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Unlike passive Brownian particles, active Brownian particles, also known as microswimmers,

propel themselves with directed motion and thus drive themselves out of equilibrium.

Understanding their motion can provide insight into out-of-equilibrium phenomena associated with

biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to

mathematically model their motion using a set of stochastic differential equations and how to

numerically simulate it using the corresponding set of finite difference equations both in

homogenous and complex environments. In particular, we show how active Brownian particles do

not follow the Maxwell-Boltzmann distribution—a clear signature of their out-of-equilibrium

nature—and how, unlike passive Brownian particles, microswimmers can be funneled, trapped,

and sorted.VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4870398]

I. INTRODUCTION

In recent years, active Brownian motion has attracted a lot
of interest from the biology and physics communities.1,2

While the motion of passive Brownian particles is driven by
equilibrium thermal fluctuations, active Brownian particles,
often referred to as microswimmers, are able to propel them-
selves, exhibiting an interplay between random fluctuations
and active swimming that drives them into an out-of-equilib-
rium status.3,4 Several types of microscopic biological enti-
ties perform active Brownian motion; a paradigmatic
example is the swimming behavior of bacteria such as
Escherichia coli.5 In addition, artificial active particles hold
tremendous potential as autonomous agents to localize, pick
up, and deliver nanoscopic objects, e.g., in bioremediation,
drug delivery, and gene therapy.6–8 Such artificial active
Brownian particles propel themselves by several mecha-
nisms, such as by a periodic deformation of their shape or by
phoresis in, e.g., an electric field or a chemotactic or temper-
ature gradient.9–19

Studying and comparing passive and active Brownian
motion can provide insight into out-of-equilibrium phenom-
ena. On the one hand, passive Brownian particles are often
used to study random phenomena because their thermally-
driven motion is due to random collisions with the surround-
ing fluid molecules; this provides a well-defined noisy
background dependent on the temperature and the fluid vis-
cosity.20 On the other hand, the motion of active particles
takes them out of equilibrium.21 In order to start acquiring
some first-hand experience with these phenomena, a good
didactical approach is to perform numerical experiments,
which have the advantage of being inexpensive and within
the reach of every student with access to a computational de-
vice. Numerical experiments can also be used to introduce
and complement real experiments.

In this article, we explain step by step how to model the
motion of an active Brownian particle in homogenous and
complex environments. First, we introduce the basic mathe-
matical model of the motion of an active Brownian particle
in a two-dimensional homogeneous environment in terms of
stochastic differential equations, and solve the equations
numerically using a simple finite-difference algorithm. Then,

we illustrate how to simulate the motion of an active particle
in a complex environment where several obstacles are pres-
ent using reflective boundary conditions. Unlike passive
Brownian particles, we observe that microswimmers can be
funneled, trapped, and sorted by using the out-of-equilibrium
nature of their motion. We provide the MATLAB programs
used for these simulations as an online supplement;22 these
programs can be straightforwardly adapted to the freeware
SciLab23 or GNU Octave.24

II. MATHEMATICAL MODEL

In a two-dimensional homogeneous environment, the
motion of an active particle can be modeled as the combined
action of three different processes:25,26 a random diffusion pro-
cess, an internal self-propelling force, and, in the case of chiral
active particles, a torque. In particular, the position ½xðtÞ; yðtÞ�
of a spherical microscopic particle with radius R undergoes
Brownian diffusion with translational diffusion coefficient

DT ¼ kBT

6pgR
; (1)

where kB is the Boltzmann constant, T the temperature, and g

the fluid viscosity. The particle self-propulsion results in a
directed component of the motion with speed v we will
assume to be constant and with a direction that depends on
the particle orientation uðtÞ, as illustrated in Fig. 1(a).
Finally, uðtÞ undergoes rotational diffusion with rotational
diffusion coefficient

DR ¼ kBT

8pgR3
: (2)

For a chiral active particle, uðtÞ also rotates with angular
velocity X as a consequence of a torque acting on the parti-
cle;27 in the presence of a propulsion speed v > 0, this reor-
ientation of the particle translates into a rotation around an
effective external axis, as shown in Fig. 1(b). The sign of X
determines the chirality of the particles. In the most general
case, the resulting set of Langevin equations28 describing
this motion in two dimensions is
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d

dt
uðtÞ ¼ Xþ

ffiffiffiffiffiffiffiffiffi

2DR

p

Wu; (3)

d

dt
xðtÞ ¼ v cosuðtÞ þ

ffiffiffiffiffiffiffiffiffi

2DT

p

Wx; (4)

d

dt
yðtÞ ¼ v sinuðtÞ þ

ffiffiffiffiffiffiffiffiffi

2DT

p

Wy; (5)

where Wu, Wx, and Wy represent independent white noise
processes. Inertial effects are neglected because typically
microscopic active particles move in a low Reynolds number
regime.29 In the following, we will always consider a particle
with radius R ¼ 1 lm at temperature T ¼ 300K immersed in
a liquid with viscosity g ¼ 0:001N s=m2 (such as water);
the corresponding translational diffusion coefficient is
DT � 0:22 lm2=s and the corresponding rotational diffusion
coefficient is DR � 0:16 rad2=s.

III. FINITE DIFFERENCE EQUATIONS

The continuous-time solution uðtÞ; xðtÞ; yðtÞ½ � to the set
of stochastic differential equations given by Eqs. (3)–(5)
can be approximated by a discrete-time sequence ½ui; xi; yi�
� ½uðtiÞ; xðtiÞ; yðtiÞ� that is the solution of the corresponding
set of finite difference equations evaluated at regular time
steps ti ¼ iDt, where Dt is a sufficiently small time step. In
order to derive the set of finite difference equations, the
white noise factors in Eqs. (3)–(5) must be dealt with care-
fully, for example, by following the procedure described in
Ref. 30. Explicitly, the set of finite difference equations can

be obtained from Eqs. (3)–(5) by carrying out the
substitutions

uðtÞ ! ui; xðtÞ ! xi; yðtÞ ! yi; (6)

d

dt
uðtÞ ! ui � ui�1

Dt
;

d

dt
xðtÞ ! xi � xi�1

Dt
;

d

dt
yðtÞ ! yi � yi�1

Dt
; (7)

Wu ! wu;i
ffiffiffiffiffi

Dt
p ; Wx !

wx;i
ffiffiffiffiffi

Dt
p ; Wy !

wy;i
ffiffiffiffiffi

Dt
p : (8)

Here wu;i, wx;i, and wy;i are uncorrelated sequences of ran-
dom numbers taken from a Gaussian distribution with zero
mean and standard deviation 1. Many programming lan-
guages have built-in functions that directly generate such
random sequences. Alternatively, it is possible to generate
Gaussian random numbers from uniform random numbers
between 0 and 1 using various techniques such as the Box-
M€uller algorithm or the Marsaglia polar algorithm.31 The
numerical solution is then obtained by solving the resulting
finite difference equation recursively for ½ui; xi; yi� using
the values ½ui�1; xi�1; yi�1� obtained from the previous
iteration:

ui ¼ ui�1 þ XDtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2DRDt
p

wu;i; (9)

xi ¼ xi�1 þ v cosui�1Dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2DTDt
p

wx;i; (10)

yi ¼ yi�1 þ v sinui�1Dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2DTDt
p

wy;i: (11)

We note that this is a first-order integration method that gen-
eralizes the Euler method to stochastic differential equations;
higher-order algorithms can also be employed to obtain
faster convergence of the solution.31

IV. HOMOGENEOUS ENVIRONMENT

We start by considering non-chiral (X ¼ 0) active
Brownian particles. When the self-propulsion speed v is
zero, the particle’s motion is purely diffusive with diffusion
constant DT; some examples of the corresponding trajecto-
ries are illustrated in Fig. 1(c). As v increases we obtain
active trajectories that are characterized by directed motion
on short time scales, as shown in Figs. 1(d)–1(f). However,
while on short time scales, the motion is dominated by their
directed self-propulsion, over long time scales the orientation
of the particle is randomized by the rotational diffusion. The
time scale of the rotational diffusion is given by sR ¼ 1=DR

� 6:25 s for the particles we consider in this article. These
qualitative considerations can be made more precise by cal-
culating the mean square displacement MSDðsÞ of the par-
ticle’s motion. The MSDðsÞ quantifies how a particle moves
from its initial position, and can be calculated from a trajec-
tory as

MSDðsÞ ¼ h xðtþ sÞ � xðtÞ½ �2 þ yðtþ sÞ � yðtÞ½ �2i :
(12)

Numerically, the MSD can be calculated from a trajectory
½xn; yn� sampled at discrete times tn with a time step Dt as30

MSDðmDtÞ ¼ h xnþm � xnð Þ2 þ ynþm � ynð Þ2i: (13)

Fig. 1. (Color online) Active Brownian particles in two dimensions. (a) An

active Brownian particle placed at ½xðtÞ; yðtÞ� is characterized by an orienta-

tion uðtÞ along which it propels itself with speed v while it undergoes

Brownian motion in both its position and orientation. (b) A chiral active

Brownian particle also has a deterministic angular velocity X that, if the par-

ticle’s speed v > 0, translates into a rotation around an effective external

axis. Trajectories of active particles are shown at right for (c) v¼ 0,

(d) v ¼ 1 lm=s, (e) v ¼ 2 lm=s, and (f) v ¼ 3lm=s, all for X ¼ 0. With

increasing v, the particles move longer distances before the direction of their

motion is randomized; four different 10-s trajectories are shown for each

velocity. Trajectories for chiral active particles are shown in (g) and (h),

with v ¼ 31lm=s and X ¼ 63:14 rad=s, starting at the position indicated by

the cross and lasting 10 s; the sign of X causes the trajectory to bend either

(g) clockwise or (h) counterclockwise. The particles have radius R ¼ 1lm,

are at temperature T ¼ 300K, and are immersed in a liquid with viscosity

g ¼ 0:001N s=m2; the corresponding translational diffusion coefficient is

DT � 0:22lm2=s and the rotational diffusion coefficient is

DR � 0:16 rad2=s.
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For ballistic motion MSDðsÞ is proportional to s
2 while for

diffusive motion it is proportional to s. As can be seen in
Fig. 2(a), when v 6¼ 0 the MSDðsÞ deviates from a diffusive
behavior on short time scales and exhibits an enhanced effec-
tive diffusion over long time scales.

The theoretical value of MSDðsÞ is given by the
formula12,32

MSDðsÞ ¼ 4DT þ v
2
sR

� �

sþ v
2
s
2
R

2
e�2s=sR � 1½ �; (14)

which is essentially the Ornstein-Uhlenbeck formula for the
MSD of a Brownian particle with inertia,33 describing the
transition from the ballistic regime to the diffusive regime
although at a much shorter time scale than for active
particles.30 From Eq. (14), we find that for s � sR the effec-
tive particle diffusion is Deff ¼ DT þ v

2
sR=4, and for s � sR

the particle motion is ballistic with MSDðsÞ / v
2
s
2. The

theoretical MSDðsÞ calculated using Eq. (14) is shown as the
solid lines in Fig. 2(b). While the features of the MSD of a
microswimmer are well captured by Eq. (14), there can be
deviations due to the microscopic dynamics of the
microswimmer.12

We now consider the case of chiral active Brownian par-
ticles. There are many natural examples of chiral micro-
swimmers. For example, E. coli bacteria and spermatozoa
undergo helicoidal motion, which becomes two-dimensional
chiral active Brownian motion when moving near
boundaries.34–37 Figure 1(g) shows the simulated trajectory
of a chiral particle with X ¼ þ3:14 rad=s and v ¼ 31 lm=s;
it bends clockwise, tracking almost circular trajectories that
are modified by Brownian fluctuations. Changing the chiral-
ity sign (X ¼ �3:14 rad=s) results in similar trajectories that
bend counterclockwise [Fig. 1(h)].

V. COMPLEX ENVIRONMENTS

A. Reflective boundaries

So far we have considered particles that move only in a
homogeneous environment. However, self-propelled par-
ticles often move in patterned environments, e.g., inside the
intestinal tract, which provides the natural habitat of E. coli,5

or through porous polluted soils, where chemotactic bacteria
spread during bioremediation.7 In a similar fashion, artificial
microswimmers must also reliably perform their tasks in
complex surroundings, e.g., inside lab-on-a-chip devices or
in living organisms.38 When self-propelled particles move
through a patterned environment, frequent encounters with
obstacles will occur. Whenever an active particle contacts an
obstacle, it slides along the obstacle until its orientation
points away from it. Numerically, this process can be mod-
eled using reflective boundaries, as shown in Fig. 3.
The concrete implementation of the reflective boundary

condition is realized by updating at each time step the parti-
cle position from ri�1 ¼ ½xi�1; yi�1� to ri ¼ ½xi; yi� according
to the following algorithm:

1. tentatively update the particle position to ~ri ¼ ~xi; ~yi½ �
according to Eqs. (9)–(11);

2. if ~ri is not inside any obstacle, set ri ¼ ~ri and move on to
the next time step;

3. otherwise, if ~ri is inside some obstacle, as depicted in
Fig. 3(a):

Fig. 2. (Color online) (a) Numerically calculated and (b) theoretical mean

square displacement for active Brownian particles with self-propulsion

velocity v¼ 0 (circles), v ¼ 1 lm=s (triangles), v ¼ 2 lm=s (squares), and

v ¼ 3lm=s (diamonds); in all cases, X ¼ 0. For passive Brownian particles

(v¼ 0) the motion is always diffusive (MSDðsÞ / s), while for active

Brownian particles the motion is ballistic on short time scales

(MSDðsÞ / s
2 for s � sR) and then becomes diffusive on long time scales

(MSDðsÞ / s for s � sR) with an enhanced diffusion constant.

Fig. 3. Implementation of reflective boundary conditions. At each time step,

the algorithm (a) checks whether a particle has moved inside an obstacle; if

so: (b) the boundary of the obstacle is approximated by its tangent l at the

point p where the particle entered the obstacle, and (c) the particle position

is reflected on this line.

Fig. 4. (Color online) Trajectories over a 10-s time period of Brownian

particles moving within a circular pore (diameter 40lm) with reflective

boundaries at self-propulsion velocity (a) v¼ 0, (b) v ¼ 5 lm=s, and

(c) v ¼ 10lm=s, all for X ¼ 0. The histograms on the bottom show the

probability distribution along a diameter of the circular pore. While the

probability is uniform across the whole pore for passive Brownian particles,

the probability increases towards the walls for active Brownian particles as v

increases.
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(a) calculate the intersection point p ¼ xp; yp½ � between
the boundary and the line from ri�1 to ~ri;

(b) calculate the straight line l tangent to the obstacle at p
with tangent unit vector t̂ and normal unit vector n̂
(outgoing from the obstacle), as shown in Fig. 3(b);

(c) calculate ri by reflecting ~ri on l so that

ri ¼ ~ri � 2 ~ri � pð Þ � n̂½ �n̂; (15)

where ~ri � pð Þ � n̂ is the distance between ~ri and l.

The crucial prerequisite for this numerical approach to work
is that the average spatial increment of a simulated trajectory
is small compared to the characteristic length scale of the
obstacles. This condition permits one to consider only one
boundary at a time and also to approximate the boundary with
its tangent straight line. If the time step Dt is too large, this
approach can lead to some numerical instability around sharp
corners in the boundaries, where multiple reflections may take
place, or on an obstacle wall that is too thin, where the par-
ticle’s trajectory could unnaturally pass through the obstacle.

B. Non-Boltzmann probability distribution in a pore

As a first example of a complex environment, we consider
a microswimmer confined within a circular pore, as shown in
Fig. 4. Figure 4(a) shows four 10-s trajectories of passive

Brownian particles (v¼ 0), which are seen to explore the
configuration space within the pore uniformly. By contrast,
active Brownian particles, shown in Figs. 4(b) (v ¼ 5lm=s)
and 4(c) (v ¼ 10 lm=s), tend to spend more time at the pore
boundaries. When a microswimmer encounters a boundary,
it keeps on pushing against the boundary and diffusing along
the cavity perimeter until the rotational diffusion orients the
propulsion of the particle towards the interior of the pore.
The chance that the active particle encounters the pore
boundary in one of its straight runs increases as its velocity
increases. These observations can be made more quantitative
by using the particle probability distribution. The histograms
at the bottom of Fig. 4 each show a section of this probability
distribution along a diameter of the pore. We see that the
probability of finding the particle at the boundaries increases
with the particle’s self-propulsion velocity.
That active Brownian particles tend to accumulate at the

boundaries of a pore is a sign of the fact that active particles
are out of equilibrium. For a passive Brownian particle in
thermal equilibrium with its environment, the probability of
finding the particle at a given position in the pore pðx; yÞ is
connected to the Boltzmann potential Vðx; yÞ by the
Maxwell-Boltzmann relation pðx; yÞ / exp �Vðx; yÞ=ðkBTÞ½ �.
In the case presented in Fig. 4, there are no external forces
acting on the particle and, therefore, Vðx; yÞ and the corre-
sponding Maxwell-Boltzmann distribution are constant, as
seen in Fig. 4(a). However, the fact that the distributions in

Fig. 5. (Color online) Rectification of active Brownian motion in an asymmetric ratchet-like microchannel. A segment of the channel, whose dent is 10-lm

long, is represented by the grey structure in the inset of (a); the walls of the channel are infinitely extended. The distributions of passive (black histograms) and

active (gray/colored histograms) Brownian particles released at time t¼ 0 from position x¼ 0 are plotted at times (a) t ¼ 100 s, (b) t ¼ 500 s and

(c) t ¼ 1000 s. The x-axis gives the distance from the fixed, constant starting position of the particles. The higher the self-propulsion velocity, the farther the

active particles travel along the channel. Each histogram is calculated using 1000 particle trajectories.

Fig. 6. Segregation of active particles (v ¼ 10lm=s) using a series of wedges (dark structures), whose walls are 2 lm thick. (a) At t¼ 0, the active particles

(black dots) are uniformly distributed across the square; (b) at t ¼ 100 s, most of the active particles have concentrated to the right of the wedges.

(c) Percentage of the total particles on the right of the wedges (dots) as a function of time; the percentage stabilizes at around 80% (black dashed line) after the

first 100 s.
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Figs. 4(b) and 4(c) are not constant, despite the constant
potentials, is a clear deviation from the Maxwell-Boltzmann
distribution, thus indicating the out-of-equilibrium nature of
active Brownian particles.

C. Motion rectification in a microchannel

The motion of active particles can be rectified by a pat-
terned microchannel. For example, the inset of Fig. 5(a)
shows an example of such a microchannel, decorated with a
series of asymmetric dents on both its walls. A group of pas-
sive Brownian particles released at time t¼ 0 from position
x ¼ 0 diffuses symmetrically around the initial position
(black histograms in Fig. 5). By contrast, a group of active
Brownian particles is funneled by the channel in such a way
that an average directed motion is imposed on the particles,
as can be seen in the colored histograms in Fig. 5. The recti-
fication is more pronounced when the self-propulsion velo-
city is higher. This and similar effects have been proposed
to sort microswimmers on the basis of their velocity,26 to
trap microswimmers in moving edges,39 and to deliver mi-
croscopic cargoes to a given location.19

D. Trapping by asymmetric barriers

Because active particles are not in thermal equilibrium with
their environment, it is possible to use the features of the envi-
ronment to perform complex tasks on active particles such as
separating, trapping, or sorting them on the basis of their swim-
ming properties. For example, Fig. 6 shows the segregation of
active particles within a 100-lm-side square box divided into
two parts by a series of wedges; this situation was first pro-
posed in Ref. 40. At t¼ 0, the active particles are homogene-
ously distributed in the box [Fig. 6(a)], while after 100 s most
of the active particles concentrate in the right portion of the
box [Fig. 6(b)]. The selectivity of this process depends on the
system parameters, such as the size and shape of the wedges
and the drift velocity of the microswimmers.39,40 Figure 6(c)
shows the percentage of active particles in the right portion of
the box as a function of time; with our system parameters, the
distribution quickly approaches a plateau of around 80%.

E. Chiral particle separation

Active particles can also be separated on the basis of
their chirality.26,41 This is a particularly interesting option
because it may provide a better technique to separate mole-
cules with opposite chirality by chemically coupling them to

chiral propellers, sorting the resulting chiral microswimmers,
and finally detaching the propellers. Such techniques could
be applied in the biochemical and pharmaceutical industry
where often only one specific chirality is desired.42 Figure 7
shows a possible approach to sorting active particles based
on the sign of their motion chirality in the presence of some
chiral patterns in the environment, such as an arrangement of
tilted rectangles along a circle forming a chiral “flower.” We
use two of these flowers with opposite chiralities enclosed in
a 100-lm-side box where the particles can move freely.
We start at time t¼ 0 with a balanced mixture of active par-
ticles with opposite chiralities placed inside each flower
[Fig. 7(a)]. As time passes, most of the microswimmers
rotating counterclockwise (clockwise) escape the right (left)
chiral flower, while those with the opposite chirality remain
trapped. At t ¼ 1 000 s most of the microswimmers are sta-
bly trapped, as shown in Fig. 7(c).

VI. FURTHER NUMERICAL EXPERIMENTS

The approach described in this article can be generalized
to more complex situations. In particular, it is interesting to
consider the case of an active spherical particle moving in
three dimensions, where the particle position is described by
three coordinates and its orientation by two angles.43

Another interesting generalization is to non-spherical active
particles; for example, rods are a more accurate model for
bacteria. This generalization requires the use of diffusion
matrices instead of diffusion coefficients, as described in
Ref. 44. Finally, it is also interesting to consider the case of
multiple particles interacting with each other, for example,
by Yukawa or Lennard-Jones potentials. This can be imple-
mented using molecular dynamics algorithms.45
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Fig. 7. (Color online) Sorting of chiral microswimmers (v ¼ 31lm=s and X ¼ 63:14 rad=s) with chiral “flowers” (gray rectangles, thickness 2 lm). (a) At

t¼ 0 a balanced mixture of active particles with opposite chiralities is released inside two chiral flowers with opposite chirality. As time progresses, shown in

(b) and (c), the active particles rotating counterclockwise (darker squares) are trapped in the left chiral flower, while the particles rotating clockwise (lighter

circles) are trapped in the right chiral flower.
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