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Monte Carlo simulations of the three-dimensional sticky-hard-sphere

system are presented. A new modified Monte Carlo algorithm has been devel-

LI oped, which makes it possible to explore the phase diagram for a large region

of both the packing fraction and the stickiness parameter 1. The phase diagram

is calculated, as well as pair distribution functions and structure factors. Cluster

percolation has been studied and its relation to the phase diagram. The simula-

tion results are compared with predictions, obtained from the Percus—Yevick

approximation, which can be solved analytically for this model. The potential

relevance of the present simulation results for experiments on clustering in
neutral colloids is discussed.

1, Introduction

The hard-sphere fluid is a useful model for dense, monatomic liguids. For such
simple liquids, the experimental correlation functions and structure-factors agree
quite well with both analytical results and computer simulations for hard spheres
[1]. This is a reflection of the fact that the structure of simple fluids is dominated by
the hard repulsion part of the intermolecular potential. Another interesting feature
of the hard-sphere model is that it exhibits a fluid-solid transition [2]. The freezing
of hard spheres, which is exclusively due to excluded volume effects, has been
studied extensively both by computer simulation and, more recently, by
density-functional theory [3].

Although the hard-sphere model has proved to be extremely useful, there remain
many physically interesting properties of simple liquids that cannot be described in
terms of a simple hard-core model. For example, attractive dispersion forces are

% usually invoked to explain the existence of a liquid-gas transition. Another pheno-
meneon that requires strong attractive intermolecular interactions is the formation of
clusters. In the present paper, we are interested in the phase behaviour of a model

. system in which the hard-core repulsion competes with short-range attractive inter-
actions.

Of course, there are many possible model systems that combine a hard repulsive
core with short-range attraction. For the sake of simplicity, we focus on the
adhesive-sphere model (' sticky-hard-sphere model’) first introduced by Baxter [4].
This model can be thought of as a special case of the square-well fluid in the limit
where the well-depth goes to infinity while the well-width goes to zero, in such a
way that the integral over the Boltzmann-factor in the region of the well yields a
finite contribution to the second virial coefficient (see § 2).

This particular model has a number of attractive features: first of all, as Baxter
showed, the Percus-Yevick (PY) equation for this model can be solved in closed
form. In the PY-approximation the adhesive-sphere model exhibits a ‘gas-liquid’
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transition (see also [5, 6 and 7]). In addition, the adhesive-sphere system undergoes
a solid-liquid transition [8, 19].

Following Baxter, other authors have explored the phase diagram of the sticky
spheres, using different relations to calculate the pressure. In addition, gener-
alizations of the sticky-sphere model have been investigated in studies of mixtures
[7], competitive adhesion [9] and percolation [10].

Although at first sight the adhesive-sphere model appears rather pathological, it
is a useful model system for real physical systems, such as colloidal suspensions of
spherical particles with short range attractions. Hence we may hope that a study of
the adhesive-sphere model will help us to understand the microscopic factors, that
affect the tendency of a colloidal suspension to form a gel, a colloidal crystal or a
dense fluid.

In contrast with the amount of theoretical work, little work has been done on
computer simulation. In fact, the only numerical studies that we are aware of are
due to Seaton and Glandt [11, 12, 13, 18]. These authors employed a modified
Monte Carlo method to calculate thermodynamical properties of the
two-dimensional system of sticky hard discs and three-dimensional system of sticky
hard spheres. Besides they studied the percolation behaviour of this systern in three
dimensions. Below we present the results of a Monte Carlo study of the 3D
sticky-sphere model.

From the MC simulations we obtain structural properties such as the
pair-distribution function g(r) and the structure factor S(k), which are then com-
pared with the predictions resulting from the Percus—Yevick approximation.

This paper is organized as follows: in §2 the adhesive-sphere model is bricfty
described. Qur Monte Carlo algorithm is described in § 3 and the technical details of
the simulations are presented in §4. The resuits for the correlation functions and
percolation behaviour are discussed in § 5.

2. The adhesive-hard-sphere model

The adhesive-hard-sphere potential can be thought of as a limiting case of the
square-well potential, where the attractive well becomes infinitesimally narrow and
infinitely deep. Whether such a model is meaningful depends crucially on the way in

which this limit is taken. Baxter showed that the following choice of potential leads
to a model with well-defined statistical mechanical properties. .
U = for 0<r<o,
=ln(M), o<r<d,
g
=0, r>d, 2.1
in the limit d — o, where o is the diameter of the particles. § equals 1/kT, where k is

the Boltzmann-constant, t is a measure of stickiness. Barboy has shown [6] that this
parameter can be considered as a measure of the temperature,

Writing the potential as a sum of a hard sphere potential and an attractive well
potential

ﬁU = ﬁUhs + ﬁUwell {22)

]
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with
AU = o, for r<o
=1, r>0 {2.3)
and
12¢(d —
BUeu = In (——Z‘L——")) for o<r<d (2.4)
g

we can express the canonical ensemble density of a system of N identical particles as
—piu U ¥
de'N — hm eXp( ﬁ{ hs + wel]} d ~
d—o I exp (_ﬁ{Uhs + Uwe]]}) dr
(0/127)"J, exp —BU,, dg,
Z k]

= (2.5)
#¥ denotes all the translational degrees of freedom before taking the limit d — o,
whereas g, represents all the degrees of freedom after taking this limit. So the set ¢,
denotes all the translational degrees of freedom of both clusters and free particles as
well as the internal and rotational degrees of freedom of the clusters. J, is the
jacobian for the coordinate transformation from the cartesian coordinates r¥ to the
generalized g".

p is the number of particle-pairs with an interparticle distance between o and d
in the limit of d — o, s0 p is in fact the number of “bonds’ in a configuration. The
partition function Z is given by

Praax® o 14

z="Y, (E) f exp (—BUM, dd,, 26)
p=0 T

with p*¥ the maximum number of bonds in a system of N particles.

From equation (2.5) for the density function it is clearly seen that the total
phase-space consists of p™)_+ 1 disjunct subspaces, each subspace characterized by
the number of bonds p.

We can compare this adhesive-sphere potential with other model potentials by

use of the second virial coefficient [6]. The second virial coefficient is given by [14]

Bf=4—1" with  B¥ = B,/q?, 27
while the third virial coefficient is
£=10—-5t '+ 2—1 %18, (2.8)
with
B¥ = B,/a®,

3. Monte Carlo sampling

In order to compute canonical averages for the adhesive-sphere model by Monte
Carlo simulation, we need an algorithm to sample all accessible configurations for a
fixed number of bonds and, in addition, to sample over all possible number of
bonds.
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Figure 1. Schematic drawing of a (periodic} one-dimensional system of ‘sticky spheres’. A4 is
the test particle and y is the random chosen centre. The dashed line under the spheres
denotes the test line segment cenired at A, the dotted line above the spheres denotes
the test line segment centred at the random chosen centre y.

In our Monte Carlo program a trial step consists either of an attempted dis-
placement of a particle (or cluster of particles) at a fixed number of bonds or of an
attempt to change the number of bonds. As the former type of trial move is straight-
forward we limit our discussion to the latter.

For the sake of simplicity we consider only a one-dimensional system in this
section. The generalization for three dimensions is given in the Appendix. Figure 1
gives a view of such a one-dimensional system, consisting of free particles and
clusters. We assume periodical boundaries in this example and in the three dimen-
sional case later on.

We assume that the intermolecular potential has the form

BU = oo, for O<r<«ao,
=ln(%-g—)), o<r<d,
o
=0, r>d, (3.1)

withd — o

The algorithm to change the number of bonds, works as follows. Consider a
particle which can be chosen randomly. The centre of the particle defines the middle
of a line segment of length A, on which we randomly choose a second point. This
second point is the centre of a second line segment with the same length as the first
one. If we had chosen A for example (figure 1) the dashed line denotes the first
mentioned line segment and the dotted line the second mentioned one, where 7 is
the randomly chosen point.

On the latter line segment we randomly pick a new trial position for the particle
under consideration. The reason for choosing such a seemingly complex method to
generate trial moves is discussed below.

In the new configuration the particle may or may not form a bond with another
particle on the line segment. Whether such a bond is possible depends on the local
arrangement of the particles around the test particle. The probability for particle A
to form a bond in a given interval A, for a fixed configuration of all other particles,
is determined by the contribution of the configurational integral

Q.= A+ n(-é—) (32

where A is the contribution from the unbounded state, while everyone of the n
possible bonds in the interval A contributes a factor (o/121).
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Using this notation, the probability to form a bond in this interval is

n{o/121)
Py = A + n(o/127)’ (3.3)

while the probability to form no bonds is

oA
“ A+ n(g/127)

Note that {¢/127} has the dimension of a (one-dimensional) volume. This allows
us to interpret (o/127) as the ‘effective volume’ available for one bond, and A + a(s/
121) as the total effective volume in a segment of length A.

The main difference with the 3D case is that in the latter case the probability to
form a bond depends on the intersection of a sphere with the test sphere. In
addition, in 3D one should also consider processes in which two or three bonds are
formed simultaneously.

Returning to our one-dimensional example, we calculate the effective volume,
VY, for each possible bond, in the way described above. We now randomly select a
particular bond (f) with a probability P{i) given by

NV

v 9
where i denotes the number of distinct bound or unbound configurations available
to the particle under consideration within the test-line-segment. Note that the accep-
tance of a trial move depends only on the effective volumes in the new configuration.
Hence this part of the program is rather different from the conventional (Metropo-
lis) sampling scheme where the relative probabilities of the old and the new configu-
rations must be compared. However, as will be discussed below, microscopic
reversibility is maintained at all times.

After selecting a particular bound or unbound trial configuration we test for
overlap and reject the trial move when a hard-core overlap is detected.

The correct definition of the line segment is of crucial importance to guarantee
microscopic reversibility. Suppose we should use the conventional method: dis-
placing in a linc-segment centred at the original position of the test particle. If we
should use the same method of choice for the line segment in the new position, the
length (ie. the effective volume of no bonds) of this second line segment would be
the same as that around the original position. However the other effective
‘volumina’, due to the existing bonds, associated with both line segments would be
different in most cases and therefore the probabilities of the forward and the reverse
moves will be different. This violates the principle of microscopic reversibility. This
problem is also discussed at length by Seaton and Glandt [11], however, the solu-
tion proposed by these authors differs from the one adopted here: as mentioned
before, we first randomly select a point on the line segment. This randomly chosen
point will be the centre of a (second) line segment, with the same length as the
original one. On this last line segment the displacement takes place.

If we use the same method of defining a random-centre-line segment, both for
the old and the new position, the method is reversible, because the probability to
choose the same random-centre-line segment is the same in the old position and the
new position, as are the associated effective ‘ volumina’. Furthermore, the method is
quite efficient, as we only deal with line segments, and the calculation of the effective

(3.4)
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‘volumina’ remains easy. The extra work involved in the choice of a random centre
is negligible.

In three dimensions the method is essentially the same. In a test-sphere of radius
A centred at the position of the test particle a point is randomly selected. This point
is the centre of a second sphere also with a radius A, in which the displacement
takes place. For a sphere, the calculation of the effective ‘volumina® is relatively
easy, as explained in the Appendix.

It seems that the present algorithm is more efficient than the algorithm proposed
by Seaton and Glandt, especially at high densities [11]. The reason is the following:
Seaton and Glandt allow trial moves to any point in the periodic box. The accep-
tance of such trial moves will be low at high densities. Because we use a restricted
displacement by use of a random-centre-sphere, we can adapt the radius of this
sphere to the density.

Secondly, the total number of computations (comparing the same number of
particles under the same thermodynamic conditions) in our method will be much
smaller than in the method of [11], since we only have to calculate the effective
‘volumina’ in a test-sphere, whereas in [11] these ‘ volumina’® must be computed for
the whole box. However, we have not attempted any direct comparison between our
approach and the one employed by Seaton and (Glandt.

To get a more efficient sampling of the configuration-space, we also performed
trial displacements of all clusters. For such a displacement we regard a cluster as
rigid. The magnitude of the attempted displacement depends on the number of
particles in a cluster: the more the particles, the smaller the attempted displacement.
We do not attempt to move a percolated cluster.

. The structure factor S(k) was calculated directly during the simulation by a fast
Fourier transform of the density. So we compute directly

N
p= 3, exp(—ik.r)
o (3.6)

S0 =5 < A~

with N the numbers of particles. In the transform, we take a spatial resolution of
256 points in the direction of k. This number is sufficient to suppress aliasing effects.
In order to improve our statistics we compute p(k) for k along 13 independent
directions (3 along P([100]), 6 along P([110]) and 4 along P{[111]), where P stands
for all independent permutations).

The 13 x 4 Fourier transforms were carried out every 10 sweeps, which resulted
in a negligible increase in computer time. The pair distribution function g(r) was
calculated by keeping a histogram of the interparticle distances. Because we mea-
sured the average over finite bins there is some loss of accuracy at points where g(r)
has singularities, except for the singularity at r = o, which was computed explicitly
by counting the number of bonds.

4. Monte Carlo simulations
Constant pressure simulations were carried out on model systems consisting of
32 particles. Constant volume simulations were done on systems of 32, 108 and 256
patrticles. The ‘stickiness’ parameter T was varied between 0-05 and oo (hard spheres).
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typical duration of a Monte Carlo run was 1-2 10* trial moves per particle (exclud-
ing equilibration) for the 32 and 108 particle systems, and 2 10° cycles for the 256
particle system. The 256 particle systems were equilibrated for 10? cycles, but this
number excludes the equilibration of the 32 particle system from which the 256
particle system was prepared by doubling the linear dimensions of the periodic box.
On a Cyber 750-855, a typical run on a 256 particle system took 1-2 hours, but
most runs on the smaller systems took appreciably less time,

The equation-of-state data were obtained from the constant pressure MC simu-
lations. This method, although straightforward, has the disadvantage that it
becomes inefficient at low temperatures and high densities. We therefore also experi-
mented with methods to derive the pressure from the value of the pair-correlation
function at contact, as obtained in constant density runs. One such method was
used by Seaton and Glandt [11] in their simulation of sticky discs in two dimen-
sions. This method is based on an extension of the relation between the pressure of
a square-well fluid and the value of the radial distribution function inside the well,
as used by Rotenberg [15]. It relates the pressure of the sticky-disc (sticky-sphere}
fluid to the average number of bonds per particle

’%P = 1+ &ndic — 4 @1

where {n) is the mean number of bonds per particle.

Equation {4.1) is based on the assumption that y(r) = exp (fu(r))g(r) is continuous
through the attractive well. We found that equation (4.1) leads to incorrect values of
the pressure, even at relatively low densities, especially when there exists a perco-
lated cluster. Other methods to compute the pressure in constant density runs either
suffered from the same drawback, or were computationally inefficient. For this
reason, we were forced to rely exclusively on the constant-pressure simulations to
measure the sticky-sphere equation-of-state.

The main reason why the constant pressure method becomes inefficient
{although, in principle, still correct) at high densities and low temperatures is that
under these conditions percolation may take place. Percolation in a periodic system
means that there is at least one cluster in the simulation box which is connected to
its periodic image. Once such a cluster has formed, it is impossible to change the
volume of the box without either creating a hard-core overlap or breaking a bond.
But volume-changes moves are essential for the constant-pressure Monte Carlo
simulation. Hence, as the probability of percolation increases, the efficiency of
constani-P MC goes down. This limitation is most serious in the larger systems,
where the percolation transition becomes quite sharp. It is least serious for the
simulations of the 32-particle system, because for such a small system-size the perco-
lation transition is not very sharp. As a consequence, it is still possible to find
unpercolated configurations at temperatures and densities that are well beyond the
percolation transition of the infinite systemn.

Apart from the problem with percolation at low 7 and high ¢, there is the
additional problem that at very low ¢ (typically, 7 < 0-1), uniform sampling of
configuration space becomes increasingly difficult. Under these conditions, the mea-
sured properties of the system become strongly dependent on its previous history.
For instance, different quenches from a high to a low value of t tend to result in
different inhomogeneous  glassy ’ structures that hardly relax in time. Although such
behaviour is usually observed in low-temperature percolated structures, it is not due
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Figure 2. Phase diagram of the three-dimensional sticky-hard-sphere system. Horizontal
axis: the packing fraction ¢, vertical axis: pressure Pe*/kT. x, 1 =015 +, 1 =02;
A, 1 =05; 00, t = 1. Number of particles: 32. Percus—Yevick predictions are indicated
by full lines (compressibility equation) and dashed lines (energy equation).

to percolation as such. In fact, for r = 0-2, configuration space can be sampled quite
efficiently even for packing fractions as high as ¢ = 0-4, although this is well inside
the percolation regime.

5. Results

5.1, Structural properties

Figure 2 shows the constant-pressure Monte Carlo results for the equation of
state of the sticky-hard-sphere fluid. The data have been collected in table 1. In this
table we also indicate the length of the simulation. In figure 2, the MC results are
compared with the predictions of the Percus-Yevick approximation, using both the
compressibility relation [4] (solid line) and the energy relation [5] (dashed line). For
high  both relations give almost the same result. Only near the critical isotherm,
large differences between the results of both relations occur [5].

Note that, over the range of densities and temperatures that could be studied by
constant-P MC the Percus—Yevick approximation agrees quite well with the simula-
tion results. At higher densities and lower temperatures we can no longer obtain
reliable equation-of-state data, but we can measure the radial distribution function
g(r). The latter quantity can also be compared with the corresponding Percus—
Yevick prediction. Such a comparison is shown in figures 3-6, where the particle
separation 7 is in units of the sphere diameter o. The radial distribution function in
the PY approximation was calculated by Fourier-transforming the structure factor
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Table 1. Pressure as a function of the packing fraction. t denotes the stickiness or
‘temperature’, while ¢ denotes the packing fraction. N_,,; is the number of MC
sweeps to retax the system to equilibrium and N, is the number of MC sweeps used
to calculate the thermodynamic function.

d’ P Nequi Nsnmp
0-1051 0-14 4000 15000
0-1239 0-14 4000 10954
0-1280 0-17 4000 11125
0-1310 0-2073 2000 11733
01341 0-17 4000 12706
0-1363 0-2 4000 11007
0-1467 0-2407 2000 15000
01516 0-2 4000 4379
0-1555 0-2 4000 11316
0-1599 0-24 4000 10775
0-1800 0-24 4000 9793
0-1861 0-27 4000 15000
0-1917 0-2757 2000 14434
0-2035 0-27 4000 13174
(3-2247 03 4000 15000
0-2263 03 4000 15000
00974 0185 2000 13000
0-1268 0-22 4000 13607
0-1353 022 4000 12419

0-1416 0-265 2000 14274
0-1751 0-315 4000 15000
0-1797 0-315 2000 15000
0-1915 0-375 2000 9975
0-2029 0-375 2000 14076

0-2091 0-42 4000 15000
0-2277 042 4000 15000
0-2451 0-48 2000 9233
0-2774 0-48 2000 11588
0-0943 0-23 2000 15000
0-1187 03 4000 3929
0-1224 03 4000 13177
0-1475 0-4 4000 6167
0-1528 0-4 4000 15000
0-1736 0-5 4000 15000
0-1740 0-5 4000 14270
01943 0-61 2000 15000
0-1978 061 2000 15000
0-2154 0-72 4000 15000
02233 0-72 4000 15000
0-2378 0-85 4000 15000
0-2487 0-85 4000 15000
0-2616 1-0 4000 15000
0-2638 1-0 4000 15000
0-2803 1-15 4000 10901
0-2816 1-15 4000 15000
0-2954 1-25 2000 15000
0-2969 1-25 2000 15000
1106 03 2000 15000
0-1124 03 4000 15000

(1344 04 4000 15000
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Table 1 (continued).

T ¢ P Nequi Nsamp
1-0 01348 0-4 4000 11053
10 0-1746 6 4000 15000
10 01771 06 4000 15000
1-0 01976 075 4000 15000
1-0 0-2029 075 2000 15000
1-0 0-2200 0-90 4000 15000
1-0 0-2204 0-90 4000 15000
1-0 02293 1-0 4000 15000
10 02351 1-0 4000 15000
10 02547 1-2 4000 15000
10 0-2585 12 2000 15000
1-0 0-2615 12 4000 15000
1-0 0-2737 14 4000 15000
1-0 0-2748 1-4 4000 15000
1-0 0-2823 1-4 4000 15000
1-0 0-2959 1-66 2000 15000 N
10 0-2979 1-66 4000 15000

in the PY approximation. The structure factor can be calculated by
Fourier-transforming the Percus—Yevick direct correlation function () [4]. Below
1=(/2— 1)/\/ 18 there is a range of densities (inside the liquid-vapour coexistence
region) where no real solutions for ¢(r) exist.

3

0 3 r
r
Figure 3. Pair distribution function g(r} versus r in units of the particle diameter .
‘Temperature’ 7 = (-1, packing fraction ¢ = 0-14. System size: N ,,, = 108. Number
of MC-sweeps to relax the system to equilibrium: N ,; = 5000, number of MC-sweeps
to calculate the correlation function: N, = 9700. Full line is the PY prediction: dots
represent the MC results.
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Figure 4. Meaning of symbols as in figure 3. 1 = 0-2; ¢ = 0-32. Noare = 108, N, = 5000;
N amp = 8000.
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The radial distribution functions shown in figures 3-6 were computed in
constant-density runs. Looking at figures 3-6 it is clear that the Percus—Yevick
expression for the radial distribution function is in good overall agreement with the
Monte Carlo data for 0-15 < 7 < 1, and 0 < ¢ < 5. It is noteworthy that even for
=1, and ¢ =050 (figure 6), the PY approximation for g(r) is indistinguishable
from the simulation results. This contrasts with the behaviour for t = o {hard
spheres), for which case there are clear deviations between g{r) obtained by com-
puter simulation and the corresponding PY predictions [16].

Serious discrepancies between the PY approximation and the simulation results
show up for 7 < 0-1 (figure 3), although there is clearly still qualitative agreement.

A peculiar feature of the radial distribution function of sticky spheres is the
occurrence of discontinuities in g(r) or its derivatives at distances, which are a
multiple of the hard-core diameter. This behaviour is a result of the delta-function
peak in g(r} at r = ¢ [17]. For 7 larger than 0-15, these discontinuities are Iepro-
duced to within the statistical accuracy of our caiculations by the corresponding PY
approximation for all packing fractions studied in our simulations.

However, the Percus—Yevick approximation fails to account for positional cor-
relations associated with the presence of larger rigid clusters such as the trigonal
bipyramid. Such structures are formed by attaching additional particles with three
bonds to a tetrahedral cluster. These rigid clusters give rise to an infinite series of
delta-functions in g(r), often at irrational values of r. For example, the distance
between the two particles at the ‘top’ and ‘bottom’ of the trigonal pyramid is
/(8/3). These contributions will show up in the pair distribution functions, espe-
cially at low t (figure 3). In this figure, each delta function is smeared out over an
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r

Figure 5. Meaning of symbols as in figure 3. 1=0-5; ¢ = 0-40. N, = 108. Ny = 5000;
N amp = 10000.

T

Figure 6. Meaning of symbols as in figure 3. t=1; ¢ =050. N, = 256. N g, = 500;
= 2000

samyp
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Figure 7. Mean coordination number as a function of the packing fraction ¢, ¢, 1 =01;
x,7=015; +, 1 =02; A, 1 =035, O, t = 1. System size: 256 particles. The vertical
bars denote the percolation thresholds for different values of z.
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Figure 8. Structure factor S(k) versus ko for the sticky-hard-sphere fluid. ‘Temperature’
7 = 0-1; packing fraction ¢ = 0-14. System size: N, = 108. Number of MC-sweeps
to relax the system to equilibrium: N_; = 5000, number of MC-sweeps to calculate

the correlation function: N, = 9700. Full line: PY results; dots represent the MC
results.




416 W. G. T. Kranendonk and D. Frenkel

3 1 1 T

25 - -

z.. —
)

T 4
[}

t b

Miw .

9 o

oh‘_;LllL..;l;,L.l....

0 b 10 15 20
ko
Figure 9. Meaning of symbols as in figure 8. 1 =0-2; $ =0-32. N, = 108. N, = 5000;
N omp = 8000
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Figure 10, Meaning of symbols as in figure 8. 1 = 0-5; ¢ = 0-40. N, = 108, N, = 5000;

N, = 10000.
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20

ko
Figure 11.  Meaning of symbols as in figure 8. 7 = 1.0; ¢ = 0-385, N = 108, N, = 5000;
N o = 10000,

interval corresponding to the spatial resolution with which we measure g(r). There-
fore, only large contributions will show up as peaks in g(r). An example is the peak
at r = 1:634 in figure 3. These conclusions are in close agreement with those reached
in a very recent publication by Seaton and Glandt [18]. These authors also found
that the Percus-Yevick approximation works well at 1 = 0-2, while at t = 0-1 and
¢ =01 the Percus—Yevick approximation of g(r) is some 10 per cent too high,
which agrees with our results shown in figure 3.

The value of g(r) at » = ¢ measures the mean number of bonds in a system of
hard, adhesive spheres. This number can be compared with the PY prediction given
by Baxter. The results of this comparison are shown in figure 7. The mean coordi-
nation number, i.e. the mean number of particles sticking to a particular particle, is
twice the mean number of bonds. The agreement between the PY approximation
and the simulation results is again quite good. The PY approximation breaks down
when the mean number of bonds per particle approaches the typical coordination
number of a particle in a dense fluid. Note that the figure shows that the agreement
between simulation and the Percus-Yevick prediction extends even beyond the
percolation threshold. At low densities our results for the coordination number
agree well with those obtained by Seaton and Glandt [13], if one takes into account
that these authors use a definition of the coordination number that differs from the
conventional one by a factor of two. At 1 = 0:1 and ¢ =014, we find a coordi-
nation number which is slightly larger than the PY estimate while the results of
Seaton and Glandt are slightly lower. However, one should note that the latter state
point is in or near the ‘glassy’ region in the phase diagram. Hence one should
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expect large statistical fluctuations due to incomplete sampling of the configuration
space.

Examples of the calculated structure factors are displayed in figures 8-11.

At high values of z, the structure factor of sticky hard spheres resembles that of
hard spheres, If the density is increased, while keeping 7 constant, the amplitude of
the oscillations in the structure factor grows, while the first maximum is shifted to
slightly higher k values.

Lowering the ‘temperature’ at constant density leads to a behaviour that is
different from hard spheres. However, there is still good overall agreement between
S(k) obtained by simulation and the corresponding PY prediction.

Nevertheless, some differences between the analytical theory and the simulation
results can be seen near the extrema of S(k). In general the Percus—Yevick theory
tends to underestimate the amplitude of the oscillations in S(k). This failure cannot
be explained as an underestimation of the pair distribution function at r = o in the
PY theory. Figure 7 shows clearly that the PY approximation gives a very good
estimate for the averaged coordination number at 1 far from the critical point and
even at high densities. Another possible explanation is that in case of high density
(figures 10 and 11) the system is near a fluid-solid or fluid-metastable
glass-transition. The results of an approximate density-functional calculation for
sticky-hard spheres give some support for this assumption [8, 19].

A large increase of S(k = 0) takes place, when 7 is lowered (figurc 8). S(0) is a
measure for the isothermal compressibility. The latter quantity becomes infinite at a
critical point or, inside the two-phase region, on the spinodal line. The observed
increase of S(0) suggests the approach to a spinodal line. The ‘temperature’ at
which we observe this increase in S(0) agrees well with the {compressibility) Percus—
Yevick estimate of the location of the spinodal line for low densities. Figure 8
illustrates the peak in S(k) at k = O that develops as the temperature is lowered. As
can be seen from the figures, the peak in S(k) is well described by the PY approx-
imation.

Although the adhesive-sphere model is, of course, an oversimplification, it is
expected to provide a qualitatitively correct description of a suspension of
uncharged colloidal particles. It is interesting to note that recent small-angle
neutron scattering experiments on suspension of uncharged colloidal particles do
indeed show a divergence of the compressibility (or, equivalently, of S(k) as k — 0),
as the temperature is lowered towards a spinodal. This is in qualitative agreement
with the predictions of the adhesive-sphere model.

5.2. Percolation behaviour

Due to the short range attractive potential, the adhesive sphere model is espe-
cially suitable to study clustering and percolation. As the range of attraction is
infinitesimal, the coordination number of a given particle can be defined unam-
biguously as the number of particles sticking to that particle.

As the adhesive-hard-sphere model can be solved analytically in the Percus—
Yevick approximation, it is possible to compare the simulation data with analytical
results for cluster properties such as the mean cluster size and percolation threshold.

Coniglio et al. [20] developed a Percus—Yevick-like analytical approach to cal-
culate mean cluster sizes and percolation behaviour in fluid systems. This approach
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P(y)

Figure 12. Percolation probability as a function of the packing fraction. Symbols: ¢,
T=01; x,t=015;, +,1=02; A, t=05;, M, t = 1. The lines serve as a guide to
the eye. System size is 256 particles.

was applied by Chiew and Glandt [10] to estimate the percolation transition as a
function of 1 in the adhesive-sphere model.

In computer simulation the definition of percolation s determined by the period
boundary conditions. One must find a cluster which links with its periodic images to
form an infinite cluster,

In our algorithm for detecting percolating clusters, we examine all the particles
subsequently. If a particle is already identified as belonging to a cluster, it is skipped.
Each particle, that is not yet part of a previously determined cluster, is considered
the seed of a new cluster. For such a seed, we next examine which particles, if any,
are bonded to it. These particles are allocated to the same cluster as the seed. We
then iterate the procedure for these new members of the cluster, until no new
particles are found. We also keep track of the vectorial distances separating all
particles in a given cluster. Of particular interest are all distinct loops joining one
particle to itself. Two distinct situations may arise: either the vectorial distance
between beginning and end of the loop is zero, in which case we have detected a ring
in the cluster. Or the vectorial distance corresponds to a linear combination of
lattice vectors of the periodic lattice,

With this algorithm we can detect all percolating clusters as well as the number
of particles, that they contain. So we can calculate the percolation probability P(¢),
ie. the probability to find an ‘“infinite’ cluster in the system. Plots of P(¢) for several
different values of t are shown in figure 12. The P(¢) as function of the packing
fraction was calculated for © = 0-05, 0-075, 0-1, 0-15, 02, 05, 1, for all the sample
sizes, 32, 108 and 256 particles. Finite-size effects smear out the percolation tran-
sition, as can be scen clearly in figure 12. It is therefore difficult to give a reliable
estimate for the percolation threshold in the infinite system limit. In practice,
however, it turns out that the point at which the percolation probability P(¢) = 50
per cent, is not very sensitive to system size (figure 13). This figure shows that there
is only a slight shift in the percolation threshold with system size. We found this
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Figure 13. Extrapolation of the percolation thresholds of finite systems of sticky spheres to

N — 0. ¢,(1/N) denotes the packing fraction at the percolation threshold. Symbols:
x,1=01; +,7=015; A,7=02; @,z=05 Br1=1

behaviour for all values of 7. Table 2 gives these packing fractions for different t and
system sizes. If we assume naively that the dominant system size dependence of the
percolation threshold goes as 1/N, we can obtain an estimate of the percolation
threshold in an infinite system by simple extrapolation. As can be seen from figure
13, such an extrapolation procedure is compatible with the available data, except
perhaps for z = 0-5.

We can compare the Monte Carlo estimates for the percolation threshold with
the theoretical predictions of [10]. In figure 14 the present estimates are compared
with the * Percus-Yevick® percolation line. Note that there are pronounced differ-
ences between the simulation results and the predictions of the analytical theory.
This is hardly surprising: after all, the percolation transition of a system of hard
spheres (t — o0) will be at random close packing. In contrast, the Percus—Yevick-like
approximation of [10] predicts percolation at the unphysical value ¢ = 1. And at
low 7 values the PY theory predicts percolation at ¢ = 0-0 for every value lower

Table 2. Percolation threshold as a function of the system size. 7 denotes the ‘temperature’
and N the number of particles of the systems. The last column gives the extrapolated
values for N — .

T 32 108 256 Extr.

01 0-149 0141 0141 0-139
015 0-189 0-183 C-18C 0179
02 0-223 0-217 0-217 0-216
0-5 0-318 0-316 0-319 0-318
1 0-403 0-393 0-394 0-3%1
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than 7 = 1/12. It is therefore hardly surprising that the MC estimate for the perco-
lation line is shified with respect to the predictions of the analytical theory: at high 1
to lower values of ¢, and at low t to higher values of ¢.

For comparison, the results of Seaton and Glandt [13] are also shown in figure
14. As can be seen from this figure, there appears to be no systematic difference
between our results and those of [13], even though they were obtained using differ-
ent algorithms. Of couse, the present algorithm allows us to study percolation at
much higher densities than is possible with the approach of Seaton and Glandt.

As a consequence, the MC percolation line appears to intersect the
liquid-vapour coexistence curve. Within the two-phase region the percolation
threshold is difficult to locate, due to a large scatter in the data points. The error
bars in figure 14 indicate the minimum and maximum packing fractions, between
which a transition from totally unpercolated to completely percolated takes place.
Actually, what we are probing is not really a two-phase region, but rather a homo-
geneous metastable fluid which is stabilized by the large excess free energy needed to
create a gas-liquid interface. It may seem that the study of such an artificial homo-
geneous system is only of academic interest. However, we shall argue below, that
percolation in this metastable state has important consequences for the phase
separation in real clustering colloids.
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Figure 14. Percolation line and spinodal line. Horizontal axis: packing fraction; vertical
axis: the “temperature” 1. The dotted line represents the PY prediction of the perco-
lation line. Squares give the positions of the percolation thresholds, obtained in our
work, after extrapolation to 1/N — 0. Crosses represent data from [12, 13]. The hori-
zontal bars give the positions of percolation thresholds in the metastable gas phase.
The dashed-dotted line borders the region, where the PY approximation has no real
solutions, while the dashed line represents the spinodal line in the PY approximation.
Note that for packing fractions smaller than the critical packing fraction, the spinodal
line lies inside the region, where the PY approximation has no real solutions,
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In expetiments on phase separation of dispersions of coated silica particles,
which, to a first approximation may be considered an experimental realization of
sticky spheres, Jansen et al. [21] observed that the two phase region appeared to
have an anomalous shape. While the density of the dilute phase decreased upon
lowering the temperature, as is to be expected, the density of the condensed phase
also appeared to decrease. This is different from what is observed in simple one-
component liquids, and is also not expected on basis of, for instance, the Percus—
Yevick theory for sticky spheres. The present Monte Carlo simulations suggest that
what was observed in the experiments of [21] was not the equilibrium liquid-vapour
line, but rather the separation of the dispersion into a vapour phase and a meta-
stable glassy phase. Such a glassy phase was often found in the Monte Carlo
simulations. It is not expected to have the density of the rather tenuous, ramified
system at the percolation threshold. Rather, we expect that the mechanical stability
of such a glassy phase is determined by the ‘rigidity percolation’ threshold, which
should be located at somewhat lower t/higher ¢. Unfortunately, we were not able to
extract more precise information about the location of the rigidity percolation line
from our simulation data.

The authors like to thank Dr C. G. de Kruif and Dr J. G. H. Joosten for many
fruitful discussions. This research was supported by the Netherlands Foundation for
Chemical Research (SON) with financial aid from the Netherlands QOrganization for
the Advancement of Pure Research (ZWO).

Appendix
Monte Carlo algorithm for three-dimensional sticky spheres

In this Appendix we describe the algorithm to change the number of bonds in
three dimensions. We start by randomly choosing a particle. This particle is the
centre of a sphere with radius A, in which we randomly choose a point. This point is
the centre of a second sphere, again with radius A. In this second sphere the
displacement will take place. The reason for this choice of the test-sphere is
explained in § 3.

To perform the actual displacements, the concept of the effective volume is
cssential, The effective volume in configuration-space of a particular type of bond is
the volume in configuration-space, which covers all the realizations of that particu-
lar type of bond inside the test-sphere (or hypersphere in N dimensions). A gener-
alized expression for the effective volume of b bonds of the test particle with other

particles is
s b
ZOED) (g) qui (A1)

dq, represents all the degrees of freedom, remaining after making the bond(s). In
equation (A 1) we have ignored all possible excluded volume effects. The summation
is over all combinations of the test particle with the other particles which can realize
that particular bond type.

In detail, the effective volume associated with zero bonds is just the volume of
the test sphere. The effective volume of one bond is calculated as follows: consider
one particular particle, with which the test-particle can form one bond. In principle
it can be placed anywhere on the surface of the second particle, ignoring for the
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moment the boundaries of the test-sphere. So the effective volume for a single bond
is found by integrating over the surface of a sphere

.4 2n 3
w_{ 9 ; _4na
Vit ( 7 21) j; L sin 0 d8 d¢p 22 {A2)

Here we used the potential from § 2.

Alternatively, bonds can be formed between the test particle and two other
particles simultancously. A necessary condition is that the distance between these
two particles is less than twice the diameter of a particle. In that case the test-
particle can be placed on a circle formed by all the points which lay on a distance ¢
of both particles. The effective volume, associated with this double-bond is

2 M2z
V&}=(f§) J',ﬂ¢, (a3
T o

with r the radius of the circle, where once again we have ignored the finite size of the
test-sphere.
For the fourth possibility, the triple bond-type, the effective volume is given by

Ve = (i)3 S — (A4)
T\12t) e, (e, x e})]

e, €; and e; are the unit vectors, along the directions of the vectors joining the
centre of the test particle to the centres of the other three particles, that are involved
in the bond. Note that the direct making (and breaking) of triple bonds in non-
tetrahedral configurations is possible in the present algorithm, but not in the one
employed by Seaton and Glandt [18]. Although this difference should influence the
relative speed of the two algorithms, it does not affect the final results.

In equations (A 2)HA 4) we have ignored the boundaries of the test-sphere. In the
actual situation we calculate that part of the effective volume that is situated inside
the test-sphere. Such calculations are relatively easy if trial moves are attempted in a
spherical rather than a cubic volume.

In our Monte Carlo simulation we attempted to move particles successively.
However, if a chosen particle was bound to four or more other particles, this
particle was not moved, because of the demand of microscopic reversibility. After
choosing a particle, we first made a list of all the particles, with which the
test-particle could form a single bond within the test-sphere. From this lst we select
all pairs, with which the test-particle could form two bonds and finally we selected
from the list of pairs those triplets, which could form a triple bond with the
test-particle.

For each bond or set of bonds we calculated the associated effective volume,
denoted by V. Then we sclected a particular configuration with a probability P(j)
given by

i)
P(i) — SVefl'lul (A 5)
z ng)ftot
i=0
In the second part of the Monte Carlo step, we attempted to move the

test-particle to a random position in the selected subspace, ie. a random displace-
ment inside the test-sphere in the case of zero bonds, a random position at the




424 W. G. T. Kranendonk and D. Frenkel

surface of the second particle in the case of one bond, a random position on the
circle in the case of a two bond and a random choic : of the two positions in the case
of a three bond, of course with the restriction that these positions had to be inside
the test-sphere.

After choosing a position, we tested for hard-core overlap and reject the trial
move, if such an overlap was detected.

References

[1] BARKER, J. A., and HENDERSON, D, 1976, Rev. mod. Phys., 48, 587.
[2] ALDER, B. J,, and WAINWRIGHT, T. E., 1957, . chem. Phys., 27, 1208.
[3] RaMakrisaNAN, T. V, and YUSSOUEF, M., 1977, Solid St. Commun., 21, 389, 1979, Phys,
Rev, B, 19, 2775. For a recent review, sce: HAYMET, A.D. J., and OxToBY, D. W, 1986,
J. chem. Phys., 84, 1769.
[4] Baxter, R. J., 1968, J. chem. Phys., 49, 2770.
[5] WarTs, R. O., HENDERSON, D, and BAXTER, R. 1, 1971, Adv. chem. Phys., 21, 421.
[6] Bargsoy, B., 1974, J. chem. Phys., 61, 3154
[7] Bakgoy, B., 1975, Chem. Phys., 11, 357.
[8] SmiTHLINE, S., and HaymET, A. D., 1985, 1. chem. Phys., 83, 4103.
[9] Cuan, D. Y. C,, PAILTHORPE, B. A, McGaskiLL, L. 8., MrrcrecL, P. J, and NiNHAM,
B. W, 1979, J. colloid. interf. Sci., T2, 27.
[10] Cmew, Y. C., and GranpT, E. D, 1983, J. Phys. A, 16, 2595.
[11] SeaTtow, N. A, and GLANDT, E. D., 1986, J. chem. Phys., 84, 4593.
1121 Seatow, N. A, and GLANDT, E. D, 1987, PhysicoChem. Hydrodyn., 9, 369.
[13] SeaTon, N. A, and GLaNDT, E. D, 1987, J. chem. Phys., 86, 4668.
[14] Post, A.J, and GLaNDT, E. D, 1986, J. chem. Phys., 84, 4583.
[15] ROTENBERG, A., 1965, J. chem. Phys., 43, 1198.
[16] HaNsEN, J. P, and McDoNALD, L. R., Theory of Simple Liquids, first edition {Academic
Press), p. 119,
{17] CummiNGs, P. T., PERRAM, J. W, and SMITH, E. R, 1976, Molec. Phys., 31, 535.
[18] Seatow, N. A, and GLANDT, E. D, 1987, J. chem. Phys., 87, 1785.
[19] CErsan, C., and Bagom, B, 1985, Phys. Rev. A, 31, 1647.
[20] ComiGLIO, A., ANGELIS, U. DE, FORLANT, A, and Lauro, G., 1977, J. Phys. A, 10, 219,
[21] Jansen, J. W, Krurr, C. G. DE, and VRy, A., 1986, J. Coll. Interf. Sci., 114, 471; 1986,
Ibid., 114, 481; 1986, Ibid., 114, 492; 1986, Ibid., 114, 501.




