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Simulation of Taylor-Couette flow. Part 2. 

Numerical results for wavy-vortex flow with 

one travelling wave 
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Division of Applied Sciences and Department of Astronomy, Harvard University 

(Received 26 July 1983 and in revised form 23 March 1984) 

We use a numerical method that was described in Part 1 (Marcus 1984a) to solve 

the time-dependent Navier-Stokes equation and boundary conditions that govern 

Taylor-Couette flow. We compute several stable axisymmetric Taylor-vortex equi- 

libria and several stable non-axisymmetric wavy-vortex flows that correspond to one 

travelling wave. For each flow we compute the energy, angular momentum, torque, 

wave speed, energy dissipation rate, enstrophy, and energy and enstrophy spectra. 

We also plot several 2-dimensional projections of the velocity field. Using the results 

of the numerical calculations, we conjecture that the travelling waves are a secondary 

instability caused by the strong radial motion in the outflow boundaries of the Taylor 

vortices and are not shear instabilities associated with inflection points of the 

azimuthal flow. We demonstrate numerically that, a t  the critical Reynolds number 

where Taylor-vortex flow becomes unstable to wavy-vortex flow, the speed of the 

travelling wave is equal to the azimuthal angular velocity of the fluid a t  the centre 

of the Taylor vortices. For Reynolds numbers larger than the critical value, the 

travelling waves have their maximum amplitude at  the comoving surface, where the 

comoving surface is defined to be the surface of fluid that has the same azimuthal 

velocity as the velocity of the travelling wave. We propose a model that explains the 

numerically discovered fact that both Taylor-vortex flow arid the one-travelling-wave 

flow have exponential energy spectra such that hi lE (k ) ]  K k’, where k is the Fourier 

harmonic number in the axial direction. 

1. Introduction 

In  Part 1 (Marcus 1 9 8 4 ~ )  we described a numerical method for calculating viscous 

flow between two rotating cylinders where the outer cylinder is held stationary and 

the inner cylinder rotates with angular velocity Oi,. In this paper we use the 
numerical method to compute several Taylor-Couette flows, and we describe and 

analyse the important physical properties of these flows. We consider only large- 
aspect-ratio flows where the height of the cylindrical Couette apparatus is much 

greater than the gap between the cylinders. An infinite aspect ratio allows us to treat 

the flow as periodic with fundamental wavelength 2x/a in the axial, z ,  direction. The 

equations of motion that govern the fluid are the Navier-Stokes equation with no-slip 

boundary conditions a t  the cylinder walls and the kinematic condition that the 

velocity be divergence-free. Three independent dimensionless numbers appear in the 

Navier-Stokes equation: the radius ratio 7 = a / b  (where a = inner-cylinder radius. 

b = outer-cylinder radius), the dimensionless axial wavelength h = 27c/ad (where 

d = b-a is the gap width) and the Reynolds numbcr R = aSZ,,d/v (where v is thc 
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kinematic viscosity). Throughout this paper, unless otherwise specified, we use d as 

the unit of length, aO,, as the unit of velocity and pd3 as the unit of mass, where 

p is the fluid density. 

Summary of lou~-RPynolds-number experiments with outer cylinder stationary 

It is well known that for each geometry, or 7 ,  and for each axial wavelength A ,  there 

is a critical Reynolds number Rc(7) such that, for R < Rc(r)  circular Couette flow, 

t’, = u, = 0, (1 2 )  

is a stable equilibrium. For R > Re( q )  circular Couett’e flow is unstable to axisymmetric 

3-dimensional Taylor vortices. I n  t’he laboratory this flow appears as N vortices with 

alternating circulation stacked vertically on top of cach ot>her. The early experimental 

study of Taylor-Couette flow was concerned with the precise determination of onset 

of the Taylor-vortex flow and the measurement of the torques produced by this flow. 

At larger Reynolds numbers and 7 2 t the Taylor-vortex flow is itself unstable to 

a non-axisymmetric wave travelling at an angular speed s,. This wavy-vortex flow 

and its stability properties was first studied systematically by Coles in his classic 1965 

paper. When the travelling wave is viewed in t’he proper rotating frame, this flow 

appears as a steady state with azimuthal wavelength 2n/m,, where m1 is an integer 

usually less than 12 for r < 0.9. At still-larger Reynolds numbers, a second travelling 

wave appears (Shaw et al. 1982) with a second wave speed of s2 and with wavenumber 

m2 not necessarily equal to m,. I n  the laboratory (inertial) frame this modulated 

wavy-vortex flow is quasi-periodic in time, but in the proper rotating frame i t  is 

periodic. At even larger Reynolds numbers with 9 M 0.875 these travelling waves 

disappear and are replaced by other non-axisymmetric disturbances (Zhang & 
Swinney 1984). As the Reynolds number is increased still further, the flow becomes 

chaotic. 

Description of wazty-ztortex $OUT 

In  this paper we are primarily concerned with Taylor-vortex flow and the wavy-vortex 

flow with one travelling wave. King & Swinney (1983) have experimentally mapped 

the stability boundariesofthe one-travelling-wave flow with m, = 6 in the (R, A)-plane. 

In  particular, for fixed radius ratio r j  = 0.875 and for fixed A,  as the Reynolds number 

is increased above a critical value there is a transition from the ‘wil = 6 travelling wave 

to the m, = 4 or m, = 5 (depending on A )  travelling wave. Similarly, for r j  = 0.875 
there is another critical Reynolds number (which is also a function of h and 7)  below 

which the m, = 6 travelling wave is unstable and makes a transition to an m, = 4 
travelling wave. For fixed Reynolds number, as h is changed (by adiabatically filling 

and draining the Couette apparatus while keeping the actual number N of vertically 

stacked Taylor vortices constant), i t  is found that there are minimum (hmin(R) M 2.0) 
and maximum (hmax(R) M 4.0) values of h between which the m, = 6 wave is stable. 

If h is decreased below hmin(R) the Taylor cells become too ‘fat ’ in the radial direction 

and there is a transition in which the number of Taylor-vortex pairs decreases by 
one or two. This transition increases the value of h by a discret,e amount). There is 

an analogous transition if h becomes too large and the Taylor vortices become too 

‘thin ’. 

Experiments show that the wave speeds of the travelling waves in wavy-vortex 
flow depend strongly on the geometry (King et al. 1984). The speeds are always a 
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strong function of radius ratio 7 ,  but for large aspect ratio r they are only weakly 
dependent on r. At low Reynolds number the wave speeds are sensitive to the values 
of R,  h and m,, but at high Reynolds number the speeds asymptotically approach 
a constant value that depends primarily on the radius ratio. It must be emphasized 

that, as Coles discovered for most given values of R, r and 7,  there is not a unique 
stable flow; there is a discrete spectrum of allowable axial wavelengths h and 
azimuthal wavenumbers m, (and possibly m2).  We also remind the reader that, near 
the stability boundaries of a flow, more-exotic states are possible where several 
different travelling-wave flows coexist with each other (King 1983). 

Purpose of paper 

At the present time it is analytically impossible to calculate non-axisymmetric 
equilibrium flows except for R slightly greater than R,; however, Stuart (1958), in 

a remarkable paper, used a finite-amplitude theory to find the dependence of torque 
on Reynolds number in axisymmetric Taylor vortex flow. Stuart’s amplitude theory 
was improved upon by Davey (1962), who allowed the fundamental Taylor-vortex 

mode to generate harmonics. Davey, DiPrima & Stuart (1968) used amplitude 
calculations to  predict the onset of 3-dimensional wavy-vortex flow and determine 

its torque. Eagles (1971) confirmed the findings of Davey et al. by a higher expansion. 
An excellent summary of these and other amplitudes calculations appears in the 

review article by DiPrima & Swinney (1981). 
Well-resolved axisymmetric flows have been previously computed numerically by 

Meyer (1966) and more recently by Meyer-Spasche & Keller (1980). Three-dimensional 
linearized eigenfunctions and numerically truncated one-travelling-wave flows have 
been computed by Meyer (1969a, b ) ,  Jones (1981) and Yahata (1983, and his previous 
papers cited therein). Y ahata’s calculations are extremely under-resolved and show 
spurious temporal behaviour (see Part 1). A well-resolved calculation of 3-dimensional 
Taylor-Couette flow has been carried out by Moser, Moin & Leonard (1983). 

The purpose of the present paper is to simulate non-axisymmetric time-dependent 
equilibrium flows and the transitions among them, using a numerical method that 

was developed and tested in Part 1 and compared with the laboratory data in King 
et al. (1984). I n  the latter paper we showed that we can calculate the speeds of the 
travelling wave to within their experimental uncertainty of 0.2 yo. The numerical code 

allows us to compute accurate flows for Reynolds numbers up to approximately 15R,. 
Since all of the transitions and flows described in this section occur in this 
Reynolds-number regime, we have a useful tool for studying the physics of these 

nonlinear flows. By knowing the velocity field a t  every point, we can calculate the 
energies, angular momenta, torques, enstrophies, energy dissipation rates and wave 

speeds for several nonlinear flows. Although it  is impracticable to sample numerically 
the (R, A,  7 ,  m,) parameter space in as much detail as can be done experimentally, 
for a few flows we can get a numerical physical description that is far more detailed 
than is obtainable from current experiments. 

Analytic finite-amplitude and linearized or truncated numerical studies have given 

us many mathematical details of wavy-vortex flow, and the experimental studies 
have supplied us with stability diagrams, wave-speed measurements and torque- 
Reynolds-number relations, but surprisingly little physical understanding of Taylor- 
Couette flow has been gained since Rayleigh (1920) explained the inviscid centrifugal 
instability that governs the formation of Taylor vortices. Several authors (Coles 1965 ; 
Meyer 1966; Davey et al. 1968; Jones 1981) have suggested possible scenarios by 
which the axisymmetric vortex flow becomes unstable to 3-dimensional waves, but 
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no single picture of the 3-dimensional instability of Taylor-vortex flow has emerged 

that is as compelling as Rayleigh’s explanation of the instability of circular Couette 

flow to Taylor vortices. It is also unfortunate that, except for Jones, few authors have 

tried to explain what determines the speed of the travelling waves. 

In  this paper we use a nonlinear numerical simulation to demonstrate how the speed 

of the non-axisymmetric travelling wave (at  onset) is determined by the axisymmetric 

Taylor vortices. By computing the energy and enstrophy spectra, we show energy 

is transferred from the motor driving the inner cylinder to the mean axisymmetric 

swirl, to the Taylor-vortex flow, and then distributed among the modes that make 

up the wavy-vortex flow. Furthermore, by using the spatial symmetries of the flow, 

the computer-generated maps of the 3-dimensional velocity, and energy-transfer 

arguments, we propose a possible physical explanation for the instability that 

produces travelling waves. 

In  92, we review the physics of Taylor-vortex flow and examine the spatial 

symmetries that are possible for Taylor-vortex flow and non-axisymmetric wavy- 

vortex flow. The results of our numerical simulation of Taylor-vortex flow are in 93. 

I n  94 we present our results of the simulations of the one-travelling-wave flow at low 

Reynolds numbers. We determine the physical properties of the flow as functions of 

m,, h and R and present our conjecture that the travelling waves are a secondary 

instability caused by the radial jets between Taylor vortices. I n  94 we also calculate 

the wave speeds and show how the wave speed is determined when the Reynolds 

number is equal to the critical value for the onset of wavy-vortex flow. Our discussion 

appears in 95. I n  the Appendix we use marginal stability theory and mixing-length 

theory for Taylor-Couette flow a t  large Reynolds number to derive the characteristic 

azimuthal, axial and radial velocities both within and far from the boundary layers. 

2. Spatial symmetries of Taylor-Couette flow 

Before presenting the results of our numerical calculations, we review the spatial 

symmetries of Taylor-Couette flow. Knowing what symmetries are allowed and 

disallowed makes the numerical calculation of the flow easier (see Part 1) .  Circular 

Couette flow (see ( 1 . 1 )  and ( 1  2))  is 2-dimensional ; there is no axial component of the 

velocity nor is it a function of z. There are no other known 2-dimensional stable 

equilibrium Taylor-Couette flows, although time-dependent 2-dimensional Taylor 

columns have been observed (see e.g. figure 220 of Coles 1965). This lack of 

%dimensional equilibria is examined in a subsequent paper (Marcus 19846), in which 

i t  is shown that enstrophy conservation inhibits 3-dimensional instabilities of circular 
Couette flow. 

Although Taylor-vortex flow is 3-dimensional, i t  is axisymmetric. Since the vortex 

flow is driven by centrifugal instability i t  is not surprising that one of its characteristic 

features is the nonlinear advection of angular momentum from the inner cylinder to 

the outer cylinder. The mean radial component of the angular-momentum flux FL 
is (see Part  1 )  

For large-Reynolds-number flows the angular-momentum flux far from the boun- 

daries is carried by the nonlinear term in (2.1). Consequently, v, and vuc are well- 

correlated in Taylor-vortex flow. A schematic plot in the ( r ,  #)-plane (for constant 
value of z )  of an axisymmetric flow where v, and vuc are well-correlated (i.e. 
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FJGURE 1. Schematic of the axisymmetric Taylor-vortex velocity projected onto the ( r ,  #)-plane 
at z = 0. Taylor vortices transport angular momentum from the inner cylinder to the outer cylinder 

because j j v,. v$ d$ dz is non-zero. 

j vr v6 dz d#/( j v," d# dz j v$ dr$ dz)* + 1 )  is shown in figure 1. To a first approximation, 

Taylor vortices look like that plot periodically repeated a t  the planes : 

z = 0, f A,  & 2h, f 3h, . . . . Midway between these planes a t  z = f ;A, f $A, &:A, . . . 
the flow also looks like figure 1 with the arrows reversed but maintaining the same 

correlation and transporting angular momentum at the same rate. The velocity fields 

a t  z = 0 and z = $A are connected by a flow upward along the inner cylinder and 

downward along the outer cylinder so the flow is divergence-free. The net result is 

that Taylor vortices do not lie in the (r,z)-planes, but are twisted, and have some 

component in the d6-diroction. If the vortices did not have this twist they could not 

transport angular momentum. Taylor-vortex flow is the sum of the azimuthal circular 

Couette flow plus the flow in the Taylor vortices. A fluid element follows a helical 

path where the central axis of the helix is wound around the inner cylinder. Although 

angular momentum is transported outward in this flow, the fluid near the axis of the 

helix (the centre of the Taylor vortices) does not mix a t  all with the fluid near the 

walls of the cylinders. The latter fluid mixes with the fluid in the inflow and outflow 

jets of the Taylor vortices (see $3) .  The lack of fluid mixing a t  the centres of the Taylor 

vortices has important physical consequences that are examined in $4. 

Physical symmetries and Fourier coeficients 

Every physical symmetry of a flow corresponds to a relationship among the Fourier 

coefficients of the velocity field. Since our numerical method decomposes the velocity 

into Fourier sums in the axial and azimuthal directions, these symmetries are easy 

to detect and impose. For example, spirally symmetric flows, which look like barber 

poles, have Fourier representations of the form 
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where f,, k and g m ,  are real functions of r and t ,  with f,, = g,, = iym, k/ar  = 0 
a t  the radial boundaries. The velocity defined by (2.2)-(2.4) obeys viscous no-slip 
boundary conditions and is divergence-free. However, i t  is immediately apparent that 
spiral flows of this form have jw$vr dz d$ identically equal to  zero, and therefore have 
no nonlinear contribution to the angular-momentum transport. We have examined 

spirally symmetric linear perturbations and found that they decay, as do several other 
classes of flow with symmetries that  explicitly prohibit nonlinear transport of angular 

momentum. 
One rather trivial symmetry allowed by the Navier-Stokes equation and no-slip 

boundary conditions is the invariance of the velocity field under rotation about the 
z-axis by 2n/p (i.e. v(r ,  #, z ,  t )  = V ( T ,  $ + 2n/p, z ,  t ) ) .  Another allowed symmetry, 
discussed by Richtmyer (1981), occurs when the flow is invariant under z+-z and 
wz+- w, (i.e. the flow is invariant when the Taylor-Couette apparatus is turned upside 
down). This symmetry does not allow non-axisymmetric waves on the inflow or 

outflow boundaries, and we know ofno experimental observations of non-axisymmetric 
Taylor-vortex flows that possess this symmetry when the outer cylinder is held 
stationary. I n  addition to  being p-fold symmetric in $, a velocity field can have the 
more subtle symmetry 

2.'r(r, $, 2, t )  = W&> $ + n / p ,  - 2, t ) ,  

q ( r ,  $ 9  z ,  t )  = q r ,  $ + n / p ,  - z , t ) ,  

wz(r,$, 2, t )  = - wz(r ,  $ + n / p ,  - z ,  t ) .  

(2.5) 

(2.6) 

(2.7) 

We call flows that have the form (2.5)-(2.7) 'shift-and-reflect' symmetric. This 
symmetry is preserved under the nonlinear multiplication in the full Navier-Stokes 
equation. Therefore finite-amplitude velocities as well as linear perturbations can 

have this symmetry. Note that circular Couette flow is a trivial example of a velocity 

field that has shift-and-reflect symmetry. For a general axisymmetric flow, the 
shift-and-reflect symmetry reduces to  the z - t -  z ,  u,-+- w, symmetry discussed by 
Richtmyer. The shift-and-reflect symmetries are important not only because they 
allow nonlinear contributions to the angular-momentum transport but also because 
the observed axisymmetric Taylor-vortex flow and the non-axisymmetric one- 
travelling-wave wavy-vortex flows have these symmetries. 

The velocity field v(r ,  $, z ,  t )  can be written as a spectral sum 

(2.8) 

m m  

v(r ,  $, z ,  t )  = Re [ 2 C(r, m, k ,  t )  eim$ eiznkzlA 
m=-cc k=o 

where the Fourier coefficients C ( r , m , k , t )  are complex. In  terms of the Fourier 
coefficients, the shift-and-reflect symmetry of (2.5)-(2.7) is 

Sr(r ,  m, k ,  t )  = ( -  l ) m  6;(r ,  -m,  k ,  t ) ,  (2.9) 

6,(r ,m,k , t )  = ( - l ) m 6 $ ( r ,  - m , k , t ) ,  (2.10) 

G,(r ,m,k , t )  =-(-1)"6,*(r, - m , k , t ) .  (2.11) 
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For axisymmetric flows the symmetry reduces to Im [a,.] = Im [d4] = Re [d,] = 0. For 
axisymmetric flows with shift-and-reflect symmetry the spectral sum in (2.8) can be 

written a, 

(2.12) 
2nkz 

u,(r, z ,  t )  = C f k ( r ,  t )  cos - 
k=O A ’  

(2.13) 

2nkz 
v,(r, z ,  t )  = X hk(r,  t )  sin - 

m 

(2.14) 
k=O A ’  

where f,, gk and h, are real functions. 
Note that in physical space the shift-and-reflect symmetry depends upon the choice 

of origin of z and q5. If the z-origin were shifted by zo (where zo is not a multiple of 
+A) the physical symmetry of the flow would not disappear, but (2.5)-(2.7) and 
(2.9)-(2.11) would no longer be true, and the correct equations that describe the 

symmetry would be more complicated. To use (2.9)-(2.11) with a flow that has 
shift-and-reflect symmetry, we need to choose the correct origin of the coordinate 

system. 
Most of our numerical calculations for the one-travelling-wave flows were done by 

using a sparse set of Fourier modes that forced the flow to be invariant under rotation 

about the z-axis by 2n/m, and to have the shift-and-reflect symmetry. The resulting 
equilibrium flows were then tested for stability with respect to all modes, including 
modes with no symmetries. Occasionally, flows were calculated using all of the 
Fourier modes, and after the solution converged a numerical search was done to  find 
a coordinate system with an origin such that the equilibrium flow had the shift- 

and-reflect symmetry of (2.9)-(2.11). For radius ratios between 0.8 and 0.9 and for 
Reynolds numbers less than approximately 10Rc we found that, when perturbations 

without shift-and-reflect symmetry were introduced into the numerically calculated 
flows, the perturbations decayed quickly in a dynamical time. For Reynolds numbers 
greater than approximately 10R, the perturbations grew occasionally into a two-’ 

travelling-wave flow (which cannot have shift-and-reflect-symmetry for m, =+ m2). 

Other allowable symmetries in Taylor-Couette flows and their implications for 
non-axisymmetric flows with wavy inflow (outflow) boundaries and unperturbed or 

straight outflow (inflow) boundaries (cf. Andereck, Dickman & Swinney 1983) are 

discussed by Marcus (1984 b ) .  

3. Numerical simulation of axisymmetric Taylor-vortex flow 

Using the initial-value code developed in Part 1 ,  we have computed several 
axisymmetric Taylor-vortex flows with three types of initial conditions : circular 

Couette flow with infinitesimal perturbations (i.e. the round-off noise of the computer) ; 
circular Couette flow with one or more of its linearly unstable eigenmodes; and 
unstable non-axisymmetric wavy-vortex flows. Taylor-vortex flow is stable only in 
a small region of (7, R, A )  parameter space. In  this stable region we find that the final 
steady state is independent of the initial conditions. 

Stable equilibrium with 7 = 0.875, R, = 118.16, A = 2.50, R = 1.179Rc 

Although we have computed several stable equilibrium Taylor-vortex flows, we will 
present detailed results for only one of our numerical simulations. The stable 
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FIQURE 2. Two-dimensional projection of the Taylor-vortex velocity onto the ( T ,  2)-plane with 
77 = 0.875, R = 1.179RC, A = 2.50 and R, = 118.16. The inner-cylinder boundary is on the left and 
the outer-cylinder boundary is on the right. The velocity field here and in all figures in $3 is 

computed with 33 radial Chebyshev polynomials and 32 axial Fourier modes. 

Taylor-vortex flow with radius ratio 7 = 0.875, axial wavelength h = 2.50 and 

Reynolds number R = 139.32 or R = 1.179Rc typifies our results. I n  figure 2 we show 

a 2-dimensional projection of the velocity field in the radial-axial plane for some 

arbitrary (since the flow is axisymmetric) value of #. Here, as in all subsequent figures 

in the ( r ,  2)-plane, the vertical line on the left side is the boundary of the inner cylinder, 

and the vertical line on the right is the outer cylinder. Note that the outflow boundary 

jet between the Taylor vortices a t  z = has a much stronger shear velocity than 

the inflow boundary jet between the vortices at z = 0. The fact that  the outflow 

boundary has a larger radial velocity has also been observed experimentally. 

In  figure 3 we have plotted the 2-dimensional projection of the velocity in the 

( z ,  $)-plane. I n  this figure, as in all subsequent Jigures in the ( 2 ,  #)-plane, the vertical 

axis points in the axial direction and the horizontal axis points in the azimuthal 

direction. The velocity in figure 3 is the ( 2 ,  $)-projection of u a t  r = a+0.5, the value 
of the radius midway between the inner and outer cylinders. (Figure 3 can be thought 

of as a plot of the velocity field on an imaginary cylinder a t  radius r = a+0.5 that 

is then unrolled on a flat surface.) The vertical height of figure 3 is equal to the axial 

wavelength A ,  and the horizontal length is equal to the circumference midway 

between the inner and outer cylinders, or 2n(a+0.5). Figure 3 was scaled by 
multiplying all horizontal lengths and velocities by h/2n(a + 0.5). The velocity field 



Simulation of Taylor-Couette j o u i .  Part 2 73 

FIGURE 3. Thr %-dimensional ( r ,  $)-projection of the velocity field at, r = a+0.5. The horizontal 

lengths and velocities are scaled by a factor of h/2n(a + 0.5). The figure shows the velocity measured 
by an observer in a frame rotating with angular speed c, where c is the azimuthal angular velocity 

of a fluid element located at the centre of one of the Taylor vortices shown in figure 2 .  

in figure 3 is not what an inertial observer would see. Instead, i t  is the velocity 

observed in a frame rotating with angular speed c,  where c is the azimuthal angular 

velocity of a fluid element in the centre of one of the Taylor vortices pictured in figure 

2 .  The reason for this choice of reference frame will soon become apparent. The z +- z ,  

u2+- 1 1 ,  symmetry of (2.12)-(2.14) is evident in figure 3, which also shows clearly that 

in the (:,$)-plane there is large shear. Two inflection points are located very close 

to, but not' exactly equal to, the values of z that  denote the centres of the Taylor 

vortices in figure 2 .  The precisc location of the line of inflect>ion in the shear velocity 

in t,he ( 2 ,  $)-plane is, of course, a funvtion of t>he radius at) which the ( z ,  $)-projection 

of t,he velocity is plotted. 
In  figure 4 we plot, the mean (axially and azimuthally averaged) angular momentum 

L(r)  = rP$(r, n i  = 0, k = 0) as a function of radius. The dimensionless angular mom- 

entum is always equal to zero at b and t'o 7/(1 -7 )  (or 7.00 for 7 = 0.875) at a,. The 

solid curve is t.he angular moment>um for stable Taylor-vortex flow, and t'he dotbed 

curve represerhs unstable equilibrium circular C'ouet>te flow at the same values of R 
and 7 .  Figure 4 shows that Taylor-vortex flow increases the slope of L(r)  at the 

boundaries and reduces the gradient of L ( r )  in t>he fluid interior. This change in L(r)  
is exactly what is expected of a flow that transports angular momentum outward 

from the inner cylinder. The torque per unit axial lengt'h a t  the outer cylinder (see 

€'art 1) is 
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The steepening of the gradient of L(r )  a t  the boundaries causes the Taylor-vortex 

flow to exert more torque on the outer cylinder than the circular Couette flow exerts. 

The torque per unit axial length (in dimensionless units) of the unstable equilibrium 

circular Couette flow with = 0.875 and R = 1.179RC is 2.6939; by contrast, the 
torque of the stable equilibrium Taylor-vortex flow with the same values of 7 and 

R and with h = 2.50 is 3.3539. I n  $4 we show that,  as the Reynolds number increases 

further, boundary layers form such that the gradient of L( r )  in thc interior goes to 

zero and the gradient of L ( r )  at the boundaries becomes still steeper. 

In  figure 5 we have plottcd the energy E ( k )  and enstrophy & ( k )  spectra as functions 

of axial harmonic number k : 

where 

rb r 2 ~  

(3.4) 

and where ck = 2-6,,,. The use of k in (3.4) is consistent with its use in (2.8). 

Equations (3.2) and (3.3) have normalization such that 

a3 a3 

E = C. E ( k ) ,  & = & ( k ) ,  (3.5), (3.6) 
k=O k=O 

where E end & are the total energy and enstrophy per unit axial length. For a 

homogeneous isotropic flow we can plot the energy and enstrophy spectra as functions 

of a 3-dimensional wavevector. I n  a cylindrical geometry, however, those spectra as 

functions of a 3-dimensional harmonic number are not well-defined, so we have 

plotted 1 -dimensional energy spectra. There are two interesting features of figure 5 : 
the logarithms of the energy and enstrophy depend linearly on the axial harmonic 

number, 

and the spectra are very smooth and show no structure. Energy spectra for flows 

driven by thermal convection that have the same Reynolds number as the flow in 

figure 5 show structure in the form of bumps and wiggles (Marcus 1980). For 
R < 10RC, all of the spectra of the numerically calculated Taylor-vortex flows and 
one-travelling-wave flows have smooth spectra without structure. To understand why 

flows driven by rotation have smoother spectra than flows driven by buoyancy, let 

us consider the time rate of change of E(k) .  The value for E ( k )  is obtained from the 

scalar product of the axial Fourier component of the Navier-Stokes equation with 

the velocity, and is equal to 

In [E(k)]  cc k’, (3.7) 
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or equivalently 
co r2a rb 

$ ( k )  = - ck drrRc{ ik ’v , ( r ,# , k -k ’ ) v ( r ,# , k ’ ) . v ( r ,# ,  - k )  
k’=m 

+ U ( T , # ,  -k)*[fJH(T’Qi, k--’)-V,lfJ(r,4,k’)l  

- [2R-V(k) + s k, 0 4nR-1i + &k, 0 ‘in O i n ,  (3.9) 

where Gin is the torque per unit axial length that the inner cylinder exerts on the 

fluid, and V, and vH are the 2-dimensional projections of the gradient and velocity; 

vH = v-ee,v,. (3.10), (3.11) 
n a v, = v-l?- 

a Z ’  

The first two terms in (3.9) are a sum over all axial harmonic numbers k’, and corre- 

sponds to the nonlinear transfer of energy among modes with harmonic numbers 

& k ,  k’ and f k-k’. The transfer of energy among triads of modes is neither a 

source nor sink of energy. The next term in (3.9), - [2RP1&(k) + 6, 4nK1], is nega- 

tive-definite and is due to  the viscous dissipation. The only source of energy in (3.9) is 

the last term, &k, Gin Oin. Equation (3.9) shows that in Taylor-Couette flow only the 

k = 0 mode (in fact only the axisymmetric component of that mode) is driven directly 

by the torque applied to the inner cylinder. The k = 0 mode receives energy a t  a 

rate of Gin Oin, and i t  must lose this energy either directly by viscous dissipation or 

by transferring its energy to other modes by the nonlinear triad interaction. None 

of the k =+ 0 modes can gain energy directly from the imposed torque; they obtain 

i t  indirectly from the nonlinear interaction. For examplt:, when circular Couette flow 

becomes unstable to a Taylor-vortex mode ( k  = 1 )  the unstable mode grows a t  the 

expense of the energy in the k = 0 component of the velocity. As each subsequent 

mode becomes unstable, it obtains its energy from the other velocity Fourier modes 

(including the axisymmetric k = 0 mode) via the nonlinear triad interaction in (3.9). 

The axisymmetric k = 0 mode dissipates directly most of the energy that enters it. 

Only a small fraction of Ein is passed through nonlinear interactions to the k + 0 or 

m =+ 0 modes, even a t  large Reynolds number (see $5 and Appendix). By contrast, 

in thermal convection there is an additional source term in the equation for E ( k )  due 

to buoyancy. That term is proportional to Re [vt( - k )  T ( k ) ] ,  where T ( k )  is the Fourier 

component of the temperature with axial harmonic number k .  When a fluid first 

becomes unstable to thermal convection, a velocity mode and a temperature mode 

with the same wavelength are produced simultaneously. The kinetic energy of the 

mode is derived from the gravitational field, and the rate a t  which the buoyancy force 

converts potential to kinetic energy is proportional to the nonlinear heat flux or 

Re {v,( - k )  T(k ) } .  Subsequent unstable modes can obtain their kinetic energy from 

both the kinetic energy of other velocity modes via the nonlinear triad interaction 

and directly from the potential energy via the Re {v,( - k )  T ( k ) }  term. 

We conjecture that E ( k )  in figure 5 is smooth because the nonlinear interaction triad 
term in (3.9) has no intrinsic lengthscales and is only a function of the velocity energy 

spectrum. I n  thermal convection we found numerically (Marcus 1980) that the 

nonlinear heat flux varies significantly (and not smoothly) as a function of wavelength. 

(Presumably the variation is due to the fact that  the heat flux depends sensitively 

on the spatial and temporal correlations of the velocity with the temperature.) 
Therefore i t  is not surprising that the energy spectrum of a thermally convecting fluid 

is not smooth. 

Because Taylor-vortex flow is not turbulent, i t  is a mistake to think of the modes 

represented in figure 5 as physical eddies. Also, i t  is incorrect to  compare the spectra 
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in figure 5 with the dissipative regime of fully developed turbulence. Modes in the 

dissipation range of a turbulent flow have direct interaction with the modes in the 

inertial range, whereas the modes in the Taylor-vortex velocity are not supplied with 

energy from an inertial range. 

Using the energy spectrum we can define the characteristic scalar velocity a t  

harmonic number k as 1 
E ( k )  

[ j: dq5 Jl r dr  ] . 

(3.12) 

We can formally define a Kolmogorov axial wavenumber kK such that the local 

Reynolds number a t  that wavenumber is equal to unity : 

or 

(3.13) 

(3.14) 

For the flow in figure 5 kK 2.5.  Notice that there is no break in the spectrum a t  

or near k = kK, since a t  R = 139.32 the entire spectrum is dissipative. 

Using an approximate calculation (in which we ignore algebraic factors), we now 

show that the relation In [E(k ) ]  K lkll is reasonable and consistent with the Navier- 

Stjokes equation. We also give an estimate for € ( k ) - - E ( k ) .  Let us assume that’ the 

energy spectrum is of the form 

~ ( k )  = Eoe-YlklP. (3.15) 

Since the enstrophy is proportional to the energy (and some spatial derivatives), we 

& ( k )  = g(k)e-rlklB, (3.16) 
also assume 

where g ( k )  is an algebraic function of k.  We further assume that most of the energy 

that enters the set of modes with axial harmonic number k via nonlinear interactions 

is viscously dissipated by that set of modes, and only a small fraction of the energy 

is passed on to other modes. The constant y (the slope of figure 5 )  is a measure of 

the fraction of energy that is passed on. As JyI increases, an exponentially smaller 

amount of energy is passed on. By equating the rate Ein(k) a t  which energy cnters 

the set of modes with axial harmonic number k with the rate gOut(k)  a t  which energy 

is lost from the set, we can derive the value of in (3.15) and (3.16). The only net 

source of energy for E(k)  in (3.9) for modes with k + 0 is the nonlinear sum over k‘. 

We shall assume that the only terms in that sum that are a source of energy (and 
not a sink of energy) are those terms that correspond to triad interactions of u( - k ) ,  

with modes that are bigger (in the axial direction) than h/lkl (i.e. modes with lk‘l < Ikl 
and Ik’ - kl < (k l )  : 

lk-k’l < Ikl 

We have absorbed all of the geometrical factors and one spatial derivative into the 

form factorf(k, k’),  which we assume depends algebraically but not exponentially on 

k and k’. Using (3.12) and (3.15) with (3.17) yields 
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If most of the energy is lost from the modes of harmonic number k by dissipation 

then 

,Go,,(k) x 2 ~ - 1 8 ( k )  = 2 ~ - l g ( k )  e-yIklB. (3.19) 

Equating the exponent of Ein(k)  to the exponent of Eout(k) yields p = 1 ,  which agrees 

very well with the data (a straight line) in figure 5. Notice that setting /3 equal to 

unity implies ‘ democracy ’ among the triad interactions ; with p = 1 the rate of energy 
put into v( - k )  due to v(k’) and v(k-k’)  is proportional to e-~Y(lkl+lk’l+Ik--lc’l), but if 

Jk’( < Ikl and Ik-k’l d Ikl then 

lkl+ lk’l+ lk-k‘l = 21k1, (3.20) 

and the rate of energy put into v( - k )  due to nonlinear interaction with v(k‘) and 

v(k-k’)  is proportional to f ( k ,  k’) e--Ylkl and is independent of k’ (except for the 

algebraic factor in f ( k ,  k ’ ) ) .  Therefore all triad interactions in the nonlinear sum in 

(3.19) contribute equally to zin(k) .  Using (3.15) and (3.20), (3.18) becomes 

(3.21) 

or gin(k)  cc E ( k ) .  Using (3.19) for E;’,,,(k) and (3.21) for E;’,,(k) and equating the two, 
we obtain 

Ik--k” < (kl 

Fitting a least-squares line through the k =# 0 points of E ( k )  in figure 5 gives 

ln(Eo) x 5.2. Using this value of Bo and setting 9 = 0.875 and R = 139.31, (3.22) 

becomes 

ln&(k) -1nEfk) x 4.9+ln[ C f ( k , k ’ ) ] .  
Ik’l < Ikl 

Ik-k’l < IkI 

(3.23) 

We expect the sum of the form factors to be near unity a t  k = 1 and to increase slowly 

(algebraically) with increasing k .  Equation (3.23) therefore states that for small k 

In & ( k )  -In E ( k )  should be approximately equal to 4.9 and slowly increase with k .  The 

numerical data in figure 5 are in good agreement with (3.23). 

Comparison between Taylor-vortex flow and circular Couette flow 

Throughout the remainder of this section and $4 we report on the values of the many 

physical properties, such as the energy and angular momentum, that characterize 
Taylor-Couette flows. To understand these flows it  is necessary to compare the values 

of the properties of the different equilibrium flows. For example, the energy of the 

stQbEe Taylor-vortex flow computed for some set of parameters R, q and h should be 

compared to the energy of the unstable circular Couette flow computed for the same 

R and 7. The energy of the stable one-travelling-wave flow computed for some set of 

parameters R, 7,  h and m, should be compared with the energy of the unstable 

Taylor-vortex flow a t  the same R, 7 and h and to the unstable circular Couette flow 

a t  the same R and h. 

All of the properties of the circular Couette flow can be obtained analytically in 
closed form. These are summarized in table 1 ,  which lists each quantity in 3 ways: 

( 1 )  as a function of the radius ratio 7 and Reynolds number R ; (2) evaluated with 
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As functions of 
RIR, evaluated 

a t  7 = 0.875 
As functions of RIR, 
and 1-7 in the limit 

Quantity As functions of 7 and R (R, = 118.16) 7+1  

TABLE 1. Physical properties of circular Couette flow (1) as arbitrary functions of 7 and R, (2) 
evaluated a t  7 = 0.875 with R, = 118.16, and (3) as functions of R/R, and 1-7 in the limit 7+  1. 
In  the limit ?+l ,  R, !z 41.41(1-7)-1 

7 = 0.875 but as a function of R ;  and (3) as a function of RIBc and 1-7 in the limit 
7-f 1. I n  the limit 7 + 1  we can approximate R, by (Chandrasekhar 1961) 

R, N 41.41(1-7)-4. (3.24) 

The notation CC used in table 1 denotes that the quantity is computed for equilibrium 
circular Couette flow. The kinetic energy E,  enstrophy &, angular momentum 3, 
torque G and the rate E a t  which kinetic energy is put into (or is dissipated by) the 
flow are all evaluated per unit axial length of the cylinder. For example, the enstrophy 
is defined 

(3.25) 

I n  a steady state G = Gin = Gout, I? z gin z gout and 

(3.26) E = - ( ( d + 2 ~ )  = GOi,. 

Note that in our dimensionless units 9 ( C C ) ,  E(CC)  and 8(CC) are independent of R. 
For the Taylor-Couette flows it is useful to define four characteristic timescales. 

2 

R 
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The energy timescale is defined to be the time it  would take the motor that drives 
the inner cylinder with power E to completely replenish the energy E stored in the 
flow, or 

7 E  = E / E .  (3.27) 

The momentum timescale is defined to be the time needed for the external torque 
G to replace the angular momentum dip, or 

72 = dip/G. (3.28) 

The timescales 7 E  and 72 for circular Couette flow are both given in table 1. Two 
other important timescales listed in table 1 are the dynamical time or the rotation 
period of the inner cylinder 7p and the diffusion timescale 7, = ( ~ - u ) ~ / u .  The values 

of the diffusion and dynamical timescales are uniquely determined by the Reynolds 
number and the radius ratio, and are therefore both independent of the type of flow 

(i.e. wavy-vortex, circular Couette, etc.). In  fact, in our dimensionless units 7, is 

identically equal to  R. As shown in table 1, in circular Couette flow the angular- 
momentum and energy timescales in units of the viscous timescale, 7yojCC)/7, and 
7E(CC) /7 , ,  depend only on 7 and are independent of R. For small gaps 7z(CC)/~ ,  and 
7 E ( C C ) / 7 ,  are independent of both 1 - 11 and R/R, and are equal to f and respectively. 
Table 1 also shows that for7 = 0.875 if R/R, isnear unity then the angular-momentum 
timescale 72 and the inner-cylinder rotation period 7,, are approximately the same. 

The physical properties of the steady-state stable Taylor-vortex flow (denoted by 

TV) at 7 = 0.875, h = 2.50 and R = 1.179RC are summarized in table 2. Each 
quantity Q is given in dimensionless units and in units of Q(CC). As already shown 

in figure 4, the torque G is increased substantially in the Taylor-vortex flow; for 
R = 1.179RC it is 24 % greater than the torque of circular Couette flow. Since E(TV) 

is proportional to G(TV), the rate at which energy enters (or is dissipated by) the 
Taylor-vortex flow is also 24% greater than @(CC). Furthermore, since 6(TV) is a 

monotonic function of &TV) (see equation (3.26)), Q(TV)/&(CC) is also greater than 
unity. As R increases, the ratios G(TV)/G(CC), @TV)/E(CC) and &(TV)/&'(CC) all 
continue to increase. 

During the initial-value experiment in which we start with the unstable equilibrium 
circular Couette flow and let i t  change to the stable Taylor-vortex flow, boundary 

layers form in the mean angular-momentum profile L ( r )  (see figure 4). The boundary 
layer always forms a t  the outer cylinder before the inner, resulting in the torque Gout 
a t  the outer cylinder being greater than the torque Gin a t  the inner cylinder for several 
inner-cylinder rotation periods while the flow comes into equilibrium. When Gout > Gin 
the flow loses angular momentum (see equation (3.5) of Part  1). Therefore the angular 

momentum dip(TV) of the Taylor-vortex flows is less than dip(CC). For R = 1.179Rc, 
dip(TV) is about 1 yo less than dip(CC). Since most of the kinetic energy ofTaylor-vortex 

flow resides in the k = 0, m = 0 azimuthal component of the velocity (see below), if 
L?(TV)//(CC) < 1, then we should also expect E(TV)/E(CC) < 1. For R = 1.179Rc, 
E(TV) is about 2 %  lower than E(CC). As R increases, Y(TV)/dip(CC) and 

E(TV)/E(CC) continue to decrease. 
Because E(TV)/E(CC) < 1 and @(TV)/B(CC) > 1, the energy timescale for Taylor- 

vortex flow, TE(TV), is less than 7,4CC) by about 22 %. Similarly, dip(TV)/Y(CC) < 1 
and G(TV)/G(CC) > 1 imply that T ~ ( T V ) / T ~ ( C C )  < 1. As R increases, T ~ ( T V ) / T ~ ( C C )  
and T ~ ( T V ) / T ~ ~ ~ ( C C )  continue to decrease. The fact that T~ is nearly identical with 
the inner-cylinder rotation period 7p is purely coincidental and is due to our choice 
of 11 (see table 1). 
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Divided by the same quantity 

for circular Couette flow 
with 11 = 0.875, RIR, = 1.17 Dimensionless units 

7.14 0.976 
27.1 1.32 

163 0.988 
3.35 1.24 

0.479 1.24 

14.9 0.784 

48.6 0.793 
0.107 - 

0.349 
0.339 - 

1.10 

__ 

- 

TABLE 2. Summary of physical properties for Taylor-vortex flow with 11 = 0.875, 
R, = 118.16, R/R,  = 1.179, h = 2.50 

For a Reynolds number of 139.32 or 1.179Rc, most of the kinetic energy is still 

in the azimuthal component of the velocity with only about 0.1% in the radial 

component and 0.2 yo in the axial component. These low percentages are surprising, 

since approximately 4 yo of the total kinetic energy is in the Taylor-vortex velocity 

(i.e. components of the velocity with k + 0). We conclude that most of the energy 

of tthe Taylor vortex itself is in the azimuthal direction rather than the radial or axial 

directions. 

Stability boundaries of Taylor-vortex $ow in (R, A)-parameter space 

As discussed in Part  1, we find that the numerically computed stability boundaries 

of Taylor-vortex flow agree well with the experimentally observed values. Holding 

h fixed, we find that if the Reynolds number decreases below a critical value then 

the Taylor-vortex flow decays into circular Couette flow. The critical value is the usual 

one that is found by determining where circular Couette flow becomes neutrally stable 

to linear perturbations. If we begin with a one-travelling-wave flow with m, = 6 and 

decrease R while holding h fixed, we find that there is a transition from m, = 6 to 

m, = 4. The Reynolds number for transition is a function of h and our numerical 

results are in good agreement with the laboratory experiments of King & Swinney 

(1983). 
With our present initial-value code we cannot determine the stability boundaries 

when R is held fixed and h is continuously varied. We remind the reader that  our 

code cannot compute transitions where the number N of vertically stacked Taylor 

vortices changes. Our code uses discrete Fourier sums; if the code represented the 

velocity as a continuous Fourier integral i t  would allow transitions to any value of 

N .  Our calculations are done with a prescribed value of A. However, because we 

represent the flow spectrally with the truncated sum 

K 

k=O 

u(r ,  # , z ,  t )  = I: fir,#, k ,  t)e2niktih, (3.29) 

there can be a transition from a flow with axial wavelength h to a flow with axial 

wavelength $I, which has f ( r ,  #, k ,  t )  = 0 for all k equal to odd integers. Transitions 

with axial-wavelength halving are not observed experimentally ; the observed 
transitions change the number N of vortices by two. Nonetheless, as we slowly 
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increase h we find that there is an abrupt transition from a flow with axial wavelength 
h to one with wavelength $I whenever h increases above some critical value. This 
numerically computed critical value of h is a function of R and is nearly equal to the 

observed critical value of h where N changes to N + 2 .  The similarity between the 
observed and the numerically determined values of the critical wavelength leads us 
to the conclusion that the physical processes responsible for the real transitions are 
approximated well by our discrete Fourier representation of the velocity. 

4. Numerical simulation of the one-travelling-wave flow 

A stable equilibriumJEow with 17 = 0.875, h = 3.00, m, = 6, R = 2.O63RC 

We have calculated several one-travelling-wave flows using 33 radial Chebyshev 
polynomials, 32 axial Fourier modes, and 32 azimuthal Fourier modes where we 
exploit the shift-and-reflect symmetry and m, fold rotahion symmetry of the flows. 
We report first on the numerical results of a flow with m, = 6, h = 3.00, 7 = 0.875 

and R = 243.81 = 2.063RC. I n  figure 6 we have plotted the 2-dimensional projection 
of the velocity in the ( r ,  2)-plane (inner cylinder on left and outer cylinder on right). 

Each of the nine plots shown in figure 6 is for a different value of q5, with the first 

arbitrarily labelled as q5 = 0. Each of the other figures are equally spaced in q5, with 

the last a t  q5 = n/ml. It is unnecessary to plot the figures for q5 > x / m l ,  owing to the 
shift-and-reflect symmetry of the flow: the plot of the velocity field a t  q5 = (2~196)  x 9 
is the same as the plot a t  q5 = (2n/96) x 1 reflected about z = 0 (i.e. upside-down). 
The inflow boundary in figure 6 is always near z = 0, and the outflow boundary is 
always near z = +;AA. Similar to  Taylor-vortex flow (see figure 2 ) ,  the one-travelling- 

wave flow has a larger radial velocity a t  the outflow boundary than i t  has a t  the inflow 

boundary. 
I n  figure 6 we see that for each value of $ one of the Taylor vortices is diminished 

and one is enhanced. For $ = (2x/96) x 6 the bottom counterclockwise vortex has 
nearly disappeared. For each value of q5 there is also a large axial component of 
velocity; a t  q5 = 0 in figure 6 there is a strong upward flow in the axial direction. The 

solid curves are contours showing the surfaces where the azimuthal component of the 
velocity is constant. For each figure we plot only one contour - the surface where the 
fluid has the same azimuthal angular velocity s1 as the travelling wave. All fluid to 
the left of the curve is moving faster than the travelling wave and all fluid to the 

right is slower. The solid curves always pass near the centre of at least one of the 
vortices; a t  the critical Reynolds number for the onset of one-travelling-wave flow 
the solid curve passes through the exact centres of both vortices (see below). 

To understand better the travelling-wave flow in figure 6, we have plotted in figure 
8 the ( r ,  2)-projection of the axisymmetric unstable Taylor-vortex flow computed with 
the same values of 7, R and h as the wavy Taylor-vortex flow in figure 6. The solid 
curve is the contour where the azimuthal velocity is sl. Figure 7 shows the velocity 
field of the wavy-vortex flow in figure 6 with the velocity field of the Taylor-vortex 
flow in figure 8 subtracted from it. (The solid curves in figure 7 are identical with 
those in figure 6.) If the Reynolds number of the flow were infinitesimally greater 
than the critical value for the onset of travelling waves (so that  the non-axisymmetric 
component of the velocity had an infinitesimal amplitude) then the flow plotted in 
figure 7 would be exactly equal to the first unstable non-axisymmetric eigenmode of 
the Taylor-vortex flow in figure 8. We can think of the flow in figure 7 as a ‘nonlinear 
travelling eigenmode ’. I n  the ( r ,  2)-plane the nonlinear travelling mode appears as 
a vortex (see figure 7, q5 = (2n/96) x 6) whose axial length is about twice as long as 
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I t  

r t  

r T  
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3utflow 
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FIGTJRE 8. The ( r ,  2)-projection of the axisymmetric velocity of the unstable equilibrium 
Taylor-vortex flow with the same R,  7 and h as the flow in figure 6. 

that of vortices of the one-travelling-wave flow (figure 6) or the Taylor-vortex flow 

(figure 8). I n  $3 we showed that in Taylor-vortex flow the fluid near the centres of 

the vortices never mixes with the surrounding fluid near the boundaries or in the 

neighbouring vortices. Figures 7 and 8 show that the nonlinear travelling mode mixes 

the fluid a t  the centres of adjacent Taylor vortices. Figure 8 shows that the separation 

between the Taylor vortices is much greater a t  the inflow boundary than a t  the 

outflow boundary. The large vortex of the nonlinear travelling wave always connects 

and mixes together a pair of Taylor vortices across their inflow boundary and never 

their outflow boundary. The large vortices change their direction as a function of $ ; 
the shift-and-reflect symmetry of the flow guarantees that the large clockwise vortex 

a t  $ = (2n/96) x 7 in figure 7 appears as a large counterclockwise vortex a t  

$ = (2n/96) x 15. For some values of $ the nonlinear travelling mode also contains 

a very small vortex, which rotates in the direction opposite to that of the larger vortex 

(see the bottom of figure 7 at g4 = (2~ /96)  x 1) .  The small vortex of the nonlinear 

travelling mode is always located at the outflow boundary between the Taylor 

vortices, and never a t  the inflow boundary. (This small vortex is not a numerical 

artefact. We remind the reader that the spacing of the arrows shown in figure 7 does 

not correspond to the numerical resolution of the calculation.) 

I n  figure 9 we have plotted the 2-dimensional projection of the one-travelling-wave 

velocity in the ( z ,  $)-plane a t  r = a+0.5, the point midway between the inner and 
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FIGURE 9. (2, $)-projection of the one-travelling-wave flow shown in figure 6. The plotted velocity 

is that seen by an observer in a frame rotating with speed s l ,  the travelling-wave speed. The solid 
curves pass through all fluid with v# = 0 in this frame. 

outer cylinders. I n  the figure --$A < z < $4 and 0 < r$ d 27c(a+0.5)/mI, so all 
lengths and velocities in the azimuthal direction have been scaled by a factor of 
Am1/27c(a+0.5). The velocity is that  measured by an observer in a framc rotating 

with speed sl. The solid curves are similar to those in figure 6 and pass through all 
points with v4 = 0 (in the rotating frame). 

We have subtracted the axisymmetric, unstable, equilibrium Taylor-vortex flow 
for R = 2.063RC, 9 = 0.875 and A = 3.00 from figure 9 and plotted the difference, or 

the ( z ,  #)-projection of the nonlinear travelling mode, in figure 10. It appears as a 

2-dimensional array of vortices with alternating signs. (We remind the reader that 
figure 10 should be repeated periodically in both the horizontal and vertical 
directions.) By plotting figures similar to figure 10 a t  different values of radius, we 
have determined that, as the radius of the projection increases, the vortices with 
centres near z = 0 (or between the two solid curves in figure 10) shift to the left (i.e. 
the centres remain near z = 0 but with decreasing values of $). The total shift in $ 
of the vortices centred near z = 0 is approximately n/ml as the radius of the 
( z ,  $)-projection increases from a to  6 .  The vortices centred near z = &;A also shift 
to the left as the radius of the projection increases from a to b,  but not a t  the same 
rate as the vortices near z = 0. Figure 10 shows that a t  r = a+0.5, the vortices near 

z = 0 are midway (in #) between the vortices near z = &$A.  Projections of the velocity 
a t  radii close to the outer and inner cylinders show that, the vortices near z = 0 and 

z = f:A are centred at common values of $. 
The inflow and outflow boundaries of the Taylor vortices with one travelling wave 

have been measured experimentally (cf. DiPrima & Swinney 1981). The vortex 
boundaries are visualized by suspending in the fluid flat flakes that align themselves 
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FIQURE 10. The nonlinear travelling mode equal to the velocity in figure 9 minus 
the unstable equilibrium Taylor-vortex velocity. 
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in the direction of the local stress. Motion along the observer's line of sight (radial 
motion) appears dark, while motion perpendicular to the line of sight appears light. 
Although the visualization does not correspond to a mathematically well-defined 

quantity, we have tried to reproduce qualitatively the flow visualization due to the 
suspended flakes. In  figure 11 we have plotted contours of the two local maxima of 
the ratio of kinetic energy in the radial direction to the sum of the kinetic energies 
in the azimuthal and axial directions (integrated over all radii). When this ratio is 
very large the fluid is moving along the observer's line of sight and the maxima should 

correspond to the dark inflow/outflow boundaries seen in the experiments. Two 
features of figure 11 agree qualitatively with the experimental observations : first, 

the z coordinate of the inflow boundary varies less with q5 than it does for the out- 

flow boundary; secondly, the inflow boundary lags behind the outflow boundary 

(i.e. if the minimum value of z in the inflow boundary occurs a t  q5 = q5min,in and 
the minimum value of z in the outflow boundary occurs a t  9 = then 

$min, i n  < q5min, out). 

Figures 12 and 13 show the 2-dimensional projection in the (z,4)-plane of the - "  . -  " 

contours of equal energy and enstrophy. These two figures are evaluated at the radius 
midway between the inner and outer cylinders, and the plots are scaled as in figure 9. 

Although the equienergy surfaces in figure 12 reflect the (z,@)-dependence of the 

inflow and outflow boundaries, there is no strong spatial concentration of the energy 
at  the boundaries. On the other hand, the equienstrophy surfaces are strongly 
concentrated at the outflow boundary near z = ;A and, to a lesser degree, at the inflow 
boundaries at z = 0 and z = A. 

Although figures 12 and 13 show that the spatial structures of the energy and 
enstrophy are very different, the spectra of the energy and enstrophy with respect 
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FIGURE 11. Inflow and outflow boundaries between the Taylor vortices of the flow in figures 6 
and 9. The boundaries are computed by finding the local maxima of ~ v ~ / ( v $ + v ~ )  dr. 

Z 

FIGURE 1 of the 
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FIGURE 13.  Same as figure 12 for the equienstrophy surfaces. Most of the 
enstrophy is at the  outflow boundary. 

to axial wavenumber k ,  shown in figure 14, look very similar. The logarithms of the 

energy and enstrophy are both linear in k ,  and the spectra of the one-travelling-wave 

flow are similar to the spectra of the axisymmetric Taylor-vortex flow (see figure 5). 

Figure 14shows that  thereis asmall departure fromlinearity inthe one-travelling-wave 

flow's spectra a t  the lowest wavenumbers. (The figure also shows a slight upward curl 

a t  the largest wavenumber-this is a numerical artefact due to the insufficient 
resolution; doubling the spatial resolution removes the upward curl at k = 15.) 

Figure 14 should be compared with figure 15, which shows the energy and enstrophy 

spectra of the unstable, axisymmetric, equilibrium, Taylor-vortex flow computed 

with the same R, 7 and h as figure 14. The fall-off of the energy and enstrophy with 

increasing axial wavenumber is faster for the non-axisymmetric one-travelling-wave 

flow than for the Taylor-vortex flow, resulting in a larger E ( k )  and &(k)  a t  high 

wavenumber for the latter flow. This faster rate of fall-off and lack of energy in the 

high-axial-wavenumber modes is due to the fact that the one-travelling-wave flow 

has a viscous dissipation term in (3.8) that is proportional to m:/R. This dissipation 

is absent in axisymmetric Taylor-vortex flow. We have found numerically that the 

family of stable one-travelling-wave flows with differing m, and with the same values 

of R,  h and 7 have energy and enstrophy spectra with slopes lalZ/akl and la8/akl that 
decrease with increasing m),. The spectra in figure 21 which were calculated form, = 4 

and with the same values of R, h and 7 as the m, = 6 flow in figure 14 have slopes 

that are greater than those in figure 14. 

Figure 16, like figure 4, is a plot of the angular momentum per unit mass L(r) as 

a function of radius. The broken curve is L(r) for unstable circular Couette flow, the 

dotted curve for unstable axisymmetric Taylor-vortex flow, and the solid curve for 

stable non-axisymmetric one-travelling-wave flow. All three flows are computed with 
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FIGURE 16. Angular momentum per unit mass L(r) as a function of radius for three equilibrium 
flows, all with R = 2.063B,, A = 3.00 and 11 = 0.875: stable m, = 6, one-travelling-wave (solid 
curve), unstable Taylor-vortex (dotted curve), unstable circular Couette (dashed curve). 

R = 2.063RC, h = 3.00 and 7 = 0.875. An interesting feature of figure 16 is that, far 
from the boundaries, the stable flow does not minimize the gradient of L(r) or have 
the steepest gradient of L(r) a t  the boundaries (i.e. greatest torque). Neither does the 
one-travelling-wave flow maximize the angular-momentum transport. This is in 
agreement with Davey et al. (1968), whose fmite-amplitude calculations showed that 
the wavy-vortex flow has a smaller torque than that of the unstable axisymmetric 
Taylor-vortex flow. Figure 17 shows L(r) for two flows with the same R, h and 7 as 
in figure 16. The one-travelling-wave flows are represented by a solid curve for m1 = 4 
and a broken curve form, = 6. Both flows are stable with respect to finite-amplitude 
perturbations in both the numerical and laboratory experiments, yet it  is obvious 
that the m, = 6 flow is more efficient than the other in transporting angular 
momentum. I n  laboratory experiments the final equilibrium state that  the fluid goes 

into depends on the initial conditions (i.e. how the apparatus is turned on and brought 
up to speed). Experimentalists (King & Swinney 1983) have found that, for the R, 
h and 7 of the two flows in figure 17, a majority of initial conditions result in the 
m, = 6 flow being the final state. 

The travelling mode as a secondary instability 

Because the torque of the travelling-wave flow is less than that of Taylor-vortex flow, 
it has been proposed that the travelling wave is a secondary instability of the 
Taylor-vortex flow and is not a centrifugal instability of the primary flow (cf. DiPrima 
& Swinney 1981). One picture that has been suggested for the secondary instability 
is that the shear in the (4, 2)-plane has an OrI-Sommerfeld type of instability and 

4 P L M  146 
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one-travelling-wave flow 

one-travelling-wave flow 
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FIGURE 17. L(r) form, = 6 (dashed curve) and m, = 4 (solid curve), one-travelling-wave flows. 
Both flows are stable and have the same R, h and as the flow in figure 16. 

that  the travelling waves are associated with the inflection points of the shear, i.e. 
where i32w&k2 = 0 (Meyer 1966; Davey et al. 1968). Although this picture has several 
virtues, we propose another scenario for secondary instability which we believe has 
several advantages over the Orr-Sommerfeld picture. 

First note that for R = 2.063R,, A = 3.00 and r,~ = 0.875 the kinetic energy (per 
unit axial length) of the unstable Taylor-vortex flow is 6.2552, whereas the kinetic 

energy of the stable m, = 6 one-travelling-wave flow (with the same R, h and 7) is 

6.4524. The stable flow has slightly more total kinetic energy than the unstable flow. 

However, i t  is interesting to  note that the kinetic energy in the radial direction is 
more than 10% greater for the unstable Taylor-vortex flow than for the stable 
one-travelling-wave flow. Furthermore, the 4- and z-components of the kinetic energy 
are lower for the unstable Taylor-vortex flow. The radial energy in the one-travelling- 
wave flow is significantly lower than that of the Taylor-vortex flow because the 
velocity in the non-axisymmetric outflow boundary is diminished ; the #- and 
z-components of the energy in the non-axisymmetric flow are greater than the 
corresponding components in Taylor-vortex flow owing to the presence of vortical 
motions in the (z,$)-plane (i.e. non-axisymmetric modes in figure 10). The axi- 
symmetric component of the kinetic energy of the one-travelling-wave flow is 6.2360, 

which is less than the axisymmetric component of the kinetic energy (i.e. total 
energy) of Taylor-vortex flow (6.2552). The vortical motions in the ( z ,  #)-plane 
associated with the one-travelling-wave flow have grown a t  the expense of the 
axisymmetric radial component of the kinetic energy in the outflow boundary of the 
Taylor-vortex flow. 

The nonlinear travelling mode, whose ( r ,  2)-projection is shown in figure 7, decreases 
the azimuthally averaged radial velocity in the outflow boundary. To show how this 
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FIGURE 18. Axisymmetric component of the nonlinear travelling mode shown in figure 7 

The nonlinear travelling mode decreases the radial velocity in the outflow boundary. 

decrease comes about, we have computed the azimuthal average of the nonlinear 

travelling mode from figure 7 and plotted the (r,z)-projection in figure 18, which 

shows that the radial velocity of the nonlinear travelling mode is inward a t  z = +;A, 
the location of the Taylor-vortex outjlow boundary. Figure 18 also shows that the 
nonlinear travelling mode mixes the fluid a t  the centres of the Taylor vortices 

(figure 8), with the fluid near the cylinders’ boundaries. At z = 0 the radial velocity 
of the nonlinear travelling mode is inward and slightly increases the radial velocity of 
the Taylor-vortex inflow boundary. 

Based on the observation that the travelling-wave flow has converted part of its 
radial kinetic energy into azimuthal and axial kinetic energy, we believe that i t  is 
the radial jet in the outflow boundary that drives the one-travelling-wave instability. 
We view the transition to the one-travelling-wave flow as caused by a local, inviscid, 
centrifugal instability of the outflow boundary. Consider the Taylor-vortex flow 
shown in figure 2. Rayleigh’s stability criterion states that a flow is centrifugally 
unstable whenever the angular momentum decreases outward from some reference 
point. At the inflow and outflow boundaries of the Taylor vortices, the $-component 
of the angular momentum with respect to the vortex centre decreases outward from 
the centre. The Taylor vortices themselves (as viewed in the (r,z)-plane) are 
centrifugally unstable. It is the nature of centrifugal instabilities to produce 
3-dimensional secondary flows with vortical motion in the plane perpendicular to the 
primary flow. (The secondary Taylor-vortex flow driven by the centrifugally unstable 

circular Couette flow is the classic example.) Centrifugally unstable Taylor vortices 
4 - 2  
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(in the (r,z)-plane) produce a vortical secondary flow in the (z,$)-plane as in 
figure 10. The vortices in the ( z ,  $)-plane not only break the axial symmetry of the 
Taylor-vortex flow (so the one-travelling-wave flow must be non-axisymmetric), but 

also, because they are centred near the outflow and inflow boundaries (i.e. z x 0 and 
z x +$A), they mix fluid from the different Taylor vortices together a t  their inflow 

boundaries and thereby reduce the radial component of kinetic energy in the outflow 
boundary. We have found numerically that, a t  the critical Reynolds number where 

Taylor-vortex flow becomes unstable to one-travelling-wave flow, the vortices in the 

(2, $)-plane are centred exactly (to within numerical uncertainties) a t  the outflow and 

inflow boundaries at z = 0 and z = * $ A .  
An Orr-Sommerfeld-type instability of the shear in the ( z ,  $)-plane does not explain 

the fact that the radial kinetic energy of the one-travelling-wave flow is less than it  

is in the Taylor-vortex flow. Furthermore, if the travelling wave were a shear 
instability we would expect that  the vortices in the ( z ,  $)-plane would be centred a t  
the inflection points. The inflection points of the azimuthal velocity in the ( z ,  $)-plane 

(as well as the centres of the Taylor vortices) are located near z = f t h  (the exact 
position is a function of radius). Figure 10 shows that the vortices are centred 
approximately 90" out of phase from the inflection points. We also note that a 

periodic array of vortices with alternating sign in the (2, $)-plane centred near the 
inflow and outflow boundaries (i.e. z x 0, z x &+A, z M +A,  ...) is consistent with 
shift-and-reflect symmetry, whereas a periodic, alternating, array of vortices centred 
at the inflection points (i.e. z ++A, +-:A, ...) is inconsistent. 

Our picture that an instability of the radial outflow boundary is responsible for 
the one-travelling-wave flow dovetails nicely with our numerical findings (Marcus 
1984c) that the second travelling wave is associated with an instability of the inflow 

boundary. Because the inflow jet is weaker than the outflow jet, the second travelling 
wave occurs a t  a higher Reynolds number. Therefore inflow/outflow instabilities 
provide a natural way for the Taylor-Couette flow to have both one- and two- 
travelling-wave instabilities with onset a t  different Reynolds numbers. (Having an 
inflectional instability produce both the one- and the two-travelling-wave flows is 
more difficult ; since, although there are two inflection points per axial wavelength, 
the flow a t  the two points is identical and i t  is not obvious why one inflection point 
would go unstable a t  a low R and the other a t  a high R.) 

We have not been able to use our model of instability to predict the critical value 
of Reynolds number for onset of travelling waves as a function of radius ratio 7.  

However, Coles (1965) did show experimentally that there is a relationship between 
the Reynolds number for the onset of wavy vortices and the characteristic angular 

velocity of the flow in the Taylor vortices (which is related to the velocity in the 
outflow jet). I n  the narrow-gap limit Davey et al. (1968) used the Orr-Sommerfeld 
shear instability to  explain Coles' empirical determination of the critical Reynolds 
number as a function of 7 (see Coles 1965, p. 401). Their explanation depends on the 
assumption that shear instability occurs when the local Reynolds number of the 
azimuthal velocity is approximately greater than 40. The Orr-Sommerfeld model 
does not explain how Taylor-vortex flow in wide-gap geometries, i.e. 7 x +, remains 
stable against non-axisymmetric modes even a t  very large Reynolds numbers. For 
wide-gap, stable, axisymmetric flows the local Reynolds number of the azimuthal 
velocity can exceed several thousand. 

Wave speeds 

It is important to understand what determines the speed of the travelling waves, or 

equivalently the speed of the rotating frame in which the one-travelling-wave flow 
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appears as a steady state. Figure 6 shows that the comoving surfaces, where the 
azimuthal velocity is the same as the speed of the travelling wave, pass near the 

centres of the Taylor vortices. The wave speed s, for m, = 6, A = 3 . 0 0 , ~  = 0.875 and 
R = 2.063Rc is 0.05367 in dimensionless units, or 0.3757 times the angular velocity 

of the inner cylinder. I n  all of our computations with different values of R, A,  m, and 
y, the wave speed sl/S1,, is always less than unity. This means that the speed of the 

wave is always equal to the azimuthal velocity of fluid along some comoving 

surface. 
To illustrate the importance of the comoving surface in Taylor-Couette flow, we 

have plotted in figure 19 the (r,z)-projection of the velocity of a neutrally stable, 
non-axisymmetric linear eigenmode of circular Couette flow with h = 2.968 and 

7 = 0.868 for three different values of 4. This eigenmode is m, fold symmetric with 
m, = 6, and is a travelling wave with an azimuthal angular velocity of 0.07676 in 

dimensionless units, or 0.5048 times the inner cylinder speed. The comoving surfaces 
(solid curves) in figure 19 by definition pass through all fluid elements with the same 
angular velocity as the travelling eigenmode. The solid curves are straight lines 
because the eigenmode has an infinitesimal amplitude and the circular Couette 
velocity has no dependence on x or 4. For all values of 4 the solid lines pass through 
the centres of the vortices to  within the numerical accuracy of the calculation. All 
non-axisymmetric eigenmodes of circular CouetteJEow that we have examined numerically 

have comoving surfaces that pass through the centres of their vortices. 
I n  the one-travelling-wave flow the comoving surfaces pass closer to  the vortex 

centres (when viewed in the (r,z)-plane) as the Reynolds number decreases. In  
figure 20 we plot the (r,z)-projection of the velocity for 7 = 0.875, A = 2.50, m, = 6 

and for a Reynolds number just equal to the critical value where the m, = 6 travelling 
wave first becomes unstable, R(m, = 6)c. The flow shown in figure 20 is the Taylor- 
vortex flow (plus a negligible contribution due to the very-small-amplitude m, = 6 

travelling mode). The solid curve is the comoving surface and passes directly through 
the vortex centres. A (2, $)-projection of this flow shows that the comoving surfaces 
pass very close to, but not exactly through, the inflection points of the (2 ,  @)-compo- 
nent of the velocity. I n  all flows for which we have calculated the critical Reynolds 
number for the onset of a travelling wave, we have found that the wave speed s, is 

equal to the azimuthal velocity of the fluid located a t  the centres of the Taylor 

vortices to within the numerical accuracy of the calculation. It is possible that the 
comoving surface and the vortex centres are offset by the thickness of a viscous 
sublayer. As the Reynolds number increases, the comoving surfaces move away from 
the vortex centres (see below). We note that the numerically calculated transition 
to the m, = 6 one-travelling-wave flow depicted in figure 20 cannot be reproduced 
in the laboratory a t  the Reynolds number a t  which the Taylor-vortex flow first 
becomes unstable to the m, = 6 travelling wave, since that wave is itself unstable 
to the m, = 1 travelling wave. Since in the laboratory the lowest Reynolds number 
a t  which the stable m, = 6 travelling wave can be measured is greater than 

R(m, = 6)c, the observed wave always has finite amplitude and the comoving surfaces 
do not pass directly through the vortex centres. 

For all Reynolds numbers that we have examined numerically, the comoving 

surfaces exist and sl/sZi, is less than unity. Because the wave speed near onset is 
approximately equal to the azimuthal angular velocity of the fluid a t  the vortex 
centres (which are geometrically constrained to be nearly midway between the inner 
and outer cylinders) and because, for 7 z 0.875, the angular velocity (in units of a,,) 
midway between the cylinders varies between 0.3 and 0.5 (see figures 4, 16, 17,  22 

and 2 3 ) ,  the wave speeds sl/sZi, always lie between 0.3 and 0.5. As a result of this 
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FIGURE 19(a, b ) .  For caption see facing page. 

constraint on the wave speed, even the poorest numerical computation with 7 x 0.875 

will rarely miscalculate sl/Oi, by more than about 10% (see King et al. 1984). 
There is one other piece of evidence that the nonlinear travelling mode is tied to 

a comoving surface of the fluid. I n  the Appendix of this paper and in King et al. (1984) 

marginal stability theory is used to compute the azimuthal velocity of Taylor-Couette 
flow for R + R, and 7 + 1 .  I n  this limit the azimuthal angular velocity of the fluid 
not in the boundary layers is independent of the values of A,  m, (and m2),  and is 
approximately 0.5634Qi,. If the travelling modes are tied to the comoving surfaces, 
if those surfaces are outside the boundary layers, and if the marginal stability theory 
is correct, then s1 should also be equal to 0.5634Qi,. The experimentally determined 
value of s1 for R % R, (which has been extrapolated to 7 = 1 by fitting the data to 
a quartic polynomial) is equal to 0.5630i, (King et aE. 1984). 

One-travelling-wave $ow as a function of R 

For R = 2.063RC, h = 3.00 and 7 = 0.875 we have already seen that the 
kinetic energy E(ml = 6) of m, = 6 one-travelling-wave flow obeys the relation 

E(CC) > E(m, = 6) > E(TV). However, a t  7 = 0.875 both E(m, = 6 ) / E ( C C )  and 
E(m, = 6)/E(TV) decrease with increasing Reynolds number; for Reynolds numbers 
greater than about 2.75RC we find E(CC)  > E(TV) > E(m, = 6) .  Since the main 

contribution to the kinetic energy is from 6$(r,  m =0, k = 0 ) ,  i t  is not surprising that 
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FIGURE 19. (r,z)-projection of an m, = 6 eigenmode of circular Couette flow with R = 230.20, 
h = 2.968 and 7 = 0.868. The comoving surfaces (solid curves) pass through the centres of the Taylor 
vortices. 

the angular momentum's dependence on R is similar to the energy's dependence. For 

low values of R (but high enough so the m, = 6 travelling mode is stable) we find 

that 9 ( C C )  > 9 ( m l  = 6 )  > 9 ( T V )  ; for R greater than approximately 2.75Rc we find 

that 2?(CC) > 9 ( T V )  > 9 ( m ,  = 6 ) .  For all R with 71 = 0.875 the angular-momentum 

timescale r y  is nearly equal to the dynamical timescale T ~ .  

I n  figures 16, 22 and 23 we show how the angular-momentum distribution L(r )  

changes as the Reynolds number increases from 2.063RC to 3.891Rc. All three plots 

are for rn, = 6 one-travelling-wave flows with h = 3.00 and 7 = 0.875. The figures 

show that, as the Reynolds number becomes larger, the boundary layers become 

thinner, which causes (aL/ar( in the interior of the flow to become smaller, and (aL/ar( 
a t  the boundary to become larger. For Reynolds numbers greater than about 3 . 5 4  
there are regions in the fluid where aL(r)/ar is positive. The reversal of the 

angular-momentum gradient for large R is analogous to the reversal of the mean 

temperature gradient in thermal convection for large Rayleigh numbers. The spatial 

region in which aL(r)/ar is less than zero is similar to the convective overshoot region 

in thermal convection. I n  this overshoot region the local stability condition (Rayleigh's 

criterion for angular momentum and Schwarzschild's criterion for convection) states 

that the flow is stable. 
We have already shown that G, E and € are closely coupled, and we have found 
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FIGURE 20. (r,z)-projection of the velocity for 71 = 0.875, h = 2.50 and ml = 6 at the critical 
Reynolds number where the m, = 6 one-travelling-wave flow first becomes unstable. The comoving 
surface passes through the Taylor-vortex centres. 

that  the Reynolds-number dependence of these three quantities is similar. For the 
lowest values of R a t  which the one-travelling-wave flows are stable, we find that 

G(CC) < G(m, = 6) < G(TV), &(CC) < &(m, = 6) < @(TV) 
and 

€(CC) < 6 ( m ,  = 6) < €(TV); 

but for RIR, > 3.5 the flows have 

G(CC) < G(TV) < G(m, = 6) ,  &(CC) < E(TV) < &(ml = 6) 
and 

&(CC) < b(TV)  < b(m, = 6). 

The energy and enstrophy spectra as functions of the axial harmonic number for 
the m, = 6 one-travelling-wave flow with R = 3.891Rc, h = 3.00 and 7 = 0.875 are 
plotted in figure 24. This plot shows that, with the exception of the smallest 
wavenumbers, In E and In 6 are approximately linear in E .  As R increases, the slopes 
of the spectra decrease. The flow in figure 24 was computed with 32 axial Fourier 
modes. The insufficient axial resolution is clearly shown by the upward curl a t  k = 15. 

When the flow is recomputed with 64 axial modes the upward curl at k = 15 

disappears, the points with k < 15 remain the same, and the spectra continue to be 
approximately linear in k all the way to k = 31. The energy and enstrophy spectra 
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FIGURE 21. Energy and enstrophy spectra of the m, = 4 travelling-wave flow with 
the same R,  h and 7 as the flow in figure 14. 

a b Radius 

FIGURE 22. Angular momentum per unit mass L(r)  as a function of radius for the stable m, = 6 
one-travelling-wave flow with R = 2.948RC, h = 3.00 and 7 = 0.875 (solid curve) and for the 
unstable Taylor-vortex flow with the same R,  h and 7 (dotted curve). 
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for this same flow as functions of azimuthal harmonic number m are shown in 

figure 25 (i.e. E(m) is the energy contained in all Fourier modes of the form 

u ( r ,  m, z)e*im$). 
As the Reynolds number increases, the comoving surfaces where the fluid has 

angular azimuthal velocity s, move farther from the centres of the vortices. The 
2-dimensional ( r ,  2)-projection of the velocity field and the comoving surface (solid 
curve) for the m, = 6 one-travelling-wave flow with R = 3.891Rc, h = 3.00 and 
7 = 0.875 is shown in figure 26 (for an  arbitrary value of $). The figure shows that, 

as the Reynolds number increases, the comoving surface moves away from the vortex 
centres. Figure 27 shows the nonlinear travelling mode of this flow for the same value 
of $ (i.e. the velocity in figure 26 minus the axisymmetric, unstable equilibrium 

Taylor-vortex velocity for the same R, h and 7). The solid curve in figure 27 is the 
comoving surface in figure 26. We find that the nonlinear travelling mode has its 
maximum velocity at or near the comoving surface. 

I n  order to show how the one-travelling-wave flow depends on RIR,, we have listed 
the physical properties of the stable m, = 6 one-travelling-wave flows for R/R, = 2.0, 
3.891 and 5.97 in tables 3 (a, 6, c ) .  The three flows have nearly the same values of 7 

and h (see the table captions for the exact values). Each flow was calculated with 
33 Chebyshev radial modes, and the sets of axial and azimuthal Fourier modes, 
eim$ eiznkzlA, included in the calculations were such that - M < m < M and 

--K < k < K.  I n  tables 3(a,  6) K = 16. I n  table 3 (c )  K = 32. I n  table 3(a) M = 48, 
and in tables 3 (6, c )  M = 96. I n  table 3 we have included E ,  9, G and E,  all of which 
are either dominated by or are exclusively due to  the mean (m = 0, k = 0) component 
of the azimuthal velocity. We have also listed several other quantities, such as the 
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z 

a Radius b 

FIGURE 26. ( r ,  2)-projection of the m, = 6 one-travelling-wave flow with R = 3.891RC, h = 3.00 and 
r]  = 0.875. For R greater than the critical value for onset of the travelling wave, the comoving 
surface (solid curve) no longer passes through the vortex centres. 

3 A  

velocity correlation and the non-mean, or fluctuating, components ot the energy, 
enstrophy, energy rate and r.m.s. velocity. These properties reflect the small-scale 
cellular motions of the fluid. Among the quantities included in table 3 are the 
fluctuating component of the kinetic energy 

the fluctuating component of the enstrophy 

the fluctuating energy dissipation (or input) rate of the flow 

& = -- dz dq5 drr[u-B(r, k = 0 , m  = O ) ] * [ ( u . V )  u] 1s: f: f: 

(4.3) 
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FIGURE 27. (7, 2)-projection of the nonlinear t rave lhg  wave of the flow in figure 26 (i.e. the velocity 
in figure 26 minus the unstable Taylor-vortex velocity). The nonlinear travelling mode has its 
maximum amplitude at the comoving surface. 

the timescale of the fluctuating energy 

f E  = i?/& 

the r.m.s. velocity fluctuations 

(4.4) 

and the correlation between fir and +Y$ 

l+r  [ dz 1: d# JI dr  r 5,. g4,/zA 1-r 
CF,$ = * (4.8) 

vr rms 84 rms 

Each quantity in table 3 is expressed in three ways: in dimensionless units, in units 
of the same quantity calculated for circular Couette flow, and in units of the same 



~
~

 
~

~
~

 
~

~
 

~
~

 

(a
) 

(b
) 

(4
 

D
iv

id
e
d
 b

y
 

D
iv

id
e
d

 b
y

 
v

a
lu

e
 f

ro
m

 
D

iv
id

e
d

 b
y

 
v

a
lu

e
 f

ro
m

 
D

iv
id

e
d

 b
y

 
v

a
lu

e
 f

ro
m

 
v

a
lu

e
 f

ro
m

 
m

a
rg

in
a
l-

st
a
b

il
it

y
 

v
a
lu

e
 f

ro
m

 
m

a
rg

in
a
l-

st
a
b

il
it

y
 

v
a
lu

e
 f

ro
m

 
m

a
rg

in
a
l-

st
a
b

il
it

y
 

D
iv

id
e
d

 b
y

 
D

iv
id

e
d

 b
y

 

D
im

e
n

si
o

n
le

ss
 

c
ir

c
u

la
r 

/m
ix

in
g

-l
e
n

g
th

 
D

im
e
n

si
o

n
le

ss
 

c
ir

c
u

la
r 

/m
ix

in
g

-l
e
n

g
th

 
D

im
e
n
si

o
n
le

ss
 

c
ir

c
u

la
r 

/m
ix

in
g

-l
e
n

g
th

 
Q

u
a
n

ti
ty

 
u

n
it

s 
C

o
u

e
tt

e
-f

lo
w

 
th

e
o

ry
 

u
n

it
s 

C
o

u
e
tt

e
 f

lo
w

 
th

e
o

ry
 

u
n

it
s 

C
o

u
e
tt

e
 f
lo

w
 

6
.1

2
9
4
 

2
.7

0
6
2
 

0
.4

1
 1
5

5
 

1
4
1
.5

9
 

4
1
.1

8
4
 

1
4
.8

9
3
 

5
2
.3

1
9
 

0
.0

6
4
6
9
8
 

0
.2

2
7
2
8
 

0
.3

6
0
4
7
 

1
.2

6
6
 3

 
0
.4

3
0
4
6
 

0
.1

0
6

7
5

 
4
.0

3
2
5
 

0
.0

7
0
2
2
9
 

0
.2

9
8
3
3
 

0
.2

5
9
3
8
 

0
.2

7
0
7
6
 

0
.0

3
7
8
5
3
 

0
.1

1
8
4
0
 

0
.0

6
2
5
6
5
 

0
.8

9
2
8
3
 

1
2
.2

8
6
 

3
2
.0

3
4
 

0
.8

9
1
 9
5
 

0
.9

6
8
6
3
 

1
.8

5
8

9
 

1
.8

5
8

9
 

2
.1

4
5
2
 

0
.4

7
9
8
1
 

0
.5

2
1
 0
6
 

0
.4

7
9
8
1
 

0
.5

2
1
 0
6
 

0
.4

7
9
8
1
 

0
.5

2
1
 0
6
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

-
 

0
.8

1
2
5
0
 

0
.6

9
7
4
1
 

2
.8

2
3
7
 

3
.2

5
3
 1

 
2
.8

3
5
3
 

0
.2

5
0
3
4
 

0
.2

4
6
9
3
 

0
.2

5
0
3
4
 

0
.2

4
6
9
3
 

0
.2

5
0
3
4
 

0
.2

4
6
 9

3
 

1
.3

3
8
4
 

5
.6

9
6
0
 

5
.6

7
8
8
 

0
.2

3
5
6
9
 

1
.6

4
7
 2

 
2
.0

0
9
0
 

1
.7

4
5
6
 

0
.9

4
1
 4
8
 

0
.3

2
5
5
8
 

1
.0

1
8
3
 

0
.5

3
8
 1

3
 

1
.1

9
9
2
 

-
 

5
.5

6
7
3
 

2
.1

5
4
5
 

0
.3

0
7
 7
9
 

1
4
9
.4

7
 

6
4
.7

4
4
 

1
8
.0

8
8
 

6
9
.3

7
6
 

0
.0

3
9
3
4
3
 

0
.1

5
0
0
9
 

0
.4

1
 1

2
6
 

1
.5

7
7
 4
 

0
.4

5
0
4
2
 

0
.0

8
5
7
 1
9
 

5
.2

5
4
6
 

0
.0

8
0
9
0
4
 

0
.3

0
4
3
5
 

0
.2

7
8
5
0
 

0
.2

9
0
5
0
 

0
.0

4
6
 2
6
6
 

0
.1

0
6
8
0
 

0
.0

7
4
 6
2
6
 

0
.7

2
2
4
1
 

1
9
.7

0
5
 

6
3
.5

6
6
 

0
.7

6
0
8
8
 

0
.9

0
6
2
5
 

2
.6

3
9
2
 

2
.6

3
9
2
 

3
.1

5
4
4
 

0
.2

8
8
3
0
 

0
.3

4
3
3
8
 

0
.2

8
8
3
0
 

0
.3

4
3
3
8
 

0
.2

8
8
3
0
 

0
.3

4
3
3
8
 

-
 

-
 

-
 

-
 

-
 

-
 

_
_

 

-
 

-
 

-
 

-
 

-
 

-
 

0
.6

9
8
8
6
 

0
.6

6
0
2
2
 

2
.5

8
5
2
 

2
.9

5
4
5
 

2
.7

1
0
3
 

0
.2

3
7
0
8
 

0
.2

5
5
 3
2 

0
.2

3
7
 0

8
 

0
.2

5
5
3
2
 

0
.2

3
7
0
8
 

0
.2

5
5
3
2
 

1
.6

2
3
 3
 

5
.8

6
5
7
 

5
.8

4
7
 9

 
0
.2

7
7
5
8
 

2
.3

2
2
8
 

2
.1

6
4
2
 

1
.9

7
9
3
 

1
.1

1
7
 1

 
0
.4

4
0
2
7
 

1
.0

1
6
3
 

0
.7

1
0
1
4
 

1
.3

1
8
3
 

-
 

4
.8

4
1
 1

 

1
.6

7
5
4
 

0
.2

5
4
7
9
 

1
2
9
.4

2
 

8
1
.7

7
4
 

1
9
.0

0
0
 

7
7
.2

4
3
 

0
.0

2
7
6
5
1
 

0
.1

1
2
4
1
 

0
.4

5
9
8
6
 

1
.8

6
9
5
 

0
.4

1
3
 1

9
 

0
.0

7
6
 3
0
2
 

5
.4

1
5
2
 

0
.0

8
5
3
5
1
 

0
.3

2
0
 5

8
 

0
.2

9
9
4
7
 

0
.2

8
5
0
1
 

0
.0

5
4
 1

7
4
 

0
.1

0
4
2
7
 

0
.0

6
9
 1
4
7
 

0
.6

7
3
3
4
 

2
6
.2

1
5
 

9
3
.6

8
4
 

0
.7

0
4
4
8
 

0
.8

8
5
3
8
 

3
.4

3
5
4
 

3
.4

3
5
4
 

4
.2

5
9
4
 

0
.2

0
5
0
6
 

0
.2

5
7
 7

2
 

0
.2

0
5
0
6
 

0
.2

5
7
 7
2 

0
.2

0
5
 0
6
 

0
.2

5
7
 7

2
 

-
 

-
 

-
 

-
 

-
 

-
 

_
_

 
-
 

-
 

-
 

-
 

-
 

-
 

th
e
o

ry
 

0
.6

4
1
 7

3
 

0
.6

3
7
4
6
 

2
.5

1
7
 1

 
2
.8

9
9
9
 

2
.7

1
5
6
 

0
.2

2
1
 8
0
 

0
.2

5
3
 1

9
 

0
.2

2
1
 8
0
 

0
.2

5
3
 1

9
 

0
.2

2
1
 8
0
 

0
.2

5
3
 1

9
 

1
.6

3
8
 1
 

5
.8

6
2
3
 

5
.8

4
4
5
 

0
.2

8
0
2
8
 

2
.5

5
2
 7

 
2
.1

5
8
8
 

2
.0

1
5
4
 

1
.2

6
3
 7
 

0
.5

2
6
 1
7
 

1
.0

1
2
7
 

1
.3

2
6
8
 

0
.6

7
1
 5
8
 

-
 

T
A

B
L

E
 

3
. T

h
e
 p

h
y

si
c
a
l 

p
ro

p
e
rt

ie
s 

of
 t

h
e

m
, 
=

 6
 o

n
e
-t

ra
v

e
ll

in
g

-w
a
v

e
 f

lo
w

 w
it

h
: 
(
a

)
 R

 =
 2

.0
0
R

C
, 7
 =

 0
.8

6
8
, A

 =
 2

.1
4
, R

, 
=

 1
1
5
.1

; (
b

) 
3
.8

9
1
R

C
, 0
.8

7
5
, 2

.3
2
, 
1
1
8
.1

6
; 

(c
) 
5

.9
7

R
c
, 0

.8
6
8
, 2

.2
0
, 
1
1
5
.1

. Q
u

a
n

ti
ti

e
s 

a
re

 g
iv

e
n

 i
n

 (
1

) d
im

e
n

si
o

n
le

ss
 u

n
it

s,
 (

2
) 
d

iv
id

e
d

 b
y

 t
h

e
 q

u
a
n

ti
ti

e
s 

fr
o
m

 c
ir

c
u

la
r 

C
o

u
e
tt

e
 f

lo
w

 w
it

h
 t

h
e
 s

a
m

e
 7
 a

n
d

 R
, 

a
n

d
 (

3
) d

iv
id

e
d

 b
y

 t
h

e
 q

u
a
n

ti
ti

e
s 

c
a
lc

u
la

te
d

 w
it

h
 m
a
r
g
i
n
a
l
-
s
t
a
b
i
l
i
t
y
l
m
i
x
i
n
g
-
l
e
n
g
t
h
 th
e
o

ry
 (

v
a
li

d
 in

 t
h

e
 l

im
it

s 
R

 %
 R

, 
a
n

d
 7
 +

 1
).

 



Ximulation of Taylor-Couette $ow. Part 2 105 

Quantity from marginal- 
stability /mixing-length 

theory in limit 7+ 1 

E = 71 j:.clr r (Lo/r )z  
€ = $ R E - Z n  
Y = 2rr j: d r  rLo 
(? 

D 

rp = 2 / G  

LO 

70l'T" 

'TB = E / E  

7 E / 7 v  

' E l 7 p  

As functions of 1-7 
and RIR, 

1.20( 1 - 3 ) -  (R/R, ) i  

0.0581 ( 1  -7 ) - i  (R/R,)-i  
0.0581(1 (R/Rc)-i 

0.996(1-7)-' 

3.54(1-)1)-' 

17.1(1 -T)- : (R/R,$  
60.9(1 -7)-z (R/R,$  
0.563(1 --)I)-' 
0.413(R/Rc)3  
1.47(R/RC)-! 
2.72( 1 - q)4 ( R /  R$ 
9.69(1 -q)+(R/R, ) i  
0.376(R/R%)a 
1 .35(R/R,)s 

0.0654(1-7)+ (R/R,)-k 
5.75(1 -7)-b (R/R,)b 
0.378(1 -)I) ( R / R , ) - t  
1.13(1 -)I) 

1.13(1-)I)  
0 .336(R/RC)4 
1. 14(fZ/R,)-$ 
1.47(R/Rc)-$ 
0.346(1-)1); (R/R,)-i 

0.1 1 5 ( 1 - - ~ ) ~  (R/R,)-f 

0.126(1 --7)*(R/Rr)- i  

0.364( R/R, )<  

0 .210(1-?) )~  (R/R, )d  

3 2 4  R/R,)a 

14.3( R/R,) i  

TABLE 4 

Divided by the same 
quantity for circular 

Couette flow 

0.951 
0.383(R/RC)f 
1.13 
0.383(R/Rc)3 
0.383(R/RC$ 
2.48( R / R , ) f  
2.94(R/Rc)-z 

- 

quantity calculated from marginal stability and mixing-length theory. (In the third 

column of table 3, fi$,.,,,, fiT,,,, and fizr,, have all been normalized by fir,,, from the 

mixing-length theory.) The marginal-stabilitylmixing-length theory is described in 

detail in the Appendix. The basic idea of the theory is to determine the characteristic 

r.m.s. velocity of the flow by assuming that f E  = is of the order of the turnaround 

time of the largest vortical motions and by requiring that the radial flux of angular 

momentum FL is equal to the torque. The theory is only valid in the limit 7 +  1 and 

for R % R,. The major results of the Appendix are summarized in table 4, where we 

list the physical quantities predicted by marginal-stabilitylmixing-length theory as 

functions of RIR, and 1-7. The quantities are listed both in dimensionless units and 

in units of the same quantity calculated for circular Couette flow. 

The flows in table 3 have values of RIR, that  are not large and have values of 7 

not very close to unity. The fact that the last column of table 3 is not equal to unity 

indicates that the marginal-stabilitylmixing-length theory is not exact. Nonetheless, 

the Reynolds-number dependence predicted by the theory and summarized in 

table 4 is reflected accurately in the quantities listed in table 3:  & and d increase 
apprqximately as (RIR,)?, 7E and r2 increase approximately as (R/Rc)!, and G, E 
and 2 decrease approximately as (R/$,)-;. Marginal-stabilitylmixing-length theory 

further predicts that 9, E ,  8/&, and B/E are independent) of RIR,, and table 3 shows 
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that the (R/R,)-dependence of these quantities is weak. In  fact, table 3 shows that 
9 is non-monotonic in R/R,. The marginal-stability/mixing-length theory also 
predicts that d,,, and f E  are proportional to (R/R,)-i and (R/R,)i respectively, and 

the numerical data in table 4 confirm that firms and FE are nearly independent of RIR,. 
The numerical values in table 3 show that i?? is non-monotonic in RIR,, but decreases 
approximately as (R/R,)-% as RIR, varies from 3.891 to 5.97. This decrease is in 
accord with the marginal-stability/mixing-length theory. Table 3 also shows that the 

correlation Cr, decreases with increasing R/R,. One of the assumptions used in the 
Appendix to derive the mixing-length theory is that Cr, becomes small a t  R + R,. 

It is important to  remember that all of the stable one-travelling-wave flows with 
q = 0.875 occur at R 5 10R, x 1000. Even though R = 1000 is often considered too 

large for accurate numerical simulation, the one-travelling-wave flow is very laminar 
a t  that value. More importantly from the point of view of a numericist, the range 

between the biggest and smallest lengthscales of the flow is not great. The reason why 
the flow is so laminar and the range of lengthscales is so small is that most of the 

kinetic energy of the flow is in the mean (m = 0, k = 0) component of the azimuthal 
velocity, and there is very little energy in the fluctuations. The quantity that 

determines the range of lengthscales is the fluctuating Reynolds number a based on 

Table 3 shows that a x 0.14R for one-travelling-wave flows with q x 0.87 and with 

a x 14.3(R/R,)i (4.10) 

4 6 RIR, 5 6. Marginal-stability/mixing-length theory predicts 

x 0.2H a t  q = 0.868. 

The maximum value of RIR, for which the m, = 6 one-travelling-wave flow is stable 
is RIR, N 10. For RIR, = 10, (4.10) gives R x 110. A flow with a Reynolds number 
of 110 is laminar, does not have a large range of lengthscales, and can be numerically 
simulated. The largest wavenumber of the fluctuating velocity field is the Kolmogorov 

or dissipation wavenumber k,. It is estimated in the Appendix, and its value is listed 
in table 4. The ratio of the largest to the smallest lengthscale of the fluctuating 
velocity is kK/27c, and for RIR, x 10 it is approximately 24. With 33 radial, 32 axial 

and 32 azimuthal modes, a flow with a range of lengthscales equal to 24 should be 
well-resolved numerically. 

The. numerical results and the marginal-stabilitylmixing-length theory both show 
that 8/8 is small, so most of the kinetic energy supplied by the motor driving the 
inner cylinder is dissipated by the mean (m = 0, k = 0) azimuthal velocity in viscous 
sublayers. The characteristic velocity v,, and thickness 6, of the viscous sublayers are 
estimated in the Appendix, and are found to be 

V ,  = 0.210( 1 - 7)i (R/R,)-i, 

S, = 0.115(1-q)4 (R/R,)b. 

(4.11) 

(4.12) 

5. Discussion 

In  this paper we have presented detailed results of numerical simulations of wavy 
Taylor-vortex flow with one travelling wave. Rather than just reproduce the 
laboratory experiments, we have tried to use the numerics to gain insight into the 
underlying physics. Numerical simulations are similar t o  laboratory observations in 
that one rarely knows what to look for before one starts looking, and it is seldom 
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that calculating one particular number or making one special measurement reveals 
something fundamental about the flow. Although numerical and laboratory experi- 
ments have some areas of overlap, such as the measurement of wave speeds, the two 
techniques really provide complementary information about Taylor-Couette flow. 
The strength of the computer simulation is that  i t  determines details of the velocity 
and pressure everywhere, whereas the laboratory experiments can only measure the 
velocity a t  a few points. The strength of the experiments is that  they allow an 
exploration of a wide range of (R, A, ml, V)-space, whereas repeated runs with different 

parameters on the computer are prohibitively expensive. 
For each flow, the numerical simulations provide 3 x 33 x 32 x 32 pieces of inform- 

ation about the velocity. The most useful and least confusing ways of evaluating this 

abundance of data are plots of the 2-dimensional projections of the flow field and plots 
of the difference in velocity between two different equilibria. It has also been useful 
to compute energy and enstrophy spectra and the scalar quantities listed in table 4, 
which include the energy, angular momentum and dissipation rate. 

We believe that numerical simulation is not an end in itself, but should provide 
the stimulus for developing simple physical models, back-of-the-envelope calculations 
and detailed analytic computations. This study has led us to postulate that the 

instability leading to one-travelling-wave flow is driven by the kinetic energy of the 

outflow boundary jet located between Taylor vortices. The travelling wave mixes 
together the fluid in the cores of neighbouring Taylor vortices and thereby creates 
non-axisymmetric vortical motions in the (2, $)-plane centred a t  the outflow and 
inflow boundaries. 

Another result of this paper is that  we have shown numerically that most of the 
kinetic energy is in the mean axisymmetric azimuthal velocity and very little 

cascades into the fluctuating component of the velocity. We have explained this result 
by using marginal stability theory and mixing-length theory and have shown that 
for large Reynolds number and for radius ratio 7 near unity the fraction of energy 

that goes into the fluctuating component of the velocity is of order 1-7. We have 
also shown numerically that the energy spectrum has the form lnE(k) cc E l .  Using 
a simple argument based on triad interactions, we have shown that for low Reynolds 

numbers this spectrum is derivable from the Navier-Stokes equation. 
From the numerical simulations we have predicted the speeds of travelling waves : 

these results have been confirmed in the laboratory to  within the accuracy of the 
experimental uncertainty (0.2 yo fractional error). From the numerics we have 
developed the picture of the travelling wave being tied to a comoving surface within 
the fluid. This picture, along with marginal stability theory, predicts that a t  large 

Reynolds number and large radius ratio the wave speed should approach 0.56352,,. 
This prediction has also been confirmed in the laboratory to within the present 
experimental uncertainty (3 Yo fractional error). The numerics have shown that a t  the 
onset of the wavy vortices the wave speed of the travelling waves is equal to the 
azimuthal velocity of the fluid a t  the centres of the Taylor vortices. This relationship 
between the wave speed and the location of the Taylor vortices has been examined 
analytically by Bayly & Marcus (1983). 

I thank G. King, S. Orszag, A. Patera and H. Swinney for useful discussions, and 
I thank A. Whittington for help in editing the manuscript. The numerical calculations 
were done on the CRAY-1 a t  the National Center for Atmospheric Research (operated 
by the National Science Foundation). This work was supported in part by NSF grants 
SPI-80-09181, MEA-82-15695 and ATM-80-17284 and by ONR-N00014-82-C-0451. 
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Appendix. Marginal stability theory and mixing-length theory in the limits 

R % R,, v + l  

I n  King et a2. (1984) an expression was derived for the torque G of a Taylor-Couette 
flow using a marginal stability theory that was valid in the limits R % R, and 7-f 1.  

This derivation was based on the observation that for R 9 R, the mean angular 
momentum L ( r )  = rt?$(r, m = 0, k = 0) of a Taylor-Coucttc flow has a nearly con- 

stant value La far from the boundaries, and has inner and outer boundary layers of 
thickness Sin and Sout respectively (cf. figure 22). The thicknesses of the boundary layers 

were determined by requiring that the local Taylor numbers of the boundary layers 
both be equal to the critical Taylor number that marks the onset of instability in 
circular Couette flow. The values of G, La, Sin and Sout determined by marginal 
stability theory are given in table 4 in dimensionless units as functions of 1-7 and 
R/R,. The torque derived from marginal stability theory is also given in units of G(CC) 
in table 4. Using the values of G and Lo we now derive approximations for the energy 
E ,  enstrophy &, rate of energy input (or dissipation) 8, angular momentum 9, and 

the characteristic timescales for a Taylor-Couette flow in the limits R % R, and q --f 1. 
The energy (per unit axial length) is primarily due to the k = 0, m = 0 mode (see 

below). Since dr ( r ,  m = 0, k = 0) and t?z(r, m = 0, k = 0) are identically equal to zero, 

we may approximate the energy by 

1 2a 
E z Ja d$ JI dr r[d4(r,  m = 0, k = 0)12 

The angular momentum (per unit axial length) can be approximated by 

2’= j:d$jIdrrL(r) z 2n: s,” drrL,  = 3 . 5 4 ( 1 - ~ ) - ~ .  (A 2) 

The rate of energy input is equal to  Oi,G. Using the approximation for 0 from 

table 4, we obtain 

I n  equilibrium the enstrophy is related to E by (see 93) 

E = 0.581(1 - T ) - ;  (R/R,)-i. (A 3) 

& = iRE-4x. 

Using (A 3) with (A 4) we obtain 

& = 1.20(1 --q)-’ (R/R,)i. (A 51 

We can also obtain (A 5 )  by an alternative method. Our definition of enstrophy 
is 

The main contribution to the vorticity in (A 6) is due to 8+(r, m = 0, I% = 0). Far from 
the boundary layers where L ( r )  is approximately constant, V x 8$(r, m = 0, I% = 0) e^, 

is equal to zero. In the outer boundary layer 
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and in the inner boundary layer 

1 -Lola 
IV x ij6(r, m = 0, k = 0) 2,1 x 

&in ' 

Using (A 7) and (A 8) with (A 6), we obtain 

= 1.20( 1 -7)- '  (R/R,)%. (A 9) 

Equation (A 9) is identical with (A 5). 

scale r9 E 3 / G  are 
Using (A 1)-(A 3), the energy timescale rE = E / @  and angular momentum time- 

rE = 17.1(1 -r)-;((R/R,)f  (A 10) 

and r9 = 60.9(1 -q)-i (R /Rc) i .  (A 11)  

We now use mixing-length theory to derive an approximation for the r.m.s. radial 
and azimuthal velocities firms of the non-(k = 0, m = 0) modes. We use the notation 

that a tilde above a quantity denotes the fluctuating part of the quantity, i.e. the 

part associated with all modes except the mean (m = 0, k = 0) mode. Using firms, we 
will derive the kinetic energy B.of the fluctuating part of the flow, the enstrophy 8 
of the fluctuations, the rate 2 a t  which energy enters (or is dissipated by the 
fluctuating part of the velocity, and the characteristic timescales of the fluctuating 

part of the flow. In  particular we shall show that E / E  and PIE are small. 
For low-Reynolds-number flows (R  < 4Rc) we can estimate firms by using the fact 

that  in a steady state 2nr times the radial angular-momentum flux FL is independent 
of radius and is equal to G. Using (2.11) for FL, we obtain 

Far from boundaries, the viscous term (i.e. the term proportional to R-l) on the 
right-hand side of (A 12) is negligible. Furthermore, for low values of R, the r.m.s. 

values of the fluctuating components of v, and v6 are nearly equal and are well 
correlated (see $4 and table 3 ) ,  so 

Note that the mean (k = 0, m = 0) component of v$ never contributes to the integral 
on the left-hand side of (A 13) because v,(r, m = 0, k = 0) = 0. Using (A 13) in ( A  12) ,  

ignoring the viscous term, and taking the limit g + 1, we obtain 

Grms = ( G / 2 ~ ) $ ( 1 -  7) = 0.0961 (1  - 7)i (R/Bc)i .  (A 14) 

For larger values of the Reynolds number we cannot use (A 13) and (A 14) because, 
as the flow becomes more complicated, or and v$ become poorly correlated: 

To estimate firm, in a complicated flow, we use an energy-balance argument, so i t  is 
necessary first to find an expression for E .  The energy that goes into the fluctuating 
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velocity is supplied from the small but non-zero gradient of the mean angular 
momentum L(r).  We assume that far from the boundaries L(r )  is of the form 

L(r) 5 Lo-AL r - -  ( 1 3  

where AL is a positive constant that provides a small correction to the relationship 

L(r) = Lo. Consider the adiabatic exchange of two fluid elements of equal volume 
located at r and r + A r  such that each element conserves its axial component of 

angular momentum. The energy liberated per unit volume from the mean azimuthal 
velocity in the exchange is 

Identifying Ar as a mixing-length and setting it equal to unity, we obtain 

AE = 4L AL( 1 - v ) ~ .  (A 18) 

Rayleigh's inviscid stability condition is of course contained in (A 18). Using the facts 
that the energy A 2  is supplied to  the fluctuating velocity once per eddy turnaround 
time 2/firms and that the volume of fluid per unit axial length is 2n( 1 - ~ ) - l ,  we obtain 
the rate (per unit axial length) a t  which energy is supplied to the fluctuating velocity 

in the limit 7 --f 1 : 

2 = 4L,ALGrm,(1 - v ) ~ .  (A 19) 

The final relationship that we need before determining 2 is one between AL and the 
angular-momentum flux or torque. The radial angular-momentum flux FL is 

approximately equal to the product of the r.m.s. radial velocity and the mean 
angular-momentum excess AL : 

Equations (A 3), (A 19) and (A 20) along with the expressions for Lo and G in 
table 4 combine to give 

,!? = 1.13(1-7)@ = 0.0654(1-7)$ (R/Rc)- i .  (A 21) 

Notice that (A 21) shows that the ratio &/E is very small. 

A more rigorous but less physical way to derive (A 21) is to use the Navier-Stokes 
equation directly to obtain the energy input rate into the fluctuating velocity field. 
From (3.9) we see that ,!? is due to nonlinear interactions and is exactly equal t o  

B = - -  dz d$ d r r [ u - a , ( r , m = O , k = O ) e ^ , ] . [ ( u . V ) u ] .  (A22) 3: /: J: 
After integration by parts, (A 22) becomes 

Recognizing the fact that ( l /h )  j: dz j:' d$ vr v, is negligible in the boundary layers 
and that far from the boundaries (A 12) is applicable, (A 23) becomes 
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where we have used ti4(r, m = 0, k = 0) = L ( r ) / r .  Substituting the expression for L(r) 
from (A 16) into equation (A 24), we immediately obtain (A 21). 

The rate a t  which energy enters the fluctuating velocity is balanced by the 
dissipation rate from the fluctuations. If we assume that the largest eddies lose all 
of their energy in one turnaround time, then 

- 
E = + ~ ( 1 - 7 ) - ' G : ~ ~ ,  (A 25) 

where we have used 2/Grms as the eddy turnaround time. (We have found numerically 
that (A25) is approximately true even at Reynolds numbers as low as 5Rc.) 

Comparing (A 21) with (A 25), we obtain 

Grm, = 0.346( 1 - 7): (R/Rc)-i. 

AE = gmS = 0.0600(1-7) (R/R,)-%, 

(A 26) 

(A 27) 

Using this value of firm, in (A 19) along with (A 16) and (A 18) gives 

AL 
- = 0.0473(R/Rc)-f, 
Lo 

a ar = 0.0266(1-7)-' (R/Rc)-i. 

2 r 
(A 28) 

The kinetic energy E of the fluctuating part of the velocity field is defined in terms 

of crms by 

E E - d$ dr rG:ms, (A 29) 

and is equal to E = 0.376(R/Rc)-$. (A 30) 

8 = iR& = 1.35(R/Rc)i. 

E / E  = 0.378(1-7) (R/R,)-i, 

The enstrophy associated with the fluctuating velocity is determined by using the 
fact that  in equilibrium (see (3.9)) 

(A 31) 

(A 32) 

818 = 1.13(1-7). (A 33) 

The ratios E / E  and 818 are both small: 

Equations (A 32) and (A 33) along with (A 21) confirm that the fluctuation velocity 
is energetically insignificant compared to the mean azimuthal velocity. We define the 
timescale that is characteristic of the kinetic energy of the fluctuating velocity field 

as 
f E  = s/& = 5.75( 1 - 7)-: (R/R,)t. 

This timescale is less than but almost equal to 7 E :  

(A 34) 

f E / ? E  = 0.336(R/Rc)-f. (A 35) 

I n  making contact between turbulent Taylor-Couette flow and the classical 
theories of turbulence, i t  appears that  the Reynolds number R, the energy E and the 
energy input rate E should not be used since most of the energy of the flow is not 
in the fluctuations; instead the fluctuating quantities E and 8 should be used. The 

Reynolds number associated with the fluctuating velocity field is defined as 



112 P. S. Marcus 

Using the JEuctmting quantities, we compute a Kolmogorov wavenumber LK and 
velocity Iu"(lK). The 'Reynolds number' constructed from v"(EK), &, and v is by 

definition equal to unity, or in dimensionless units 

(A 37) 
2nIu"(EK) - R-' -_ 

EK 

The viscous dissipation of kinetic energy of the fluctuating component of the velocity 
is dominated by the dissipation at the Kolmogorov lengthscale, or 

27-C 

hR 
i3 x - ( l - ~ ) - 1 ( I u " ( E K ) & K ) 2 .  

Using (A 37) and (A 38) with (A 21), we obtain 

v"(LK)  = 0.126(1-7)2 (R/Rc)-!, 

I, = 32.8(R/Rc)i. (A 40) 

Note that (A 26) and (A 39) show that the ratio of the velocity of the smallest eddy 
to the velocity of the largest eddy is 

Equation (A 41) shows that 

@ cc (&K)p. 
Drms 

The exponent of -$ in (A 42) is consistent with the Kolmogorov prediction that the 
velocity a t  wavenumber k be proportional to k* (or equivalently that the kinetic- 

energy spectrum has a :-power law. The use of (A 25) ,  (A 37) and (A 38) alone (and 
no other assumptions of this Appendix) lead to  (A 42). 

In  our picture of Taylor4ouette flow most of the mean kinetic energy in the 
6 ( r ,  m = 0 ,  k = 0) mode is directly dissipated by that mode and does not cascade into 

h. We assume that the mean kinetic energy is dissipated in viscous sublayers a t  the 
inner and outer cylinders a t  a rate approximately equal to E .  We now estimate the 

characteristic thickness 6, and velocity v, of the sublayers. We assume that the 
viscous sublayers have local Reynolds numbers of order unity, or 

4 

S,V, = R-I. (A 43) 

The dissipation of the mean kinetic energy in the fluid is due to the dissipation in 
the sublayers. Therefore the dissipation rate is equal to - Rv.V2v, integrated over 
the volume of the sublayers (not the entire volume of the fluid). The volume (per unit 
axial length) of the sublayer is approximately 2n( 1 - y)-l a,, so 

27c(l-7/)-1 V2 

R " 6; 
6 2. E x  

Equations (A 43) and (A 44) combine to give 
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