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Abstract— In the last decades power systems witnessed the 
implementation of an organizational and operational 
restructuring that lead to the introduction of competitive 
mechanisms in some activities of the value chain. This is the case 
of generation and retailing with the development of wholesale 
and retail markets. These developments together with a renewed 
emphasis on the adoption of more sustainable solutions while 
maintaining adequate security of supply levels contributed to 
increase the interest of generation companies for models 
enabling the optimization of the use of generation assets or for 
models and tools to help them to prepare and test bidding 
strategies to the day-ahead markets. Having in mind the 
increased complexity of the operation of power systems, Agent-
Based Models, ABM, are been used to complement the 
traditional optimization and equilibrium models, taking 
advantage of the interaction between agents acting in a 
simulation environment. In this scope, this paper describes an 
ABM model that uses Q-learning to provide knowledge for the 
agents to behave in an optimal way. This model is designed to 
mimic the main features of the common electricity market 
between Portugal and Spain, the MIBEL. Apart from describing 
the developed model, this paper also includes preliminary 
results from its application to the MIBEL case. 

Index Terms - electricity markets, hydro stations, Agent Based 
Models, Q-learning. 

I. INTRODUCTION 

In the last thirty years, power systems in several countries 
were subjected to a deep restructuring process regarding their 
organizational structure as well as issues related to operation 
planning activities. These changes were motivated by a variety 
of reasons that included the adoption of more liberalized 
models in several economic activities that emerged in the 80th 
and 90th of last century, the wish to give a stronger role to end 
consumers, the introduction of new generation technologies 
(namely renewables and the abundance of natural gas in 
several locations), the increasing concerns about climate 
change and the need to increase energy efficiency and 
technological developments that enabled the adoption of more 
decentralized and communication demanding solutions.  

As a result of these developments the power industry in 
several countries was subjected to restructuring processes that 
unbundled the traditional vertically integrated utilities and 
reorganized the industry in three main activities: generation, 
wiring (transmission and distribution) and retailing. Typically, 
wiring transmission and distribution activities are provided by 

regulated monopolies, and generation and retailing are opened 
to competition using a variety of contractual and procurement 
mechanisms that include centralized forward markets (for 
instance, day ahead markets or financial markets with longer 
maturity periods) and bilateral contracting.  

As a result of these changes and apart from implications in 
the way that expansion planning activities are now conducted, 
namely because there is a large number of generation, retailing 
and end consumers using the networks, the use of generation 
assets and the related operation planning is now carried out in 
a very different way when compared with the past. In the 
scope of day ahead electricity markets, generation companies 
have to submit selling bids (and also buying bids if pumping 
hydro stations are available) and these bids have to be 
carefully prepared and framed by adequate operation 
strategies so that the revenues are maximized. This is the main 
reason why the simulation of electricity markets is becoming 
an area of study for generation companies and for the 
scientific community namely to forecast their evolution as 
well as to help market agents to prepare successful bids. 
Taking into account the evolution of electricity markets and 
the large number of participating agents, operation planning is 
thus getting increasingly complex. 

In the scope of these changes, Portugal and Spain adopted 
since the last decade of the XX century very active policies to 
induce investments in renewable and other endogenous 
sources. By the end of 2015 wind, solar, biomass and several 
cogeneration assets reached an installed capacity close to 40%, 
which poses new challenges to other generation agents as well 
as for system operation due to the intermittent nature of some 
of them. Since 2007, Portugal and Spain integrate a common 
electricity market termed as MIBEL, a common day ahead and 
intraday markets plus the possibility of establishing bilateral 
contracts. This common market has an installed capacity close 
to 140 GW, from which about 27 GW are hydro units and 30 
GW correspond to wind parks. The strong presence of zero 
marginal cost technologies poses a huge challenge to more 
traditional thermal technologies since there are very frequent 
periods with a zero system marginal price namely in very 
windy and rainy periods. 

For this reason, Iberian generation companies are 
increasingly aware of the need to prepare adequate operation 
strategies for their assets so that they can submit adequate 
selling bids (and buying bids in the case of pumping storage) 
as a way to maximize their revenues. In this scope, the 



 
 

 

development of market simulation models that reflect in an 
accurate way the features of the markets, the behavior of the 
agents and the main characteristics of the involved 
technologies is certainly extremely important namely if, as in 
the MIBEL, the share of hydro, wind and solar technologies is 
large and pumping is also very relevant. 

Recently, agent-based models were reported as a 
complement to equilibrium models when the problem is too 
complex to be analyzed by traditional approaches. Agent-
based models, ABM, are based on a number of autonomous 
agents organized in a number of classes having some level of 
intelligence and selecting the most adequate path depending 
on their interaction in the context of a multi-agent system 
acting in a simulation environment [1]. 

The literature already includes several references to ABM 
models applied to power systems. However, the available 
models do not adequately consider a number of features that 
are present in the MIBEL as the large presence of hydro 
stations and the relevance of pumping as well as the large 
share of zero marginal cost intermittent technologies that put a 
new emphasis on the procurement and contracting of reserves 
[1].  In view of these shortcomings, a preliminary ABM model 
was described in [1, 2] while [3, 4] describe short term Hydro 
Scheduling models in market environment to estimate the 
revenues of cascades of hydro stations some of them with 
pumping capacity. In this paper the original model described 
in [1, 2] is enhanced in two ways. It includes four types of 
hydro plants (run of river stations, storage stations, pumping 
storage stations and pure pumping stations) and we are using 
Q-learning to allow the agents to identify the best actions in 
view of their interactions with other agents and their 
participation in the MIBEL market platforms. 

Having in mind these main ideas and apart from this 
Introduction, this paper is organized as follows. Section II 
overviews the Iberian Electricity Market and Section III 
provides a brief description on existing approaches to deal 
with the hydro scheduling with particular emphasis on agent-
based models. Section IV describes the proposed agent-based 
model and Section V details the results obtained so far. 
Finally, Section VI draws the most relevant conclusions. 

II. OVERVIEW ON THE IBERIAN ELECTRICITY MARKET 

The Portuguese and Spanish power systems went through 
several changes in the last forty years. In Portugal, the power 
industry was nationalized in the 1970s with the creation of a 
vertically integrated utility. This structure started to change in 
1995 when new legislation was passed organizing the sector in 
terms of a public service and a market driven sector. The 
Regulatory Agency was also created in 1995 and is 
responsible for the publication of several codes and for setting 
the regulated tariffs. With the coexistence of these two sectors, 
it was expected that generation units and consumers migrated 
from the public service to the market driven sector but this 
transition proved to be very slow.   

In Spain, the power system was organized in terms of a 
number of vertically integrated utilities having regional basis. 
By the end of 1997 a new law was passed that put in place the 

Spanish electricity day-ahead market on the 1st of January 
1998. Since then, a fast transition of regulated captive clients 
to the free market was adopted so that full eligibility was 
achieved in 2003. 

In 2001, the Portuguese and the Spanish governments 
started talks regarding the creation of a common electricity 
market that would correspond to one of the regional markets 
advocated by the EU Commission in the path to implement the 
internal European energy market. After several deferrals, a 
common trading mechanism termed as MIBEL was set in 
place on July 1, 2007 as an extension of the already existing 
Spanish day-ahead market. In the initial operation years the 
electricity prices in the two areas were different in a large 
number of hours due to the application of market splitting to 
solve interconnection congestions. Nowadays, due to the 
increase of the interconnection capacity and the increasing 
share of generation in distribution networks, transmission 
grids are less loaded so that the number of congested hours 
declined to less than 10% of the hours in 2015 and 2016.  

The MIBEL includes a common day-ahead market and an 
intraday market currently organized in 6 sessions to allow 
agents to refine and adjust their buying or selling positions. 
Additionally, in both countries there is a large share of hydro 
plants displaying a considerable variation in their annual and 
monthly output. In terms of the renewable electricity 
generation share, both countries were very successful in 
increasing the amount of renewables. This corresponded to a 
strategic policy adopted by successive governments to use 
more intensively endogenous resources as a way to enlarge the 
energetic independency. By the end of 2014, wind power 
reached an installed capacity of 5270 MW out of 17827 MW 
in Portugal (30%) and of 22854 MW out of 102259 MW in 
Spain (22 %) with a contribution to supply the demand of 25% 
in Portugal and 21% in Spain. As a whole, in 2015 and 2016 
more than 40% of the demand was supplied by renewable 
sources (including large hydro units) in both Portugal and 
Spain. Finally, the two countries successfully implemented a 
transition period to allow regulated consumers to migrate to 
the free market. As an illustration, by the end of 2016 more 
than 75% of the Portuguese end consumers responsible for 
more than 85% of the demand were already in the free market. 

III. LITERATURE REVIEW ON HYDRO SCHEDULING 

A. Hydro Scheduling Optimization 

The definition of optimized strategies to operate 
generation units has long been a concern for generation 
companies and for the scientific community as the well-known 
concepts of unit commitment, generation dispatch and OPF 
(Optimal Power Flow) illustrate. With the advent of electricity 
markets and the introduction of competition in the generation 
activity, the focus is slightly changed since generation 
companies have to send their bids to the Market Operator. The 
preparation of these bids is more complex if hydro units are 
included in the portfolio and if these units have different 
characteristics as run of river, reservoir or pumping. 
Scheduling the operation of a number of hydro stations is a 
complex task addressed for instance in [3, 4] taking into 
account the installation of units in cascades, the nonlinear 



 
 

 

relation between the head, the power and the flow as well as 
the pumping capacity of some units. Apart from the iterative 
procedure adopted in [3] and the genetic algorithm used in [4], 
other tools have been used to solve the Hydro Scheduling 
Problem, HSP, as for instance dynamic programming used in 
[5] (affected by the well-known “curse of dimensionality”), 
mixed integer linear programming [6] or meta-heuristics, as 
Simulated Annealing [7] and Neural Networks [8]. Finally, in 
[9] it is used an iterative approach in which the value of the 
head and of the market prices are updated along the iterative 
process in order to model the impact of the operation decisions 
on the prices and on the revenues, that is, moving from a Price 
Takers approach to a Price Makers model. 

B. Electricity Markets Modeling and ABM 

In recent years, several works were published on 
electricity market modelling demonstrating the relevance of 
this topic to the generation companies and researchers. These 
models can be organized in four main groups as follows [10]: 

• Optimization based models usually focused in a single 
company. These are single firm optimization models 
designed to maximize the revenues of that company 
usually considered as price taker; 

• Equilibrium Models using Game Theory concepts and 
considering a larger number of agents and the 
competition among them; 

• Agent-Based Models, ABM, simulating the behavior 
and the interactions between autonomous agents. This 
is an interesting alternative when the level of 
complexity increases turning it difficult to adopt more 
traditional approaches. Additionally, electricity 
markets can be represented in a more realistic way and 
the agents in the simulation environment are designed 
with some intelligence features that allow them to 
select the most adequate decisions, the most adequate 
path in terms of their behavior, in view of the their own 
objective and the interrelations with other agents; 

• Hybrid solutions. 

The application of ABM models to power systems and 
specifically to electricity markets is not new as suggested by 
[11, 12, 13]. AMES is the acronym for Agent-based Modeling 
of Electricity Systems and it is an open source to simulate 
strategic trading behaviors in restructured markets considering 
AC grids [11]. EMCAS, Electricity Market Complex Adaptive 
Systems, is a commercial tool developed by the Argone 
National Lab that includes decentralized agent decision-
making features along with learning and adaptation capacities. 
An EMCAS simulation includes both the end users and the 
demand companies from whom they purchase electricity. 
EMCAS is linked to VALORAGUA model [12] to provide 
longer-term operation planning strategies for hydro plants. 
With this information, EMCAS uses the price forecasts and 
weekly hydro schedules given by VALORAGUA to provide 
intra-week hydro plant optimization for hourly supply offers. 
Finally, MASCEM, Multi Agent based Electricity Market, is a 
simulation multi-agent platform [13] that includes agents with 
strategies for bid definition, acting in forward, day-ahead, and 
balancing markets and considering both simple and complex 
bids turning it both in a short and a medium term model. 

As mentioned in Section I, these tools are not able to 
adequately model some features of MIBEL as the large share 
of hydro units, several of them with pumping capacity, 
together with the large presence of intermittent infra marginal 
technologies as wind and solar. Therefore, the ABM described 
in the next Section is designed to represent more accurately 
hydro units, including pumping, given the flexibility to 
accommodate large injections from wind parks in some 
specific periods. Additionally, the model uses Q-learning to 
provide knowledge to the agents so that they can select the 
most adequate actions as a way to maximize their revenues.  

IV. DEVELOPED AGENT-BASED MODEL  

A. Agents definition 

ABM models are based on agents organized in classes 
having different goals according to each of the classes. Once 
the agents are defined and they are allocated with internal 
behavioral rules, we adopted a Q-learning procedure to 
provide them with knowledge to enable them to select the 
best actions in view of the specified simulation environment. 

  In this work, we considered the following types of 
agents: hydro agents organized in four classes depending on 
the type of hydro unit, thermal power plant agent, renewable 
unit agent, Market Operator agent, regulated end consumer 
agent, free consumer agent and Regulatory agent. Hydro 
agents bid their energy in the day ahead market and their 
strategy depends on the type of reservoir. The bidding price 
strategy is determined by the water value on the reservoir, by 
a learning parameter α and by a decision supporting tool, as 
described in [2] and modeled by (1). For each hydro unit, the 
water value function f(water value) provides a reference bid 
price that changes every day depending on the reservoir level, 
as illustrated in Figure 1.  

Bid price strategy = f(water value)+bid up/down (α) (1) 

 
Figure 1. Base bidding taking into account the water value. 

This means that if the level is larger, then the value of the 
stored water is reduced leading to a more reduced biding 
price. This water value function is an external input to the 
ABM model and it is calculated for each weak according to 
the procedure in [2]. In brief words, for each period under 
analysis the value of the water corresponds to the shadow 
price of the water balance equation established for that unit 
and for that period and included in the optimization HSP 
problem detailed in [3]. 

The bid up/down (α) parameter models the strategy of 
each agent by increasing or decreasing its bid price in an 
attempt to increase the profit. This parameter is set by a 
learning procedure and it is modeled using a sigmoid function 
that reflects the risk profile of each agent. If an agent has a 
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higher risk profile, the bid range will be larger. Conversely, a 
low risk profile leads to a narrower bid range as illustrated in 
the right side of Figure 2. This strategy is an adaptation of the 
derivative-following strategy discussed in [14] and also used 
in [13]. A derivative follower does incremental increases (or 
decreases) in price, continuing to move its price in the same 
direction until the observed profitability level falls. At this 
point, the direction of the movement is reversed. This strategy 
is combined with the Q-learning approach as outlined in [15]. 

 
Figure 2. Bidding strategy taking into account the risk profile of each agent. 

The developed ABM model organizes the hydro units in 
four groups having bidding strategies:  

• Run of river type – these agents typically have a water 
value function constant and close to 0. Since storage 
capacity is reduced, these units will bid on quantities, 
that is, the selling bid quantity depends on the inflows; 

• Storage type – these agents will have a bid value 
directed related to their water value function as well as 
to their bid up/down strategy. This value will depend 
on their reservoir capability and their inflows; 

• Storage with pumping – the bid price is linked to their 
water value function and a bid up/down strategy. They 
also have the possibility of buying energy to pump 
water to their reservoir, taking advantage of low prices; 

• Pure pumping – these agents are assigned a zero water 
value because these are usually small reservoir units. 
These units adopt an arbitrage bidding strategy that 
takes advantage of the estimated price difference 
between peak and off peak periods. Given that the 
operation decisions will affect the final prices, the 
energy to buy for pumping purposes is usually limited 
by a parameter β. In fact, if energy to pump is 
increased, then the demand to supply will increase, the 
market price will also increase and the profit of the unit 
is decreased. At the end, this turns more risky the 
operation of these units. The mentioned limiting 
parameter is updated along the simulation to address 
this risk and it reflects the relation between the 
forecasted and the real market prices. 

For thermal power plant agents the water value function 
used by hydro units is substituted by their marginal cost that is 
dependent on the technology and the fuel. Renewable agents 
bid at 0 €/MWh in order to ensure their dispatch priority 
according to the legislation in force in Portugal. 

The Market Operator agent is an artifact agent, given that 
it has not an associated decision making process. It performs 
the market clearing operations determining the market price 
and communicating the market results to all market agents.  

The developed model incorporates two types of demand 
agents. Although representing a small amount of the demand, 

we considered inelastic demand agents to supply regulated 
consumers. These agents bid at a constant price coinciding to 
the maximum administrative price admitted in the MIBEL 
(180 €/MWh). The model also considers elastic demand 
agents that are designed to buy energy to supply clients that 
already migrated to the free market, or pumping hydro units. 
Elastic consumers will be responsible for some demand 
response regarding price variations in their buying curves. 

Finally, the regulatory agent overlooks the generation 
agents namely checking if bidding prices differ beyond a 
specified tolerance from the marginal price of thermal stations 
or the water value for hydro units. If that happens it can 
impose a penalization to these units or limit the bidding price 
so that, as the simulation evolves, bid prices more closely 
follow the typical marginal prices of each technology.  

B. Q - Learning methodology  

As mentioned in Section III we introduced in the model 
the Q-learning procedure detailed in [15]. Q-learning is a 
reinforcement learning methodology that was originally 
proposed in [16] and that is fully detailed in [17]. In Q-
learning agents can learn an action by interacting with the 
environment through a trial and error search. This learning 
approach can be classified as a free model because it doesn’t 
need an explicit knowledge about the environment. Instead, 
the knowledge regarding the optimal strategy improves while 
the historic interaction with the environment is being built by 
a trial and error simulation. Q-learning is a useful algorithm to 
solve Markov decision based problems, and this is done by 
evaluating the payoff that can be obtained for a given state-
action pair Q(s,a). In [15], and in order to simplify the 
problem we used 7 states (s1 to s7) as illustrated in Figure 3 to 
discretize the sigmoid function already described in Fig. 2. 

 
Figure 3. States (s1 to s7) used in Q learning procedure. 

State s1 translates a maximum bid down, s4 means that 
neither a bid up nor a bid down is used and s7 represents a 
maximum bid up. The actions (a) represent the choice of a 
different state, as for example a12 is the action associated with 
the move from s1 to s2. The reward or pay off function 
corresponds to the profit that each agent obtains in the market 
if an action a is adopted or selected for a given state. So, the Q 
learning matrix is composed by cells known as Q values for 
each pair of state (s) and action (a). As the Q learning focuses 
on the impacts of rewards (R) on the choices of actions in each 
state, the Q values are obtained by a function that provides the 
utility that is expected from taking a given action in a given 
state [16]. The Q(s, a) function is typically given by (2). 

 Q(st,at) = (1 - λ)Q(st,at) + λ[R(st,at) + γmax Q(st+1,at)]           (2) 

In (2) λ ϵ (0,1) is the learning  rate,  which  controls the  
degree  to  which  recently  learned information will override 

Max bid up 

Max bid down 

Strategy (α) s1         s2  s3   s4  s5   s6      s7 

Max bid up 

Max bid down Strategy (α) 

Max bid up 

Max bid down 

Strategy (α) 



 
 

 

the old one (λ equal to 0 makes the agent not learn, while 
equal to 1 induces the agent to consider only the most recent 
information). The parameter γ is the discount factor that 
determines the importance of future reinforcements (γ equal to 
0 makes the agent myopic by only considering current 
rewards, while values closer to 1 turn distant rewards more 
important). The expression max Q(st+1,at) represents the best 
the agent thinks it can do in state st+1 [16]. In an initial phase, 
the agents will randomly explore state to state until they reach 
the end of simulation period. In this case, the simulation ends 
and the learning process converges when the Q values do not 
change more than 5% regarding the values in the Q matrix in 
the previous iteration. Then, using these Q values, the agents 
start their biddings taking into account the learned experience. 
This algorithm is detailed in [15] and the parameters used in 
this study are similar to the ones used in [15]. 

In [15] we used a single set of states and actions. In this 
work, we enriched the model introducing 3 different sets of Q-
values according to the monthly inflows. This means that in a 
dry month an agent will use a Q matrix built for smaller 
inflows and that will be different from the Q matrices that 
were learned for average and for wet inflow months. 
Accordingly, each agent will learn in a different way taking 
into account the hydro inflows. This procedure is similar as 
the one used in [18] applied to the Brazilian power system.  

V. CASE STUDY 

A. Data and Main Assumptions 

In this paper, we used a Case Study closely based in the 
MIBEL market for 2015. The data regarding the generation 
systems was obtained in the web pages of the Portuguese and 
Spanish System Operators (www.ren.pt and www.ree.es). The 
Portuguese hydro and thermal units and the Spanish thermal 
units were individually considered. Regarding the Spanish 
hydro system, the available information is related to 7 
cascades. In order to represent more realistic these hydro units, 
these cascades were divided in blocks of 200 MW, and we 
additionally admitted that 50% of the installed capacity is 
associated to run-of-river units and the remaining to larger 
reservoir units. Regarding the generation from wind parks, PV 
units, biomass and small hydro units, we admitted that they 
are included in the market aggregated selling curve at 0 
€/MWh in both countries as a way to give them priority in the 
dispatch. The Spanish nuclear power plants were also 
considered with 0 €/MWh marginal cost. Table I details the 
generation mix in both countries by the end of 2015. 

TABLE 1. TOTAL CAPACITY AND NUMBER OF POWER PLANTS. 

 Portugal Spain 

Technology 
Total 

Capacity 
(MW) 

Number 
Power 
Plants 

Total 
Capacity 

(MW) 

Number 
Power 
Plants 

Hydro storage 1480 13 7502 35 

Hydro pumping 1215 5 5350 24 

Hydro run of 
river 2489 14 7500 35 

CCGT 3847 4 24948 28 

Coal 1756 2 10468 17 

Nuclear 0 0 7573 8 

B. Hydro Charaterization 

The inflows of the Spanish hydro units were obtained for 
each month, in energy for each of the 7 cascades and divided 
in the same way as the installed capacity. For Portugal, we 
used hydro inflows for each hydro since they were available 
on the web page of the Portuguese TSO. The water value 
function described in Section IV.A for all the hydro reservoirs 
correspond to the average of the ones obtained in [3]. The 
global efficiency for the turbine/pumping process was set at 
0.8 for all pumping hydro meaning that for 1 MWh of 
pumping it generates 0.8 MWh. In order to be profitable, this 
means that pumping is activated only if there is at least a 
relation of 1.25 between the peak/off peak prices. Finally, run-
off river units bid at 0 and pure pumping storage was not 
considered since there are units like this in the Iberian system. 

C. Thermal Charaterization 

The marginal costs of thermal units were obtained using 
international indexes for 2015 for each technology. For coal 
we used API2, for natural gas the marginal cost was calculated 
as an average from Zeebrugge, NBP and the price at the Henry 
hub and for CO2 we used the values from Bluenext. To have 
some differentiation between the different thermal units, we 
used a degradation factor in the cost calculation that increases 
the operation cost by 0.5% per year after commissioning. 
Using this reasoning, the marginal costs varies from 27 to 31 
€/MWh for coal and from 50 to 55 €/MWh for CCGT.  

D. Demand and renewble generation 

The demand was based on the real hourly pattern for 
Portugal and Spain publicly available for 2015. We admitted 
that this demand is inelastic and for market purposes we 
admitted that it is prepared to pay the maximum price used in 
the MIBEL (180 €/MWh). Although a small part of the end 
user demand has some elasticity, it happens that the demand 
curve is in reality very close to a vertical line, which means 
that this assumption translate the real behavior in a close way. 

Differently from end users, pumping storage units are 
modeled as elastic consumers that can eventually adopt a 
strategy of buying electricity to pump according to the 
characterization of the agents provided in Section IV.A.   

E. Interconnetcion 

The interconnection limit between Portugal and Spain was 
not considered meaning that Portugal and Spain are a taken as 
single market. This assumption is close to reality since in 2015 
and 2016 congestion occurred in less than 10% of the hours of 
these years, that is, market splitting was rarely used and there 
was in fact a common price in more than 90% of the hours.  

F. Results 

As mentioned, the developed ABM model was applied to 
the MIBEL electricity market considering hourly data for 
2015. The simulations were conducted modelling hydro units 
as described in Section IV.A, that is, having to decide what is 
the best bidding strategy, and then not considering this 
capacity to select a strategy, which means admitting that hydro 
units bid at 0 €/MWh. Table II presents the results for annual 
average prices that were observed in reality and the values 



 
 

 

obtained with the developed model considering and not 
considering the hydro bidding strategies. Figure 4 shows the 
average prices on a weekly basis. 

TABLE II. TOTAL CAPACITY AND NUMBER OF POWER PLANTS. 

Scenario Annual average MIBEL 
Price (€/MWh) 

Real 2015 data 50.43 

Simulation with hydro strategies 42.72 

Simulation with no hydro strategies 35.01 
 

 
Figure 4. Average weekly results for market prices. 

These results show that allowing hydro units to define 
bidding strategies enable the prices to be much closer to real 
ones. This improvement is due to the fact that we are using the 
water value function as well as the bid-up/bid-down and the 
Q-learning approach. Additionally, Figure 4 suggests that the 
prices obtained with the developed ABM model are in general 
below the real ones, although the trend is similar when 
comparing the blue and the red curves. This difference of 
prices suggests the presence of an offset affecting the results 
of the developed model eventually related to the fact that start-
up and shut-down costs of thermal units were not included and 
also because the variable costs of thermal units were 
calculated in a simplified way, namely for the Spanish units. 
This can be relevant since the Spanish generation system is 
almost 5 times larger than the Portuguese one, meaning that 
these simplifications can have a large impact on the results.   

VI. CONCLUSIONS 

This paper presents the results obtained with an ABM 
model to simulate the MIBEL electricity market in 2015 
focusing on hydro units and including a Q learning strategy. 
The results confirm that the agents have learning capabilities 
and are maximizing their profit using the proposed model. 
There are still some issues to be enhanced namely related with 
a more accurate modelling of the variable costs of thermal 
units. However, this is one of the major difficulties because it 
is difficult to access real values of these costs. On the other 
hand, it is important to have an accurate model for hydro units 
because in the MIBEL these units frequently behave as price 
makers and their installed capacity is significant so that they 
really influence the market price. Despite these difficulties, the 
developed Agent Based model proved that it can be used as a 
valuable simulation tool namely for complex systems as 
compared with other traditional optimization models. 
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