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Synopsis 

The dynamic oscillatory response of electrorheological suspensions is investigated using a mo- 
lecular dynamics-like simulation method, where suspensions are modeled as hard, monodis- 
perse, neutrally buoyant, dielectric spheres contained in a dielectric, Newtonian fluid between 
parallel-plate electrodes. The response is described by frequency-dependent moduli, which dis- 
play a significant relaxation due to competition between hydrodynamic and electrostatic forces 
on spheres within thick clusters. For small amplitude deformation of monodisperse suspensions, 
the direct electrostatic contribution to the response obeys time-electric field strength superpo- 
sition analogous to time-temperature superposition in polymer rheology. The response for 
monodisperse suspensions is dominated by a single relaxation time, in contrast to the broad 
dispersions commonly observed. Possible explanations for this discrepancy are discussed. 

I. INTRODUCTION 

Electrorheological (ER) suspensions, first studied extensively by Winslow ( 1949), 
display dramatic changes in rheological properties under large applied electric fields. 
Applications employing the electronically controlled, enhanced stress transfer capa- 
bilities of these suspensions are currently being developed. Discussions of applications 
and the present understanding of underlying phenomena can be found in recent re- 
views (Block and Kelly, 1988; Deinega and Vinogradov, 1984; Gast and Zukoski, 
1989; Hartock et a/., 1991; Jordan and Shaw, 1989). 

Leading applications include ER engine mounts, shock absorbers, and other viscous 
damping devices. While progress has been made in understanding ER suspension 
behavior under steady shear, the above applications operate almost exclusively in 

dynamic or transient modes where understanding is poor. Experimental investigation 
of the dynamic response of ER suspensions has produced various results. For instance, 

moduli values are often reported to be sensitive to electric field strength (Gamato and 
Filisko, 1991; Xu and Liang, 1991), while other reports show them to be essentially 
independent of field strength (Korobko and Shulman, 1990; Shulman ef al., 1989; 
Vinogradov et al., 1986; Yen and Achorn, 199 1) ; responses are sometimes reported to 
be independent of strain frequency (Xu and Liang, 1991; Yen and Achom, 1991), 
while in other situations moduli values increase or decrease with frequency (Gamato 
and Filisko, 1991; Korobko and Shulman, 1990, Otsubo ef al., 1992; Shulman ef al., 
1989). There are currently no explanations for this diverse behavior, which prohibits 
utilization of ER technology to its full potential. 
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Progress has been made in understanding the steady shear response and its relation 
to material properties. We have developed a molecular dynamics-like simulation 
method for investigating stress transfer in ER suspensions, which are modeled as 
neutrally buoyant, hard, monodisperse spheres subjected to hydrodynamic and elec- 
trostatic polarization forces (Klingenberg et nL, 1989; Klingenberg et al., 1991a; Klin- 
genberg et al., 1991b). This model successfully reproduces structure formation fol- 
lowing electric field application, as well as many features of the steady-state 
rheological response, including: the dramatic change in rheological properties follow- 
ing the formation of fibrous structures; the existence of a static and dynamic yield 
stress; and saturation of the yield stress at large particle concentrations. The ability of 
this microscopic model to reproduce observed macroscopic properties suggests that it 
may be successfully extended to probe other unknown aspects of electrorheology. 

In this paper, the dynamic simulation method described above is extended to in- 
vestigate the dynamic oscillatory shear response of ER suspensions, with the goal of 
determining the microscopic features responsible for observed behavior. The dynamic 
simulation method is presented in the following section along with a discussion of the 
state of stress in ER suspensions. A significant result of the model chosen to represent 
ER suspensions is the property of time-field strength superposition. Simulation results 
are presented in Sec. III, where a stress relaxation mechanism resulting from hydro- 
dynamic relaxation of electrostatic forces acting on spheres within clusters is de- 
scribed. The response for monodisperse suspensions is found to be dominated by a 
single relaxation time, in contrast to the broad dispersions commonly reported. In Sec. 
IV, several possible explanations for this discrepancy are briefly discussed. Specifically 
considered are distributions of cluster sizes, particle sizes and shapes, nonlinear effects, 
and more accurate treatments of the forces governing particle dynamics. Conclusions 
of this work are summarized in Sec. V. 

II. SIMULATION METHOD 

The method used to simulate ER suspension behavior has been described previously 
(Klingenberg et al., 1989; Klingenberg et al., 1991a). It is briefly reviewed here, and 
extended to include oscillatory flow. 

An ER suspension is modeled as a system of neutrally buoyant, monodisperse 
spheres (diameter 0, dielectric constant E,J in a Newtonian continuous phase (vis- 
cosity vc, dielectric constant cc). A sphere’s motion is governed by the sum of elec- 
trostatic polarization forces induced by the applied electric field and hydrodynamic 
resistance. Electrostatic polarization forces are approximated in the point-dipole limit, 
and hydrodynamic forces are treated simply as Stokes’ drag. In addition to these 
forces, a short-range repulsive force is added to represent hard-sphere behavior. 

Ignoring inertia terms, the equation of motion in dimensionless form for sphere i 
not near an electrode reduces to 

g= ,& f;Y+ c <;I*+ i firjep*+“m*(ri*), 
j i#i 

where the asterisks denote dimensionless quantities. The length, force, and time scales 
are given by 
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FIG. 1. Schematic diagrams showing the geometries of the sheared suspension and sphere pairs. The bottom 
electrode is held fixed and the top electrode is displaced in the x direction. Ri, is the center-to-center 
separation and Bij is the angle between the line-of-centers and the applied electric field. 

Fs is the magnitude of the electrostatic interaction and ts corresponds to the time 
required for a sphere to move its diameter under a constant applied force F, 

The terms on the right side of Rq. ( 1) represent forces acting on the sphere centers: 

f :y is the pair electrostatic force and f iy is the short-range repulsive force, each 

referring to the force on sphere i at the center of a spherical coordinate system due to 
sphere j at (r $,eij) (ER suspension geometry is depicted in Fig. 1): 

(2) [ (3 c0S2 fJji- l)e,+sin 28ije0] , 

f;y(r;)= 
exp[-($-l)/O.Ol](-e,) j= sphere, 

exp[-(I$-0.5)/0.01]n j=electrode. 
(3) 

Here, h F = L,*/2 - 1 z’ 1 is the dimensionless distance between the sphere center and 

the electrode, and n is the unit normal directed into the fluid. The prime in the second 
summation in Eq. ( 1) indicates the electrostatic force between sphere i and the images 
of sphere j reflected orientation intact about the electrode surfaces; these forces are 
summed over all images including those of sphere i. The double prime on the third 
summation indicates repulsive forces are summed over all other spheres and the 
electrodes. 

The last term in Eq. ( 1) represents the hydrodynamic drag on sphere i due to the 

ambient flow at rt. For oscillatory shear flow, where the local strain is y( t*) 
=yo sin w*t*, the ambient fluid velocity is given by 

u”*(r~)=w*~0(~~+Lf/2)cosw*t*e,. (4) 

Equation ( 1) governs the motion of spheres not near an electrode surface. As 
discussed by Klingenberg et af. (1991a), a sphere whose surface is within 8, 
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( =O.O5a) of an electrode surface is “stuck” and assumes the lateral velocity of the 
electrode. The z component of the motion is assumed unaffected by the sphere being 
“stuck,” making the scalar equations of motion for such a sphere 

dv? 
-=o 
dt* ’ 

where the fact that u; = u,” =0 in simple shear has been used. uzec is given by 

* - 
j*Lf top electrode, 

‘elec- 
0 bottom electrode. 

(5) 

(6) 

(81 

This sticking condition is based on experimental observation (Klingenberg and Zu- 
koski, 1990), and is required to obtain deformation in the limit of zero frequency 
(Klingenberg et al., 1991a). 

For a given configuration, the dynamic oscillatory response at large times (i.e., after 
transient responses have decayed) depends only on ‘yo and w*. In this paper, only the 
small amplitude shear response is considered, typically ‘yo= 10e4. In this case, the 
response is linear and can be represented by frequency-dependent storage and loss 
components of the shear modulus G*( t*): 

&t*) 
G*(t*) =-= G’*(w*)sin w*t*+G”*(w*)cos w*t*, 

YO 

where $&(t*) is the time-dependent shear stress acting in the x direction on a plane 
normal to the z direction. The goal of this work is to determine the features that 
influence the storage and loss moduli, G’*(w*) and G”*(w*). 

In general, the total, instantaneous stress is calculated from (Batchelor, 1970, 
1977) 

(10) 

(IT) represents an isotropic term of no interest, E” is the macroscopic rate of strain 
tensor ( 1 E” 1 a oyo), Z( Sy + Sp) represents contributions from hydrodynamic 

forces, - ZriFy’ represents the nonhydrodynamic contribution arising from particle 

interactions (electrostatic and short-range repulsive forces), and V is the suspension 
volume. The stress represented by Eq. ( 10) is conveniently expressed as a sum of 
direct electrostatic (plus repulsive) and hydrodynamic contributions, 

where 

CT tota&#+(-p, (11) 

(12) 
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(13) 

l (r-ri)rr*n-:, S (r-ri) l o*n dA. 1 
(14) 

Here CT is the hydrodynamic stress due to both the applied straining flow plus the flow 
resulting from interparticle forces, ri designates the center of the ith sphere, 6 is the 
unit tensor, and dA is a surface area element on sphere i with unit normal n directed 
into the continuous phase. Provided the volume containing the particles is sufficiently 
large, the stress in Eq. ( 10) may be equated with the ensemble-averaged, macroscopic 
stress. The distinction between electrostatic and hydrodynamic contributions is not 
unique. The above separation is chosen because the hydrodynamic contribution is 
directly proportional to the solvent viscosity and hence vanishes as the deformation 
rate vanishes or when the solvent is removed, whereas the electrostatic contribution 
remains in both situations. Note that the direct contributions C# and # are not 
independent as both electrostatic and hydrodynamic forces influence structure and 
hence the summations in Eqs. (12) and (13) (Klingenberg et al., 1991~). 

The dimensionless electrostatic shear stress is calculated in the present framework 
as 

(15) 

where fXytal* is the total dimensionless electrostatic plus short-range repulsive force on 
sphere i acting in the x direction This stress corresponds to direct electrostatic con- 
tributions to the moduli. 

uf-(t*) 
GE*(t*) z-z GE’*(o*)sin a*t*+GE”*(~*)cos w*t*. (16) 

YO 

From here forward, only the electrostatic contribution to the stress is considered 
unless specifically stated otherwise. Hence, the superscript “I? will be omitted unless 
it is necessary to avoid confusion. 

A significant consequence of this model is that the electrostatic stress and moduli 
possess the property of time-field strength superposition, analogous to time- 
temperature superposition in polymer rheology (Ferry, 1980). The moduli, scaled 
with the electrostatic stress scale o,= ( 3/16)rreoeC p2E& depend only on the dimen- 

sionless frequency, w* = 0169~/~o+~~~~, for a particular configuration. Thus the 
field strength dependences of the direct electrostatic moduli are determined from both 
the explicit scaling and the dimensionless frequency dependence [i.e., G’=J$jl (w/ 
Ei), G”’ = Efi( o/I&]. Another important implication is if experimental frequencies 
are only accessible over a small range, dimensionless frequencies can be sampled over 
a much larger range by varying the electric field strength. For instance, large dimen- 
sionless frequencies are obtained by using either large frequencies or small field 
strengths; small dimensionless frequencies are obtained at small frequencies or large 
field strengths. Note that for the typical parameter values ~7~=0.050 Pas, eC=2.0, 
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FIG. 2. Dynamic oscillatory response for a single-sphere-width chain spanning the electrode gap. (O)- 
G’*(o*); (D)--G”*(d). 

@=O.SO, and Eo= lo6 V/m, a dimensionless frequency of o* = 1 corresponds to a 
frequency of 0=5.5 s-l. Finally, this frequency scaling is analogous to the Mason 
number scaling of the steady shear response reported by Marshall e? ol. ( 1989) (Mn 
=q,7j/2~&3~E$. In fact, replacing the steady shear rate, i/, with the angular fre- 
quency, w, one finds 0*=32xMn. 

Simulations are performed by placing N spheres in a two-dimensional “cell,” with 
periodic boundaries in the x direction located at x* = + L,*/2 and electrodes at r” = 
f L,*/2 (three-dimensional simulations are considered in Sec. IV). The equation of 
motion for each sphere is integrated numerically using Euler’s method with time step 
At*< 10K3. Forces are evaluated only within a cutoff radius $ = Lf/2. Results are 
insensitive to decreases in the time step magnitude and increases in the cutoff radius. 
Simulations under oscillatory flow are performed after a metastable structure under no 
flow is obtained, either by manufacture or by integration of the equation of motion 
until motion ceases. Moduli values are determined by Eq. ( 16), using stress values 
obtained after decay of all transient responses. Linear responses are obtained for all 
situations reported here, as determined by the ability of Eq. ( 16) to describe simulated 
stresses to at least four significant figures. For structures formed from random con- 
figurations, a constant, residual stress must be subtracted from the calculated stress 
since static metastable structures invariably possess a nonzero stress (for finite sys- 
tems). 

III. RESULTS: DEMONSTRATION OF A RELAXATION MECHANISM 

A. Response for single-sphere-width strands 

Consider first the response for a linear strand of spheres aligned with the electric 
field, connecting the electrodes (N=lO, L,*=lO.O, Lf=lO.O; see Fig. 2). For this 
structure, the storage modulus G’*(w*) is essentially independent of frequency. The 
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FIG. 3. Dynamic oscillatory response for a thick, 28-sphere cluster. The solid lines are cubic spline 
interpolations between the simulation data points. (O)--G’*(o*); (O)-G”*(o*). 

loss modulus, G”*(w*), is negative but negligible; the magnitude of the loss tangent, 
] tan S(w*) ] = ] G”*( o*)/G’*( o*) I< IOK for all frequencies (see Fig. 2). This sim- 
ple response is due to afhne sphere motion--each sphere is displaced in concert with 
the ambient shear Sow at all frequencies. Hence there is no hydrodynamic resistance 
and no mechanism for relaxation. Since suspension structure is independent of fre- 
quency, the electrostatic shear stress [Eq. (15)], and hence the moduli, are indepen- 
dent of frequency. (It is noted that there is a negligible relaxation associated with the 
slight nonaffine motion of the spheres attached to an electrode. These spheres are 
forced to translate with tl e electrode, while the ambient fluid displacement at the 
sphere center differs slighth. This effect causes sphere motion to slightly lead the 
applied strain, producing the negligible, negative loss modulus.) 

6. Response for a thick cluster 

Consider next the response for a thick cluster, composed of the previous single- 
sphere-width strand with two additional strands placed along each side of the original 
strand (N=28, L,*= 10.0, Lf= 10.0; see Fig. 3). The frequency-dependent moduli 
for this structure are presented in Fig. 3. The loss modulus scales as G”*(w*) - w* at 
small frequencies and as G”* (w*) -o*- ’ at large frequencies, passing through a 
maximum at a dimensionless frequency of w * =: 25. Near this frequency, the storage 
modulus increases from a small frequency plateau value, G’*(O), to a large frequency 
plateau value, G’*( 00). Simulations performed at yo= 10m3 give identical moduli 
values, indicating a linear response for yo< lop3 (and perhaps larger values). 

This thick cluster exhibits a significant relaxation whereas the single-sphere-width 
strand exhibits none. Relaxation results from the addition of the side chains, as this is 
the only difference between the thin and thick clusters. The relaxation mechanism 
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FIG. 4. Illustration of the dynamic structures in the small and large frequency limits for the 28-sphere 
cluster. The arrows represent the displacement directions of the electrodes and a particular sphere in the 
right side chain. The corresponding plots show the z displacement magnitudes of the indicated sphere, 
obtained from the simulation. Note that displacement magnitudes are A( 10W4). 

becomes apparent when the motions of individual spheres and the overall deformation 
of the cluster are considered in the small and large frequency limits. 

At very small frequencies, deformation is completely determined by the displace- 
ment of the spheres stuck to the electrodes-hydrodynamic resistance to sphere mo- 
tion is insignificant at these small deformation rates. As a result, the net electrostatic- 
plus-repulsive force on each sphere not attached to an electrode is zero at every instant 
[Eq. ( l)]. The extensional and rotational components of the quasi-static deformation 
require that spheres in the stress-bearing center strand deform affinely (with a slight 
correction described in Sec. III A), while sphere displacement in the side chains 
possesses components in both the x and z directions. This motion is depicted in Fig. 4, 
where the displacement directions of a particular sphere in the right side chain are 
shown. Also presented in Fig. 4 is a plot of the z component of the displacement 
divided by the strain amplitude as a function of time for the sphere indicated (obtained 
from simulations at o*= 10K2). 

At large frequencies, the motion of spheres in the side chains is significantly dif- 
ferent. Here, hydrodynamic resistance controls the displacement of each sphere. At 
any particular instant, there is still a net electrostatic-plus-repulsive force component 
in the z direction, but there is insufficient time available during a half period for the 
sphere to move in that direction. This time, proportional to l/w*, vanishes as w*- 0~. 
As a result, each sphere displaces only in the x direction. This situation is also depicted 
in Fig. 4, where the displacement directions of a particular sphere at large frequencies 
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is shown, along with a plot of its displacement in the z direction as a function of time 
(obtained from simulations at o*= 104). Motion is afhne in this large frequency limit. 
However, note that this is only true for spheres interacting through continuous repul- 
sive forces-for two hard spheres in contact with different z coordinates, at least one 
must be moving relative to the ambient shear flow. 

Thus the dispersion in Fig. 3 is due to hydrodynamic relaxation of electrostatically 
driven sphere motion, providing a frequency-dependent dynamic structure. As the 
shear stress is simply a summation over position-dependent pair interactions, the stress 
and hence the moduli will also be frequency dependent. The critical frequency mark- 
ing the loss modulus maximum is directly related to the characteristic relaxation time, 
which in this case is just a fraction of the time scale r,. The peak in G”* is pronounced 
because each sphere sees essentially the same environment, and therefore the response 
is dominated by a single relaxation time (factors that broaden the dispersion are 
considered in the following section). 

Although similar in some respects, this hydrodynamic relaxation mechanism is 
significantly different from that proposed by McLeish et al. (1991), who attributed 
relaxation to the motion of “free strings” (single-sphere-width chains attached to at 
most one electrode). In their theory, free strings deform afllnely at large frequencies, 
but are able to relax at small frequencies due to the electrostatic forces, thus providing 
a relaxation mechanism. This mechanism is only likely to operate at small concentra- 
tions where thin, unattached chains are likely to exist. In contrast, the mechanism 
presented in this paper occurs within thicker clusters and hence will be active espe- 
cially at moderate to large concentrations. It is significant, however, that both mech- 
anisms arise from the electrostatic polarization model for ER suspensions and do not 

rely on fiber rupture-dissipation is realized at infinitesimal as well as finite strain 
amplitudes. It is also important to note that relaxation of free strings is captured by the 
present model-however, only relaxation of thick clusters typically found in concen- 
trated ER suspensions is considered in this paper. 

IV. DISCUSSION 

Most experimental data reported in the literature show a broad dispersion-storage 
and loss moduli are often reported to be insensitive to frequency over a large range, 
often several decades. These results are quite different from the simulation results 
presented above for a simple, uniform suspension structure. Below, several possible 
mechanisms for dispersion broadening are considered: varying cluster sizes and size 
distributions, artifacts associated with two-dimensional systems, varying particle sizes 
and size distributions, particle shape distributions, and nonlinear effects. In Sec. IV E, 
effects expected from more accurate treatments of electrostatic and hydrodynamic 
forces are briefly discussed. 

A. Variation with cluster size and size distribution 

The dramatic change in the relaxation spectrum in going from a single-sphere- 
width strand to a thick cluster suggests the dispersion width ought to depend on the 
cluster size and cluster size distribution. To investigation the influence of cluster size, 
simulations were performed using a cluster larger than that depicted in Fig. 3 (N=44, 
1;5= 10, L,*= 10; see Fig. 5). The results are shown in Fig. 5. Although the moduli 
values are larger than those in Fig. 3, and the peak in G “*(w*) is shifted to smaller 
frequency, there is no qualitative difference. The shift to smaller frequency is due to 
the larger excursions in the z direction of spheres in the outer side chains during 
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FIG. 5. Dynamic oscillatory response for a thick, M-sphere cluster. The solid lines are cubic spline 
interpolations between the simulation data points. (0 )-G’*(o*); (O)-G”*(o*). 

oscillation. At a given frequency, the hydrodynamic resistance on these spheres is 
larger than on spheres in the side chains in Fig. 3, resulting in restricted motion at 
smaller frequencies. 

The effect of distributions of cluster sizes and shapes was probed by performing 
simulations on systems obtained from random structures. 250 spheres were placed 

* randomly in a simulation cell of dimensions ( L, , Lf ) = (50,lO). A fibrous structure 
was formed by integrating the equations of motion with u”*=O until motion ceased. 
A second structure was obtained by shearing this structure at a dimensionless steady 
shear rate of F= lop3 to a strain of 4.0, followed by relaxation to a metastable 
structure [see Klingenberg et al. ( 1991a) for a description of simulations under steady 
shear and relaxation]. The resulting structures are presented in Figs. 6(a) and 6(b), 
along with the corresponding moduli. The G”* (w*) curves do become broader due to 
distributions of clusters of various sizes and shapes, including several free strings, but 

there are still pronounced peaks. It is therefore expected that other features besides 
distributions of cluster sizes and shapes are required to produce broad dispersions. 

B. Results in three dimensions 

Simulations were also performed on a three-dimensional system similar in structure 
to the two-dimensional cluster described in Fig. 3. 25 spheres were placed in simula- 
tion cell, dimensions (L,*, LJ!, L,*) = (5,5,5), with periodic boundaries in the x and 
y directions. The simulation results are shown in Fig. 7. The qualitative aspects of the 
relaxation spectrum are similar to the results for the two-dimensional clusters-a 
sharp peak in the loss modulus at a critical frequency where the storage modulus 
increases from its low-frequency plateau value to its high-frequency value. Again, the 
loss modulus scales as G”*(o*) --o* at small frequencies, and G”*(o*) -,*-I at 
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FIG. 6. Dynamic oscillatory response for 250sphere structures. The filled spheres represent periodic images 
of the open spheres. The solid lines are cubic spline interpolations between the simulation data points. (a) 
Structure obtained from static formation from a random configuration; (b) structure obtained by shearing 
the previous structure at a dimensionless shear rate of 1O-3 to a strain of 4.0, followed by relaxation to a 
metastable configuration. (0 )-G’*(o*); (O)-G”*( o*). 

large frequencies. Hence, the absence of a broad peak in G”*(w*) in two dimensions 
is not due to an artifact associated with system dimension. 

C. Variation with particle size and size distribution 

The relaxation mechanism presented in Sec. III demonstrates a response indepen- 
dent of particle size for monodisperse suspensions. The explanation is as follows: the 
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FIG. 7. Dynamic oscillatory response for 25sphere, three-dimensional cluster (the three-dimensional il- 
lustration contains periodic images of some spheres). The solid lines are cubic spline interpolations between 
the simulation data points. (O)-G’*(o*); (O)-G”*(o*). 

characteristic relaxation time, 7, is equal to the time required for a sphere to move a 
fraction of its diameter due to a force Fr Balancing the magnitudes of hydrodynamic 
and electrostatic forces, the relaxation time is found to be proportional to the time 
scale fS: 

FH ZFE, 

3x7jccr” 
3 

7 
- - “E&o+12~, 
- 16 

The relaxation time is independent of particle size for monodisperse suspensions due 
to canceling of equivalent particle size dependencies in the hydrodynamic and elec- 
trostatic forces. 

A significantly different result is obtained, however, when polydisperse suspensions 
are considered. The electrostatic force on sphere i (diameter (Ti) at the origin due to 
sphere j (diameter oi) at (Rji’BV) is given in the point-dipole limit by 

COS’ Ojj- 1 )e,+ sin 2Oij eel, (17) 

where Rmin = (Oi+Oi)/2. The electrostatic force scale is now a sensitive function of 
both particle sizes, 
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F,(ai,oj) =; 

211 

(18) 

Note the electrostatic force goes to zero as /lij+0 and /lij+ 00. AS a result of this 
sensitive dependence of the force on the particle sizes, balancing electrostatic and 
hydrodynamic forces now gives a relaxation time that depends on the sizes of the two 
spheres under consideration. Retaining Stokes’ law scaling for the hydrodynamic force 
on sphere i, 

a relaxation time for sphere i due to sphere j is obtained: 

The divergence in the relaxation time as Iii-0 or 00 is due to the pair electrostatic 
force vanishing while hydrodynamic resistance remains finite for finite velocities. Sig- 
nificant effects resulting from polydispersity are expected. First, for spheres of different 
sizes, motion will relax with larger relaxation times than for equal-sized spheres, 
indicating a shift of the oscillatory response to smaller frequencies. Second, one must 
be careful when applying the concept of time-field strength superposition since the 
proper time scale remains undetermined for polydisperse suspensions. Third, since 
polydisperse suspensions possess a distribution of sphere-pair diameter ratios, the 
dispersions of G’*(o*) and G”*(u*) are expected to broaden significantly. It is 
noted that for the experiments reporting broad dispersion, the suspensions are com- 
monly polydisperse. However, in a recent article, Otsubo et al. ( 1992) reported dy- 
namic oscillatory ER data for monodisperse silica suspensions. They found that for 
small amplitude deformation, the frequency dependencies of the moduli are well char- 
acterized by a single relaxation time-the loss modulus as a function of frequency 
demonstrated a pronounced maximum. While existing experimental data are consis- 
tent with the prediction of polydispersity broadening moduli dispersion, conclusive 
experimental verification is lacking. 

Finally we note the possibility that moduli magnitudes may be affected by polydis- 
persity. As 
as FI c+,P2E 

ointed out above, the magnitude of the pair electrostatic interaction scales 
~m31611;~//( 1 +Lij)4 in the point-dipole limit. Hence the magnitude of 

the electrostatic stress must depend on the particle size distribution. Since the stress is 
also a sensitive function of suspension structure (i.e., the relative positions of all 
spheres), which is yet to be determined for polydisperse suspensions, further analysis 
of the effect of polydispersity on the magnitude of the stress is deferred to future 
studies (Ahn and Klingenberg, 1992). 

D. Effects of particle shape (distribution) and nonlinearity 

In analogy to the discussion of the influence of size polydispersity on the dynamic 
response, shape polydispersity is expected to affect dispersion. For instance, single- 
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particle relaxation occurs for nonspherical particles due to competition between elec- 
trostatic and hydrodynamic torques, with the relaxation time dependent upon the 
degree of shape anisotropy [see for instance Arp ef al. (1980)]. In combination with 
particle interactions, multiple relaxation mechanisms will produce complicated parti- 
cle dynamics and observed responses. The extent of shape effects is uncertain and 
awaits further experimental and theoretical investigation. 

Another possible source of dispersion broadening arises when the response becomes 
nonlinear. Otsubo ef al. (1992) observed a transition from a pronounced peak in 
G”(o) to a broad dispersion as the strain amplitude increased from 0.01 to 0.2. 
Nonlinearity in the direct electrostatic stress will arise locally when the strain ampli- 
tude is sufficiently large such that the net electrostatic force on a sphere is no longer 
linear in deformation. Moduli dispersion broadening is expected since the onset of 
nonlinearity is a local phenomenon and hence varies from place to place in a suspen- 
sion. Again, however, the relations between nonlinearity, relaxation times, and dis- 
persion are complicated and await further investigation. 

E. Effect of accurate hydrodynamic and electrostatic forces 

Thus far, only the direct electrostatic contribution to the shear moduli 
(GE’* GE”*) has been considered, using a model based on simplified electrostatic and 
hydrodynamic forces. The electrostatic force on each sphere has been treated as the 
pairwise summation of the interactions between aligned electric dipoles where the 
dipole strength is taken as that of an isolated dielectric sphere in an unbounded, 
uniform external field (point-dipole approximation). This approximation neglects in- 
teractions between higher order electric multipoles on neighboring spheres as well as 
the multibody effect arising from mutual polarization of all spheres; both effects pro- 
duce a stronger attractive force between sphere pairs as a =e/ec increases ( Arp and 
Mason, 1977; Klingenberg et al., 1991b). The hydrodynamic force on each sphere has 
also been treated simply, taken as Stokes’ drag, ignoring all hydrodynamic interactions 
between spheres and between each sphere and the planar electrodes. More accurate 
treatments of the multibody electrostatic and hydrodynamic forces are expected to 
alter the moduli magnitudes and location of events in the frequency domain presented 
in this study. Determining whether or not such an effort would significantly alter the 
qualitative character of the dispersion [e.g., broaden the pronounced peak in 
G”*(o*)] must come from a more detailed study. 

Finally, the model presented here ignores the direct hydrodynamic stress, di [Sec. 
II, Eq. (13)], and its contribution to the moduli (GHr*, GH”*). The conditions for 
which this direct contribution will significantly influence the observed response cannot 
be determined within the framework of the present investigation, and hence it is 
uncertain whether dispersion broadening of G”*(o*) can be produced by this feature. 
However, conclusions can be drawn about contributions to the storage modulus. Elas- 
ticity (G’*) arises from nonhydrodynamic forces and scales with the interparticle 
potential (Russel et al., 1989). Marshall et al. ( 1989) considered the relative impor- 
tance of colloidal to electrostatic polarization forces in determining the ER behavior of 
suspensions of poly (methacrylate) particles in a chlorinated hydrocarbon continuous 
phase. They found that for large particles and large electric field strengths, electro- 
static polarization forces dominate over colloidal forces (thermal, van der Waals, and 
DLVO-type electrostatic forces) in controlling suspension structure and rheological 
properties. Hence, for large particles under large electric fields, G’* is completely 
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determined by the electrostatic contribution, GE’*. Hydrodynamic forces will only 
influence the transition between the small and large frequency limits. For small par- 
ticles under small electric fields, the response will be more complicated; the transition 
from small to large particle/electric field behavior is undetermined at this time. 

V. CONCLUSIONS 

The dynamic oscillatory behavior of ER suspensions has been investigated in this 
study using a molecular dynamics-like simulation technique. This technique employs 
an idealized model of ER suspensions, consisting of monodisperse suspensions of 
dielectric spheres whose motion is governed by simplified electrostatic and hydrody- 
namic forces. Investigation of the relations among forces at the microscopic level, 
suspension structure, and macroscopic behavior has provided new information about 
the response of this model system. The significant results of this study, pertaining to 
such idealized ER suspensions, may be summarized as follows: 

(i) for small amplitude deformation of monodisperse suspensions, the direct elec- 
trostatic contribution to the dynamic response possesses the property of time- 
electric field strength superposition in analogy to time-temperature superpo- 
sition in polymer rheology; 

(ii) a relaxation mechanism arises from competition between electrostatic and 
hydrodynamic forces acting on spheres within clusters, resulting in a transition 
in the dynamic structure and rheological response between the small and large 
frequency limits; 

(iii) relaxation occurs over a narrow frequency range for monodisperse suspen- 
sions; 

(iv) additional features must be included in the model to observe broad dispersion; 
such features may include particle size or shape polydispersity, or nonlinear 
deformation; and 

(v) for large spheres in large electric fields, the storage modulus is determined 
completely by the direct electrostatic contribution, GE’; hydrodynamic forces 
only influence the transition between the small and large frequency limits. 

Each of these predictions can be verified by experiment. 
Improving understanding of how microscopic forces and processes influence mac- 

roscopic behavior is valuable for making progress in ER suspension and device design. 
For instance, knowledge of mechanisms facilitates interpretation of experimental re- 
sults, determining features that produce observed behavior and separating material 
properties from artifacts. Such knowledge also provides a basis for selection of mate- 
rial properties and suspension parameters for design of desired responses. 

Further progress will come from experimental verification of the predictions listed 
above, determining relations between the response and variables that are known to 
influence behavior (e.g., particle size distribution), and by extending these concepts to 
probe more complicating factors in real ER suspensions and applications, such as 
nonlinear and transient responses, and the role of activators, ionic species, etc. 

ACKNOWLEDGMENTS 

The author would like to thank Professor D. E. Brooks of the University of British 
Columbia for computer time and valuable discussions, and one of the reviewers for 
insightful comments on the limitations of this work. 



214 KLINGENBERG 

References 

Ahn, K. H. and D. J. Klingenberg, “Relaxation time dispersion in polydisperse electrorheological suspen- 

sions,” in preparation ( 1992 1. 

Arp, P. A. and S. G. Mason, “Particle behavior in shear and electric fields VIII. Interactions of pairs of 

conducting spheres (theoretical),” Coll. Polym. Sci. 255, 566584 (1977). 

Arp, P. A., R. T. Foister, and S. G. Mason, “Some electrohydrodynamic effects in fluid dispersions,” Adv. 

Coll. Interface Sci. 12, 295-356 (1980). 

Batchelor, G. K., “The stress system in a suspension of force-free particles,” J. Fluid Mech. 41, 545-570 

(1970). 

Batchelor, G. K., “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” 

J. Fluid Mech. 83, 97-117 (1977). 

Block, H. and J. P. Kelly, “Electra-rheology,” J. Phys. D 21, 1661-1677 (1988). 

Deinega, Y. F. and G. V. Vinogradov, “Electric fields in the rheology of disperse systems,” Rheol. Acta 23, 

636-651 (1984). 

Ferry, J. D., Viscoehric Properries ofPolymers, 3rd ed. (Wiley, New York, 1980). 

Gamato, D. R. and F. E. Filisko, “High frequency dynamic mechanical study of an aluminosilicate elec- 

trorheological material.” J. Rheol. 35, 141 I-1425 (1991). 

Gast, A. P. and C. F. Zukoski, “Electrorheological fluids as colloidal suspensions,” Adv. Coll. Interface Sci. 

30, 153-202 (1989). 

Hartsock, D. L., R. F. Novak, and G. J. Chaundy, “ER fluid requirements for automotive devices,” J. 

Rheol. 35, 1305-1326 (1991). 

Jordan, T. C. and M. T. Shaw, “Electrorheology,” IEEE Trans. Elect. Insul. 24, 849-878 (1989). 

Klingenberg, D. J., F. van Swol, and C. F. Zukoski, “Dynamic simulation of electrorheological suspen- 

sions,” J. Chem. Phys. 91, 78887895 (1989). 

Klingenberg. D. J., F. van Swol, and C. F. Zukoski, “The small shear rate response of electrorheological 

suspensions: I. Simulation in the point-dipole limit,” J. Chem. Phys. 94, 6160-6169 (199la). 

Klingenberg, D. J., F. van Swol, and C. F. Zukoski, “The small shear rate response of electrorheological 

suspensions: II. Extension beyond the point-dipole limit,” J. Chem. Phys. 94, 617&6178 (1991b). 

Klingenberg, D. J.. D. Dierking, and C. F. Zukoski, “Stress-transfer mechanisms in electrorheological 

suspensions,” 1. Chem. Sot. Faraday Trans. 87, 425430 ( 1991~). 

Klingenberg, D. J. and C. F. Zukoski, “Studies on the steady-shear behavior of electrorheological suspen- 

sions,” Langmuir 6, 15-24 ( 1990). 

Korobko, E. V. and Z. P. Shulman, “Viscoelastic behaviour of electrorheological fluids, in Proceedings o/the 

Second International Conference on Electmrheologi?o~ Fluids, edited by J. D. Carlson, A. F. Sprecher, 

and H. Conrad (Technomic, Lancaster, PA, 1990), pp. 3-13. 

Marshall, L.. J. W. Goodwin, and C. F. Zukoski, “Effects of electric fields on the rheology of nonaqueous 

concentrated suspensions,” J. Chem. Sot. Faraday Trans. I 85, 2785-2795 [ 1989). 

McLeish, T. C. B., T. Jordan, and M. T. Shaw, “Viscoelastic response of electrorheological fluids. I. 

Frequency dependence,” J. Rheol. 35, 427448 ( 1991). 

Otsubo, Y., M. Sekine, and S. Katayama, “Electrorheological properties of silica suspensions,” J. Rheol. 36, 

479496 (1992). 

Russel, W. B., D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, 

Cambridge, 1989). 

Shulman, Z. P., E. V. Korobko, and Y. G. Yanovskii, “The mechanism of the viscoelastic behavioutuof 

electrorheological suspensions,” J. Non-Newt. Fluid Mech. 33, 181-196 (1989). 

Vinogradov, G. V., Z. P. Shulman, Y. G. Yanovskii, B. V. Barancheeva, E. V. Korobko, and I. V. Bukovich, 

“Viscoelastic behavior of electrorheological suspensions,” Inzh.-Fiz. Zhurn. 50, 605-9 (1986). 

Winslow, W. M. ‘*Induced fibration of suspensions,” J. Appl. Phys. 20, 1137-1140 (1949). 

Xu, Y.-Z and R.-F. Liang, “Electrorheological properties of semiconducting polymer-based suspensions,” J. 

Rheol. 35, 1355-1373 (1991). 

Yen, W. S. and P. J. Achom, “A study of the dynamic behavior of an electrorheological fluid,” J. Rheol. 

35, 1375-1384 (1991). 


	I. INTRODUCTION
	II. SIMULATION METHOD
	III. RESULTS: DEMONSTRATION OF A RELAXATION MECHANISM
	IV. DISCUSSION
	V. CONCLUSIONS
	ACKNOWLEDGMENTS

