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Cemented tailings backfill is widely used in worldwide mining areas, and its development trend is increasing due to the technical
and economic benefits. However, there is no reliable and simple machine learning model for the prediction of the compressive
strength. In the present study, the research process to use artificial intelligence algorithms to predict the compressive strength of
cemented tailing backfill was conducted, overcoming the shortcomings of traditional empirical formulas. Experimental tests to
measure the compressive strength of cemented tailing backfill were conducted to construct the dataset for the machine learning.
Five input parameters (tailing to cement ratio, percentage of fine tailings, cement type, curing time, and solid to water ratio) were
considered for the design of the laboratory tests. ,e firefly algorithm (FA) was used to tune the random forest (RF) hyper-
parameters, and it was adopted to combine the RF model to improve the accuracy and efficiency for the prediction of the
compressive strength of the cemented tailing backfill. By comparing the predicted and actual results, the reliability and accuracy of
the prediction model proposed are confirmed. Tailing to cement ratio and curing time are the two most important parameters to
the compressive strength of the cemented tailing backfill.

1. Introduction

Grouting, filling, and sealing are the commonly usedmethod
for the treatment of underground goaves and leftover gobs
[1]. ,e selection of backfilling materials is one of the key
factors that directly affect the quality of the project [2, 3]. It is
a solid material composed of cementitious materials such as
soil, sand, stone, block stone, industrial waste residue, and
cement used to fill the mined area. Filling materials should
be provided with a wide range of sources, low price, easy
preparation, and transportation, and the formed filling body
should have the required physical andmechanical properties
and chemical properties. Among these filling materials, the
cemented tailing backfill plays an important role [4–6]. ,e
cement tailings backfill has been widely used in the un-
derground mines in China, and its development trend is

increasing due to the many technical and economic benefits
it provides. It is typically mixed by the cement, tailings, and
water in a factory located on the ground. Afterward, the
cemented tailing is transported to the underground mine.
With the gradual increase in the mining depth, the stress of
the stope also increases.,emechanical properties and long-
term service strength of cemented tailing backfill under
high-stress conditions are closely related to the safety of the
stope. Considering the importance to support stability in the
mining area, the cemented tailing backfill has received more
and more attention in recent years, especially in the research
fields of strength and durability [2, 6].

As one of the most important parameters to evaluate the
performance of the cemented tailing backfill in the under-
ground mine, the compressive strength has been evaluated
in various studies through laboratory tests and the
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corresponding mechanism has been revealed. To obtain
enough support for the stability of the mining area, the
strength detection of cemented tailing backfill is necessary.
Typically, the mine engineers found the optimized mix-
design in the cemented tailing backfill by evaluating the
compressive strength of the cemented tailing backfill in the
laboratory [7, 8]. However, it should be noted that the
experimental research is time-consuming and expensive.
Besides, the cemented tailing backfill test is not suitable for a
large number of experiments. Some researchers use em-
pirical formulas to predict the compressive strength of
cemented tailing backfill, some of which can be used for the
prediction, but most of the predicting models are limited by
their input as well as dataset [9, 10]. Due to the low accuracy
of the empirical formula, the application of these models is
limited [9, 11, 12]. To accurately predict the compressive
strength of cemented tailing backfill, simpler and more
reliable models should be proposed and used.

To solve this problem, more sophisticated technolo-
gies, such as artificial intelligence techniques, should be
used to develop more accurate and reliable models. Ar-
tificial intelligence models are widely used in the com-
puter-aided design of asphaltic or cementitious materials
[13–15]. Unlike the traditional model that uses empirical
formulas to extract patterns, the artificial intelligence
model can find correlations between mix-design and the
compressive strength of the cemented tailing backfill,
using the algorithms with the function of pattern recog-
nition to predict the dynamic modulus of asphalt mix-
tures. Besides, compared with the mathematical models,
artificial intelligence models can be easily and effectively
extended to big data without requiring a large number of
computing resources [15]. ,e recent research showed
that the mechanical properties (such as strength and
stiffness) of engineering materials can be accurately
predicted by using artificial intelligence technology, re-
ducing the cost of expensive and cumbersome laboratory
tests [16–18]. Moreover, the prediction of engineering
materials by artificial intelligence can replace the tradi-
tional mathematical model and improve the calculation
rate and accuracy [19–29].

Among those artificial intelligence models to predict the
compressive strength of the cemented tailing backfill, the
priority of the random forest (RF) is higher than that of
others. RF is composed of multiple decision trees, and there
is no correlation between each decision tree in the forest, and
the final output of the model is jointly determined by each
decision tree in the forest. When dealing with the classifi-
cation problem, for the test samples, each decision tree in the
forest will give the final category. Finally, the output category
of each decision tree in the forest will be considered com-
prehensively to decide the category of the test samples by
voting. When dealing with the regression problem, the mean
output of each decision tree is taken as the final result.
Compared with other algorithms, it has more obvious ad-
vantages. Firstly, the accuracy of the prediction is higher.
Also, it does not need to consume specific relationships and
can use the “permutation importance” technique to measure
the importance of input variables [30]. Besides, the

application of the RF model is easy to be performed since
only two hyperparameters are required to be tuned during
the calculation process [27, 31].

2. Research Objective and Overview

,e main purpose of this research is to use artificial intel-
ligence algorithms to predict the compressive strength of
cemented tailing backfill to overcome the shortcomings of
traditional empirical formulas. Experimental tests to mea-
sure the compressive strength of cemented tailing backfill
were conducted to construct the dataset for the machine
learning. Five input parameters (tailing to cement ratio,
percentage of fine tailings, cement type, curing time, and
solid to water ratio) were considered for the design of the
laboratory tests. ,e firefly algorithm (FA) was used to tune
the RF hyperparameters, and it was adopted to combine the
RF model to improve the accuracy and efficiency for the
prediction of the compressive strength of the cemented
tailing backfill. ,e results of the training and testing dataset
were compared regarding the measured and actual com-
pressive strength, respectively.

3. Materials and Experimental Tests

3.1. Materials

3.1.1. Cement. Two types of Portland cement P.O32.5R were
used in this study. ,ey were supplied by the local manu-
facturers (Shangfeng cement and Ma’an cement). ,e basic
properties of the two types of cement were evaluated in the
laboratory, and the results are given in Table 1.

3.1.2. Tailings. ,e coarse tailings and fine tailings from the
nearby mining area were used in the present study. ,e
gradations of the coarse and fine tailings were measured in
the laboratory. Figure 1 gives the results.

3.2. Mix-Design of the Cemented Tailing Backfill. Four pa-
rameters were considered in the present study for the mix-
design of the cemented tailing backfill: the ratio of coarse
tailings to cement; the fine tailings percentage; the ratio of
solid to water; and curing time. Based on the earlier studies,
the ratio of the coarse tailings to cement was determined as 4,
6, 8, and 10, respectively. Considering the negative influence
of the percentage of fine tailings on the compressive strength
of the cemented tailing backfill, the fine tailings percentage
was determined as 0, 0.1, 0.15, and 0.2, respectively. Taking
into account the fluidity of the cemented tailing backfill, the
ratio of the solid to water should be lower than 0.72.
,erefore, three ratios (0.68, 0.7, and 0.72) were determined
in this study. ,e curing time is also an important influ-
encing factor that affects the compressive strength of cement
materials. ,erefore, the curing time was selected as 7 days,
28 days, and 60 days for the cemented tailing backfill in this
study.

2 Shock and Vibration



3.3. Sample Preparations. A laboratory-scale mixer (model:
UJZ-15) was used to prepare the samples of the cemented
tailing backfill, mixing those raw materials including the
cement, coarse tailings, fine tailings, and the water. During
this preparation process, the coarse and fine tailings, as well
as the cement, were mixed for about 30 seconds firstly.
Afterward, the water of the designed content was poured
into the mixture. ,e mixture of the cement, coarse tailings,
fine tailings, and the water was mixed for at least 300 seconds
until all the materials in the mixer were evenly distributed.
,en, the mixture was poured into a cube mold with the size
of 70.1mm and compacted evenly. After 2 days, the sample
of the cemented tailings backfill was demolded and then the
specimens were placed under desired temperature (20°C)
and humidity (90%) for curing.

3.4. Experimental Testing. ,e experimental tests were
conducted per the specification of the China standard
GBT50107-2019. In this study, a total of 864 specimens (288
mixtures and 3 repetitions for each mixture) were prepared
for the compressive strength using a hydraulic servo testing
machine. It should be noted that the compressive strength is
typically measured regarding the ASTM standard, where the
cylindrical specimens are recommended to be prepared.
However, considering the cubic specimens are easier to cast
and demold, the cubic samples were prepared in this study.
,e compressive strength of the cylindrical specimen can be
conversed from a cubic specimen by the following equation:

fcylider � 1.05fcube 0.76 + 0.2 × log
6.89 × 10− 3fcube

2840
( )[ ],

(1)

where fcylinder represents the compressive strength of cy-
lindrical sample with the diameter of 150mm and height of
300mm, in MPa, and fcube represents the compressive
strength of the cubical sample with the size of 70.1mm, in
MPa. ,e single axis compressive strength was employed in
the present study.

4. Research Methodology

4.1. Single Regression Tree (RT). Regarding the regression
tree (RT), a set of regions is divided from the feature space.
For these regions, each one fits into a simple model. If it is
assumed that X and Y are the two prediction variables from
the regression problem, two regions are firstly divided from
the feature space and response variables are modeled in each
region.

,en, each region is deeper divided, and the output
parameter is modeled in each of the four newly obtained
regions. When the stop criterion is met, the process will stop.
,e feature space has been divided into four regions. In each
division, by selecting the division points and output pa-
rameters, the optimized fit can be obtained. ,e size of the
tree is defined as the number of end nodes (e.g., 4 in the
present example).

Table 1: Testing results of two types of cement.

Cement
Fineness

(<0.0045mm) (%)
Initial solidification

(min)
Final solidification

(min)
Compressive strength (28

days) (MPa)
Flexural strength (28

days) (MPa)

Shangfeng
cement

23.2 240 305 30.7 6.5

Ma’an cement 6 180 255 39.8 8
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Figure 1: Gradations of the coarse and fine tailings.
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To predict the dynamic modulus of the asphalt mixtures,
it is assumed that the regression problem is represented by

yi, xi1, xi2, . . .xij, . . . , xip( ) for i � 1, 2, . . . , n,

j � 1, 2, . . . , p,

 (2)

where n represents the number of the dataset; p represents
the number of the attributes; y represents a particular
combination of influence variables (xi1, xi2, . . .xij, . . . , xip);
and xij represents the attribute. ,e dataset should be di-
vided intom classes (A1, A2, . . . , Am) to fit the model of RT.
Finally, the sum of squares of these all classes is minimized to
obtain the optimized segmentation. ,is single RT is a basic
way to form the structure of the RF model [27]. ,e detailed
introduction for the RF will be presented in the following
subchapter.

4.2. Random Forest (RF). During the RF training, lots of
decorrelation RTs were produced. Each RT grows in the
random segmentation subset of the training dataset Sn.
Afterward, the RF combined all the RT by the so-called
bagging method [32]. In this way, the prediction accuracy can
be improved by reducing the variance associated with the
prediction [32].

,e specific execution steps of RF are as follows. (1) A
certain number of samples are randomly selected from the
training set as the root node samples of each tree; (2) During
the establishment of the decision tree, a certain number of
candidate attributes were randomly selected and the most
appropriate attributes were selected as splitting nodes; (3)
After the random forest is established, each decision tree for
type output or regression output for test samples is entered;
the mean value of the output of each decision tree is used as
the final result.

In this process, n samples are randomly selected from the
training dataset Sn and the selecting probability for each
sample is 1/n. ,e n samples randomly collected were named

as bootstrap sample SΘn , where Θ represents an indepen-
dently distributed vector. It is assumed that q bootstrap

samples (S
Θ1
n , S
Θ2
n , . . . , S

Θq
n ) are determined employing the

bagging algorithm, and q RTs are trained on the following
subdataset:

ĥ X, SΘ1n( ), ĥ X, SΘ2n( ), . . . , ĥ X, S
Θq
n( ). (3)

,e q output parameters
Ŷ1 � ĥ(X, S

Θ1
n ) and Ŷ2 � ĥ(X, S

Θ2
n ), . . . , Ŷq � ĥ(X, S

Θq
n ) are

determined from the q RTs. Finally, the q output parameters
are averaged to determine the final output.

4.3. FireflyAlgorithm (FA). ,e FA is a kind of imitating the
information exchange between fireflies, attracting each other
to gather and guarding against danger. Figure 2 gives the
flowchart of the FA.

In the firefly algorithm, the position of each firefly is a
feasible solution to the problem to be solved, and the
brightness of the firefly is the fitness of the firefly’s position.
,e higher the brightness, the better the position of the

individual firefly in the solution space. Among individual
fireflies, high-luminance fireflies attract low-luminance
fireflies. In the solution space, each firefly will fly like a firefly
with a higher brightness than its own to search for a better
position. ,e greater the brightness, the greater the at-
traction to other fireflies. At the same time, the light
transmission medium between fireflies will absorb light,
reduce the brightness of light, and affect the transmission of
light. ,erefore, the attraction between fireflies will be in-
versely proportional to the spatial distance; that is, the at-
traction between two fireflies will decrease as the distance
between the two fireflies increases.

4.4. Evaluating and Calibrating Methods

4.4.1. Methods to Evaluate the Performance. ,e prediction
performance of the proposed method was calibrated by the
parameter, root mean square error (RMSE) [33], which
calculates the difference between the predicted and actual
measured values using the following equation:

RMSE �

�������������
1

n
∑n
i�1

y∗i − yi( )2
√√

, (4)

where y∗i and yi present the predicted value and actual
measured value, respectively, and n presents the number of
data samples. Another parameter for the evaluation of the
predicting performance is the correlation coefficient (R),
which is determined by the correlation between the pre-
dicted and actual values. It can be given by the following
equation [34]:

R �
∑ni�1 y∗i − y∗( ) yi − y( )�������������∑ni�1 y∗i − y

∗( )2√ ������������∑ni�1 yi − y( )2√ , (5)

where y∗ is the mean value for the predicted ones and y is
the mean value for the actual ones.

Start

Initial population of fireflies

Evaluate fitness of all fireflies
to objective function

Updates the fitness value of fireflies

Rank the fireflies and
update the positions

Reach the maximum iteration? 

Yes

No

Optimized result

Figure 2: Flowchart of the firefly algorithm (FA).
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4.4.2. K-Fold Cross-Validation. Regarding the calibration of
the regression model, the simple substitution method,
bolstered method, holdout method, and bootstrap method
have been applied in the earlier studies [35–37]. Among
these methods used to validate the training data, one of the
most widely used k-fold cross-validation (CV) [38] was used
in this study. Specifically, k was given as 10 considering the
recommendation from the earlier study [39]. ,erefore, the
dataset for the training was split into 10 folds during the
process of hyperparameter tuning. ,e algorithms were
trained by 9 folds and validated by 1 fold regarding the 10
folds. ,is procedure should be repeated 10 times, using a
different fold as validation for each repetition. ,e final
result was determined as the one with the least error at one
fold. ,e abovementioned CV process is summarized in
Figure 3.

5. Results and Analysis

5.1.Model Evaluation. Figure 4 presents the comparisons of
the predicted and actual compressive strength of the
cemented tailing backfill. ,e results of the training and
testing dataset are given in Figures 4(a) and 4(b),
respectively.

Good agreements can be observed between the actual and
predicted strength, indicated by the higher R values (0.9887 for
the training dataset and 0.9811 for the actual dataset). Lower
values of RMSE (0.1358 for the training dataset and 0.1482 for
the testing dataset) can also be found for the comparison.,ese
comparing results showed that the proposed combining model
(RF and FA) has a high accuracy to predict the compressive
strength of the cemented tailing backfill.

Figure 5 gives the comparison results of the training and
testing dataset with the horizontal line to characterize the
difference between the actual and predicted compressive
strength of the cemented tailing backfill.

Good agreements can be also observed between the
comparison results, except for the few noise points, but these
results are acceptable for the proposed model (combing the
RF and FA) to predict the compressive strength of the
cemented tailing backfill.

5.2. Importance of the Variable. ,e compressive strength of
the cemented tailing backfill was accurately predicted by the
proposed method combing the RF and FA. By using the RF,
the relative importance of the varying design parameters to
the compressive strength can also be determined. Figure 6
presents the results.

1st iteration

2nd iteration

3rd iteration

10st iteration

fcylinder – 1

fcylinder – 2

fcylinder – 3

fcylinder–10

fcylinder = mini fcylinder – i

Figure 3: 10-fold cross-validation (CV) process.
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Figure 4: Actual measured vs. predicted values of the compressive strength of the cemented tailing backfill: (a) training dataset; (b) testing
dataset.
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It is evident that the tailing to cement ratio is the most
important parameter to the compressive strength of the
cemented tailing backfill, with an importance score of
7.3625, followed by the curing time. ,e influence of the
three design parameters (solid to water ratio, fine tailing
percentage, and cement type) is relatively weak compared
with the tailing to cement ratio and curing time. ,erefore,
the design of the cemented tailing backfill should have the
focus on the tailing to cement ratio and curing time, instead
of the solid to water ratio, fine tailing percentage, and cement
type. Such a conclusion can be used in the future design
guideline for the cemented tailing backfill.

6. Conclusions

In the present study, the research process to use artificial
intelligence algorithms to predict the compressive strength
of cemented tailing backfill was conducted, overcoming the
shortcomings of traditional empirical formulas. Experi-
mental tests to measure the compressive strength of
cemented tailing backfill were conducted to construct the
dataset for the machine learning. Five input parameters
(tailing to cement ratio, percentage of fine tailings, cement
type, curing time, and solid to water ratio) were considered
for the design of the laboratory tests. ,e FA was used to
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Figure 5: Comparisons of the predicted and actual compressive strength of the cemented tailing backfill.

Tailing to cement ratio

Curing time
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Fine tailing percentage

Cement type

7.3625

4.3871

1.1529

0.7851

0.6119

Figure 6: Importance scores of the variables.
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tune the RF hyperparameters, and it was adopted to combine
the RF model to improve the accuracy and efficiency for the
prediction of the compressive strength of the cemented
tailing backfill. ,e results of the training and testing dataset
were compared regarding the measured and actual com-
pressive strength, respectively. By comparing the predicted
and actual results, a good correlation was confirmed, in-
dicating the reliability and accuracy of the prediction model
proposed in this study. Regarding the importance of the
different design parameters, it was confirmed that tailing to
cement ratio and curing time are the two most important
parameters to the compressive strength of the cemented
tailing backfill.

For the future development, more laboratory tests will be
performed and the continuously updated database will be
collected to improve the accuracy of the model to predict the
compressive strength of cemented tailing backfill. Besides,
the performance of other artificial intelligence models will be
compared in the prediction to enhance this study.
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