wherep={=_,£"} 1. As the translational resistance ten- Ui*(a)a:_:Ui‘(a)a__(ui‘(a)a' Npe) Npt - The. torS|o.nz.1I. rigidity
sors and the ambient fluid velocity profile will be specified, of the fiberk(" is related to the torsional rigidity of an
Egs.(15) and(21) express the bead and center of mass trans€duivalent elastic cylindefshear modulus, polar moment
lational velocities, respectively, in terms of the bead posi-J)) for small deformations vik"=(GJ)/(2a). The above
tions and absolute angular velocities. The angular velocitiesélations for the hinge torques are assumed to hold for all

are determined by the angular momentum balance describétgflections. Nonuniform fiber properties may be modeled by
below. allowing k® and k™ to vary along the fiber. Permanent

deformations may be modeled by alteriéff and¢3°. For a
straight, nontwisted fibeg%=0 and ¢3%=0.
Neglecting bead inertia, the angular momentum balance

2. Angular momentum balance reduces to
The angular momentum balance for boeys N
: . MM+ S S,0(CaX Xat Vo) =0, (26)
Hy=M,+ 2 S, €,aXXatYal, (22) a1
a=1

The constraint forces appearing in E86) are eliminated by
rewriting theN vector equations in Eq17) in matrix form
(neglecting inertig solving for the constraint forces, and
substituting the result into E¢26). Further substituting Eq.
?18) for the hydrodynamic force, and E{L5) for the bead
translational velocities, yields

whereH , is the time rate of change of angular momentum of
beadv. The resultant external torqié, is a combination of
the hydrodynamic torquel{" | and torques produced by ex-
ternal moments or interparticle forces not acting through th
bead center of mas#) (P .

If inertia is again neglected, the hydrodynamic torque

acting on bead’ in a Newtonian fluid with vorticityQ’, at N
the bead center of mass may be represented by > Z,, w,=t,, 27
n=1
M=) (- w,). (23
where

The hydrodynamic rotation resistance tengQrwill be de-

scribed below. N N N
Fiber bending and twisting elasticity is incorporated into 7 =5 ¢+ d .t — d

the model through resultant internal torques in the joints, v = Omby Kz’l we b 2 2

Y, (a=2,... N). Bending and twisting torques are defined .

independently and superposed. The bending torft{e), Lh b (28)

[us
>
Il
[us

K=
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N bead diameterg=2a, the time scale is the inverse of the

N
t,:=M (Vp)"'aEl SiaYat Q5 21 d, X (LU characteristic shear ratg, !, and the force scale is the char-
= K= .
acteristic hydrodynamic forcero?7,y (7, is the continu-

® N . N - ous phase viscosity Dimensionless variables will be indi-
+F)+ Z d,.. x| ¢ K'H'gl EyvUx+R cated with a superscripted asterisk.
(29)
where matrices: are definedd;; = — €jax, whereej isthe D, Hydrodynamic resistance tensors
permutation operator. Eq27) represents a coupled set of he limit of il Id b
linear vector equations. Sincg,, andt, are functions of Ir21.t e limit of zero paruce .Reyno S number, Re
only the bead positions and orientations, E7) can be =pa>¥/7o, the hydrodynamic resistance tensaf§ and

solved numerically for the absolute bead angular velocities$ , are functions of all the bead positions as well as the
The dynamic simulation algorithm consists of using thePositions of the bounding surfaces. For isolated spheres,

solution for the absolute angular velocities to update the beafiese tensors are

positions and orientations. Using the relative angular veloci-

tiesQ, determined from Eq.16), the time derivatives of the

t
=6 ad, 32
Euler parameters may be computed via £y=bmmo (32
¢, =8mnya’s. (33)
[ ay,] 0 -0 -QY -077 rqy,
. 0x 0 a0z —qV At finite separations between the beads and between the
gb I Y v | G2 beads and the walls, these expressions are modified by hy-
as | 2| Q% —Q7F 0 Q| ds drodynamic interactiort§*8
q az QY -0 0 04, In this study, we ignore hyd_rodynamic interactions_, be-
i 4V_ tween beads, but in some caddsscussed belowapproxi-

' (300  mate the hydrodynamic interaction between each bead and a
The Euler parameters give the orientation of badselative ~ 20unding surface. we e'T‘p'Oé’lg" symptotic far-field or near-
to body »—1, and thus the relative angular velocities mustf!e'd forms fpr the interactiol$ ™} depending upon the rgla—

be transformed to the local coordinate system of bedyhe tive ;eparatlon between the bead and the wall. Choosing the
bead orientations are updated via numeri@alley integra- y aX|sdnormaI to the wall, the resistance tensors are ex-
tion of Eq.(29). The Euler parameters should be periodicallypresse

normalized during the simulation to prevent propagation of Lt o(€,p) 0 0
. . [ 7\ €nb
computer round-off error. The fiber center of mass is updated 0 ; 0
by numerical(Eulen integration of Eq.(21), and the bead {3}:6777;@ {1n(€np) , (34
positions are updated directly through their relationships 0 0 g’ﬁ,}(eﬂb)
with the bead orientations,
{(ep) O 0
N r
R DI (31) ¢ =8mnsa’ 0 £ €m) 0 (35
p=1 0 0 | €mb)

Dimensionless variables are obtained by choosing time,
length and force scales. In this work, the length scale is thavith the scalar functiongﬁn, g“i,], §|r|,, and gi,, given by

8
— TgIN(€yp) +0.9588 €< €|

§|tn(€nb)=( 9 1 1 1 45 1 1 1 -1

[ + — o _ - >t
161+e€,, 8(1tep)® 256(1te,p)’ 16(1+e,p)’ €= €

1 1

— + =In(e,p) +0.971264 €,,<€'
t _ an 5

gL 7](67]b)_ ( 9 1 1 1 -1

L 8 Trey T 2reyy

t
Eﬂb> €
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2
—£In(e,p)+0.3817 €pp<e]

g\\er(eeb)z 5 1

T RPN

gin(&'”b):].VE,]b . (36)

r
Enb= €|

Here,e,,=(h,—a)/a, whereh, is the distance between the during the simulations. We will return to this issue in Sec.
center of spherer and the wall. The crossover separationslll C, where the drift is investigated as a function of bending
eﬁ, €' and €| are 0.941374, 0.034382, and 0.122728, re-stiffness.
spectively. The simulated periods in Fig. 4 increase with aspect ratio
in a manner qualitatively similar to Jeffrey’s predictions and
the experimental data. Quantitative differences arise from
two different features. First, different shapésg., prolate
spheroids, cylinders, elcproduce different orbit periods,
Two different flow fields are investigated in this paper: aand thus chains of osculating bodies should not have the
simple shear flow driven by a moving upper plate, same period as a single prolate spheroid of the same aspect
y ratio. Using an approximate analysis, Burdéround that
ﬁ),o,o periods of long, blunt-ended cylinders were about 26%
smaller than those of prolate spheroids of the same aspect
and a parabolic pressure-driven shear flow, ratio. Using boundary integral methods to accurately deter-
y)2 mine the rotational motion of rigid, elongated bodies, Ingber
1- —) ),0,0

E. Flow fields

1
5+

U*=|yH

and Mondy® found that the rotational period of a blunt-
H ended cylindrical rod was about 20% less than that of a pro-
Unbounded flows are implemented by neglecting all interaclate spheroid of the same aspect ratio. Second, our simula-
tions with the bounding surfac¢ggs.(35)], and the dynam- tions neglect hydrodynamic interactions between the beads.
ics of fibers close to a wall are implemented by employingThe relative contributions of these two features in the devia-
interactions with the closest wall onlyflocated at tion of the simulated periods from those of prolate spheroids

y=—(1/2)H]. The distance between the bounding surfaceds not known.

u”= &H(l—

is always larger than the fiber contour length. The equivalent aspect ratio of a fiber, , is found by
ll. RESULTS 160
A. Stiff fibers in unbounded flow 140 ]
Simulations in unbounded flows were performed for fi- -
bers composed ofN spheres withN e {4,...,20Q, 120 -
F5=1.0, and for the combinations of the model parameters 1 Bl
(«7,x3)={(0.1,0,(0.1,0.1}. The bending and twisting 100 - O
stiffnesses wer&®* = 2500 anck(M* /k(®* =2/3, ensuring o ] )
that the fibers remained rigi@l.e., the end-to-end distance 80 -
changed by less than 0.2% during an orbBimulations 4
were performed for a series of orbit constanG 60 -
e {0.05,0.1,0.2,0.5,2,189}, and the motion was monitored 1
for four full periods, with selected runs of up to 20 periods. 40 -
No visible drift could be observed when plotting the orbits 1
traced out6l:;y the end-to-end vector, in agreement with 20 +r——1r1r+1rr—TT T
predictionS®”. o _ 4 6 8 101214 16 18 20 22 24
The dimensionless periotly is plotted as a function of
aspect ratica, =1+ (N—1)*(1+«7 +«3) in Fig. 4, along ay

with Jeffery’s predictions and experimental data reported by _
Trevelyan and Masdrfor bundled glass fiber cylinders. The FIG. 4. The dimensionless orbit perio@ly, as a function of aspect ratio

period is independent of orbit constant, and identical for’: OPen squares—simulation results wih=r,=0.1; open circles—
simulation results usingc;=0.1 and «,=0; filled circles—experimental

s?mple Sh_ea'_' and paral_aolic VelOCi_ty profiles, as predicted. NQaa for rigid cylinders; solid curve—Jeffery’s analysis for a prolate spher-
visible drift in the period or orbit constant was observedoid. Results are identical for simple and parabolic shear flows.
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0.75 zZ vorticit i )
0.74
O
N
S 073 DD
Q 0 1
Ny 0.72 © DD
: OO DDDD
0.71 - a
LA B B L B BN BN B LI B 1
4 6 8 1012 14 16 18 20 22 24 X(ﬂowdirectign) Y
ar FIG. 6. Comparison between simulated orkitpen circleg and Jeffery’s

predictions (solid curve$. Three orbit constants are shown:
FIG. 5. Ratio of equivalent to actual aspect ratio as a function of actualc=0.05,0.1, and 0.5. The nonuniform spacing of the simulated values is an
aspect ratio. Squares—fiber model using= «,=0.1; circles—,;=0.1and artifact of the periodic sampling of the fiber configurations. Data shown are
x,=0; solid line—approximate value obtained by Burgesse Ref. 19for from the fourth full period after starting the simulation. Results are identical
rigid cylinders. Results are identical for simple and parabolic shear flows. for simple and parabolic shear flows.

substituting the experimental or simulated value Tor into Since such irreversible fiber dynamics arise from nonhy-
Eq. (3). The ratioa, _/a, is commonly reported, and a value drodynamic forces, simulations in simple shear flow
of =0.74 is expected for long cylindérs Experiments with (H/o=50) with three different treatments of the fiber—wall
real fiber$® show thatare/ar decreases with increasing interaction were performed. First, the wall interaction in-
a,. This trend is also observed in our simulation resultsC/tded only a short-range repulsive forfEq. (20) with
illustrated in Fig. 5, where,_/a, is plotted as a function of ~shift™ 0], neglecting hydrodynamic interactions between

a, for {x? ,xk3}1={0.1,0.3 and{0.1,G. The equivalent as- the beads and the wall. Fiber parameters wbke 15,

(B)* — (M* /1 (B)* — = =
pect ratio is identical for simple shear and parabolicvelocityk 2500, k" /k 213, 1,=0.0, x,=0.1, and

* = i - i i -
profiles, but depends on the details of the fiber mdded., Fo=1.0. This produces_ pole-vaulting, but no period S'OV_V
the values ofc* and « %) down. Sequences of fiber snaphots during pole-vaulting

1 27

Simulated fiber orbits are again compared to Jeffery’ simulations are illustrated in Fig. 7. We note that when the

predictions in Fig. 6, where the trajectories of the normalize iber eﬂd 1S CIOSE 0 (tjhz Wﬁ”' tr}? flberh_bendz S|gn|f|ca|1ntly
end-to-end vectorgopen circley are plotted forC=0.05, more than in unbounded shear flow. This is due to a large

0.1, and 0.5. The solid curves are Jeffery’s predictions for ar(]:ompresswe axial force arising from the repulsion from the

; . . . wall.
aspect ratio equal to the equivalent aspect ratio of the simu- In the second treatment, hydrodynamic interactions be-

lated f'F’eT- The agreement Is excellent, implying that .hydro'ween the beads and the wall were added to this repulsive
dynamic interactions influence the value of the equivalen o .
orce. Hydrodynamic interactions between the beads were

aspﬁ%erig?r,l b;rtisr:)c;: :)heetV\t/reaéErzlcttﬁgessihulation results and Je{-]Ot Included. Using this approach, the fiber does not pole-
ferv’s anal siF; for stiff fibers wWithN—=15 andx* «* =0 1 vault irreversibly as observed experimentdfyg. 7(b)]. The
i ;/ummar?/zed in Table | for a seri;s of orb’i<t lc&)’r:ét;nt's fiber bends even more than in the first treatment, due to a
" larger compressive axial force resulting from hydrodynamic

o ) lubrication at the wall. As the fiber completes a rotation of
B. Stiff fibers near a bounding surface

Stover and Cohéh investigated the behavior of single _ . . - ,
iaid fibers near a plane wall in a pressure-driven Hele—Sha TABLE |. Comparison between simulations and predictions from Jeffrey’s
rngl . p : p . o . Vgnalysis. Tabulated are the ratios of various simulated to analytical quanti-
flow, in both Newtonian and non-Newtonian liquids. Fibers ies (for the same equivalent aspect ratio
whose elliptic orbits would penetrate the wall performed a

“pole-vault,” with the fiber center of mass translating irre- c n Az Myz Ay Byy
versibly to approximately one half of a fiber length away 1.00 1.00 1.00 1.00 1.00
from the wall(for C~~). The orbit period for fibers close to 2 1.00 1.00 1.00 1.00 1.00
the wall increased, which was reported as an apparent in- 0.5 1.00 1.00 1.00 1.00 1.00
. o : : 0.1 1.00 1.00 1.00 1.00 1.00
crease |r1atre/ar . Examination of¢ and 6 suggested that the 0.05 1.00 1.00 1.00 1.00 1.00

slowdown was uniform in time.

J. Chem. Phys., Vol. 107, No. 6, 8 August 1997

Downloaded 05 Apr 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2116 Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
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FIG. 7. Pole-vault of fibers near a wall in simple shear flo@=(, 4
k(®* =2500, H/o=50). (@) No hydrodynamic interactions between fiber 0.8 4
and wall, no shift in excluded voluméb) Hydrodynamic interactions in-
cluded, no shift in excluded voluméc) Hydrodynamic interactions in- 0.7
cluded,dghis=0.050. In (c) the pole-vault is essentially complete during the
first half period, but the fiber center of mass oscillates for several periods. 0.6 T T T T T T
This is expected since the fiber continues to interact hydrodynamically with
the wall. Peak oscillations are pronounced dor 0° and¢=180°, indicat- O 1 2 3 4 5 6 7
ing that lubrication is the dominant factor. #,,;;; is increased, the oscilla- cm
tions and the fiber curvature are reduced. Oscillations are likely too small d“"Na./2)
r

(amplitude~0.20) to be seen experimentally.

FIG. 8. a,_/a, as a function ofd“™(a,/2), whered®™ is the separation
between the fiber center of mass and the bounding surface. Simulation re-

. . sults are forC®={0.05,0.1,0.5¢} andd®™%={/,2/'}, where/ is the orbit-
180°, it does not translate to half of a fiber length away fromdependent separation at which a fiber will just contact the surface. Open

the wall, but rather continues to rotate toward the wall. Thiscircles—simple shear flowk®* =30; open triangles—simple shear flow,
suggests that the relative contribution of our approximatiork®* =2500; open squares—parabolic shear flok?* =2500; filled
for hydrodynamic interaction to the fiber motion is too |arge_circIes/squgres—gxperimental data, small/large initial orbit constamts
Bossis and Brad’)? observed that the character of short- R_ef. 21); filled trlangles—‘experlmental datésee Ref. 5 solid line—
simulated value obtained in unbounded flow.
range repulsive forces can have a significant influence on the
structure and dynamics of suspensions of spherical particles.
In particular, for sufficiently short-range repulsive forces, the
suspension structure was controlled by lubrication forceshess require more realistic fiber model shapes, and more ac-
when the range of the repulsive force was increased sufficurate treatments of the short-range forces.
ciently, the structure changed, apparently by attenuating the Depending on the initial orbit constant and center of
lubrication forces. To further investigate the influence of themass, the fibers pole-vault into orbits with larger or smaller
short-range repulsive force on pole-vaulting, a third treatorbit constants. The displacement of the center of mass away
ment was employed where the short-range repulsive forcgom the wall is typically accompanied by a displacement in
was altered by varying the value @t in Eq. (20) (and  the vorticity direction. The lateral displacement was larger
equivalent to the second treatment in all other respeéts for fibers pole-vaulting into smaller orbit constants than
value of dgpi=0.050 was sufficient to observe both pole- those pole-vaulting into larger orbit constants. The displace-
vaulting and period slowdowiiFig. 7(c)]. This treatment ment also increased with decreasing separation between the
was employed for all other investigations. The simulated valcenter of mass and the wall. Such effects have yet to be
ues ofa, /a, are shown in Fig. 8 as a function of the dis- investigated experimentally, but could be of interest when
tance between the fiber center of mass and the boundingpnsidering fiber dynamics and suspension structure near
surface,d®™. Experimental data from Refs. 21 and 23 arewalls.
also included in the figure. The simulations agree fairly well ~ The deviation in rotation rate in pole-vaulting simula-
with the experimental results. tions, relative to the same fiber in unbounded flow, is plotted
It is tempting to ascribe the ability of a small value of as a function of¢ in Fig. 9 (C=c<). The fiber rotation rate
Sshift 10 reproduce experimental observations to an effect oflecreases as it aligns with the flow, relative to that of a fiber
fiber and wall surface roughness on the lubrication forcesin unbounded shear flow. This is consistent with Ingber and
Indeed, for real fiber diameters on the order of 10m,  Mondy’s®® boundary element simulations of a spheroid in
Sshift=0.050 corresponds to a length scale of 500 nm, onshear flow near both shearing surfaces. Although our simu-
the order of roughness dimensions for many surfaces. Howlated rotation rates, averaged over a period, indeed show an
ever, we note that our simulations only use an approximatioincrease in the orbit period, the observed slowdown is non-
to the many-body hydrodynamic problem, and our modeluniform, in contrast to the experimental observations of Sto-
fiber differs from real fibers, especially near the ends. At thisver and Coheft. The discrepancy may arise from our ap-
stage, we can only state that fiber dynamics near a soligroximate hydrodynamic interactions, or from differences in
surface are sensitive to the nature of the wall interactionsthe nonhydrodynamic interactions between the fiber and
More conclusive statements about the role of surface roughwall.
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FIG. 10. Orbit trajectories for flexible fibers. F&°=0.2, the fiber drifts
¢ toward theXY plane «®* =30). ForC°=0.05, the fiber drifts toward the

Z axis k®* =20).

FIG. 9. Deviation of the rotation rate of a simulated fibelf,; C=c)
from that predicted by Jeffery’s analysis for the same equivalent aspect ratio

(¢eq)- The fiber is aligned with the flow whe=90° (4) with an equivalent aspect ratio. Although the meaning of
this orbit “constant” is unclear for a flexible fiber, it does
C. Elexible fibers serve to discriminate betwee_n orbits Iy_ing n_ominal_ly in _the
) ) o ) . XY plane C>1) and those fibers rotating with their major
Flexible fibers exhibit more complicated dynamics thangyes near th& axis C<1).
rigid fibers. In this section we restrict our attention to ideal  The orbital drift of fibers with differenk®* is illus-
flexible fibers in unbounded shear flowsi/fo=25), com-  trated in Figs. 14a) and 11b) for simple and parabolic shear
posed Of(lg)j 15(;"‘;5’“6{;3 withe, = K2=0.1 (@=17.8), and  flows, respectively, where the rock anglg, is plotted as a
varyingk™>* (KtV*/k™* =2/3;F 5 =1.0). We examine the  fynction of the rotation period. Again, simulations were
orbital drift, the transient orbit period, and the classificationgtarted with the fiber straight in the&XZ plane. For

of configurational dynamics. k(®* <50 in simple shear flow, the fibers drifted toward one
1. Orbital drift of two preferred orientations. Fa£°<0.06, fibers drifted
toward smallerC; for C°>0.1, fibers drifted toward larger

. Recgll the fo!lowing main featurgs of the rotation of = Eor all C°, the drift rate increases with decreasing
rigid, axisymmetric partlcles: the orbits are stable: and thg®)x pyift toward smallerC (C°<0.06) is slower than the
dimensionless periody does not depend of or y. In  drift toward largerC. This dependence of drift rate on stiff-
contrast, we find that flexible fiber orbits are, in general, nothess and drift direction was also observed by Arémal®
stable, and thaf y depends on bot and y. The strong correlation between drift rate and stiffness is
Orbital drift is illustrated in Fig. 10, where the trajectory expected, since rigid fibers should not drift. Flexible fibers at
of the normalized fiber end-to-end vector is plotted in thredargeC experience large axial hydrodynamic forces, and the
dimensions for two different initial orientations. These simu-resulting deformations allow the orbit to drift. Fibers at
lations were started with straight fibers in t& plane, with  smaller C remain relatively straight, since the axial forces
an initial orbit constantC®. For C°=0.05, the orbit drifts are smallefEq. (6)], and the drift rate is therefore reduced.
slowly towardC=0 (\,,=0). ForC°=0.2, the orbit drifts Arlov et al®, however, found that the fibers drifted to
more rapidly towardC=o0 (A,,=90°), approaching an orbit their ultimate orientations faster than we observe in the
entirely within theXY plane. This is consistent with the ex- simulations—within 1 period for larger orbit constants, and
perimental observations of Arlost al® who reported a ten-  within about 20 periods for smaller orbit constants. The dif-
dency for fiber orbits to drift towar€€=0 or o, with inter-  ferences between their observations and our simulations may
mediate values occasionally observed. arise from differences in fiber flexibility, aspect rafiarlov
The concept of orbit constants is ill-defined for flexible et al. employed fibers witha,~“(10%)], or shear rate. De-
fibers whose geometries vary with time. We characterize théermining drift rates for large aspect ratios is computationally
orbital drift for flexible fibers with the rock anglg,,, de- expensive(when the beads are sphéereand thus is post-
fined as the angle between the fiber end-to-end vector argbned for future publications.
the Z axis, as the end-to-end vector passes throughXibe Fibers in simple shear flow that drift toward largérdo
plane. This is equivalent to the definition employed by Arlovnot drift completely into theXY plane[Fig. 11(a)]. As dis-
et al® Apparent orbit constants can then be defined using Ecrussed below, the orbit fluctuations negr=90° are asso-
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FIG. 11. Rock angle),,, as a function of the number of rotation periods
for flexible fibers in(a) simple shear an¢b) parabolic shear floma) The
top part of the figure is for an initial orientation 6°=0.1, where the fibers
drift to larger orbit constants. The solid line is for a simulation with
k(®*=2500. The lower part of the figure is for an initial orientation of
C%=0.05, where the fibers drift to smaller orbit constarits.The top part
of the figure is for an initial orientation a£°= 0.2, where the fibers drift to

larger orbit constants. The lower part of the figure is for an initial orientation

of C°=0.05, where the fibers drift to smaller orbit constants.

ciated with flexing motions of the fibers. For fibers with
50<k(®* <200 in simple shear flow, the dynamics and drift
depend ork(®* as well asC®. For some intermediate orbits
with large C°, some fibers drift toward smalle®, but then
remain indefinitely at an intermediate value.

Stiffer fibers ®)* =200) rotate like rigid rods when
C%=wx, and exhibit very slow drift for finite values oE°.
For k(®* =2500 andC®=0.1, the drift in\,, is less than

Skjetne, Ross, and Klingenberg: Simulation of single fiber dynamics
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FIG. 12. Dimensionless orbit period’,'y, as a function of the number of
rotation periods for fibers with various flexibilities i@ simple shear and
(b) parabolic shear flow. The solid horizontal lines indicate the dimension-
less period for a rigid fiber.

The dependence of drift di®)* andC° is summarized
in Table Il for fibers in simple and parabolic shear flows.

2. Orbit period

Ty is plotted as a function of the number of periods in
Figs. 1Za) and 12b) for simple and parabolic shear flows,
respectively, for fibers with different stiffnesses and initial
orientations. Several general trends for the behavior as
t—oo are discernible. Dimensionless periods for la@are
smaller than those of rigid fibers, and they decrease with
decreasin®* . This is consistent with the observation for

rigid fibers thatT y decreases with decreasing aspect ratio—

0.28° during the first 10 periods, which may in part be due idhe effective aspect ratio of a flexible fiber bent in K¥

round-off error. Although fibers wittk®* =c have not

been simulated, the trend clearly suggests that fibers appegVe dimensionless periods

to rotate in stable orbits in the limit d8®* — .

Flexible fibers in parabolic shear flow exhibited similar
trends, with a few exceptiongig. 11(b)]. For k(®* <50,
fibers with C°<0.1 andC®>0.2 drift toward smaller and
largerC, respectively. Fibers that drift toward larg€rdrift
completely into theXY plane j,,=90°). Thus, in contrast
to the predictions by Chwandor rigid prolate spheroids,
flexible fiber dynamics depend on the ambient flow.

J. Chem. Phys., Vol. 107,

plane is smaller than its nominal value. Fibers at sr@all
larger than those of rigid fibers,
which increase with decreasimd®)* .

During drift, Ty does not always vary monotonically
with time, especially for fibers drifting toward larg€r in
simple sheafFig. 12a)], and those that settle into interme-
diate orbit constants. Fa€°=0.1, a fiber withk(®)* =50 in
simple shear drifts slowly towar€ =« [Fig. 11(@)]. Al-
though the trend suggests that its period will eventually de-

crease below that of a rigid fibeF,y is still slightly greater
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TABLE Il. Dependence of drift on fiber orientation and flexibility, for fibers H ! l l
in simple shear flowresults for parabolic shear flow are given in parenthe- Y2 * !

ses. Symbols:T—the fiber drifted to larger orbit constantsi—the fiber
drifted to smaller orbit constantss —the fiber settled in an intermediate
orbit, or no drift occurred ¢ = ).

Bending stiffnesk(®* S B Wy ';:::::' ...3 .......-w"" S
c’ 10 20 30 50 70 100

Ly

FIG. 14. Pure S-turfGroup 3C,) configurational dynamics exhibited by
relatively flexible fibers k(®)* = 20) rotating inC=c orbits. The behavior,
depicted here for parabolic shear flo®%=0.5), is the same in simple and
parabolic shear flows.

* X(X) o X(X) o X(X) X(X)  X(X)  X(X)
05 T(m (m T(m T(m xX(1) 1
0.2 T(m T(m T(m (m m Q)
01 ) () ) ) LX) T

0.06 !
0.05 ¢ L Ll !
0.01 (l ) W (l ) o w Fibers initially in theXY plane C%=o) exhibit springy

rotations(Group 3A, Fig. 13 or pure S-turngGroup 3,
Fig. 14, with a gradual transition from the latter to the

than that of a riaid fiber after 20 periods. The | - former ask®* increases from about 50 to 70. These mo-
1an that of a rigid Tber after 2L periods. 1he 1arger INterMe+;, s \vere observed for both simple and parabolic shear
diate period is consistent with a finite intermediate orbit CoNow

stant.
More complex transients are observed for flexible fibersd

More complex dynamics are observed for fibers as they
Bk 0_ s : rift toward larger orbit constants in simple shear flow. The
W'thdll( q .ﬂlo and((:jc_o.l |n|sr:mpli shear flgvyf.t_The fiber results for this category are summarized in Table Ill. Recall
fap! y. rifts towar _w{ although never dri |ng' cqm— that these fibers do not drift completely into ti&/ plane,
pletely into theXY plane[Fig. 11(@)]. Ty fluctuates signifi-  and the value oh, fluctuates in time. Very flexible fibers
cantly with time as it drift§Fig. 12a)]. Such fluctuations are (k®* =10,20,30) drift rapidly toward thXY plane, exhib-
associated with complex configurational dynamics, discusseﬁﬁng S-loopturn rotationgGroup 3C;; Fig. 15. Fibers with
below. For fibers drifting towardC=o in parabolic shear jntermediate flexibilities K®*~50) eventually rotate

flow, the limiting periods are identical to those of fibers ini- through U-turngGroup ®B; Fig. 16. U-turns were also ob-

tially in the XY plane. served during the initial periods for more flexible fibers that
- . _ . eventually display S-loopturns. However, the initial loop-
3. Classification of configurational dynamics turns of the more flexible fibers are markedly sharper than

Configurational dynamics observed for flexible fibersthose of stiffer fibers. Stiff fibersk(®* =70) that settle into
can be described in terms of the classifications defined bintermediate orbit constants display flexible spin rotations
Arlov et al® Examples of various orbits are illustrated in (Group 2; Fig. 17. The deformation in this case is much
Figs. 13—17, where snapshots of the fiber projection onto thirger than that exhibited by flexible fibers that drift toward
YZ, XZ, and XY planes are shown during one half of an smallerC.
orbit, with time increasing from left to right. The fluctutations in\,, with time for fibers approaching

Flexible fibers with smalC exhibit flexible spin-rotation C=c in simple shear flowFig. 11(a)] are associated with
orbits (Group 2 for both simple and parabolic shear flow. fluctuations in the transient configurations; the fibers do not
Deformation is minimal, as expected, since axial hydrody+epeat the same motion precisely through each rotation.
namic forces are small. Furthermore, for such fibers rotatinghese fluctuations persist for at least 20 full periods.
with small orbit constants, the extent of deformation depend¥Vhether or not these dynamics reach a steady-state is not
only weakly on\,, andk®* . We have not observed Group clear.

1 dynamics(flexible spin for the range of flexibilities and

the aspect ratio investigated. V. CONCLUSION
In this paper, we presented simulation results for the
) § i E ] motion of flexible fibers modeled as rigid spheres connected
v |
Xz s eoseessemescon vz ° » o S < o

XY eecesscesessoce ...'%u.‘.".. \—) > / PP XZ (coossenceccone 'e-..-u? co“:; ...i};. - .-,0“-%% ccoueseuotesess

FIG. 13. Springy rotatioGroup 3A) configurational dynamics exhibited ~ xysswsesesssessse  feueeney  uoeey oS oot ¥ eonoassensesons

by relatively stiff fibers k®* =70) rotating inC= orbits. These snap-

shots(as well as those in following figurgare for the last half-period in a  FIG. 15. S-loopturn(Group 3C,) configurational dynamics exhibited by
simulation to a shear strain of 19Q8valuated at the fiber center of mass  very flexible fibers k®* =10, C°=0.5) drifting towardC=o orbits in
The behavior, depicted here for simple shear flow, is the same in simple ansimple shear flow. In parabolic shear flow, such a fiber drifts entirely into
parabolic shear flows. the XY plane, exhibiting pure S-turns.
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H TABLE Ill. Classification of flexible fiber dynamics for fibers in simple

Yz ® o~ J J _,.) shear flow, with different initial orientations and stiffnesses. All fibers with
these stiffnesses and initial orientations drifted to larger orbit constants with
Ay=90°. The different classes of dynamics are described in the text.

XZ cecoscoscssoses ‘““‘c,..‘ "5:.:. Q::::n (:'uu.

3 “ . Group c’=0.1 c°=0.2 c°=05 CO=c
H & Lo cos* ©00066660686650
XY $eesssccveooove Sopessony, b {:ﬁ’ d 2 70 70
3A 70 — 200
FIG. 16. U-turn(Group 3B) configurational dynamics exhibited by flexible 3B 30. 50 50 50
) (B)x — 0_ ifti = its in si ‘
]]::g\?vrs & 50, C*=0.5) drifting towardC=0 orbits in simple shear 3¢, 10, 20, 30 10, 20, 30 10, 20,30
_ 3G, 10,20,30,50

by ball and socket joints. Resistance to bending and twisting
was included through potentials prescribed in the joints. Theperiod, or equivalently, the equivalent fiber aspect ratio. The
purposes of this paper were to verify that this model accuinfluence of hydrodynamic interactions on flexible fiber dy-
rately reproduces known results for fiber dynamics, and tmamics is unknown.
illustrate the complicated dynamics of flexible fibers. Hydrodynamic interactions are but one feature that has
Simulations of isolated stiff fibers reproduced such fea-been neglected in this study. Real fibers, especially wood
tures of Jeffery orbits as orbit stability, the dependence opulp fibers, are often not straiglipermanently deformed
Ty on only thea, (independent oy andC), and trajectories their stiffnesses are not uniform along the contour, their
identical to those of prolate spheroid of the same equivalergross-sections are not circular or uniform, and they can have
aspect ratio. Orbit periods were unchanged in parabolic shedibrils and other asperities extending from their surfaces.
flow, as predicted by Chwafg Each of these features will influence flexible fiber dynamics
Simulations of stiff fibers pole-vaulting near a boundingto some extent, and each must be examined to accurately
surface qualitatively reproduced experimental observationgescribe the behavior of real fibers.
of Stover and Cohéh Fiber trajectories are very sensitive to  Flexible fiber dynamics have practical relevance in sev-
the short-range interactions between a fiber and a boundirgfal areas, and the results presented here help to illustrate
surface. This suggests that very detailed knowledge anbow flexibility can impact processes. Fiber flocculatierg.,
modeling of the fiber shapéspecially at the endisand in-  in wood fiber suspensioparises from fiber entanglement in
teractions are required to quantitatively reproduce experiflowing liquids*?> The aggregate strength is believed to be
mental observations. dominated by the elastic forces exerted by deformed fibers
In contrast to rigid fibers, flexible fiber orientations drift within the floc$®~* Fiber collisions, entanglement, and de-
in simple and parabolic shear flows. Fibers at relatively smalformation within flocs will certainly depend on fiber confor-
CO drift toward C=0, while fibers at relatively larg€® drift mational dynamics. The properties of fiber reinforced com-
toward C=«. The drift direction and rate depends on posites depend on the fiber orientations, which have been
k®* O grientation, as well as the ambient flow field. A shown here to depend on such variables as fiber flexibility.
wide variety of configurational dynamics are observed,Simulation methods are attractive tools for studying such
which also depend ok®*, C° and the ambient flow field. problems, where configurational complexities effectively
These results agree with the experimental observations dirohibit analytical treatments.
Arlov et al®
Hydrodynamic interactions between the beads within a
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