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Simulation of stationary stochastic processes
J. B. Moore, Ph. D., and B. D. O. Anderson, Ph.D.

Synopsis

A ‘spectral-factorisation’ procedure involving the solution of a Riccati matrix differential equation is con-
sidered to determine systems which, with white-noise input signals, may be used in the simulation of
stochastic processes having prescribed stationary covariances. More spe$itically, the specification of a
system is made so that the covariance of the system output is a prescribed stationary covariance R(t – ~)
for all t and -r greater than or equal to the ‘switch-on’ time of the system. The advantage of the ‘spectral-
factorisation’ procedure described compared with those previously given is that, assuming an initial-state
mean of zero, a suitable initial-state covariance is calculated as an intermediate result in the procedure. The
calculation of an appropriate initial-state covariance is of interest since, if zero initial conditions are used
in an attempted simulation, an undesirable time lapse may be necessary for the output covariance to be
acceptable as a simulation of the prescribed stationary covariance. For the case when the system is given or
is determined using alternative procedures to those described in the paper, the initial-state covariance is
calculated from the solution of a linear matrix equation.

1 Introduction

The problem considered in the paper is the simulation
of stationary stochastic processes with prescribed covariances
using linear, finite-dimensional, time-invariant systems with
white-noise input. Of particular interest is the selection of an
initial-state covariance, so that the covariance of the outputs
will be indistinguishable from that observed over the same
time interval for the hypothetical limiting case as the initial
time approaches – m.

Systems which may be used in the simulation of stationary
stochastic processes with prescribed covariances may be
determined from any of a number of spectral-factorisation
procedures, ]z,* With regard to the initial conditions, Cttrrent

practice is to set these to zero and ignore the outputs for a
period corresponding to a few time constants of the system.
The inadequacy of this procedure has been recognised.3

In the paper two results are presented. The first is a method
for selecting an initial-state covariance for a given system, so
that the application of white noise at the input results in out-
puts that may be considered, after the switch-on, as sample
functions of a stationary stochastic process; this is the best
possible real-time simulation for a stationary stochastic
process. All that is required in order to obtain the result is the
solution of a linear matrix equation.

The second result of the paper is a spectral factorisation of a
specified covariance matrix using theorems from Anderson. t
The procedure gives a system having a stable transfer-
function matrix with a stable inverse (often required in certain
optimisation problems), together with the initial-state
covariance; the advantage of the particular approach pre-
sented is that all the information necessary for the simulation
is given in one procedure.

The key step in the procedure is the solution of a quadratic
matrix equation which satisfies certain constraints. This
solution, which is unique, may be found using algebraic means
similar to those of Reference 4 or by determining the steady-
state solution of a Riccati matrix differential equation. t
The method avoids the need to carry out any of the procedures
in References 1, 2 or *, which prove very complex in cases
where the covariance is a matrix rather than scalar.

2 Review of system-theory results

The systems under consideration are linear, time-
invariant, finite-dimensional and asymptotically stable, and
thus can be described by the state–space equations

x= Fx+Gu . . . . . . . . . . (la)

Y= Hx+Ju . (lb)
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where x is an nvector (the state), u is a p vector (the input)
y is an m vector (the output) and the matrices F, G, H and J
are of the appropriate dimension. The system input is white
Gaussian noise with zero mean and a covariance matrix:

Cov {u(f), u(T)} = n(r – T) . . . . . . (2)

and is first applied at time to.
Some results to be used in the following Sections are

reviewed. For the system of eqn. 1, when u is deterministic,

J
x(r) = @(r – ?.) x (/.) + ‘@(t – A)Gu(A)dA . (3)

~o

where x(tO) is the initial state and @(. ) is the system matrix
satisfying

@( f)= F@(/) . . . (4)

@(o)==( . . . . . . . . . . .(5)

and, since the system of eqn. 1 is asymptotically stable,

lim@(t)= O....... . ..(6)
t ● m

When the inputs to the system of eqn. I are white Gaussian
noise with zero mean and a covariance matrix given by eqn. 2,
the covariance of the states at time f is given by

Cov {x(r), x(l)} = E{x(t)x’(t)} . . . (7)

and the covariance of the outputs is given by

Cov {y(t), y(T)} ===E[{H’x(f) + Ju(f)}{x’(7)H + U’(T)J’}]

. . . . (8)
Employing the notation

P(fo, r) = Cov {x(f), x(t)} (9)

and expanding eqn. 7, using eqns. 2 and 3, gives

P(to, f) = @(f -- fo)P(f@ ro)m’(t--?0)

-tJ‘W --A)GG@’(f – ~)d~ (lo)
to

For the limiting case as /0 -J- -- co, this may be written, using
eqn. 6, as

J

I
Iim P([O, f) = Iim @(f NGGO(f -- ~)d~

/,1+ x> 10+ co to
. . . (11)

and it may be noted that this limit is independent of any
initial-state covariance and is independent of the time I.
Thus, in reference to this limit, the notation P will be used.

An expansion of eqn. 8 using eqns. 3 and 10 gives the
covariance of the system output as

R,{([, T) == JJ’8(f T) + ~’eF(’ ‘){WO) T)~

+ GJ’}1([ — T) + {ff’~(fo, f)



where l(r) is a unit step function at time r. For the limiting
case as ~0–> – co, eqn. 12 may be written as the stationary
covariance

R(t – T) = JJ’s(f – T) + H’eFcf-’J(PH

+- GY’)l(t –T) + (H’P +- JG’)eF’(7-f)Hl(-r – r)

... . (13)

A prior step to the spectral-factorisation procedure of
Section 4 is to arrange the specified covariance matrix in the
form of eqn. 13:

R(f – -r) == Di’3(f -- 7) + C’e~t’-’JBl(t – 7)
+ ~’e.4’(T-Ocl(T -- t) . (14)

where A is square and of minimal dimension. In this respect,
it may be noted that the Laplace transform of eqn. 14 is

RT(S) == z(s) +Z’(–s) . . . . (15)

where R~(s) is the Laplace transform of the covariance matrix
R(l – T) and Z(s) is a positive real matrix given by

Z(S)=;+ C’(S14 -’B. . (16)

If the covariance is specified in terms of the Fourier trans-
form of R(f – T), it may first be arranged as a Laplace trans-
form R~(s), and then, from a determination of Z(s), a
quadruple A, B, C, D/2 (not unique) may be calculated.s

Another result to be used in Section 4 given by explicit
calculation is that, for the system of eqn. 1, the inverse of the
associated transfer-function matrix

w(s) ==.J+H’(s1 -- F)-l G . . . (17)

is W-l(S) = [1 -- J-l H’{.rl –F+ GJ-l H’}-- lG]J - 1

. . . . (18)

3 Selection of initial-state covariances

The importance of specifying both a system and an
initial-state covariance, for the simulation of a stationary
stochastic process has been mentioned in Section 1. tntuitive
reasoning suggests that an appropriate value for the initial-
state covariance is lim cov {x(r), x(t)}. A lemma is now

to+– m
stated with proof which gives the required initial-state
covariance in terms of the system matrices F and G. The first
step in the proof is to verify that lim cov {x(I), x(~)} is in
fact the required covariance. to+ m

Lemma: For the system of eqn. 1 with input white Gaussian
noise with zero mean and covariance of eqn. 2 applied at
time rO, the covariance of the system output R,(t, T) is a
stationary covariance R(f — T) for al] t> toand T ‘> tO if
and only if the initial-state mean is zero and its covariance is
the unique nonnegative definite solution P* of the linear
matrix equation

FP*+P*F’+GG’==0 . . . . (19)

The first step in the proof of this lemma is to use eqns. 10
and 11 to verify the following result:

F’(rO,t)l{f > tO and P(~O, ?.) = F’} == P . . (20)

(i.e., with initial state covariance I’(lo, to) = P, the covariance
of the state at any time /, i.e. F’(to, t), is also P). This result may
now be stated in terms of the covariances of the output
using eqns. 12, 13 and 20 as

To complete the proof of the lemma, it remains to be shown
that P is in fact the unique solution P* of eqn. 19. To show
this, we first conclude from eqn. 11 and the asymptotic
stability of 1? that F’ exists, is unique and is bounded. Dif-
ferentiating eqn. 11 with respect to time and using eqn. 4 gives

O= FP+PF’+GG’ . . . . . (22)
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Thus, since for a stable system eqn. 19 has a unique solution,
it is seen that

P*= P....... . . .. (23)

and the lemma is established.

4 Spectral-factorisation procedure

In this Section, a spectral-factorisation procedure is
given which determines a system {F, G, H, J} (eqn. 1) to-
gether with an appropriate initial-state covariance (assuming
that the initial-state mean is zero), so that when the inputs of
the system are excited by white Gaussian noise with a zero
mean and covariance matrix given by eqn. 2, the output has a
a prescribed covariance R(1 — T) for all tand T greater than
or equal to the switch-on time tO of the system.

It will be assumed throughout this Section that the pre-
scribed R(f — T) always includes ‘nonsingular’ white noise,
in the sense that when R(t — r) is given in the form of eqn. 14,
D is a nonsingular (and, of course, nonnegative-definite-
symmetric) matrix.

Since, as outlined in Section 2, any specified covariance
matrix can be arranged in the form given by eqn. 14, where A
is a square matrix of minimal dimension, the following
derivations will assume that the covariance matrix is specified
in this form. That is, the spectral-factorisation problem may
now be considered as the following:

Given R(f – r) in the form of eqn. 14, i.e. given the quad-
ruple {A, B, C, D}, determine a quintuple {F, G, H, Y, P}
from {A, B, C’, D} so that R(r -- T) has the form of eqn. 13
and so that with P* replaced by P the constraint of eqn. 19
holds.

We claim that a convenient (but not the only possible)
choice for {F, G, H, J, P} may be derived as follows:

H= C, F= A3J=J’=D112 . . (24)

where D112 is the unique positive-definite square root of D.
Since D1/2 is square, this implies that u and y have the same
dimension. The matrix P is any solution of

P(A’ – CD-lB’) + (A – BD--l C”)P

+ PC,D-l C’P + BD-”l B’ = O (25)

and G== (B-- PC) D-112 . . . (26)

lt is readily verified that, with the substitutions for
{F, G, H, J, P} in eqn. 13 suggested by eqns. 24, 25 and 26,
eqns. 14 and 19 are recovered. It is important that a solution
P of eqn. 25 not only gives G (eqo. 26), but also is the initial-
state-covariance matrix for the system {F, G, H, J} (eqns. 1,
24, 19 and the lemma of Section 3) when used for simulating
the covariance matrix of eqn. 14.

There are a number of approaches to solving eqn. 25.6
The approoch presented is chosen so that the resulting
system satisfies the property that, as well as the system
itself being stable, the system corresponding to the transfer-
function-matrix inverse W-- ‘(s) is also stable (eqn. 18).
That is, both W(s) of eqn. 17 and W- l(s) of eqn. 18 are
analytic in the right halfplane.

Since Z(s) is positive-real, its transpose, given by taking the
transpose of eqn. 16, i.e.

Z’(S) =;+ B’(SI –A’)””l C ‘. . . . (27)

is positive-real, and, since {A, B, C’, D/2} is a minimum
realisation of Z(s), {A’, C’, B, D/2} is a minimum realisation
for Z’(s). This means that, using a theorem, ~ the solution
II(t, 11) of the Riccati matrix differential equation

il = H(A’ – CD-lB’)

+(A – BD-l C’)~ + II CD-l C’H +BD-lB’

. . . (28)

with the boundary conditions

l’I(f,, lj)=o . . ~ ~ . ~ ~ ~ . @9)
f ANDFRSON. B D. 0,: iOC. Cit.
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is well defined for all t < tl, and the limit

lim rI(fO,fl)=F . . . . . . . . (30)
to+– cc

exists. Further, ~ is one solution of eqn. 25. If also the
Fourier transform of R, namely l?~(je.o), is strictly positive at
all frequencies, i.e.

RT(jco)>qI . . . . . . . . . . (31)

for all w and some positive constant q, ~ is also the unique
positive-definite solution of eqn. 25T with the additional
property

Re ~i{A’ – CD-l(B – ~C)’} <0 . . . . (32)

This may be rewritten using eqns. 24 and 26 as

Re ~i{F’ --- HJ-l G’} <0 . . . . . . (33)

and thus, for this case, W – l(s) (eqn. 18) is analytic in the
right halfplane.

These results may be summarised as a lemma for the
specification of systems to simulate stationary stochastic
processes with prescribed covariances.

Lemma: A stationary stochastic process with a prescribed
covariance arranged in the form of eqn. 14 may be simulated
by a sudden application of white Gaussian noise with zero
mean and covariance given by eqn. 2 to the system {F, G, H, J}
(eqn. 1) having an initial-state mean of zero and a covariance
of P. The value for P is any solution of eqn. 25, where the
quadruple {A, B, C, D/2} characterises the specified covariance
(eqn. 14) and the quadruple {F’,G, H, J} is given from eqns. 24

and 26. The particular P (i.e. ~) which, for the case when A
is of minimum dimension and the specified covariance has the
property of eqn. 31, is the unique positive-definite solution
of eqn. 25 satisfying the eigenvalue inequality (expr. 32), is
given as the limiting solution (eqn. 30) of the Riccati matrix
differential eqns. 28 and 29.

As an example, consider the simulation of the covariance

R(t – T) = 8( I – T) + be-a@’Jl([ – T)

+ f!Je-”(’-’)l(T – /) . (34)

where a is a positive constant and Ibl < a. Note that the
Laplace transform RT(s) of R(I) is

b
RT(s)=l+&+— (35)

—s+ a”””””

and that

RT(jco) =
L02 + (a2 + ab)

~2+a2 -”’””’ “
(36)

which is nonnegative for all real w, as required.
In terms of the earlier notation, one has

A= F=–a, B=l, C= H= b, D=l, J= 1 . (37)

The matrix quadratic equation, eqn. 25, becomes a scalar
equation

b2p2–2(a--+b)p+l=0 . . . . . . (38)

(where P of eqn. 25 has been replaced by p in eqn. 38). A
solution of eqn. 38 is

(a + b) + ~{(a + b)z -- b2}p=–— —.
bz . . . . (39)

which yields the covariance of the stochastic initial state, as
well as the matrix G of eqn. 26.

If the correct F, G, H and J are used, but the initial state is
taken as zero, eqn. 12 gives the associated covariance. The

error which would result between the covariance of eqn. 12
and the correct covariance of eqn. 14 is

R(t – T) – R,([, T) = H’e~tf-T){P – P(/o, T)}Hl(f – T)

+ H’{P – P(~o, f)}eF’(’ -- OHI (T – ~)

. . . . (40)
where (eqn. 10)

J
p(ro,~)~ ~F(f–NGG’#’(f-UdA . . . (41)
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Making the appropriate identifications of F, G etc.,

P(fO, t) = p{l – e-za(r-fo)} . . . . . (42)

and thus

R([ – 7) – R,(I, T) = b2e-”(’-T)e-2”(’-f0Jl(f – T)

+ b2e-a(T-f)e-2a(~-tO)l(T – f) . (43)

Observe in particular that

R(O) – R,(f, t) == b2e--2a(t - ‘o) . . . . . (44)

and that the error between R and R, decays exponentially,
with time constant l/2a. This is as one might expect; the
effect of an initial state, be it stochastic or deterministic, dies
-out after several time constants of the simulating system.

5 Conclusions

The two main results of the paper are applications of
recent system-theory developments to the practical problem
of the simulation of stochastic processes with prescribed
stationary covariances. The determination of the initial-state
covariance to use in a simulation means that the system
outputs may be used from the switch-on time onwards, rather
than after a delay of the order of a few time constants of the
system. In the case where state-space equations are known
for a system which would have the required covariance in
the steady-state, the derivation of the initial conditions
requires the solution of a linear matrix equation (or the cal-
culation of an infinite integral). When such a system is not
known and it is not desired to find it by the standard spectral-
factorisation procedures, it may be found, together with the
initial-state covariance, by solving a quadratic matrix equation.
A particular solution of this equation may be derived as the
limit of the solution of an associated Riccati equation; since
such differential equations have been the subject of study by
computer programmers in connection with optimal-control
problems,6 this approach to the whole spectral-factorisation
problem may prove worthwhile.

Some of the results of the paper have been generalised
to time-varying systems with nonstationary covariances;
References 7 and 8 may be consulted.
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