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Abstract: At the current worrisome rate of global consumption, the linear economy model of produc-
ing goods, using them, and then disposing of them with no thought of the environmental, social, or
economic consequences, is unsustainable and points to a deeply flawed manufacturing framework.
Circular economy (CE) is presented as an alternative framework to address the management of
emissions, scarcity of resources, and economic sustainability such that the resources are kept ‘in
the loop’. In the context of manufacturing supply chains (SCs), the 6R’s of rethink, refuse, reduce,
reuse, repair, and recycle have been proposed in line with the achievement of targeted net-zero
emissions. In order to bring that about, the required changes in the framework for assessing the
state of manufacturing SCs with regard to sustainability are indispensable. Verifiable and empirical
model-based approaches such as modeling and simulation (M&S) techniques find pronounced use
in realizing the ideal of CE. The simulation models find extensive use across various aspects of
SCs, including analysis of the impacts, and support for optimal re-design and operation. Using the
PRISMA framework to sift through published research, as gathered from SCOPUS, this review is
based on 202 research papers spanning from 2015 to the present. This review provides an overview
of the simulation tools being put to use in the context of sustainability in the manufacturing SCs,
such that various aspects and contours of the collected research articles spanning from 2015 to the
present, are highlighted. This article focuses on the three major simulation techniques in the literature,
namely, Discrete Event Simulation (DES), Agent-Based Simulation (ABS), and System Dynamics
(SD). With regards to their application in manufacturing SCs, each modeling technique has its pros
and its cons which are evinced in case of data requirement, model magnification, model resolution,
and environment interaction, among others. These limitations are remedied through use of hybrids
wherein two or more than two modeling techniques are applied for the desired results. The article
also indicates various open-source software solutions that are being employed in research and the
industry. This article, in essence, has three objectives. First to present to the prospective researchers,
the current state of research, the concerns that have been presented in the field of sustainability
modeling, and how they have been resolved. Secondly, it serves as a comprehensive bibliography
of peer-reviewed research published from 2015–2022 and, finally, indicating the limitations of the
techniques with regards to sustainability assessment. The article also indicates the necessity of a new
M&S framework and its prerequisites.

Keywords: simulation; modeling; Industry 4.0; supply chain models; DES; agent-based; hybrid
simulation; SSCM

1. Introduction

Circular economy (CE) as a framework presents an alternative to the traditional
economy wherein value creation is conceived as being separate and de-linked from the
resource utilization [1]. CE, in contrast to the linear economy, bases itself on three principles,
namely maximizing the resource utility and efficiency, the extension of the life of the
resources and assets, and adding to the lifecycle of the resource or an asset through re-
purposing and recycling. In having done so, the CE framework seeks to keep the resources
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“in the loop” in a given economy [2]. There is an increased awareness that industrial
production and SC activities are one of the principal components of the total carbon
emissions. According to a report by the United States Environmental Protection Agency
(EPA) they account for 23% of total carbon emissions [3]. As a consequence, there has
been an ever-increasing awareness of the need to mitigate the effects of industrialization.
This awareness is well reflected in the research community in the recent past which can be
gauged from Figure 1. It depicts the prevalence of research with keywords “Manufacturing”
AND “Circular economy” and “Simulation” AND “Circular economy” on SCOPUS since
2006. Although there has been an increasing interest in the CE, in the present context,
a sustained incongruity between the understanding of CE and its actual realization as
social, economical, and, environmental performance in manufacturing-based SCs is greatly
lacking [4]. This incongruity can be primarily addressed through use of assessment of
sustainability measures that are verifiable, communicable, and widely understood. The use
of simulation modeling as a tool for assessing and improving the sustainability performance
in manufacturing and SC finds a wide acceptance currently [5]. This can be assessed from
the increase in the number of studies in the recent past as shown in Figure 1.

Figure 1. Articles published within CE framework in contexts of manufacturing and simulation. The
figure presents the evolution of research in the fields of CE in manufacturing and simulation and CE.
The field of sustainability simulation is a fairly new aspect but there has been a steady increase in
research in the past few years.

Modeling sustainability in the industrial context covers various aspects of manufactur-
ing and SCs such as in warehousing, logistics, production planning, and resource allocation
while invoking various facets of sustainability such as waste elimination, energy efficiency,
resource efficiency in manufacturing and SC [6]. The three major simulation tools used
to model manufacturing and their allied SCs include Discrete Event Simulation (DES),
Agent-Based Simulation (ABS), and System Dynamics (SD). The locales, contexts, and
rationale of their application in manufacturing and SCs, although intersecting to a good
degree, are diverse and well cut out. These rationales and contexts have in the recent past
been expanded into the realm of sustainability analysis. While taking into account their
extensive use, they are beset with a number of limitations vis-à-vis the model magnification,
data requirements, model validation, and granularity. Doing away with the limitations
and anticipating the benefits of combining two or more simulation techniques (such as
DES+ABS, ABS+SD, SD+DES, ABS+DES+SD), hybrid techniques find a prominent use in
the realm of sustainable manufacturing and SCs. A number of computer-based Modeling
and Simulation (M&S) tools are widely available with some of them paid and licensed while
others free and open source. This article catalogs some of the free-to-use software in the case
of each M&S technique. The literature is rife with numerous techniques that are employed
in formulating the simulation models and they are quite diverse unlike the application of
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the models themselves. However, a framework wherein these techniques are characterized
and brought together with respect to their actual application is severely lacking.

The industry is on the cusp of a new revolution termed as Supply Chain 5.0 (SC 5.0).
SC 5.0 seeks to realign the goals of industry from formerly technology-driven growth to
value-driven sustainable growth [7]. The SC 5.0 is less of a new technological paradigm
and more of an assimilatory philosophy wherein the current technologies are redirected in
service of sustainable production and consumption. This includes putting to use the SC
4.0 technologies such as industrial internet of things (IIoT), Cyber-Physical Systems (CPS)
and digital twins (DT), augmented reality (AR), and virtual reality (VR) for simulation and
modeling of production systems and SCs.

A number of reviews have been published in this framework dealing with various
aspects of modeling and sustainability, an exhaustive list of which has been presented in
Section 3. Cataloging the simulation methods in sustainability a number of reviews may be
indicated, including an article in which the application of three major simulation techniques,
namely, Discrete Event Simulation (DES), Agent-Based Simulation (ABS), and System
Dynamics (SD) are discussed [8]. Studying various aspects of energy modeling, the studies
include a review of software-based simulation tools [9], industrial sector-wise models of
energy analysis, energy evaluation and energy-saving following the ISO50001 standard [10],
and use of virtual and augmented reality and digital twins for energy modeling [11]. A
number of reveiws also address the aspect of modeling the product lifecycle [12–15].
The specific contexts where review work has been done includes discrete production
environment [16], cyber-physical systems (CPS) [17], knowledge management [18], global
and local optimization methods [19], value stream mapping (VSM) [20], and Virtual Reality
(VR) [18]. The need for the simulation methodology in manufacturing and their allied
SCs, in the present context, is to rise up to the challenge of the long-term global need
of manufacturing SCs. The amorphous nature of published research calls for bringing
together the diverse themes while taking into consideration a need for a novel framework
for M&S. A framework that takes into account the traditional techniques of modeling while
incorporating novel technologies such as 3D-printing, Augmented reality, Virtual reality,
etc., within the framework of the Circular Economy (CE) paradigm.

Following the PRISMA framework, this article brings together various techniques of
M&S and their hybrids finding use in the area of sustainability of manufacturing and SCs.
The paper starts with a bibliometric analysis of the collected research works following which
a detailed description of the three simulation techniques and their applications is given.
A section detailing the various possibilities and resultant characteristics of hybridizing
these three techniques is explored. In Section 5, limitations of the current state of the
M&S paradigm with regards to modeling CE are discussed and a future course of action
is delineated. The paper also includes two appendices. In Appendix A, the exemplary
applications of the M&S techniques in the industry in the context of CE are tabulated. In
Appendix B, the most commonly used open-source M&S software and their applications in
sustainability assessment are tabulated.

In essence, this article

• Indicates the state of published research in the field of modeling of sustainable manu-
facturing and their allied SCs;

• Assesses the characteristics and circumstances of application of Discrete Event Simula-
tion (DES), Agent-Based Simulation (ABS), System Dynamics (SD), and their hybrids
in sustainable manufacturing;

• Underlines the bearings of simulation and modeling on the impending supply chain
5.0 (SC 5.0) paradigm.

2. Methodology and Bibliometrics

This section describes in detail published research in the field of modeling and simu-
lations in manufacturing and SCs within the framework of CE. The bibliometric review
approach was created to compare the results of statistically based observational studies
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as in medical research, using large datasets; it has since been introduced and is becom-
ing increasingly recognized as a reliable evidence-based review model in management
research [21]. This section integrates the systematic literature review with the bibliometric
analysis. The PRISMA framework has been followed for selecting the research articles for
this review as Figure 2 elucidates the procedure followed for collecting the research articles
for this review.

Figure 2. PRISMA flowchart depicting the procedure for collecting the research articles. PRISMA is
an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses.

2.1. Selection and Search Strings

The review is composed of the articles composed primarily from the SCOPUS database
which is the largest database for peer-reviewed articles and publications. The main elements
of the research in question include “sustainability”, “manufacturing”, “simulation”, and
“modelling”. The three search strings used are:

1. “simulation” AND “manufacturing” AND “sustainability”;
2. “modelling” AND “manufacturing” AND “sustainability”;
3. “simulation” OR “modelling” AND “supply chains” AND “sustainability”.

On searching of the “Article title”, “Keywords”, and “Abstract” tab in the SCOPUS,
the database returned 3559 articles (by April 2022). The search was further limited to
“journal articles” with the language in “English” whilst not including conference papers,
short surveys, notes, and errata, which reduces the 3559 articles to 1412. Following the
PRISMA framework, duplicate records, ineligible papers, and inaccessible records were
excluded and 228 papers were retrieved for screening falling in the time frame 2015 to 2022.
Adding 74 papers from the other sources, while also including some research preceding the
aforementioned time frame, the review is constituted of 202 articles and proceedings. The
retrieved papers were put through the Bibliometrix online tool wherein various associations
and contours of the collected papers were sought.
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2.2. Initial Data Statistics

The 1412 screened articles were published between 2015 and 2022. With the exception
of 2022 (142), the number of articles published each year has grown since 2015, as shown in
Figure 3. This indicates that academic interest in the given topic is growing.

Figure 3. The documents as returned by the SCOPUS database with the above-described parameters
and search strings. The number of studies shows a consistent increase as illustrated by the trend line.

2.3. Bibliometric and Content Analysis

Bibliometrics is a statistical analysis of academic publications which includes citation
analysis, co-citation analysis, and so forth. In this paper, R-based bibliometrix software
using biblioshiny online plug-in is used for bibliometric analysis and preparing the raw data
for co-citation analysis. Content analysis is a useful method for systematically reviewing a
group of texts. We conducted a content-based literature survey of the 202 articles indicated
by the co-citation analysis for six clustering outcomes. We used the deductive strategy to
code the articles based on the clustering results of the co-citation analysis, and then used an
inductive approach to discover sub-themes inside each cluster by synthesizing the findings
of the articles.

2.4. Bibliometric Analysis

The collected papers in this article amount to 202 which fall within the time frame of
2015–2022. The year-wise distribution of the papers included in this review is indicated in
Figure 4. As can be gleaned from the figure, the research output on the present theme has
remained virtually constant pointing to the continued interest in the topic. Nonetheless,
there has been an evolution in the themes that have been taken up in research which are in-
creasingly gravitating towards automation with simulation techniques such as Augmented
Reality (AR), Virtual Reality (VR), Digital Twins (DT), and hybrid simulations [22].

Figure 4. Year-wise distribution of covered research topics. Apart from the papers spanning the
time frame 2015–2021, which form the mainstay of the research, some of the papers which provide
supportive evidence to the research results have not been cataloged above.
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The research results collected for this review spans the globe and have been published
in various journals. The topical relationship between the countries, keywords, and the
publishing journals is depicted as three-field plot in Figure 5. The three-field plot in large
part agrees with the country citation index such that India, USA, Italy, and Germany have
30, 31, 16, and 14 articles, respectively. Besides this, the sources which have been published
most on the present topic include the journal of sustainability (Switzerland), Procedia CIRP,
and Journal of cleaner production with 15, 12, and 14 articles respectively included in this
review. The keywords that mediate between the two in the plot are typical of the research
theme and include Supply chain 4.0, energy efficiency, and simulation, etc.

Figure 5. The three-field plot or the Sankey diagram showing the relationship between the publishing
countries, author keywords, and the journals. The figure shows the most significant studies in the
present context which appear in peer-reviewed journals. India, USA, and Turkey being the most
significant publishing countries with sustainability (Switzerland), procedia cirp, and journal of cleaner
production being the most significant journals.

The abstracts of the collected papers were analyzed, using the Bibliometrix application,
for the recurrent themes and words. Excluding the trivial words and focusing on two-
worded and three-worded themes, a thematic tree map was generated which is shown in
Figure 6. The theme of energy simulation and modeling dominates as it is also reflected in
the amount of research dedicated to this topic. A total of 40 papers in the collected research
area directly or indirectly deal with this topic. Some of the most-cited of those papers
include themes such as simulating energy conservation in the milling process [23,24] and
selective laser melting [25], etc. Besides this, lifecycle assessment shows a frequent presence
in the abstracts. Some of the research includes topics such as social LCA [13], system dy-
namics and LCA [26], lifecycle cost assessment, and LCA [27], energy assessment and LCA
in the Industry 4.0 [28], sustainable machining process [29], and lifecycle inventory gate-
to-gate process energy use [30], among others. An alternate theme of the product lifecycle
is also present in the abstracts which is similar to that of the LCA. A contemporaneously
important topic of additive manufacturing also finds use in LCA [31–33].

The collected literature was subjected to the Bibliometrix online tool wherein, using
the co-occurrence analysis on the 492 keywords, a keyword network was generated. The
keyword network, showing the outline of published research, is depicted in Figure 7.
The four clusters are named according to characteristic keywords. They are the lifecycle
assessment cluster, decision support system, manufacturing methods, and numerical model.
The cluster of product lifecycle includes themes such as environmental impact, benchmark,
energy efficiency, and costs [10,34–37]. The cluster of decision support system includes
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themes such as economics, operations, planning, investments and competitions addresses
topics such as enterprise resource planning through simulation [38], real time control [39],
energy investment [40], green investment [41], and agent-based simulation for scheduling
in a competitive environment [42]. The third cluster termed energy modelling methods
includes themes such as machining, resource efficiencies, and cutting tools including
topics such as energy consumption in machining [24,43,44], manufacturing systems using a
digraph-based approach [45], and sustainable CNC milling [46]. Finally, the fourth cluster
termed numerical model includes topics such as product mix for the process industry [47]
and NSGA-II algorithm for the process planning problem [48].

Figure 6. Tree map of the keywords mined from the collected abstracts. The keywords were mined
from the abstracts of the collected research articles. The single-worded keywords were excluded from
the map and only the two-worded and three-worded keywords were selected in the research articles
to better reflect the contours of the collected research theme.

Figure 7. Keyword network of the published research works. The keyword network shows four
prominent clusters of co-occurrences. The counting of matched data inside a collection unit is known
as co-occurrence analysis.

3. Meta-Review of Reviews

Several reviews published recently have attempted to approach the topic at hand
differently. Since the motivations of this review are broad-ranging, the possible topics that
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this review seeks to incorporate are many. An exhaustive list of these reviews is tabulated
in Table 1.

Table 1. Recently published literature reviews with thematic proximity to this article. The articles span
various topics, including simulation tools such as LCA and sustainability assessment, among others.

Author Title Year

de Mello Santos V.H., Campos T.L.R., Es-
puny M., de Oliveira O.J. [49] Towards a green industry through cleaner production development 2022

Mies A., Gold S. [50] Mapping the social dimension of the circular economy 2021

Birkel H., Müller J.M. [51] Potentials of industry 4.0 for supply chain management within the triple
bottom line of sustainability—A systematic literature review 2021

Anaruma J.F.P., Oliveira J.H.C., Anaruma
Filho F., Freitas W.R.S., Teixeira A.A. [52]

The first two decades of Circular Economy in the 21st century: a biblio-
graphic review 2021

Yasamin Eslami and Mario Lezoche and
Hervé Panetto and Michele Dassisti [53]

On analysing sustainability assessment in manufacturing organisations:
a survey 2021

Machado M.C., Vivaldini M., de Oliveira
O.J. [54]

Production and supply-chain as the basis for SMEs’ environmental man-
agement development: A systematic literature review 2020

Furstenau L.B., Sott M.K., Kipper L.M.,
MacHado E.L., Lopez-Robles J.R., Dohan
M.S., Cobo M.J., Zahid A., Abbasi Q.H., Im-
ran M.A. [55]

Link between Sustainability and Industry 4.0: Trends, Challenges and
New Perspectives 2020

Micolier A., Loubet P., Taillandier F., Sonne-
mann G. [56]

To what extent can agent-based modelling enhance a life cycle assess-
ment? Answers based on a literature review 2019

Sassanelli C., Rosa P., Rocca R., Terzi S. [57] Circular economy performance assessment methods: A systematic litera-
ture review 2019

Ahmad S., Wong K.Y. [58] Sustainability assessment in the manufacturing industry: a review of
recent studies 2018

Garwood T.L., Hughes B.R., Oates M.R.,
O’Connor D., Hughes R. [9] A review of energy simulation tools for the manufacturing sector 2018

Moon Y.B. [8] Simulation modelling for sustainability: a review of the literature 2017

Figure 8, a keyword network of the recently published reviews, promptly exhibits
the breadth and diversity of the topics that these reviews address. Among those topics
belongs the topic of sustainability indicators or sustainability KPIs. This theme has been
approached by a number of reviews. Indicating the 144 sustainability metrics along the
three aspects used in manufacturing, a review [59] undertook the maturity analysis of the
(key performance indicators) KPIs. It concluded that there is an inconsistent usage in KPIs,
particularly in social and economic aspects. Another review along the same lines adopted
the division of “sustainable manufacturing” and “manufacturing sustainable” while also
incorporating account facility design and supply chains into manufacturing within the
“6R” framework. Discerning the need for appropriating social sustainability indicators in
manufacturing, a number of reviews have been published recently. Covering five aspects
of social sustainability, namely organization, workers, customers, local community and
society at large within the circular economy framework, the review [50], while seeking to
clarify the concept, characterized the indicators along three perspectives, namely, micro,
meso, and macro levels. Another review [60] focusing on social sustainability, on basis of
the collected research works, concluded that creating job opportunities is by far the most
important of the indicators while pointing to the need for aggregation approaches. One may
also indicate the reviews investigating social performance as an aspect of organizational
performance [61]. The social aspect of CE has also been understood through lifecycle
assessment termed as the social lifecycle.
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Figure 8. A keyword network of the published reviews in the field. Besides showing the pre-
eminence of the CE and lifecycle assessment, the keyword network also presents sustainability-related
concepts that deal with the idea whole paradigm of manufacturing rather than just the actual process
of manufacturing.

A review [14] concluded that the guidelines for operationalization, application, and
measuring of social indicators as being limited leading to bottlenecks in gathering data
and identifying stakeholders concerns. Another review charted out the history of social
lifecycle assessment, dividing it into four stages wherein the present era is termed as that of
the standardization [15]. Another aspect that this seeks to incorporate is that of simulation,
modeling and optimization within the CE framework. A number of simulation techniques
have been researched into and they include pinch analysis, P-graphs, and AI/ANP (Arti-
ficial intelligence/Analytic Network Process) [62], review of energy simulation tools [9],
review of ABS, DES and SDM simulation techniques [8], and a review of agent-based
simulation with LCA techniques [56].

4. Simulation Models and Sustainability: Characterization

This section shall provide an exhaustive overview of the simulation models in use
in the context of sustainability in SC. Simulation models can be characterized along three
fundamental aspects:

• Assessing the temporal aspect of the processes;
• Taking into consideration the randomness of the processes;
• In view of the organization of the process data.

If the factor of time is addressed in the simulation, it is called a dynamic simulation
and if not, it is termed as a static simulation. Dynamic modeling emulates an existing or
possibly feasible system state to analyze the dynamic relationship between model variables
and, in the case of sustainability, it generally consists of resorting to the use of the systems
approach [63]. Dynamic simulation can further be classified as continuous or discrete such
that in discrete simulations, the changes do not occur continuously but at given times. In the
continuous simulation, the changes are assumed to have occurred continuously. Discrete
event simulation is further characterized as time-stepped simulations and event-driven
simulations. In the former, time intervals are assumed to be equal whereas, in the latter, the
events or changes in the system are marked rendering the time intervals as unequal.

A number of studies have compared continuous simulation and discrete event sim-
ulation. Sustainable manufacturing processes have been modeled and compared using
both discrete event and system dynamics simulation so as to ascertain aspects that are
appropriate for each modeling approach [64].

On the other hand, based on randomness, the simulation may be described as being
deterministic or stochastic. In a deterministic simulation, each simulation run gives the
same result whereas it is not the same in the case of the stochastic simulations. A study
comparing the sustainable production planning approaches using deterministic and the
stochastic method may be cited. A decision framework is presented which may guide the
managers to choose between the two [65]. Finally, with regards to data management, a
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simulation can be either a grid-based simulation or a mesh-free simulation. A grid-based
simulation construes a manufacturing plan as discrete cells and the simulations are done
such that the relationship between various cells is taken to account. A mesh-free simu-
lation derives data while conceiving individual entities [66]. The literature deliberates
upon the issue of model resolution. Multi-resolution modeling is presented in contrast
to hierarchical modeling [67]. In the case of modeling sustainability in manufacturing
and SCs, the idea of multi-resolution modeling is presented as fundamentally essential as
simulating sustainability in any context includes dealing with different levels simultane-
ously. Multi-resolution modeling is defined as the approach whereby a complete model is
approached or parts of the model with different resolutions are addressed. It is brought
about in a way whereby long-term questions are solved with low resolution whereas
short-term questions use higher resolution models. An improvisation on the concept of
multi-resolution modeling is the idea of a sustainable cockpit [68]. Additionally, the model
presents a continuous modeling technique all the while conceiving of the system in discrete
terms. Another aspect of the simulation is what is termed model magnification. Model
magnification has been alluded to in the literature along different time frames. Models
have been defined as being strategic, tactical, and operational [69]. Strategic models refer
to time frame form five to ten years. Tactical models are addressed to time frames from few
months to two years, and the operational modeling deals with the weekly, daily or hourly
operations. In context of manufacturing and supply chains, the strategic modeling spans
the organizational design, facility location, product development, supplier selection, etc.
The tactical modeling includes problems such as warehousing, maintenance, and stowage
handling. Operational modeling deals with scheduling, lot size assessment, and workforce
planning, among others.

In manufacturing, various simulation tools have been employed with the majority of
the research works and applications using the following simulation tools:

• Discrete Event Simulation (DES);
• Agent-Based Simulation (ABS);
• Systems Dynamic models (SD);
• Hybrid models.

Figure 9 indicates the growth of research in DES, ABS and SD simulation models in
manufacturing and SCs as gleaned from the data from 2000–2021 on the SCOPUS database.
The DES found great use early on, while SD and ABS are slowly catching up.

Figure 9. Yearly research output across the three simulation techniques. The figure shows the research
output in case of the three simulation techniques in the field of manufacturing and supply chains as
gathered from the SCOPUS database. Although DES far outnumbers the other two initially, there has
been increasing research in SD.

As can be gleaned from Figure 9, DES is the most used simulation method in the
published research works [70]. Comparing the DES with the SD, the DES is applied in
the cases where queuing of some sort is being used, whereas SD is used in the systems
which are dynamic and thus exhibit a “flow”. The DES thus deals with the microscopic
level such that they take into account the smaller details of the system. The consequence
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of this is that there is a greater requirement of data in the case of DES and it should be of
high quality [71]. Furthermore, when the DES is applied in the case of a production system,
there is a requirement that there is a constant updating of the data as well [72]. SD employs
a system framework while using flows, stocks, and feedback loops to model the behavior of
the system through time [73]. The SD, on the contrary, has a macroscopic perspective and
takes into account a wider perspective. SD and DES also deal differently with randomness.
DES is stochastic and, therefore, for each given run gives a different result, whereas the SD
is deterministic and gives the same results for each run. The process of model building
has been compared in the case of SD and DES [74]. The modeling in DES on average takes
more time than the SD and, therefore, it is assumed that DES is more complex than the
SD modeling. DES allows investigators to model the progression of a given system, e.g.,
the advancement of a product through an assembly line—and is frequently used to depict
a system’s business operations. When the temporal fluctuation of the states of system
elements is an important source of variability in the system’s outputs, this technique is
particularly well suited. Although SD and DES may generate identical findings, the method
used may have an impact on the system’s limits and how an investigator addresses a given
issue [75].

Other comparisons cited in the literature [76] are:

• Animations are fundamental to DES whereas model descriptions are more important
to SDs;

• SD models are more representative of the problems than DES models;
• SD aids in conceptual learning more than DES;
• Results of DES are more difficult to interpret than that of SD.

Recently, a good deal of research has been conducted by taking up the hybrid approach
wherein both SD and DES are used together. Some of the instances in case of manufacturing
include use cases, including performance analysis [77], re-configurable manufacturing [78],
value chain environment [79], etc.

ABS, unlike the SD and DES, is a context-dependent modeling technique and unlike
the top-down approach as used in SD, it uses a bottom-up approach in modeling such that
the behavior of the whole system is determined by the interaction between the agents [73].
Although the ABS unlike SD is stochastic but according to Agency Theorem for System
Dynamics, SD models are basically subsets of ABS models [80]. This implies that all the SD
models can be modeled as ABS models but that comes at a greater cost as ABS models are
complex and time-consuming. Like DES, ABS has stochastic nature and models random
behavior but there are major differences. In the ABS, in contrast to the DES, the agents are
modeled with behavior and thus are termed as active. Additionally, the ABS does not use
queuing like DES although, in some hybrid DES models, some entities may be modeled
as active. Figure 10 depicts the comparative applicability of the simulation models with
respect to their abstraction level and magnification.

Figure 10. The figure shows the levels of abstraction that the three simulation techniques are capable
of. The amount of data required for a model is inversely proportional to its level of abstraction.
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4.1. Discrete Event Simulation (DES)

Discrete event simulation originally appeared in the late 1950s, and it has slowly
increased in popularity to become the most widely utilized of the traditional operational
research methodologies across a wide range of industries, including manufacturing, travel,
banking, health, and beyond. A discrete event system (DES) is a discrete-state and event-
driven system in which the state changes only as a result of discrete events occurring
across time. Event-based modeling refers to the representation of the information of the
discrete event system using an event graph. The representation of temporal and logical
relationships between the event is called an event graph [81]. An event graph consists of
a set of event nodes and directed edges with two types of edges described as scheduling
edges and canceling edges. An event-based model allows the system to evolve through a
sequence of events such that an event is described as a change in the state of the model. A
discrete event modeling is defined, in contrast to continuous modeling, as the system that
changes discretely at certain points in time [82]. As the events taking place in the system
are random, therefore, any description of the system using differential equations is not
possible; thus, the requirement of the event graphs is warranted. The components of DES
include the following items

• System State: The collection state variables which, at a given time, describe the state
of system;

• Simulation clock: It describes the current time in the system;
• Event list: List made up of list of events taking place at a given time in the system;
• Statistical counters: Variables that have statistical system data stored in them;
• Initialization routine: An algorithm whereby the simulation is initialized at time zero;
• Timing routine: An algorithm that draws up sequence of events with time;
• Event routine: Algorithm that updates the system state after an event has occurred;
• Library routines: Random observation generator from probability distributions;
• Report generator: Algorithm that estimates the optimal measures and stores them

as reports;
• Main program: This is an an algorithm that, using the timing routine, determines the

next event and thence shifts the control to the event sequence and updates the system.

The magnified and data-dependent view of DES implies that its application in man-
ufacturing SCs is generally limited to the operational level. Nonetheless, some instances
where DES finds its use at strategic-tactical level of operations include: design of new
facilities [83], improvement of warehouses and distribution centers [84,85], changes in
staffing and operating rules, and effect of investments on facility operation [86,87], among
others. DES has historically been invoked in the case of sustainability through the lens of
optimisation such that sustainability was conceived as a sub-problem of optimization. The
earlier approaches to sustainability using DES were limited as “optimization of multiple
objectives was not very common in manufacturing simulation” [88]. The evolution of DES
software rendered them useful in the case of complex systems such as logistics, healthcare,
military strategy, and profit optimization. One of the major issues applying DES for sus-
tainability can be attributed to limited computing power in the past. The limited size of
memory limited the size of the models that could have been developed. The clock speed
also limited the simulations that could be run. However, in the recent past, there has been a
steep increase in the computing power available to researchers and practitioners. Following
this, a number of studies appeared where DES was applied in the case of sustainability
assessment. The use of DES for modeling sustainable operations in manufacturing SCs has
been carried along two major themes. Firstly, those problems that deal with the material
flow in industrial and their allied operations and, secondly, those dealing with energy
flows in the operations. The reason for this is that DES requires extensive data which are
objective and translatable into numbers. This is easily achieved in case of energy modeling
and flow modeling where data are easily available. The focus of DES on the operational
modeling of sustainability is well exemplified by a study where material and energy flows
are modeled in an industrial setting using DES. The model has been applied by decom-
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posing the factory into infrastructure, process chains, individual processes, and building
service systems. The energy and material flows are modeled using machine utilization
and energy demands over time. The dynamic inter-dependencies were also taken into
consideration [68]. Another recent instance of the application of DES with operational
concerns is a study wherein sustainable manufacturing is conceived as being a function of
energy management [89]. The study uses real-time online DES to model renewable energy
sources with the intention of reducing carbon dioxide emissions and energy costs. The
study uses ERIM-P (Energy Resources Intelligent Management-Predictor) data prediction in
combination with ERIM-RT real-time data of manufacturing plant and weather conditions.
Nonetheless, DES also finds use at the policy-strategic level. A specimen of this is a study
that models the product lifecycle using DES. Termed lifecycle simulation, the DES is used to
simulate the material flows [90]. The calculation is carried out using DES wherein the total
amount of pollutants, waste, energy usage, costs, and profit of the company for a given
period are considered. In order to better understand the application of DES for assessing
sustainability, various aspects of DES models have been lined up with their efficacy with
regards to sustainability assessment in Table 2. As can be discerned, the DES with regards
to sustainability is beset with two major limitations. Firstly, DES is limited by scope and
abstraction level and, secondly, DES requires large and precise datasets to model a system.
Another issue with DES is that, with the increase in the complexity of the modelled system,
its complexity increases exponentially; as a consequence, the use of DES has been limited
to operational-tactical levels. In case of the first limitation, the issue has been alleviated
using hierarchical modeling. The higher levels are modeled using SD or ABS while DES is
used for micro/operational levels. The data dependency of DES has also been addressed
using ABS and SD [91].

A detailed description of simulation hybrids is presented at the end of this section.

Table 2. Major aspects of DES and their efficacy with regards to modeling sustainability.

Criteria DES Effects on Sustainability Assessment

Approach Process-based Process-centered sustainability assessment eschews the organizational/systemic
view focusing on a given process, e.g., resource flows [92]

Object Entity

Objects in a system are distinct individuals. Limited behavior with the envi-
ronment, thus does not exhibit emergent behaviors, thus limiting the use in
socio-economical contexts. It also cannot capture proactive human centric be-
havior. Limited ability to adapt the structure at runtime [93].

Space/Time Discrete Sequential process models. State changes occur at discrete points of time. Models
are simulated in unequal time steps, when ‘something happens’ [94].

Feedback Implicit Feedback, delays and nonlinearities are not emphasized which in case of sus-
tainability assessment renders strategies as static

Randomness Stochastic Randomness explicitly modeled with the appropriate statistical analysis, com-
plexity increases exponentially based on the size and requirement [94].

Predictive
power High

High predictive power whereby actual flows are determined, e.g., carbon dioxide
emission assessment [95]. The human agents are well-defined decision makers
as the output takes form of point predictions.

Abstraction
level Meso-Micro Sustainability assessment at lower individualized functions, e.g., solid waste

management [96]

Scope Operational-Tactical The sustainability assessment for short time range, e.g., integrating human
factors in manufacturing with simulation runs of one month [97]

Data Quantitative
Data to be sourced from plant databases which includes energy utilization,
emissions, resource utilization, etc. Data from a CNC for energy utilization as an
example [98].

Use-case Optimization, Prediction and
bottleneck analysis

Sustainability is conceived within the rubric of optimization. Energy optimiza-
tion cases are the most common examples [99].
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There are 27 articles that deal with simulating sustainability using DES in the indus-
trial context. Some of the studies use DES singly while others make use of the fusion of
one or more simulation techniques in addition to DES. Appendix A.1 indicates the recent
representative research wherein DES has been used in modeling sustainability in manufac-
turing and allied SCs. Models using more than one simulation technique are termed hybrid
models. The collected articles on DES and sustainability include both pure and hybrid
models and can better be characterized by the keyword network of those papers. The
keyword network as shown in Figure 11 indicates the thematic constitution of those articles.
Most of the articles focused on the operational level with the theme of energy modeling
or simulation dominating the aspect taken up by the researchers. In addition to the ones
pointed out to in Table A1, one may indicate other studies in contexts including the digital
factory concept [100], input data management [101], and water-energy nexus [102], among
others. The pre-eminence of energy modeling again points to the fact that DES requires
extensive and precise data which are easily available in case of energy use in manufacturing
and SCs. Other aspects of sustainability, such as social factors, which show up at higher
levels of abstraction do not show up as often in the context of DES.

Figure 11. The figure shows the network of keywords used in the collected papers where DES is
utilized in sustainability assessment in the case of manufacturing and SC. The network shows a
pre-eminence in energy consumption and management. Bottleneck reduction and assembly cell also
find a dominant place in research pointing to DES being predominantly used at the operational level.

The aspect of sustainability in manufacturing and SC has been studied along various
aspects of industrial production in the recent past using DES. Table A1 indicates various
case-based studies on different aspects of sustainability that have been undertaken in
manufacturing and SCs using DES.

The use of software in case of DES has its beginnings in early 1960s when software
such as SIMULA, GPSS, and SIMSCRIPT were developed. In the 1970s and 1980s, SLAM,
GPSS-H, VIS, WITNESS, HOCUS, GENETIK, SIMAN/CINEMA, and ProModel arrived on
the scene. Most of these software were expensive each costing in excess of 1000 $. With
increasing computing power, some low-cost software solutions were introduced in the
1990s. Some of the examples included Simul8, Extend, and ShowFlow. In recent times, a
large number of DES tools have been conceived and are in use. Most popular tools in DES
include Anylogic, Arena, ExtendSim, PlantSimulation, Simul8, SimEvents, VisualSim, and
Witness. However, owing to high license fees, these tools are generally out of the budget of
researchers. Table A4 indicates some of the well-known open-source tools in the DES.

4.2. Agent-Based Simulation

Agent-based Simulation/Modeling (ABS/M) or Individual-based modeling (IBM)
has been developed as a solution to the need for modeling natural systems [103]. It finds
its conceptual beginnings with the examination of complex systems, adaptive systems,
and modeling of biological systems. The ABS constructs a conceptual model through a
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bottom-up approach, by taking into account discrete entities or agents with an assumed
behavior which is then simulated using software [104]. “Agent” is a representation of a
component that is present in a “social” setting and that may or may not be construed as
being intelligent [105]. The agents are presumed to be both individuals as well as collections
(such as groups, networks, etc.). A benefit of using agents in the case of simulation is that
they address both autonomy and complexity as they are distributed, adaptive to changes,
and exhibit intelligence. They may also show learning behavior and rationality while using
simple decision-making rules [106]. The characteristics of the agents are described as:

• Agent is located in a dynamic environment and behaves autonomously and intelli-
gently in that environment;

• The environment of the agents can have other agents and the system, as a consequence,
is known as multi-agent system.

Consequently, the agent-based models are composed of the following:

• Various agents with specified agent granularity;
• Rules for making decisions;
• Learning rules whereby the agents modify their behavior based on past outcomes;
• Social interaction of the agents;
• The environment.

As described below, Figure 12 depicts the structure of a typical agent-based model.

Figure 12. The figure describes how an ABM is built from the bottom. The autonomous and interactive
nature of the agents renders complex modeling possible. The agents in addition to interacting with
other agents can also interact with the real-world actors as well.

Some of the advantages of using agent-based models cited in the literature include [107]:

• Agents are individually modeled and consequently monitored which makes deter-
mining the state of the agent at a particular time easy;

• Possibility of modeling large-scale complex systems which are also termed massively
multi-agent systems (MMAS);

• ABS while capturing the emergent phenomena. The emergent phenomena may have
characteristics different from that of the constituents of the system that ABS is able
to capture. Many agent-based models exhibit the trait of emergence, which happens
when some attribute that may be expressed at the system level is not expressly encoded
at the individual level;

• ABS provides a natural description of the system while retaining flexibility. The prop-
erty of natural description in ABS is linked to the presence of behavioral characteristics
of the agents. Whereas flexibility refers to the possibility of adding or subtracting the
agents from the model when needed.

The application of the ABS has benefits over other simulation techniques. However,
owing to high costs and complexity, these benefits are not absolute. The ABM is compu-
tationally intensive as simulation a large number of agents requires huge computational
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power. ABM also requires that the modeler should have data regarding the elements of the
model, as without any knowledge or an educated opinion of the operation of the system, it
is not possible to build the model.

In recent times, the use of ABS has been at the forefront in research and has been
applied more than DES and SD. Appendix A.2 indicates the recent representative research
wherein ABS has been used in modeling sustainability in manufacturing and allied SCs.
The reasons for this are that there is greater propagation, availability of software, and
education. The reasons cited for this have been a positive feedback [8].

The use of ABS in case of sustainability has been proposed in place of tools such
as lifecycle assessment (LCA), Strategic environment assessment (SEA), Environmental
impact assessment (EIA), and multi-criteria analysis (MCA), among others [108]. ABM
is increasingly being used to investigate the formation of complex nonlinear phenomena
in connected human and natural systems [109]. With the ABM, various agents, including
organizations, agencies, and actors can be modeled, while also simulating the environment
containing them. The ABM, unlike other methods, can simulate heterogeneity which finds
greater use in contexts where individual decision-making with diverse objectives is taken
into account in addition to the changing social, economical, and environmental behav-
iors [110]. Modeling sustainability with ABS has shown to be a promising strategy. It is
claimed that detecting macro-behaviors aids in the comprehension of complicated physical
and ecological systems [111]. The primary idea of an ABS model is to describe interactions
between social-economic and ecological processes. Along the general environmental theme,
the ABS has found a great deal of application. The ABM provides for flexibility in modeling
such that it may be as sophisticated as the computing power allows for. Such that when it
comes to sustainability, the ABM can also be integrated with other frameworks including
the LCA. The degree of integration is assessed by the expected outcome. Research also
shows that the use of ABM enhances studies where limited computational power is avail-
able [112]. Those models which were formerly developed using econometric methods and
nonlinear programming techniques were enhanced using the ABM [113]. Furthermore,
ABM also allows for incorporating human behaviors. The case of modeling human behav-
ior in the case of sustainable logistic management may be cited [114]. Sustainability has
been addressed using ABM in research along one of the four categories. The first category
includes studies modeling traditional issues of pollution control [115]. The second category
deals with resource modeling such as energy, oil, land, etc. [116]. The third category in-
volves studies that deal with diffusion of sustainable behavior which also include market
and policy-based models [117,118]. The fourth category includes modeling global envi-
ronmental issues. Examples of which include [119,120]. This study has included research
covering the first and second categories. SCs can be conceived as consisting of supply
(procurement logistics), production (manufacturing systems), distribution (delivery), and
reverse logistics (planning and implementation) [121]. In case of manufacturing SCs, ABS
has been put to use across all the four areas, instances of which include waste paper [122],
manufacturing resource efficiency [123], carbon-based freight consolidation [124], and SC
planning [125]. With regards to magnification, ABS finds use at all three levels of operation.
A study encompassing the strategic level seeks to model sustainable industrial policy using
by coupling macro-economic dimensions with environmental parameters while optimizing
the resource efficiency [123]. The application of ABS at the tactical level is exemplified
in a study where industrial collaboration is modeled wherein a space of cooperation be-
tween industrial partners is explored in an economically win-win manner [126]. At the
operational level, the ABS in optimizing the real-time energy consumption of resources
in job-shop manufacturing processes. The data used for simulation are collected from
industrial robots [127]. To understand the application of ABS for assessing sustainability,
various aspects of ABS models have been lined up with their efficacy with regards to
sustainability assessment in Table 3. Since sustainability models engender high complexity,
ABS models often take a long time; therefore, they cannot give the “quick and dirty” so-
lutions that simulation is frequently employed to find [74]. In such cases, DES has been
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used as a hybrid that outperforms the ABS in performance. Among the articles collected
for this review, 21 deal with ABS in manufacturing and SC in the sustainability framework
exclusively, whereas in 12 articles, ABS is used as a tool hybridized with other tools. The
keyword network of these papers is shown in the Figure 13. The keyword network shows
five clusters.

Table 3. Major aspects of ABS and their efficacy with regards to modeling sustainability.

Criteria ABS Effects on Sustainability Assessment

Approach Bottom-Up Action of agents result in population wise changes making possible sustain-
able emergent behaviors, e.g., sustainable supplier populations [128]

Object Agent
The environmentally aware agents make possible human thinking and model
for social processes [129]. ABM consolidates irrational choices driven by
socio-economic and cultural components.

Feedback Implicit
Integrate the awareness of the environmental impact of agents choice to their
decision-making process. Incorporated in number of sustainability studies,
e.g., in coupling between LCA and ABS [56].

Space/Time Discrete/Continuous ABM used to explore spatial and temporal dynamics for environmental
awareness. Market dynamics to assess green product design impacts [56]

Predictive power Highest
Agent behavior prediction is highest among the three in ABS. Sustainability
assessment may further augmented with ML algorithms, big data, and neural
networks, e.g., green SC [130], sustainable intelligent manufacturing [131].

Abstraction level Micro-Meso-Macro
ABS is capable of modeling sustainability at all the three levels from the shop
floor to national carbon trade, e.g., carbon trade [132], sustainable industrial
symbiosis [133], and closed loop production planning [42]

Scope Operational-Tactical-
Strategic

Due to its functioning at both detailed level and aggregated level is used at all
the three levels, while incorporating both qualitative and quantitative, ABS
exhibits multi-granularity. Resource sharing [134], industrial symbiosis [133],
and investment efficiency [123] constitute the three temporal levels.

Data Quantitative & Qualitative The data magnification in ABS is highest among the three, incorporating
both costly factory floor measurements and delphi-style information.

Use-case
Emergent phenomena, adap-
tive situations, proactive, and
reactive behaviors

Owing to greater computing power ABS is used to model to high accuracy
sustainability transitions, e.g., socio-technical transitions [135]

Figure 13. The figure shows the network of keywords used in the collected papers where ABS is
utilized in sustainability assessment in case of manufacturing and SC. The network show a pre-
eminence of “sustainable manufacturing” and “energy consumption”. The prevalence of “discrete
event simulation” points to frequency of the two simulation techniques being hybridized together.

The agent-based models have been realized using both domain-specific and general-
purpose languages. Some of the domain-specific software includes spreadsheet program-
ming tools, Mathematica, and agent-based languages such as Anylogic, MATsim, Repast,
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MASON, NetLogo, and Swarm. In addition to these, numerous open-source and free
software is available as well—a detailed list with their application is indicated in Table A5.

4.3. System Dynamics (SD)

SD is a top-down modeling framework, originally proposed in 1961, with information
feedback aspects. An SD model is used to investigate a dynamic evolution process in
various scenarios. Reductionism and holism, as philosophical paradigms, have been cited
as the basis for SD modeling. Reductionism, through simplifying ideas, is the act of reducing
complicated structures, concepts, or events into their constituent parts. Alternatively, SD is
also said to be holistic in its approach to understanding a system’s dynamic behavior in
comparison to existing issue description and solution methodologies [136]. Causal Loop
Diagrams (CLD) maps the feedback loops showing the dynamic interactions of the system
variables. The variables are connected using arrows that depict causal relations between
them with the indication of positive and negative polarities [137]. The polarities signify
the nature of the relationship between the variables as they specify how the dependent
variable influences the independent variables. The feedback loops are characterized as
balancing and reinforcing. Positive feedback indicates that a change in any of the variables
in the causal loop will eventually have a positive effect on itself, whereas negative feedback
indicates that a change in any of the variables in the causal loop will have a negative effect
on itself. In its methodology, the SD has four major stages, namely, the conceptual stage,
causal loop stage, simulation stage, and model evaluation. These stages are depicted in the
flowchart in Figure 14.

Figure 14. The model creation and simulation process is depicted in a flowchart. The system analysis
stage, the establishment of the conceptual model stage, the construction of the quantitative model
stage, the model verification stage, and the model simulation stage are all covered by the fundamental
technique of SD modeling.

Among the three simulation techniques, the SD is considered as being most commen-
surate with the breadth of analysis that sustainability modeling requires. Appendix A.3
indicates recent representative research wherein SD has been used in modeling sustainabil-
ity in manufacturing and allied SCs. This has been attributed to two major reasons [138].
Firstly, the idea that sustainable development is conceived as being a “process” rather
than a “project” whereby sustainability is not seen as a blueprint or a pre-conceived end
state. Sustainability is a system state ideal and an ongoing process [139]. Secondly, sus-
tainability entails that decisions and measures ought to be focused on the whole system
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by sustaining harmony between its sub-systems and perception of cumulative impacts of
actions. As sustainability is understood by assessing the state of environmental, social,
and economic indicators while adequately addressing the interconnections between them.
System dynamics as a paradigm bodes perfectly well to the aforementioned two conditions.
As can be discerned from the “systemic” predisposition in of SD, its casts a wide net both
“temporally” as well as “spatially”. The implication of which is that majority of research
done in the SD framework is at the strategic level of operations. One may cite a number of
works addressing the strategic aspects of sustainability in SCs. Carrying further the work
of [140] on the social responsibility of SCs using SD and incorporating the product lifecycle
and capacity planning [141], the SD model is used to model policy effectiveness to achieve
optimal sustainability performance across the TBL.

Similarly, another study focused on strategic decision-making using SD looks at the
modalities of policy-making in case of transition to sustainable manufacturing [142]. SD
is used to model the effects of employee training, efficient equipment, and reduce costs
and energy consumption as prerequisites to eco-invention. SD has also been used to assess
organizational sustainability, [143]. The simulation is carried out at three levels, namely
company level, SC level, and social level. Separate CLDs are constructed at the company
and SC levels, showing the interrelationship between various KPIs. The study also invokes
Maslow’s hierarchy of needs whence basic social needs and their areas of influence are
categorized. Although SD finds its use primarily at the strategic level, but nonetheless, one
may point to the studies where SD has been applied at the operational and tactical levels.
Many players are often involved in SCs, which share information to coordinate material
and product flows. As a result, SCs are complex systems with intrinsic dynamics, i.e., the
performance of the system changes over time and is dependent on feedback loops [91].
SD models have been shown to assist decision-making in manufacturing SCs, including
bullwhip effect, inventory management, reliability and risk management, etc. [144–147].
SD is used to model both forward and backward SCs. Given the importance of feedback
loops in SD models, it is hardly surprising that reverse and closed-loop SCs account for
a significant portion of SD models used in production and SC-related contexts. CE and
closed loop SCs are fundamentally constituted by the feedback loops and this requirement
is well addressed by the SD [91]. In order to better understand the application of the SD
for assessing sustainability, various aspects of SD models have been lined up with their
efficacy with regards to sustainability assessment in Table 4.

Table 4. Major aspects of the SD and their efficacy with regards to modeling sustainability.

Criteria SD Effects on Sustainability Assessment

Approach Top-Down
Based on pre-defined model relationships in which the behavior of the system depends on the
structure of the model. In sustainability modeling, pre-defined relationships amount to policies
and thus is client friendly [129].

Object Feedback
Objects in a system are flows (continuous quantity). SD is more appropriate for business
thinking and physical processes [129]. Thus, reverse and closed-loop SCs constitute a lion’s
share of SD models.

Space/Time Continuous Time is used as a variable such that the system may evolve over time. The sustainability
assessment following the system is thus dynamic [129].

Feedback Explicit
Uses closed-loop structures in which causal interactions and feedback effects are very important.
Useful for understanding dynamics and feedback behaviors, in many social-ecological systems
where sustainable pathways are sought [138].

Randomness Deterministic System characterized by differential equations such that the same input results in the same
output all the time. The SD is used to project results to clientele [91].

Predictive
power Lower Results take the form of simulations that enhance understanding of the structural source of

behavior modes. Human agents as bounded rational policy implementers [93].
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Table 4. Cont.

Criteria SD Effects on Sustainability Assessment

Abstraction
level Meso-Macro

The data magnification and strategic application imply that the units of modeling in case of SD
are constituted at the organization level, e.g., modeling organizational sustainability in an SC
organization [32].

Scope Strategic Owing to the systemic level, the SD is used to simulate long term sustainability, e.g., sustainable
supplier selection in the auto industry [148].

Data Qualitative
Data sources are broadly drawn. The data are subjective and largely judgmental, allowing for
client-based sustainable policy-making. Less costly measurements required for different model
variables with data for the quantitative modeling [94].

Use-case Policy making/
causality

SD models owing to their systemic and policy nature find use in addition to individual re-
searchers, international agencies, government agencies in case of sustainability, e.g., sustainable
development of regional industries [149].

As described above, the SD finds its application along strategic and operational levels
of operation. The description of which is given in Table A3. Among the articles collected,
26 deal with SD employed in sustainable manufacturing and SC exclusively, whereas in
15 articles, SD is used as a tool hybridized with other tools. The keyword network generated
using Bibliometrix shown in Figure 15 shows three clusters.

Figure 15. Keyword network of the collected research dealing with SD modeling in SC and manufac-
turing. The three clusters show predominance of keywords including green logistics, environmental
impacts, automotive industry, and energy efficiency, respectively.

In the case of SD, a number of proprietary software is available and the most used
among them is the VENSIM (which also has a free version called VENSIM PLE). Other
commonly used proprietary software includes AnyLogic, Berkeley Madonna, GoldSim,
iMODELLER, iTHINK, MapleSim, PowerSim studio, STELLA, and Wolfram SystemMod-
eler. A number of platforms provide free modeling software, a detailed list of which is
indicated in Appendix B.3.

4.4. Hybrid Simulations (HS)

Hybrid simulations (HS) find their beginning as early as the beginnings of simulation
as a discipline, with attempts to bring together the continuous and discrete techniques [150].
HS is defined as combined use of two or more simulation models from the three main
simulation approaches of DES, ABS, and SD. The classification of hybrid simulations based
on discreteness and continuity has been conceived [151] along three categories, namely,

• Type 1 models: DES and SD hybrid models which contain both continuous and
discrete elements;

• Type 2 models: ABS and DES hybrid models which contain either continuous and
discrete elements;
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• Type 3 models: ABS+DES+SD models which combine type 1 and type 2 models.

Although the use of HS proliferated during the 1960s and 1970s, this growth was
curtailed owing to the lack of any computing support in form of any software. This all
changed with the turn of the century when the OR problems became more and more
complex and the growth of computing such as rise of AnyLogic software, HS modeling
picked up pace. Unlike in the past, where the narrative was limited to continuous and
discrete modeling, the HS modeling in the 21st century focused on the interaction between
operational levels (modeled using DES and ABS) and strategic levels (modeled using
SD). The use of ABS is invoked in situations where behavioral aspects are sought to be
modeled [152]. The methodology of hybridization between the three models has been
formalized using a number of frameworks.

A recent endeavor formalizes the hybridization of SD and DES through five major
designs, namely, parallelism, sequential use, enrichment, interaction, and integration [75].
In the case of parallelism, the two modeling techniques are used in parallel, independently,
such that both techniques working within the same boundaries, take an identical view of
the situation. In the sequential approach, each model is used for a given purpose with very
little overlap between the boundaries of the two. In the case of enrichment, one model
(SD) forms the core of the technique while the other (DES) is used as an enhancement; both
the models take the same view of the system with one being dominant throughout the
process. In the interactive approach, the two models work independently but share the
information with each other. This exchange takes place at a fixed time. In an integrated
model, both the sub-models take the same view of the system while working within the
same boundaries, the two are inseparable during the process such that the events in the DES
are triggered by the threshold levels in the SD and, therefore, unlike the earlier methods,
integrative techniques do not have set time gaps. Besides this, a few other frameworks that
can be cited:

• Frameworks where all the three SD, ABS, and DES are addressed. The instances of
which include generic 3M&S framework [129], system of system framework [153], and
Multi-Paradigm simulation framework [154];

• Frameworks addressing DES and SD. Some characteristic frameworks include frame-
work for hierarchical production [155], framework for manufacturing enterprise sys-
tem [156], and framework in the healthcare domain [157];

• Frameworks addressing ABS and SD. Some of these include framework for SC [158]
and framework using the complexity theory [159];

• Frameworks addressing DES and ABS. These frameworks can be instantiated in case
of framework for determining output accuracy of models [160] and integration of ABS
and DES frameworks [161].

The hybrid models exhibit different attributes and have been exploited differently in
different studies. The attributes of the four types of hybrid simulations are tabulated in
Table 5.

Modeling sustainability can be complicated and unpredictable, and it usually includes
many layers of management decision-making, such as strategic and operational decision-
making. This is especially true in the case of manufacturing SCs, which incorporate
numerous subsystems and involves a variety of stakeholder groups. Developing models
to react to such complexity demands knowledge of the features of sustainability and the
system to be modeled, as well as a rethinking of the methodological components of M&S
approaches that lend themselves to modeling of sustainable systems [162]. For effective
sustainability modeling, a fit between approach, system, and problem is of fundamental
importance. Prior to modeling and method/technique selection, a practitioner needs
to consider the nature of the system and the problem at hand [163]. In contrast to the
traditional techniques such as LCA, hybrid S&M techniques are far better in modeling CE
but no single approach is able to appropriate all the aspects of CE. Traditional models lack
the capability of sustainability metrics whereas industry ecology methods lack dynamic
modeling capacities [4]. The combination of models gives the potential to simulate on
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multiple scales which is a fundamental requirement in modeling sustainability. In the
collected research works, sustainability has been modeled using hybrid methods. Table 6
indicates the hybrid methodology being employed in some of the recent research works in
this context.

Table 5. Attributes of the four types of hybrid models.

Model Attributes

DES-SD

It is a top-down approach while allowing for feedback, the approach permits
for DES entities in modeling the system. Feedback loops capture links and time
delays between the DES entities. Causality between the entities is ascertained
while modeling dynamic and emergent behavior of the system. This hybrid is
most researched in context of sustainability.

ABS-SD

SFDs are used to ascertain the states of the agents. ABS uses data from System
dynamics to represent the heterogeneity of agents in a linked network. It may
also employ feedback loop dynamics to govern agents’ behavior as they progress
from short to long term. It is the second most popular method in case of modeling
sustainability.

ABS-DES

ABS encapsulates a high amount of flexibility and autonomy. It can simulate
and capture DES entities’ autonomous behaviors. Furthermore, using DES to
represent events allows AB to give a great amount of flexibility in modeling
varied agent behaviors, cognition, and decisions. DES outperforms ABS in
terms of runtime performance, and it can track agent performance and construct
specialized entities and events.

ABS-DES-SD

ABS uses self-organizing features to comprehend complicated adaptive systems.
Emergent behaviors are simulated by ABS. DES takes into account resources,
capabilities, and interaction rules to simulate different agents’ behaviors using a
series of events occurring at specified times in time. SD investigates the system’s
behavior patterns and interactions. Aggregate variables are used.

Table 6. Use of hybrid models in manufacturing and SC in the context of sustainability.

Model Methodology

ABS-SD

Evaluation of industrial sustainability (IS) scenarios. IS is modeled as the
interaction between policy (top-down) and resources(bottom-up). ABS is used
to model the heterogeneity, behavior and interaction between the agents. SD
models global variable behavior, system boundaries, and internal structure of
agents [164].

Sustainable Operations Management in Logistics. The model is applied to
model safety, congestion, pollution, and quality of life. Deliverers’ environmen-
tal conscious behavior is modeled using ABS and the SD is used to determine
the impact of intelligent elements on system behavior [114].

DES-SD Impact of electric vehicles on sustainability [165]. SD is used to model demand
and power flows whereas DES analyzes control by modeling particular events.

Integration the SD and DES for modeling the manufacturing enterprise system
(MES) and SC in a hierarchical enterprise [166]. The hybrid model consists of
SD model for MES and DES models for selected units which connect through
SDDES controller.

ABS-DES

Complex manufacturing system design [167]. The method uses a dynamic
system of parallel multi-agent discrete events whereby ABS is used to simulate
macro and micro levels with each sub-system being modeled as a dynamic
DES structure.

Sustainable product-service systems ABS is used to simulate the behavior of
the customers and their relationship with the provider of PSS whereas the
DES is used to simulate the provision process [168].



Sustainability 2022, 14, 9796 23 of 40

Table 6. Cont.

Model Methodology

ABS-DES-SD
Hybrid model complementing LCA [169]. The SC is simulated using SD
whereas ABS and DES are used to model market preferences. The DES is
placed in the state chart of agent behaviors.

Sustainable strategic management [170]. The model, simulated using Any-
Logic, is constituted by four sub-systems such that financial resources and
R&D technology are modeled using SD, the market sector using the ABS, and
the operational sector including the SC is modeled using the ABS.

The HS models are executed through a number of software. The tools which allow
for ease of linkages find greater use in HSs. Anylogic is the most used tool as it can model
all the four modeling variations, namely, DES/ABS, SD/ABS, SD/DES and DES/ABS/SD
models. Anylogic provides for the implementation of the depiction of common time and
data exchange. Besides this, other software used in HS are Arena, Simul8, Flexim, Vensim,
iTHINK, ExtendSim and NetLogo [150]. In addition to this, the studies also use bespoke
solutions such as HLA-RTI, PoRTICo-RTI with JAVA augmentations, and other languages
such as excel/VBA and VB.NET among others.

5. Discussion

The literature is rife with the application of the three simulation techniques in assessing
the sustainability of manufacturing systems. This application, as can be gleaned from the
preceding section, is nonetheless patchy at best. These limitations of application can be
traced to the limitations of the aforementioned modeling techniques vis-a-vis CE. The
literature points to a number of limitations of DES in modeling sustainability. Modeling
using DES has been compared to “seeing trees for the forest” and such that it finds most
of its use at operation level [162]. The consequence of which is that DES does not really
cover the three aspects of the triple bottom line [171]. Another criticism leveled at DES is
that it ignores the interconnections between high and low levels of the operations [172].
It is also reported that the DES does not allow for pro-active behavior which seriously
curtails its efficacy in modeling social factors [173]. The limitations of applying the ABS
for sustainability assessment are related to its complexity. The ABS model based on all
the three aspects of sustainability is assessed to be extremely complex and too difficult to
understand [174]. A similar criticism leveled at ABS is that such sustainability models,
owing to high resolution, are very large [175]. As an implication of high resolution, the
requirement of data is very large which in the case of sustainability assessment is either
not present or in a form that may not be used as input to the ABS [174]. Along the same
lines, the SD has been found to be lacking in sustainability assessment on many fronts.
SD models have a tendency towards building systemic models with lesser concern for
actual problem solving [176]. The implication of which is that the SD is more efficient
in modeling outside the system rather than inside the system [173]. Similar to DES, SD
also has issues with interconnections between the higher and lower level of operations
such as SD fares poorly at operational levels. SD modeling has been found to be lacking
in cases where interconnections between the TBL agents are sought in cases where there
is no homogeneity [177]. An important observation with respect to all three models is
that they are capable of running only one situation at a time. Even though they may be
able to capture a wide range of variation in the evolving values of the variables, different
parties or organizations with varying cultural or political objectives may bring different
assumptions to the table and as a result see the situation differently image [171]. Elsewhere,
the efficacy of the M&S frameworks has also been linked to the nature of the problem
at hand, i.e., sustainability. The difficulty of balancing the triple bottom line is cited
one of the barriers as the three factors may point to conflicting values [178]. Assessing
sustainability is fundamentally a trans-disciplinary endeavor and, therefore, it has to be
understood as a confluence of various disciplines such as engineering, ecology, law, politics



Sustainability 2022, 14, 9796 24 of 40

and sociology [179]. Finally, the data complexity and uncertainty render the optimum point
as unstable affecting the success of the M&S frameworks [180].

Before any discussion on the potential future of M&S frameworks is occasioned, a
discussion on the contemporary state of the industry is in order. The industry is presently
undergoing a new revolution termed Industry 4.0 (I 4.0). Unlike the preceding Industry 3.0
paradigm where automation of individual machines and processes was sought, Industry 4.0
emphasizes on the digitization and integration of all the processes. To bring this about,
Industry 4.0 is heavily reliant upon key technologies such as Virtual Reality (VR), Aug-
mented Reality (AR), Artificial Intelligence (AI), and Digital Twins (DTs), among others,
which are integrated through sensors, cloud computing, the Internet of Things (IoT) and,
more importantly, real-time monitoring. The M&S frameworks are now increasingly being
integrated with the I4.0 paradigm. The resultant framework is termed as Simulation 4.0 [17].
The primary constituents of this framework, as depicted in Figure 16, include in addition
to the traditional simulation techniques, the concepts of digital twins (DTs), Augmented
Reality (AR), Artificial Intelligence (AI), Petrinets Simulation (PS), Virtual Reality, and
Virtual commissioning [181]. This integration between the two I4.0 and traditional M&S
frameworks has been cited as beneficial for modeling sustainability [182]. The benefits
cited are:

• I4.0 enables modelers with analyzing and representation of the system at both low
and high-level resolution;

• Possibility to automate the modifications like what-if questions;
• Modelers have greater power with regards to understanding and analysis of the

integration of the TBL measurable factors within the system.

Figure 16. Simulation 4.0—Simulation approaches applied to industry 4.0.

Despite the benefits of the I4.0 for modeling sustainability, it has been argued that the
M&S framework requires a major overhaul [182]. Although the I4.0 framework has pro-
vided with greater data transparency, computation power, and speed, the greater objectives
of CE are far from being realized. The literature points out the following weaknesses in the
current M&S framework.

• Current frameworks are deeply invested in the states of equilibrium and optimality. A
complex system that engenders the TBL needs not necessarily have a unique optimal
state [180];

• Current frameworks are designed while assuming industrial systems and SCs are
closed systems rather than open systems. There is an implicit assumption that these
systems can only exhibit function and not evolution and, as a result, any structural
change in the system renders the models useless [183];
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• It has also been argued that the sciences that deal with sustainability are fundamentally
different than those that give rise to sustainability issues while the former are engaged
with the “causes”, the latter are engaged with the “symptoms”.

In view of the preceding discussion, it is evident that there is a manifest gap between
the current state of M&S methodology and the requirements of modeling a circular economy.
It is inevitable that a new paradigm of M&S frameworks is brought about. The prerequisites
of such a framework can be delineated as:

• Utilizing the benefits of hybrid M&S techniques which have greater efficacy in the
assessment of complex systems;

• Integration of the traditional M&S techniques with the I4.0 paradigm whereby models
may have greater granularity and abstraction;

• Sustainability systems are open and complex systems that warrant constantly changing
processes where the optimum point is not known in advance.

6. Conclusions

This article has sought to exhaustively cover various aspects of M&S in the context of
sustainability but nonetheless, various aspects of M&S have not been addressed, including
the sustainability metrics, automating technologies such as AR, VR, IIoT, DTs in modeling,
and actual data requirements of given modeling techniques. However, in the limited space
of a research article, one can only touch upon a few themes. This article has not delved
into the mathematical techniques such as Monte Carlo simulation, Mixed-integer linear
programming (MILP), nonlinear programming, space mapping, etc., but is limited to DES,
ABS, and SD and their hybrids. The reason for the same is that mathematical methods
invoke to a greater degree the concept of optimization which in itself is a vast topic and
could not possibly have been tackled by this article. As discussed above, modeling of
sustainability in the case of manufacturing and SCs requires tools that are capable of mutli-
level granularity and magnification such that both technical and meta-technical aspects
of SCs are taken into consideration. Owing to the pre-eminence of DES in modeling, an
overwhelming amount of research has been carried out in either energy modeling or flow
modeling. A consequence of this is that it has limited the scope of M&S to the short-term
operational levels. The DES has had a head start among the three techniques but in case of
CE, ABS and SD have seen greater success in the recent past. The trend of increased use of
ABS has also been alluded to elsewhere [8]. Apart from having a systemic/macro view that
bodes well with sustainability analysis, there has been increased recognition and software
availability in the case of ABS. This may also be attributed to a positive feedback effect
wherein an increase in the number of studies results in further increase in the number of
new studies undertaken. A substantial amount of research, specifically in recent times, has
addressed hybrid simulations. Hybrid models allow for multiple viewpoints in a single
endeavor, thereby attenuating the issues which are faced in the individual methods. Hybrid
models find prolific application in research but there is a dearth of review work on them.
Additionally, exclusive software support for the hybrid methods is also lacking. Published
research also points out to hybrids of DES, ABS, and, SD with Industry 4.0 technologies
with some instances, including DES and ABS with DTs [184], DT and CPS [185], SD and
CPS [186], among others. However, research in this context within the CE framework is
scarce. M&S frameworks present an exciting setting whereby the CE could appropriately
and objectively be brought about in manufacturing and allied SCs. The application of M&S
techniques is diverse on the account of the multitudes of techniques and their application.
Nonetheless, their application suffers from myopic implementation. The limitations may
be ameliorated by a new framework that eschews closed-system, incorporates the I4.0
framework, and utilizes the benefits of the hybrid simulation techniques.

Finally, the intended evolution from Society 4.0 to Society 5.0 is not just an evolution
of technical expertise but that of a whole paradigm wherein a holistic and nature-positive
science must be the basis of change. Similarly, when one points to a novel simulation
paradigm, it does not just incorporate more precise and accurate modeling but a modeling
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that is itself dynamic and open to changes. Such a framework may well have to move away
from a calculus-based Newtonian deterministic framework to a more holistic understanding
of human–nature synergy while taking into account the various aspects indicated above.
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Appendix A. Application M&S Frameworks in the Industry in Context of CE

In this section, some of the recent applications of Discrete Event Simulation (DES),
Agent-Based Simulation (ABS), and System Dynamics (SD) are indicated. The research
work indicated is a sub-set of the compiled papers and as such is composed as being
representative of the state of contemporary research in the field.

Appendix A.1. Application of DES in the Industry

The table indicates some of the aspects of manufacturing and SCs that have been
simulated within the framework of sustainability using DES in the recent past. Although
majority of the studies undertaken using the DES can be situated on the operational and
the tactical level, nonetheless, some of the studies addressing the strategical issues have
also been included.

Table A1. Application of DES in modeling sustainability in manufacturing and allied SCs.

Theme Methodology Level

Sustainability Cock-
pit [68]

Resource optimization by measuring material, machine and energy utilization. Anylogic
used as the simulation tool. Bill of material (BoM) from the ERP is used to ascertain
material usage

Tactical-
Operational

Sustainable facility
design [187]

Using genetic algorithm with DES. Environmental sustainability is described in terms
of energy utilization which itself is assumed to be contingent on machine utilization.
Social sustainability is modeled using work shifts

Strategical

Information-based
resource alloca-
tion [188]

Forest SCs, which exhibit stochastic-dynamic behavior, are studied with queuing at
center of focus. The criteria of trucking distance, storage volume, and moisture content
are simulated using seven scenarios using Witness DES software

Strategical-
Tactical

Eco-efficiency of pro-
duction systems [189]

DES used to simulate the lifecycle of the products by integrating Ecoinvent-LCI database.
Identifying the potential areas of improvement the processes are expressed as envi-
ronmental value stream mapping (EVSM). DES is carried out using PlantSimulation
software

Operational

Sustainable additive
and subtractive man-
ufacturing [190]

Production lines in context of TBL by comparing subtractive and additive manufactur-
ing. DES is used in a dynamic setting with changing order volumes and types Tactical

https://www.scopus.com/home.uri
https://scholar.google.com/
https://scholar.google.com/
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Table A1. Cont.

Theme Methodology Level

Product life cycle sim-
ulation [90]

Based on appropriating the resource flows using Lifecycle simulation (LCS) based on
DES. LCS used to trace resources from sources to the end of life, environmentally and
economically. Formulating a complex system of interactions between resources called
as System of Systems (SoS)

Strategical

Resource sharing in
sustainable produc-
tion [92]

Different scenarios in sourcing of resources in a garment factory are simulated using
DES. The resource sharing in case of mass customization is assessed

Strategical-
Tactical

Simulating emissions
in freight [191]

The behavior of common scenarios of transport operations in the SC, including green-
house gas emissions and travel time of operating routes investigated Operational

Energy resource man-
agement [89]

Modeling the sourcing energy from third party suppliers and minimizing the carbon
emission. The instantaneous need of energy which is stochastic is modeled Operational

Simulating overall
equipment efficiency
(OEE) [98]

The DES is used to simulate the energy OEE of the discrete manufacturing facilities.
The data from a CNC machine are used to evaluate the model

Tactical-
Operational

Integrating human
factors using DES [97]

Modeling patterns of human fatigue and recovery in industrial contexts. Simulation
based on DES designs a production system that is more productive while also mitigating
the operational hazards

Operational-
Tactical

Appendix A.2. Application of ABS in the Industry

The table indicates some of the aspects of manufacturing and SCs that have been
simulated within the framework of sustainability using ABS in the recent past.

Table A2. Application of ABS in modeling sustainability in manufacturing and allied SCs.

Theme Methodology Level

Supplier risk mitigation [128] ABS conducted using NetLogo wherein the decisions with regards to sustainable
suppliers by the SC managers who are interviewed using vignettes Strategic

Resource sharing in freight
transport [134]

Using NetLogo software the empty transportation is sought to be reduced.
Trucks and hubs are modeled as agents

Tactical-
Operational

Simulating the horizontal co-
operation in logistics [126]

Simulating the carbon dioxide emissions in case of cooperation between logistics
departments using Anylogic 8.0 software

Strategical-
Tactical

Sustainable supplier selec-
tion [192]

A multi agent system (MAS) used for sustainable order allocation and supplier
selection. Suppliers are evaluated using Fuzzy Inference system (FIS) using
GAMS inside the JADE environment

Strategic-
Tactical

Modeling industrial symbio-
sis [193]

Simulating the use of waste from one industry to another. The model uses
enterprise input output model (EIO) with the ABS. ABS is used to simulate the
cost sharing in case of collaboration

Tactical

Resilience and ripple effect in
SCS [194]

Impact of blockchain technology is assessed on the resilience of SCs. Assuming
two scenarios, one in absence of BCT and another vice versa, uses run time,
disruption, varying input, and number of runs as the input

Strategical

Resource sharing [134]
The multi agent model simulates the trucks in a freight network operating across
Canadian cities on the NetLogo software. The KPIs included are cost indicators,
social indicators, and environmental indicators

Operational

Efficiency in resource invest-
ment [123]

Using the modified EURACE agent based framework by coupling environmental
and macroeconomic dimensions. Simulation is used to explore the policies for
investment in resource efficiency

Strategic

Real time energy model-
ing [127]

Using the data from the industrial robots which is analyzed using an agent-based
framework while the optimization problem is carried out using IBM ILOG OPL.
Data acquisition is using Arduino ATmega 328 electronics platform

Operational
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Table A2. Cont.

Theme Methodology Level

Sustainable manufacturing
system (SMS) [195]

Using Anylogic, model a configuration of SMS by taking into account the mini-
mization of the total cost, total energy consumption, and CO2 emissions. Vari-
ables used are supplier, factory, and warehouse

Operational-
Tactical

Energy-Efficient Schedul-
ing [37]

Scheduling of manufacturing systems through collaboration between cyber-
physical production and energy systems. A multi-agent architecture elaborating
predictive and reactive energy-efficient scheduling using JADE framework

Operational

Appendix A.3. Application of SD in the Industry

The table indicates some of the aspects of manufacturing and SCs that have been
simulated within the framework of sustainability using SD in the recent past.

Table A3. Application of SD in modeling sustainability in manufacturing and allied SCs.

Theme Methodology Level

Social sustainability through
SD [141]

SD in Reverse Logistics Social Responsibility (RLSR). The model takes into
account interrelated sustainability dimensions adopting a product lifecycle ap-
proach with uncertainties

Strategic

Recycling in a closed-loop
SC [196]

Using VENSIM PLE software to optimize the recycling and collection of waste
material in an electrical factory Tactical

Modeling eco-innovation
processes in manufacturing
firms [142]

Using VENSIM software to model variables, including financial, raw material,
equipment, production, and personnel and drawing up the difference between
eco-variables and traditional variables

Strategic

Sustainability assessment in
make-to-order (MTO) SCs [197]

MTO SCs, typical in aerospace sector, highly complex situations are modeled
using a hybrid modeling tool of SD, ABD, and DES leveraged by MCDA using
Anylogic software

Strategic-
Operational

Business cases for ecodesign im-
plementation [198]

Using Ecodesign Maturity Model (EcoM2), through meta-analysis, SD is used
for modeling organizational capability in the product development space Strategic

Model for Organizational Sus-
tainability [143]

Holistic approach as how organizations interact with environment both in-
ternally and externally. Using SD and Viable System and modeling levels of
company, supply chain, and society measures on VENSIM

Strategic

Policy-making for CO2 mitiga-
tion [199]

Energy modeling in cement industries using energy efficiency measures. Using
VENSIM PLE software, study carries out modeling at three levels, namely
government, society, and manufacturers

Strategic

Sustainable supplier selection in
automotive industry [148]

Data from expert interviews used, simulated using SD in fuzzy environment in
VENSIM to find the best potential sustainable supplier Strategic

Effect of rapid prototyping im-
plementation on SC sustainabil-
ity [200]

A generic SD model simulating the RP-adapted SC. Using VENSIM software
and modeling economic, social and environmental KPIs Tactical

Sustainable supplier manage-
ment [201]

A virtual warehouse simulated using VENSIM. Conceives two models one with
and other without inventory sharing system Tactical

Appendix B. Open-Source Software Used in M&S Frameworks

Through the years, a number of M&S tools have been developed each with a specific
objective. Each approach indicates a specific programming syntax with differences in the
generality, usability, modifiability, scalability, and performance. The landscape of S&M
software is thus populated diversely, a diversity including both open-source and proprietary
solutions. This section provides details and use-cases of some of the open-source software
in the three simulation frameworks.
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Appendix B.1. Open-Source DES Software

The software development in case of DES is the earliest with the development of
SIMSCRIPT in 1962. Since then, numerous generic and context specific tools have been
developed. A detailed evolution of these tools have been presented in [202]. Table A4
indicates some of the commonly used open-source DES software and their sustainability
specific use-cases.

Table A4. Open-source DES software in use in the industry. Other free software include CPN Tools,
Fascimile, SIM.JS, SystemC, and Simula.

Software Description Use-Case

OMNet++ C++-based modular, component library and framework used in network
simulators

Comparison of simulation tools [203] Ve-
hicle rerouting [204] Industrial control sys-
tems [205]

NS-3.35 A DES simulator for internet systems primarily used in education and
research licensed under the GNU GPLv2 license

Vehicle routing [206] Vehicular Ad Hoc
Networks [207]

SimPy 4.02 A DES process-based framework based on python used to model compo-
nents such as customers, vehicles, and agents

Inventory optimization [208] sustainable
physical internet-integrated SCs [209]
smart manufacturing [210]

JaamSim DES program with a drag-and-drop user interface, interactive 3D visuals,
input and output processing, and model construction tools and editors

Inventory management [211] sustainable
multicomponent-distributed manufactur-
ing [212] lean manufacturing [213]

DESMO-J
Stands for Discrete-Event Simulation and MOdelling in Java. The soft-
ware provides java classes for stochastic distributions, static components,
scheduling, and reporting

Performance analysis of assembly
lines [214], cost analytics [215], production
design [216], worker performance [217],
optimal stock levels [218]

URURAU
Multi-platform program that enables users to create models using a
graphical interface or directly in source code. Used as a learning tool as
well as a tool for modeling and simulation of discrete systems

Energy modelling in manufacturing [219],
green logistics [220], carbon monoxide
emission [221], logistics emissions [191]

Ptolemy II
Used in concurrent, real-time, embedded systems. Characterized by use
of well-defined computation models that regulate the interaction between
components.

Renewable resource sourcing [222], in-
dustry 4.0 production line [223], cyber-
physical system [224],

PowerDEVS

A generic DEVS modeling and simulation addressing hybrid system
simulation. The environment enables the creation of increasingly sophis-
ticated systems by specifying atomic DEVS models in the C++ language,
which can then be visually connected in hierarchical block diagrams

Cyber physical systems [225], energy mod-
eling [226]

Salabim

An object-oriented DES open-source python based library. It uses the
process description technique in the likeness of Simula. DES, queue
handling, resources, statistical sampling, and monitoring are all included
in the program

Throughput time in manufacturing [227],
manufacturing scheduling [228], process
planning, and dynamic scheduling [229],

Appendix B.2. ABS Software

The development of software tools for ABS has seen most growth in the last few years.
Research points to large number of such tools [121]. Table A5 indicates some of the most
commonly used tools and their sustainability specific use-cases.

Table A5. Open-source ABS software in use in the industry. Other free software include Adaptive
Modeler, Cougaar, and StarLogo.

Software Description Use-Case

AgentScript Inspired by the Netlogo, is a javascript library, lets the
programmer model with three ingredients

Agent-based Machine learning in factory
automation [230], Integration and testing for MA
engineering [231]
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Table A5. Cont.

Software Description Use-Case

Ascape
Tool for developing general and multipurpose simulations
written in java where agents are implemented as
JAVA classes

Simulating human factor in production [232], using
grounded theory for simulating organizational
behavior in a plastic factory [233]

Brahms
JAVA-based agent/object-based belief-desire-intention (BDI)
language. The Brahms and JAVA agents interact with
each other

Organizational behavior [234], Verification of
Human–Robot Teamwork [235]

Flame
Flexible Large Scale Agent Modeling environment (FLAME)
is a general purpose simulation tool. Agents are construed
as objects having states, functions, and set pf variables

Comparison of various ABS frameworks for aerial
transportation [236]

GAMA
Simulating 2D and 3D spatially explicit ABS using GAML
modeling language. Extensive libraries for agent
architecture designing and spatial analysis functions

Material flows in SC [237]

HLA_Agent

A C++-based tool for the distributed simulation of ABS,
which combines the sim_agent agent toolkit and the High
Level Architecture (HLA), finds major use in manufacturing
and SC.

Distributed manufacturing [238], Distributed SC [239],
green transportation [240]

NetLogo
It is a multi-agent programmable modeling environment in
NetLogo language and is fully inter-operable in JAVA and
other JVM codes

Sustainable SC [241], Routing in flexible
manufacturing [242], short cycle SC [243]

Appendix B.3. SD Software

Table A6. Open-source SD software in use in the industry. Besides this, some other software include
Sphinx SD Tools, MapSim and StochSD.

Software Description Use-Case

Insight
maker

A javascript and browser-based SD modeling tool, has
extensive System Dynamics support including powerful
support for dimensional analysis and unit conversion

Solid waste management [244], profitability of
automation [245]

NetLogo Agent-based simulation tool that also supports SD modeling

Dynamical systems [246], Multi-Agent Collaborative
Planning in SCs [247], waste and cost reduction in
lean manufacturing [248], Transportation
Modeling [249]

Open
Modelica

Maintained by Open-Source Modelica Consortium (OSMC) in
collaboration with Linköping University and written in C++,
used in academic and industrial environments

Building Digital Twins of Sustainable Cyber-Physical
Systems [250], additive manufacturing [251], energy
modeling of industrial robots [252]

Simantics
System
Dynamics

Large hierarchical models with multidimensional variables
are simulated using this tool. Traditional stock and flow
diagrams and causal loop diagrams are used to generate the
models. Different visual tools are provided to assess
simulation results and model structure

Verification of industrial process control
systems [253], automatic generation of LCA [254]
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