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ABSTRACT 

In this work we Implement a new method for mapping the Sun's magnetic field B 

from the photosphere through the corona and interplanetary space. The method 

entails the derivation of B from a scalar potential within a "current-free" annular 

volume bounded mSlde by the photosphere and outside by a prescribed non

spherical "source surface" to which B is made (as nearly as possible) 

perpendicular. As usual we obtain the potential for the part of B that arises from 

currents inside the Sun by fitting an expansion to the observed line-of-slght 

component of B at the photosphere. The new aspect of our work is that we 

introduce a second least-squares fit to obtain the part of B that arises from 

currents outside the source surface. We do this by minimizing the mean-square 

tangential component of B over the source surface. This latter prescription allows 

a nearly arbitrary specification of the source surface, and no particular symmetry 

properties need be invoked for It. We have chosen as our prescription of the 

source surface one that reasonably simulates the expected physical consequences 

of coronal MHD effects. The magnetic field exterior to the source surface is made 

perpendicular to the source surface and is mapped throughout the heliosphere by 

means of a geometrical construction that appropriately generalizes the Parker 

spiral. Detailed comparisons have been made between this new model and 

observed coronal and interplanetary structures. The equatorward inclination of 

coronal helmet streamers IS modeled much better with a non-spherical source 

surface than With a spherical one. There is clear evidence, however, that 

observational data underestimate the strength of photospheric polar magnetic 

fields. Neutral lines on the source surface (i.e., contours on which the normal 

component of B vanishes) generate hellospherlc current sheets outside the source 

surface. In the particular case studied, two separate current sheets existed and 

were carried by the solar wind from the source surface to the boundary of the 

hehosphere. The result was a four-sector magnetic configuration near the ecliptic 

at 1 AU, and the observations were In good agreement with this prediction of the 

model. v 
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1. Introduction 

In this paper we develop and Implement a significant new tool for constructing 

models of the coronlll and interplanetary magnetic field from observations of the 

photospheric magnetic field. This tool, the non-spherical source surface, represents 

a significant improvement over previous models of solar magnetic field stt ucture and 

IS suitable for the study of the Interplanetary magnetic field and its solar ong,n. 

The study of the global magnetic configuration of the solar corona based on 

theoretical extrapolations of photospheric field measurements began with the work 

of Altschuler and Newkirk (1969) and Schatten et a/. (1969). Both of these groutis 

used the approach of solving Laplace's equation In an annular "olume outside the 

photosphere in terms of a spherical harmonic expansion with coefficients 0T the 

harmonic functions depending on the measured mdgnetlc field durmg an entire solar 

rotation. The neglect of coronal currents, necessary to obtain a unique solution In 

Simple closed form, has proven acceptable in most cases (Levine and Altschuler, 

1974; Poletto et a/., 1975). A harmonic expansion filling all space outSidE' the 

photosphere would result in magnetic field hnes that always return to the sun. ThiS 

would not be an acceptable physical approximation to solar conditions because the 

solar Wind plasma distorts the outer corona, creating "open" configurations 

C'onslstmg of field hnes that begm on the sun but do not return. To overcome thiS 

difficulty, both Altschuler and Newkirk (1969) and Schatter! at a/. (1969) 

independently mtroduced a spherical outer boundary concentric with the solar 

surface. The scalar potential between the photosphere and thiS "source surface" 

was speCified mathematically In such a way as to make the coronal field purely 

radial at the source surface itself. The field exterior to the source surface was 

constructed in accordance with the usual Parker (1958) spiral. The mathematical 

Implementation of thiS concept was not difficult. It resulted in a modeling capability 

that accounted at least qualitatively for the effects of the solar Wind on coronal 
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magnetic fields. Along with IlTIprOVements In observational accuracy and resolution, 

Improvements in both accuracv and efficiency In the modeling technique based on a 

spherical source surface have been achieved in recent years (Altschuler et al., 

1976; Adams and Pneuman, ll177; Rlesebleter and Neubauer, 1979). 

Applications of potential field models with spherical source surfaces have 

Included studies of coronal structure at eclipse (Schatten, 1968; Altschuler and 

Newk,rk, 1969; Smith and Schatten, 1970), coronal currents (Levine and Altschuler, 

1974; Howard et aI., 1980), Interplanetary magnetic fields (Schatten et a/., 1969; 

Levine et aI.. 1977; Levine, 1978; Burlaga et aI., 1978), radio and MHO wave 

propagation in the corona (Uchida et aI •• 1973; Smerd and Dulk, 1971; Jackson and 

Levine, 1980), and coronal holes and other sources of open magnetic fields (Levine, 

1977; Svestka et a/., 1977). The success of these applications has been varied. 

The basic structure of coronal holes and the position/polarization of type III radio 

bursts, for example, are very well ;oepresented. However, the accuracy of the 

method IS clearly less favorable In cases for which the exact structure of the 

outer corona near the source surface Is important, as In the study of coronal 

structure at eclipse, the boundaries of coronal holes, and the magnitude of the 

Interplanetary magnetic field. These deficiencies are due at least in part to the 

shortcommgs of the spherical source surface as a simulation of the MHD effects 

that cause the structure of the outer corona. Many Important physical problems, 

such as the possibility of open field lines In active regions, the orientation of 

helmet streamers, the source of the magnetic fiux In the ecliptic plane, and the 

topology and evolution of interplanetary current sheets could be investigated with 

more confidence if the structure of the outer corona could be simulated more 

accurately than the spherical source surface allows. 

As a step in this direction, the concept of a non-spherical source surface was 

introduced by Schulz et aI. (1978). This yielded a good solution for the case of a 
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magnetic dipole at the center of the sun. Applicability to solar problems was 

demonstrated by showing a close correspondence with the full MHO solution for a 

dipolar magnetic field having boundary conditions of temperature and density 

roughly appropriate to the sun (Pneuman and Kopp, 1971). This correspondence 

opens the pOSSibility for application of the non-spherical source surface to more 

elaborate magnetic field configurations, i.e., to cases for which an MHO solution IS 

not feasible. In the present work we extend the concept of a non-spherical source 

surface to the case of an arbitrary photospheric magnetic field and a more fiexlble 

specification of the source surface. In addition, we show that the field may be 

extended Into Interplanetary space without difficulty, except from regions where 

the source surface Is concave. 

3 
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2. Calculation of the Coronal Magnetic Field Inside a 

Non-Spherical Source Surface 

Following the work of Schulz et aI. (1978), we will derive solutions for the 

coronal and interplanetary magnetic field by uSing a norr-spherlcal source surface. 

The goal is to simulate, on a global scale, physical processes whose effects cannot 

be calculated In detail If we wish to retain the great advantage of using measured 

photospheric magnetic fields as the Inner boundary condition. As usual, the source 

surface represents the outer boundary of a current-free region. The magnetic field 

mSlde the source surface IS derived from a potential V that is expanded in 

spherical harmonics, as In the earlier work of Schatten et aI. (1969) and Altschuler 

and Newkirk (1969). The magnetic field outside the source surface Is based on a 

geometrical construction that properly generalizes the splral-fleld concept of Parker 

(1968), and the normal component of B is made continuous at the source surface. 

Because our source surface is non-spherical, the magnetic field will not (in general) 

be radial at the source surface. The field outside the source surface will 

consequently be diverted somewhat toward the main Interplanetary neutral sheet 

(Schulz et aI., 1978) and away from the magnetic poles of the sun. Such diversion 

does not occur with a spherical source surface because (In that case) the 6 

component of B is required to vanish at the source surface and beyond. 

As IS usual in source surface calculations, we assume that the corona is 

current-free Within the source surface and derive B from a scalar potential of the 

form 

N n R n+1 

V = RO ~ ~ ( ~) P::'(8)(g::' cosm. + h::' slnm.) 
n=Om=O 

(1 ) 

N n n 

+ RO n~ m~J :0) P;:'<B)(ii;:'coom+ + ~8Inm.). 
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where r, 8, and. are the usual spherical coordinates and the P::'(8) are associated 

Legendre functions. For tht case of a. spherical source surface as outer boundary 

one obtains V=O at r=R 0 by setting 

(2) 

In (1). Previous authors have sometimes used the symbol r s to denote the 

constant R 0 In the case of a spherical source surface. We use Instead the 

equation r=rs (8,.) to describe the configuration of our non-spherical source 

surface, whose mean radius <r s > Is held equal to the constant R 0 that appears In 

equation (1). In order to obtain a set of g::' and h::' from observations of t"'e 

photosphere we tentatively adopt a spherical source surface of (constant) radius 

R 0 and use equation (2) to eliminate g;:' and f1;:' from equation (1). ThiS 

procedure leaves the g::' and h;:' as the only remaining parameters to be aalt'~ted. 

obs 
Observations provide values of the line of sight field Bf at r=RO' The 

above harmonic expansion yields an algebraic expression for the line of sight field 

Bt=Br sin (8+fj) + B8cos (8+fJ), where B=-VV is obtained from equation (1) and fJ Is 

the average solar B-angle during the time of the magnetic observations (i.e •• fJ is 

the heliographic latitude of the observer). By requiring that the integral of 

obs R 2 
[Bt -(B r sin (8+,.,) + B8cos(8+fJ»] over the photosphere be a minimum with 

respect to variation of the coefficients g;:' and h::', a set of simUltaneous linear 

equations for the coeffiCients can be obtained. If N IS the largest principal Index 

of the coefficients g::' and h;:' to be calculated, there are (N + 1)2 equations and 

(N+1)2 unknowns, forming a (N+1)2 x (N+1)2 matrix problem. However, symmetry 

properties of the harmonic functions decouple the equations into blocks of N -m + 1 

simultaneous equations, reducing the largest number of independent equations 

which must be solved at one time to N+ 1 (Altschuler et aI., 1976). This makes it 

practical to solve for coefficients g;:' and h~ with values of N whose corresponding 
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harmonic functions have a structure matching the scale of synoptic magnetic 

observations (e.g., up to N=gO for synoptic data of approximately 1D resolution). 

-m -m 
For the case of a non-spherical source surface, we recompute the gn and hn 

as an Independent set of coeffiCients whose values depend not only on the 

photospheric field distribution and mean radius of the source surface, but also on 

the shape and orientation of the source surface. The boundary condition at the 

non-spherical source surface should be that the field Is perpendicular to the 

surface. However, for a non-spherical source surface with V given by equation (1) 

this boundary condition cannot be satisfied exactly over the entire surface; It can 

be satisfied only In the least-squares sense. Therefore, a second least-squares fit 

of the g::' and h::' to the outer boundary condition Is required. This second least-

squares fit is the primary difference between the solution for a spherical source 

surface and that for a non-spherical source surface. 

The components of the magnetic field In the region between the 50lar slJrface 

and the non-spherical source surface are 

Br = 

(3a) 

N n n-1 

- I I n (:0) P::'(S) (g::' cosm. + fi::' slnm.) 

n=1 m=O 

N n 

8S=- I I 
n=Om=O 

n+2 

(R0) dP::'(8) 

-r- (g::' eDsm. + h::' sinm.> 
dB 

(3b) 
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N n (RO)n+2 m 8) Pn C 

~ ~ -r- m ---:8""" (g: sinm. - h: cosm.) 
n=Om=O Sin 

C3c) 

+ n~=1 m~=o (Rro) n-1 m _P_:_C-::8_) (-m .I.. -h m .1..) 
~ ~ sln8 gn Sin m." - n cos m." . 

Notice that we have Identified a separate value N (*N) for the maximum principal 

index of the coefficients g: and fi;:'. The reason for this Will be made apparent 

below. 

We let the non-spherical source surface be defined by r s (8,.) with n (8 I </J) the 

unit normal vector field on the source surface and we let R O=<r s >. We further 

assume that the coefficients g: and h;:' are known. Because we cannot make the 

field be normal to the source surface at each point, we Instead minimize the mean-

square tangential component of B at the source surface. Definmg thE" tangential 

component of the magnetic field at the source surface by 

(4) 

we wish to minimize 

21rw 2 

I 2 II 2 r sln8 
iT:: B t dA = B t A A d8 dc#> 

o 0 In·r I 
(5) 

with respect to each of the g: and fi;:'. 

Appendix for details) the equation 

-m' 
Setting acr /69n ' =0, we Obtdln (see 

N n 211' W n n' 

n~ m~o Ii::' .[.[ ({vi ( R' 0 ) P ::'(8) cos m+ ]} • {v[ ( R' 0 ) P :::'(8) cos m '+ ]} 

-{n.v [ ( R'O) n P::'(8)Cosm+]} {n.v [ ( :0) n' P;:!'(8)cos m'+] } 1_',2_ns_.i;_~ d8dc#> 

8 



N n 2'Jl' 'Jl' n n' 

+ l: l: h,~ S S ({V [( :0) P~(8)Slnm.]}. {V [( :0) P~'(B)COsm'.]} 
n=l m=O 0 0 

- { •• v [ ( :01" P~(II)s,"m.]) {ii.V [ ( :o( P;::'(II)cos m" ]) )_r_J
2

._
s
.

,

_;_; dBd. 

N rl' 

= RO L L 
RO n"=lnf'=O 

(6) 

A similar expression IS obtained from the condition acr /6fi:"=o, except that the 

cosmic; terms in equation (6) are replaced by sinm'C;. 

Together, equation (6) and its analog represent N(N+2) simultaneous linear 

equations for the unknowns g::' and fi:. There IS one equation for each n' for 

m' = 0, and there are two equations for each combination of indices 

9 



- -m -m 
(nlj ml)=(1, 2, 0 0 0, Nj 1, 2, 0 •• , nl). The coefficients of the unknowns gn and hn 

are the Integrals on the left hand side of equation (6) and Its analog. These form 

a matrix with N (N+2) x N (N+2) elements (see Appendix for details). The nght hand 

side of each equation consists of the integrals on the right hand side of equation 

(6) and Its analog. These form a column vector of N(N+2) elements. Because any 

continuous rs(S,.) with nr=n 'r'jloO everywhere can be specified as the source 

surface, It Is clear that no general symmetry exists In equation (6) which reduces 

the number of Independent equations In all cases. The harmonic functions are not 

mutually orthogonal over a non-spherical source surface becauce both rand n· r 

depend on Sand • In the general case. There Is not even enough symmetry in 

general to decouple the linear equations corresponding to distinct values of n or m. 

Thus the full N(N+2)xN(N+2) matrix must be calculated and solved to obtam a 

solution for a set of g~ and h~, and It Is computationally prohibitive to set N=N 

We can possibly afford to take N=90 In deducing the g::' and h~ from line-of-slght 

data, but we cannot afford to take N ~ 15 In deducing the g~ and h~ appropriate 

to a non-sphorical source surface. The former operation requires us to compute -

N 3/3 matrix elements (I.e., 2.4x 1 0 5 elements for N=90), while the latter 

operation requires us to compute N4 matrix elements (I.e., 4x 104 elements for 

N=14 and 6.4x 1 0 7 elements for N=90). 

As a compromise between thrift and resolution, we typically take N=25 (with an 

integration grid of 60 latitude zones by 120 longitude sectors) and N=6 with a grid 

of 1 8 X 36). Further discussions of this solution are given in the Appendix. 

Calculating the matrix elements (which requires the most computation time) and 

solVing the system of linear equations (which uses less than 5~ of the computation 

time) typically takes 20 times longer for the g~ and h~ up to N=6 than for the g: 

and h::' up to N=25 (even with the finer Integration grid used at the photosphere). 

This ratio is insensitive to the computing power applied, being essentially Invariant 

between a PDP 11/60 minicomputer and a CRAY-1. Calculation of such a set of g: 
10 



and Fi~ can be completed in approximately one hour on a PDP 11/60 or 7 seconds 

-4 
on a CRAY-1. This time increases approximately as 2N • For example. a solution 

for N=14 (224 x 224 matrix) requires 7 minutes on a CRAY-1. 

Because the contribution of the g;:' and Fi::' terms in equations (3) IS non-zero 

at r=RO. the full solution derived above will not satisfy qUite the same 

photospheric boundary condition that the solution for a spherical source surface 

satisfies. A fully self-consistent model that satisfies both boundary conditions at 

once would seem to require a simultaneous least-squares solution for at! the 

coefficients when the source surface is non-spherical. In the present application of 

our model, however, the conflguratlon of the source surface Itself depend., on the 

g;:' and h;:' (see below). Thus, any simultaneous fit for the g::'. h:. g:, and fi: 
would be highly nonlinear In the g;:' and h;:'. The implementation of such a scheme 

would be computationally prohibitive. However. we do not expect the deVIations of 

tl;a q~ Rnd fi::' from (2) to be so large as to invalidate our determination 

(described above) of the g;:' and h: from IIne-of-sight data at t~e photospherp. 

Our confidence rests on the fact that the second line of equation (1) contributes 

little to the field at r=RO In any event, I.e., about one part in (Ro/Ro)2n+1 for 

harmonic number n. Thus, In the numerical Implementation of equation (6) and Its 

analog. the coeffiCients g::' and h::' which are used are those defined by the 

measured photospheric field distribution but with a spherical source surface at 

r =<r s >. This use of a spherical source surface to determine the "photospheric" 

coefficients g::' and h~ is easily implemented. since It modifies but slightly the 

algebraic form of B I from that used by Altschuler et a/. (1 976). The values of g: 

and h::' thus determined are also used in the calculation of magnetic field 

components by means of (3). 

11 
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3. Specification of the Non-Spherical Source Surface 

The formulation of Section 2 Is applicable to any non-spherical source surface, 

subject only to the restrictions that rs (9,.) is continuous and that nr:l1·r~O 

everywhere. For practical application It is necessary to choose a defimtion of the 

non-spherical source surface that Is both physically motivated and computationally 

a'::ceptable. In order to distinguish clearly between the physical prescription of the 

source surface and Its application to the solution for B. we define a general 

analytic function F(r,S,.) and require the source surface to be a surface of 

constant F. We have chosen an Initial definition of F which Is based on physical 

expectations and which has particular computational advantages. We expect that 

refinements will be made In the physical prescription used to choose a source 

surface as the usefulness of this method Is explored. 

The purpose of a non-spherical source surface Is to simulate the Implications of 

havIng a non-radial solar wind at and beyond the outer boundary of thp ct''''ent fr('E' 

region. The non-radial solar wind Is a fully expected consequence of MHO 

(Pneuman and Kopp, 1971). Schulz et aJ. (1978) suggested that the magnetic field 

N n R n+l 

B:-R0 V ~ I (~) (g:cosm.+h:slnm.)p:(S) (7) 

n=l m=O 

derived solely from Internal sources, I.e •• from the first line of (1), be considered as 

the basis for specifying the source surface. By choosing F=B2, Schulz et aI. 

(1978) specified the source surface as an Isogauss of (7), I.e .• as a surface of 

constant I B I, and thereby obtained a rather good simulation of the Pneuman-Kopp 

MHO solution for the case of an Internal solar dipole. 

For more realistic cases, however, we have found too often that an isogauss 

of (7) is not a convex surface. In other words, It happens too often that the 

source surface specified by Schulz at aI. (1978) Is Indented In places. This 

13, 



condition seriously complicates the geometrical construction of B outside the 

source surface, because It permits solar-wind streams from different parts of the 

source surface to Intersect. Intersecting streams may well be present In the real 

solar wind, but they impose mathematical difficulties that we wish to avoid In the 

present model. Accordingly, we have re-opened the question of how to speCify an 

optimal source surface and have discovered a suitable compromise between the 

spherical source surface and the Iso gauss of 1 B I. 

Our new procedure Is based on a more general speclflcatlon of F, namely 

<r II > 
-2 -2 1 

F =aB + (1-a) B1 --,,-, (8) 
r 

In which a and II are parameters to be chosen. We have flxed Jo'=4 for 

convenience The effect of choosing the parameter a<1 Is to generate a surface 

of constant F \',at is smoother than an Isogauss of i, but has the same average 

radiUS. Thus the case a=O produces a spherical source surface of radiUS R 0' while 

the case a= 1 produces a source surface that Is an Isogauss of i with average 

radius <r s >=R O· The constants if and <r; > are determined In an Initial step by 

setting a=1 In (8) and flndlng the values of i and <r; > that correspond to an 

Isogauss of mean radius <rs >=RO' Thereafter we generate surfaces of constant F 

for any desired values of a < 1 by holding < r s >=R 0' but we do not recalculate the 

constants if and < r ~ > 

The outward normal to the source surface Is the unit vector in the direction of 

-VF, I.e., the unit vector n =-VF II VF I. Because F Is expressed analytically by 

equation (8) with the help of equation (7), we can also express n analytically, and 

there is no need for numerical differentiation to calculate Ii. 

Some Implications of selecting a value of a other than a=O (Altschuler and 

Newkirk, 1969) or a=1 (Schulz et a/., 1978) are Illustrated In Figures 1-4. Figure 1 

shows a longitudinal section of the source surface corresponding to a photospheric 
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Figure 1 
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Longitudinal section of the source surface corresponding to a 

photospheric dipole for three different values of cr. The average 

radius of each surface Is 2.58 R O. 
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Figure 2 Longitudinal sections of the source surface calculated from the 

measured photospheric magnetic field for Carrington rotation 1602 for 

three different values of o. Where the 0=0.6 surface Is not shown, It 

essentially coincides with the 0= 1 surface. The average radius of 

each surface Is 2.3 RO' 
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Figure 3 Comparison of magnetic field lines calculated by the present model 

(solid lines) with field lines calculated by the MHO model (dashed 

lines) of Pneuman and Kopp (1971) for different values of a. The 

footpolnts of our computed field lines were chosen to match those of 

the Pneuman-Kopp field lines. The location of the source surface Is 

indicated by dotted lines. 
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Figure 4 Contours of constant r s for Carrington rotation 1 602, with two 

different values of «, in synoptic chart format. Contour Imes are 

shown at Intervals of 0.1 RO; the contour at r s =(r s >=2.3 RO IS 

thickened. The arrows are projections of the unit normal vector onto 

the unit sphere. 
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dipole (g r *0) for each of several values of a. The value of <r s > is held 

approximately eq.Jal to 2.58 RO in each case. Figure 2 shows certal/! longitudinal 

sections of the source surface corresponding to the g::' and h::' dedured from the 

measured hne-of-slght field at the photosphere for Carrington rotatlO'1 160? The 

values of a are the same in Figure 2 as In Figure 1, but the value ,)f ":r", > IS held 
'" 

equal to 2.3 R 0 In Figure 2. We see that a choice of a somewhat less than unity 

can often eliminate concave areas (indentations) that occur on the sourcE" surface 

for a=1. 

For the present, we assume that the optimal value of a In gC:::"lePII can be 

determined by reexamining the case of a photospheric dipole. Thus, WIi?' "'ave 

constructed a source surface of mean radius <r s >=2.58 RO for each of several 

values of a and have carried out the other steps described above for thp case In 

which 9 r is the only nonvamshing coefficient among the g;:' and h~ An the 

coefficients g::' and fi: that should vanish In thiS case (I.e., all except g? gj. and 

."jg for N=6; Indeed turned out to be very small. We computed B from (3) and 

plotted certain of the field lines on a meridional plane. The results are shown In 

Figure 3 as sohd curves. The dashed curves in FIgure 3 are the field hiles 

obtained by Pneuman and Kopp (1971) In theIr MHO study of the photosphNlc-

dipole case. Our field lines were chosen to have the same heliographic lat:tudes at 

r=R 0 as the Pneuman-Kopp field lines. 

The chOice a=1 In Agure 3 corresponds to the solution of Schulz HI itl (1978), 

although our Figure 3d differs somewhat from their Figure 2. Such minor differences 

should be expected, since (a) our <rs >=2.58 RO exceeds their <r
s

>=2.547 RO by 

about 1 %, (b) our mtegratlon grtd in equation (6) is necessarily coarser than theirs, 

(c) our N=6 IS necessarily smaller their N=15, and (d) our procedure for tracing field 

lines differs somewhat from theirs. Regardless of these differences, it is clear that 

the choice of a=1 ImpliCit In the work of Schulz et a/. (1978) produced a good 
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simulation of the MHO results of Pneuman and Kopp (1971), "Vherea~ the 

adjustability of a In the present work offers the prospect of Improved simulation. It 

IS particularly Important in this context to model well the asymptotic dlrectiors of 

the field lines, because one of our main motives for developing the non-spherical 

source surface has been to extend the model as accurately as possible throughout 

the heliosphere. It is clear from Figure 3 that the choice a=1 provides too much of 

an equatorial deftectlon of fteld lines from the radial direction outside the source 

surface, whereas the choice a=0.4 provides too little. The four panels of Figure 3 

all show rather good agreement between our model and the MHO results InsIde the 

source surface (dotted curve) In each case. In selecting an optimal a, we do not 

rely heavily on comparative details in the vicinity of the cusped MHO fteld lin£>. Our 

model Is current-free within the source surface and so Inherently produces a y·type 

neutral line, whereal:. MHO produces a cusp-type neutral line (Sturrock and Smith, 

1968; Pneuman and Kopp, 1971). Taking these various factors into account, we 

conclude from Figure 3 that a choIce of CI In the range 0.6-0.8 best simulates the 

MHO soiutlon overall. We have seen from Figure 2 that this range of a tends to 

yield a convex source surface when used with photospheric data, as desired. 

Although we will restrict our further examples to Isogauss surfaces with a in 

the range 0.6-0.8 (cf. equation (8», It should be remembered that thIs choIce Is 

based on comparison with an MHO solution that is azimuthally symmetric and 

represents an isothermal corona. Both of these restrictions are serious 

compromIses WIth the known physics of the solar corona. Thus, It would not be 

surprIsing If further progress In simplified MHO models of the corona pointed the 

way to dIfferent ranges of a, or, more likely, to different ways of specifying a 

three-dImenSIonal non-spherical source surface. 

A global view of two of the source surfaces profiled in FIgure 2 Is given in 

synoptIc chart format in Figure 4. Here the contours of constant heliocentrIc 

20 



distance on the source surface are incremented in steps of 0.1 RO' and the 

c·:>ntour r=<r s >=2.3 RO Is heavier than the others. The arrows represent 

projections of the unit normal vector it on the unit sphere, and so have lengths 

proportional to (nl + nl )"'1.. The shorter projections thus correspond to the more 

nearly radial orientations of the Unit normal. Concave areas are not readily 

Identified in this format, but the presence of fewer contours for a=0.6 suggests 

that the source surface is more nearly spherical (as expected) for a=0.6 thaI" for 

a=1. Centers of convergence (toward which the arrows POint) do not necessarily 

Indicate concave areas but do indicate regions above which IBI dllninlshes Ip.~ 

rapidly than Parker (1 gS8) suggests with heliocentric distance beyond the source 

surface. Centers from which arrows emanate identify regions above which 181 

diminishes .IIlQ[§. rapidly with r than Parker (1958) suggests. The variation of 8 

interior to thp ~curce surface enables open field lines to map thE" entire source 

surface onto a rather small fractIOn of the photosphere (LeVine, 1977). Thus, the 

variation of IBI With r Inside the corona must be considerably stronger than 

Inverse-square on the average. Most coronal magnetic models possess this last 

property. Ours offers the further prospect of modeling the variation of IBI, and thus 

of flux-tube area as a function of r (Nerney and Suess, 1975; Suess et aJ., 1977; 

LeVine, 1978), aU the way from the photosphere to the outer boundary of the 

hellosphere. 
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4. Coronal Magnetic Field Models Inside the Non-Spherical Source Surface 

-m -m 
4.1 Accuracy of the Solution for gn and hn 

In Section 2 It was pOinted out that the least-squares solution for the 

coefficients g: and f1: for a non-spherical source surface will not, In general, 

satisfy the boundary condition B xn=O exactly at all points on the source surface. 

In addition to accuracy in the above sense, we consider In this section the 

precISion of the numerical procedures used to solve equation (6) for the 

coefficients g~ and h:. (The stability of the solution Is discussed In the 

Appendix.) 

The precision of the numerical solution of equation (6) can be checked by 

calculating coefficients in cases for which the answer is known by some 

Independent means. One such case is a spherical source surface, which can be 

considered a degenerate case of equation (8) with a=O. In this case the 

coefficients g;:' and f1: are given exactly by equation (2). Our procedure entails 

the numerical computation of matrix elements over a finite integration grid, and so 

our results for g~l and f1: do not agree exactly with (2). However, calculation of 

-m 
gn and using equation (6) with a source surface given by 

a=O (I.e., r s (8,'; )=R 0; n =r) satisfies equation (2) to within 0.1 % In all cases that 

we have examined. 

A more stringent test IS the case of a photospheric dipole with a source 

surface that IS an Isogauss of B (i.e., a=1). Schulz at aI. (1978) calculated the 

-0 -
coefficlEmts gn (n=1, 3, 5, ... , N) for this case by obtaining a solution that 

assumed aZimuthal and north-south symmetry and that specified r s (8,';) and n 

analytically. They obtained accurate numerical results for g~ /g? (for various 

values of N), and needed to solve at most (N+1 )/2 simultaneous linear equations 

for this case, because the symmetry of the problem required that g: and f1: 
vanish unless m=O and n IS odd. Our present code does not constrain any of the 
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coefficients g::' or fi::' In (1) to vanish. Numerical solution of equation (6) under the 

conditions discussed In Section 2 (r s deflned on a grid of 18 x 36 values; N=6) 

-0 -0 -0 
gives agreement with the values of g1' g3' and g5 calculated by Schulz f9t at. 

-0 -0 -0 
(1978) to within 0.39% for g1' 2.50% for g3' and 3.74% for g5' The other 

coefficients should be zero for this dipole case. For m ¢O this is true in our 

numerical calculation by at least six orders of magnitude compared to g~. For m=O 

-0 -0 -0 
the average of the absolute values of the coeffiCients g2' g4' and g6 IS 0.56% of 

the average of the absolute values of the the three non-zero coefficients. 

We have investigated separately the effects of increasing Nand cf doubling 

the number of source surface grid points In our numerical calculation. EaCh of 

these can Improve the agreement with the results of Schulz et aJ. (1978), but 

there appears to be a limit to the agreement of the n=1, 3, and 5 coefficients at 

about one-haif to one-third of the percentages given above. Moreover, with N~ 14, 

the largest value tested in our numerical scheme, the agreement was not 

satisfactory for odd values of nl9. We conclude that, with the present numerical 

procedure, optimal solutions (In terms of overall agreement with the results of 

Schutz et a/., 1978) are obtained for N=6 or 8 and an integration grid at least as 

fine as 18 x 36, and preferably 36 x 72. The Increasing size of the fairly sparse 

matrix for larger N (e.g., 224 x 224 for N=14) seems to Introduce numerical 

difficulties that adversely affect the convergence of the coefficients haVing higher 

vatues of n. 

The minimization of tT for a non-spherical source surface does not (In general) 

cause tT (equation (5» to vanish exactly, but It should cause the strong inequality 

I B x n 12 « (R0/R 0)6 [(g ~)2 + (g ~ )2 + (h ~ )2] to hold over most of the source 

surface. Thus, we expect to find tT « 4ft' (RO 6 /R 0 4) [(g ~ )2 + (g ~ )2 + (h ~ )2] for 

the optimal expansion coemclents g::' and fi::', and we expect to find the Integrand 

'B x 6 ,2 to be distributed like random noise over the source surface. Our 
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numerical results largely confirm these expectations. For the case of a 

photospheric dipole with «=0.8 (see Figure 3c) we found 

6 4 0 2 
CT=0.0175x41r(RO /RO ) (g 1 ) , with IB x n I: < 0.087 (RO/RO)6 (g ~)2 

everywhere. However, because this special case was azimuthally symmetric, we 

found no variation of I B x n I;' with longitude. Instead we found, as did Schulz et 

al. (1978), that contours of constant I B x n I; divided the source surface into 

latitudinal bands. 

In more realistic cases, e.g., for the g::' and h::' deduced from IIne-of-slght 

photospheric field data for Carrington rotation 1602, the azimuthal asymmetry of 

the source surface (see Figure 4, above) causes the distribution of I B x Ii 1;- to 

appear essentially disorganized with respect to 8 and ., as desired. Moreover, the 

values of iT turn out to be small, satisfying the inequalities proposed above. We 

have verified that the above inequalities are satisfied more strongly in all cases 

when the number of grid points on the source surface is doubled and (with 

~~mewhat less Improvement) when larger N is used. Thus, we have good 

confidence in the utility of our model for application to actual coronal and 

photospheric data, as well as to idealizations of the sun's magnetic field. 

4.2 Comparison With Coronal Data 

We have chosen the Skylab ATM era as the best time period for comparison 

With coronal data because of the completeness of the data set. Because the most 

viSible effect of Incorporatmg a non-spherical (rather than spherical) source surface 

Into coronal magnetic models is that the calculated helmet streamers now can be 

non-radial, we have selected the ATM coronagraph data as the most relevant ATM 

data for comparison with the model. In particular, the total eclipse of 30 June 

1973 Yields the best data for comparison because there are also ground-based 

photographs that show coronal structure down to r=RO' Furthermore, there was 
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relatively little evolution of the sun's magnetic field during this time period (Levine, 

1978). 

The non-spherical source surface adopted for the eclipse time period is shown 

In Figure 6 in the same format as Figure 4. For the calculation of this surface and 

the coefficients g::'. h::'. g::' and ti::' photosp"erlc magnetic data from Carrington 

longitude 1800 of rotation 1602 to longitude 1 80° of rotation 1603 were used. In 

calculating the non-spherical source surface we have been guided by the 

experience of the dipolar case (see Figure 3 above) to choose a value of «=0.8 In 

equation (8). The value of <r s) was chosen to produce a source surface height 

that matched the tops of the helmet streamers visible at the 1973 eclipse. The 

average radius of the source surface In Figure 6 Is 2.72 R0 and the extrema are 

1.92 RO and 3.17 R0' 

The effect of making the source surface non-spherical can be seen by 

comoarmg Flglirp 6. which Is the ground-based eclipse photograph. with Figure 7. 

Figure 7a Is based on a potential field model with a spherical source surface at 

r=2.72 R0. which Is the average radius of the non-spherical source surface used 

to construct Figures 5 and 7b. In Figures 7 and 8 starting points for tracing field 

lines have been chosen to emphasize the boundary field lines betweer. open and 

closed structures. These field lines should lie Immediately over helmet streamers 

and on the outer boundaries of coronal holes or other coronal structures. This 

choice Is accomplished by starting to trace from a small distance on either side of 

polarity reversal contours of vanishing B· n on the source surface. Moreover, In 

order to emphasize the direction of the magnetic field lines beyond the source 

surface. each field line has been traced for 0.6 R0 beyond the source surface. 

For a spherical source surface this extenSion Is radial. but for non-spherical source 

surfaces it is along the local normal vector n. Superimposed on these field lines 

are the field lines that start at the 400 locations on a grid of 18 x 36 points at 
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The source surface and unit normal vector for Carrington rotation 

1602/3 (15 June 1973 to 12 July 1973). The format Is the same as 

In Figure 4. The thickened contour line Is rs =2.72 R0 «rs >=2.7 R0 

for this case). 
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figure 6 Photoglraph of the eclipse of 30 June 1 973, courtE~sy of High Altitude 

Observatory. 
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Figure 7 Comparison of calculated magnetic field lines with eclipse features. 

Top: lOt=O, J.e., the model with a spherical source surface. Bottom: 

~=O.8, i.e., the model with a non-spherical source surface. Dashed 

field lines lie behind the plane of the sky. See text for description of 

the allgorithm for choosing which field lines to plot. North to the top, 

west to the right. 

29 



Figure 8 Idelntieal in format to Figure 7 but with polar flux added, as described 

in the text. 
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r=RO which have the largest values of B
r

. These field lines emphasize the closed 

structures that underlie the helmet streamers. 

As expected, the primary difference between the two models is In the direction 

of the helmet streamers. Only a subtle difference In the corona, this Will msult In 

major differences In the predicted magnetic field strength throughout the 

hehosphere when the models are extended to rl1AU. A total of fifteen fElatures 

have been Identified extending beyond 2.5 RO on the eclipse photograph of figure 

6, and on the corresponding ATM coronagraph photograph (R. H. Munro, private 

communication, 1980). features that extend radially outward from the spherical 

source surface (figure 7a) correspond to similar features that extend normally 

outward from the non-spherical source surface (figure 7b). for each feature the 

deviation from the radial direction was measured on the photograph and calculated 

from the direction of n at the source surface. The average equatorward deflection 

of the observed coronal streamers was 6.20
, with a rather large disperSion of 5.go. 

The model streamers for a non-spherical source surface showed an equatorward 

deflection of 2.10 With a disperSion of 3.~, indicating approximately a 30% 

improvement In thiS Important aspect of coronal fleld modeling. Histograms of the 

equatorward deflections of the chosen features are shown in figure 9. 

In addition to the remaining 4.10 of equatorward deflection that the non

spherical source surface did not model, there are still other major discrepancies 

between the model and the observed coronal structure. The most glaring 

discrepancy is that the model has placed the large streamer in the southwest 

quadrant In the wrong location. It IS calculated to be about 300 poleward of where 

It should be. ThiS mislocation Is far too great to be explained by a poor chOice of 

the model parameters or by other inaccuracies of the model. furthermore, the 

mislocatlon extends down to the very surface of the Sun, indicating that the 

source of the discrepancy hes with the input data. Because thiS particular 
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Figure 9 Histograms of the dl1l'erences (observed minus calculated) In the 

equatorward deflection of 16 coronal features observed outside the 

source surface: (a) Spherical source surface, I.e., «=0; (b) Non-

spherical source surface, «=0.8; (c) Non-spherical source surface, 

«=0.8, with added polar flux. Because the calculated equatorward 

deftectlon for the spherical source surface Is zero, panel (a) Is In fact 

a histogram of the observed deflections. 
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streamer overlies a polar crown prominence, we suggest that the polar fleld 

strength has been underestimated by the magnetograph observations. 

This is not a new hypothesis. It has been suggested by Pneuman et a/. 

(1978) on the basIs of similar data and reasoning. It has also been suggested by 

Suess et aI. (1977) on the basIs of coronal hole modeling, and by Svalgaard et a/. 

(1978) on the basis of direct magnetograph data. The difficulties that 

magnetographs have when measuring polar flelds has been a tOPIC of extensive 

discussion for many years (cf. Howard, 1977, and references therein). In thiS 

latest case, we seem to have clear evidence (I.e., the mlslocation of a polar crown 

prominence) that the polar fields are Indeed underestimated. 

To test the hypothesis for this particular case, we have added polar magnetic 

flux to the magnetograph data and recomputed a new model (i.e., a new source 

m m -m -m) 
surface with the same <r s> as before and new coefficients gn' hn ' 9n ,hn . 

t->olar flux has been added In accordance with the model proposed by Svalgaard et 

a/. (197S). Specifically. poleward of 700 latitude we have added to the 

magnetograph data the radial magnetic fleld AB=±Bor cosSe, With BO=11.56 G, the 

sign being chosen so as to reinforce the predominant polarities of the respective 

polar caps. We do not necessarily endorse this particular model nor imply that it IS 

the only model that yields an acceptable fit With the coronal data. We have 

selected it because it is complete, recent, and based on magnetograph data only. 

There IS probably a range of models for thiS "mlssing polar flux" that would produce 

Similarly acceptable results. 

Field line plots for the model with the added polar flux are shown In Figure S. 

Figure Sa IS based on a spherical source surface and Figure Sb on a non-spherical 

source surface (o=O.S) with the same added polar flux. As expected, the added 

polar flux has relocated and reoriented the helmet streamer In the southwest 

quadrant, in much better agreement with the observed streamer. Also, the average 
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equatorward deflection of all the chosen features Is modeled much better with the 

added polar flux. The difference between observed and computed deflection Is 

reduced from 4.10 without the added polar flux to 1.f1l with added polar flux. The 

agreement IS stili not as good as one would like, but the present comparisons are 

sufficient to show that the addition of polar flux Is necessary and sufficient to 

model polar crown streamers reasonably. 

The large north polar coronal hole visible In Figures 6, 7, and 8 IS the ~ame 

hole that was studied extensively by Munro and Jackson (1977). A comparison 

can be made between the coronal hole boundaries measured by Munro and Jackson 

from coronagraph data, x-ray photographs, and K-coronameter data and the 

boundaries that would be Inferred from the present models. This comparison Is 

shown In Figure 10, where we have used the model that contains the added polar 

flux, 1.9., the model of Figure 8b. This model fits the observed boundary extremely 

well on the east 11mb, but the fit Is poor on the west 11mb. The position of the 

predicted boundary Is altered only slightly by making the source surface non

spherical rather than spherical, but the added polar flux Improves the comparison 

greatly. 

There are at least three factors which could contribute to an explanation of 

the discrepancy at the west 11mb. The flrst Is the possibility that the photospheric 

magnetic field evolued significantly In the region underlying the west 11mb during the 

period between its central meridian passage and the eclipse (approximately one 

week). The second Is the possibility that there may be closed magnetic structures 

In the corona which do not contain enough plasma to emit detectable amounts of 

visible or x-radiation. An example of such a situation would be the northern portion 

of the helmet structure on the northwest 11mb In Figure 8b. The third Is the 

possibility that the polar regions may contain even more unobserved magnetic flux 

than proposed by Svalgaard at aI. (1978). (The total additional polar cap flux In 
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Figure 10 Comparison of the boundary of the north polar coronal hole as 

predicted by the present model (solid lines) and as measured (dashed 

lines) by Munro and Jackson (1977). 
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their model amounts to 3.24x 10
22

Mx.) The continued dl1l'erence between the 

modeled and the observed streamer In the southwest quadrant argues In favor of 

this explanation. 

An additional factor In the comparison of the model with coronal obsRrvatlons 

Indicates an Inherent limit to the applicability of potential field models themselves. 

The models of Figure 8 consistently calculate helmet streamers that are broader 

than observed. This Is true In both equatorial and polar regions. A subsidiary 

result Is that the calculated areas corresponding to the footpolnts of open field 

lines are consistently smaller than the corresponding areas of observed coronal 

holes. This difference was studied by Levine (1977) using a spherical source 

surface, and It persists In the present work with non-spherical source surfaces. 

Because this dl1l'erence Is found at all latitudes, It cannot be ascribed to 

unobserved polar flux. It seems more likely that the observed helmet streams. s 

are narrower than the calculated ones because there are current sheets 6.t the 

boundaries between open and closed field lines, even Inside the source surface. 

Such current sheets are, of course, not Included In potential field models. One 

effect of such current sheets could be to make helmet streamers narrower than If 

the currents were not present. Physical reasons for expecting such current 

sheets are discussed In Section 6. 
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5. Magnetic Field Outside the Non-Spherical Source Surface 

Our model magnetic field outside the source surface is given by a geometrical 

construction. In this construction we differ from Parker (1958) in detail, but not In 

spirit. Indeed, our basic principle IS that solar wind plasma elements follow 

rectilinear trajectories upon emerging from the source surface. However, the 

trajectories are not radial because (a) the source surface IS not spherical and (b) 

the source surface rotates with the sun. The geometrical construction reqUires us 

to transform between the non-rotating frame (in which the trajectories 6re 

rectilinear outside the source surface) and the co-rotating frame (In wh·c.... the 

plasma elements flow parallel to B !Imlsm the source surface. 

In the co-rotating frame the solar-wind velOCity v Is Ideally normal to the source 

surface, as is B. (Within the source surface we have implemented this ideal only In 

the least-squares sense, but the procedure does not invalidate the ideal.) It 

ftJllows tt-:!t v=~ \/n' We assume for simplicity that vn is constant over the source 

surface and adopt the value vn =320 km/sec recommended by Hundhausen (1970). 

(One can permit vn to be a function of latitude, but not longitude, If the source 

surface IS azimuthally symmetric. In general, the permitted variation would be more 

subtle than this, and beyond the scope of the present work to describe. 

Interplanetary shocks result from the failure to impose appropnately restrictive 

conditions on the vanation of vn over the source surface.) It follows that the solar 

wind velOCIty in the non-rotating frame is given by 

(9) 

where g Is the angular velocity of the sun (corresponding to a slderlal period 

21r /g~25. 1 41 4 days) and the subscript s denotes evaluation at the source 

surface. 

It proves convenient to work in rectangular coordinates and to describe the 

trajectories parametrically by means of the time t after emission of the plasma 
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element from the source surface. We let the co-rotating system (x, y. z) coincide 

with the non-rotating system (x', y', z') at time t=O (see Figure 11). The velocity 

of the plasma element In the non-rotating system Is given by (9) as 

(10) 

at time t=O. We assume that the velocity remains constant for All t along the 

rectilinear trajectory. We assume further that g is a constant vector parallel to z' 

I.e., that differential rotation does not apply to large-scale magnetic fields. It 

follows from equation (10) that the trajectory of a plasma element Is given 

parametrically by 

for t)O, where nq=(n • q)s' However, It follows from Figure 11 that 

x, = x cos Ot - ysln Ot 

y' = x sin Ot + y cos Ot 

(11a) 

(11 b) 

(11 c) 

(12a) 

(12b) 

and z'=z. Substitution of (12) In (11) yields a pair of simultaneous linear equations 

for x and y, and It follows that 

x = [xs + (nx vn - OYs)t] cosOt + [Ys + (ny vn + Oxs)t]slnOt 

y =[Ys +(ny vn +Qxs)t]cosOt -[xs +(nx vn -OYs)t]slnOt 

(13a) 

(13b) 

(13c) 

along a plasma streamline In the co-rotating frame. Moreover, It follows from 

Parker's principle that (13) also constitutes the parametric equation of a field line 

outside the source surface. 
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Figure 11 
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Relation between the rotating coordinate system (x, y, z) and the 

non-rotating coordinate system (x', y', z'). The z axis coincides with 

the z' axis and extends out of the plane of the paper. 
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While equation (13) can be used to trace Am: field line from the source 

surface to the outer boundary of the hellosphere, we use (13) In the present work 

to map the Interplanetary current sheets associated with neutral lines on the 

source surface during June-July 1973. We use the photospheric data from 

rotations 1602 (last half) and 1603 (flrst half) with the added polar flux (as In 

Figure 8). There were two neutral lines (I.e., contours of vanishing B· n) on the 

source surface during this (Skylab-ecllpse) epoch. These are shown In synoptlc

chart format In Figure 12a as solid curves. By means of equation (13) we have 

mapped these neutral lines from the source surface to heliocentric spheres of 

Increasing radius. The loci of the current sheets at r==10 RO and r==50 RO are 

shown In Agure 1 2a as dashed and dotted curves, respectively. Figure 1 2b shows 

the locus of each current sheet at r=1 AU (solid curves) and r=2AU (dashed 

curves). The displacement of these loci In longitude at Interplanetary distances IS 

- C "'l"s~ou.:.n('E: of tt-e spiral configuration of the magnetic field. The latitudinal 

displacement of current-sheet loci In the Inner hellosphere (r!10 RO) Is a 

consequence of significantly non-radial flow of the solar wind there. 

The polarity of the Interplanetary magnetic field observed at r=1 AU (King, 

1975) Is Indicated on Figure 12b. It can be seen that two of the "sector boundary 

crossings" are very well modeled by our projection of the current sheets to 1 AU, 

whereas the other two crOSSings are not well modeled. These latter crosSings, 

however, are known to have enclosed a very high speed solar wind stream. We 

can see from this the need for properly modeling the variation of vn over the 

source surface (rather than taking vn as constant, as we have done for 

convenience In the present work). Moreover, the principal effect of a non-spherical 

source surface Is on the latitudinal structure of the current sheet and comparison 

with observed ecliptic polarities Is a limited test of the capabilities of the method. 
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Figure 12 
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Location of the Interplanetary current sheets for Carrington rotation 

1602/3 at different hellospherlc distances In synoptic chart format. 

Panel (a): r < 100 RO' The latitudinal displacement of the current 

sheet results from the non-sphericity of the source surface and takes 

place mostly within 10 RO. Panel (b): r > 1 00 RO' The longitudinal 

displacement perceptible in both panels results from the spiral 

configuration of the magnetic fleld. The measured polarity of the 

magnetic fleld at r=1AU In the ecliptic (King, 1975) is mdlcated m 

panel (b). This polarity should change sign upon traversal of the solid 

line. 
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8. Summary and Discussion 

We have developed the concept of the non-spherical source surface Into a 

well-defined operational method for simulating the magnetic structure of the real 

solar corona and the real heliosphere. The method follows precedent by deriving 

the coronal B field inside the source surface from a scalar potential and the 

hehospherlc B field outside the source surface from a geometrical construction. 

However, the non-spherical character of the source surface enables our method to 

simulate the non-radial orientation of helmet streamers and other characteristics of 

solar Wind flow. We know from past analyses (Schulz, 1973; Schulz et a/., 1978) 

that some such recognition of the non-radial component of solar Wind flow In the 

Inner hehosphere IS necessary in order to account for the observed magnitude of 

IBI In interplanetary space. 

Our source surface Is specified by equation (8) and contains an adJustS\ble> 

parameter a such that 0 s; a S; 1. The limit a=O corresponds to the spherical source 

surface of Altschuler and Newkirk (1969) and Schatten et a/. (1969); the limit 0:=1 

corresponds to the non-spherical source surface of Schulz et a/. (1978). The range 

0.6 s; a s; 0.8 Yields optimal agreement between our model and the full MHO solution 

of Pneuman and Kopp (1971) for the case of a photospheriC dipole. It IS our 

workmg hypotheSIS that the same range of a (I.e., a~0.6-0.8) IS appropriate to the 

study of the real corona also. 

Using photospheric magnetograph data centered on the Skylab-era eclipse of 

30 June 1973, we have found that our present method adequately models the non

radial orientation of helmet streamers In eclipse and coronagraph photographs if 

additional magnetic flux Is superimposed on the polar regions. However, observed 

helmet streamers are consistently narrower In latitude than those calculated by our 

method, and observed coronal holes are often larger In area (cf. Levine, 1977) 

than the footpolnt regions of open field lines calculated by our method. These 
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discrepancies are tentatively attributed to the neglect of coronal current sheets 

that are likely to occur (even at r(r s) at the boundary between closed and open 

field lines in consequence of the discontinuity In plasma pressure. It is known, 

after all, that coronal holes correspond to regions of lower plasma density and 

temperature than the coronal arcades that form helmet streamers (e.g., Bohlin, 

1977). Thus, the discrepancies between observed and calculated coronal hole 

areas and helmet streamer widths may well be intrinsic to our model, as well as to 

other models in which B Is derived from a scalar potential within the source 

surface. 

Although mathematical dlfflcultles prevent us from enforcing the deSired 

boundary condition ,B x Ii '=0 at every point on the source surface, our procedure 

of minimizing the mean value of 'B x Ii ,2 proves to be quite successful. Field-line 

plots (e.g., Figure 3) show that 8 is nearly perpendicular to the source surface 

everywhere except near the neutral lines from which Interplanetary current sheets 

(e.g., Figure 12) originate. However, the derivation of B from a scalar potential In 

the corona necessanly causes neutral lines on the source surface to be V-type 

rather than cusp-type (Sturrock and Smith, 1 968; Pneuman and Kopp, 1 911). Thus, 

one could not expect the last closed coronal field line to be perpendicular to the 

source surface there, even to a spherical source surface. Our field-line plots 

(Figures 3, 7, and 8) show that the least-squares method yields a ~ good 

approximation to the Ideal of a V-type neutral line on the source surface. 

In summary, our implementation of the non-spherical source surface and least

squares method of Imposing the coronal boundary condition there yield results that 

agree quite well with observation upon adjustment of only a few parameters. 

Further applications of the method to real and idealized solar conditions Immediately 

suggest themselves and will be treated In future works of more speCialized scope. 

We conclude, on the basis of results obtained so far, that the use of a non-
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spherical source surface constitutes a significant procedural advancement In the 

modeling of coronal and hellospherlc magnetic fields. 
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Appendix: Mathematical Detail 

We have deliberately kept the equations simple In the main text. For those 

readers who need or would prefer a mathematically explicit description of our 

procedures. we offer this Appendix. 

We assume that the scalar magnetic potential IS given formally by equation (1) 

for RO:S: r :s: rs (8 •• >. but we recognize that the coefficients ('9::,. il::'> and (g::'. h::'> 

are related as In equation (2) only for the special case of a spherical source 

surface. For the more general case of a non-spherical source surface we must 

differentiate ~ (cf. equation (5» with respect to each of the g:::' and each of the 

il:::' in order to minimize ~. We require specifically that 

(A1a) 

and 

(A1b) 

where dA=r21i1 . r 1-
1 

d(cosB> d. Is the element of area on the source surface. 

Unless Iii . r I is zero at some point on the source surface the area element dA Is 

well defined. We intend to avoid such pathological cases. for both physical and 

mathematical reasons. We can make subsequent steps in the derivation of the 

('9::,. il~) more compact by writing B:S + S. with S given by equation (7) and S 

given by 

N n r n 

B = -RO V L L (Ro) (g~ cosm. + il::' slnm.) P::'(B> , 

n=1 m=O 

(A2) 

because we know that as Ja'9;:f:as Jail:::' =0. Thus. It follows from (A 1) that 

f as as 
[S'~-(iI ·i)iI '~]dA 

agn, a9
n

, 
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(A3a) 

and 

(A3b) 

for each nl (=1, 2, 3, ... , N) and m' (=0, 1, 2, ... , n). We observe that 

(A4a) 

and 

(A4b) 

I.e., that both are Independent of the expansion coefficients (ii:.
I
, Fi:,I). Thus, It 

follows that (A3) constitutes a set of N2 
+ 2 N simultaneous linear algebraic 

equations for the (g~, Fi:). A more explicit representation of (A3a) Is given In 

1 __ 

equation (6). Equation (6) thus formally represents 2" N (N + 3) separate linear 

2 -m -m 1 - -
equations for the N + 2 N unknown parameters (gn' hn ). The other '2 N (N + 1 ) 

required equations are obtained by replacing cos mI. with sin mI. (m~O) In 

equation (6) at each of the eight places where cos mI. appears. 

The orthogonality properties of the harmonic functions reduce equation (6) and 

Its complemant to aquatlon (2) for tha casa of a spherical sourca surfaca, I.a., for 
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r=R 0 and n =r . The more general and Interesting case 01 a non-spherical source 

surface finds r=r
s

(8,.) and n*r in (6). The orthogonality properties of the 

harmonic functions are no longer useful, because the Integrand now contains vastly 

more complicated functions of 8 and" as well. However, we can express (6) and 

Its complement In matrix form by ordering the coefficients (g::', fl::') Into an 

(N
2 

+2N)-component vector Cs as follows: 

(A5) 

Thus, priority In the sequence goes first to the smaller values of n over the larger, 

then to g over h, and finally to the smaller values of m over the larger. Similarly, 

the right-hand side of equation (6) and Its complement, on which nil and mil are 

dummy variables only, can be ordered Into an (N2+2N)-component vector Kp by 

giving priority first to the smaller values of nl over the larger, then to equation (6) 

over Its complament containing sin m '. Instead of cos m '., and finally to the smaller 

values of m' over the larger. With this ordering convention (or any other that Is 

Internally consistent) we can reduce equation (6) and Its complement to the form 

N2+2N 

LAps Cs = Kp , 
s=1 

(A6) 

In which the elements of the A matrix are the Integrals that appear as coefficients 

of g::' and fl::' on the left-hand side of (6) and its complement. The matrix 

elements Aps must (of course) be arrayed In accordance with the convention 

chosen for ordering the vector components Kp and C
s

' By solving (A6) we obtain 

the set of expansion coefficients (g;:' I fl::'> In (1) that will minimize the mean-square 

tangential component of B over the source surface. This completes our basic 

objective. 
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-m -m 
It Is Important to ascertain whether the coefficients (gn ' hn ) thus determined 

are truly accurate for the case considered and reasonably stable against minor 

changes In N, In the (g::', h::'), or In the parameter « In equation (8), for example. 

Thus, It Is encouraging to know that our numerical code Yields results in agreement 

with equation (2) for «=0, In agreement with expectations dictated by symmetry 

(see Section 3) In the case of a photospheriC dipole for general «, and In 

agreement (see Section 4) with the numerical results of Schulz et aI. (1978) for 

the special case of a photospheric dipole with «=1. When we obtain the 

coeftlclents (g::', ti::') from real magnetic data rather than from an idealized ",odel 

of the photospheric B fteld, then (of course) there is no standard set of 

coeftlclents (g::', ti:') against which to compare those calculated by minimizing tr 

over a non-spherical source surface. Indeed, standard sets of coefficients 

(g::', ti::') are available only for the simplest of Idealized models (Schulz at aI., 

"'! 978). Hcwe\ler the stability of coefficients (g::', ti::') determined numerically by 

minimizing tr, either In a realistic case or In an Idealization more complex than the 

photospheric dipole case, can be Judged by an Inspection of the A matrix that 

appears In (A6) and whose elements are the Integrals that appear as coefficients 

of the unknown quantities (g::', ti::') on the left-hand side of equation (6) and Its 

complement. For the (g::', ti:) determined by solving these linear equations to be 

stable against small changes In rs(S,.) or N, the matrix (A) of the coefficients must 

be well-conditioned, I.e., free of eigenvalues that either vanish or are too small 

because of a failure (or near-failure) of the rows of A to be linearly Independent of 

each other. Our experience suggests that we have little to fear In this regard. 

While the A matrix is strictly diagonal only In the limit of a spherical source surface 

(<<=0), It is nearly diagonal In the other cases that we have examined. In other 

words, the elements Aps In (A6) become progressively and substantially smaller In 

magnitude as one steps away from the main diagonal (p=s). This property Is 

generally sufficient to assure that a matrix Is well-conditioned. Moreover, we have 
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encounterE.d no obvious difficulties in seeking solutions of (A6). The solutions for 

the ("g::', fi::') seem to vary continuously with a, for example (see Figure 3), and 

weakly with N. Thus, we find overall that our method is well-behaved, and we have 

full confidence In It. 

Having thus obtained the optimal coeffiCients (9::', fi;:') for use in (1), we can 

proceed to plot field lines Inside the source surface, I.e., for R 0 s; r s; r s (8,,,). This 

IS easy enough to do, starting either from a footpolnt at r=RO or from a POint en 

the source surface, because the trajectory of a field line Is defined locally by the 

m m (-m -m) 
direction of B. Having obtained the coefficients (gn' hn ) and gn' hn ' we 

calculate the components (Br , B8' B,,) of B=- VV from (3). As usual the field line 

must satisfy the equations 

( 
d8) B8 

r - =--
ds B 

(A7) - ;::-

':is B 

where B=IBI and ds is the element of arc length along the trajectory. We use a 

Runge-Kutta method lO be certain that the computed trajectory truly tracks the 

field line (despite tne finite step size). OutSide the source surface we plot field 

lines With the aid of (13), thus imposing a boundary condition that B IS exactly 

normal to the source surface. In other words, we do not II continue II the direction 

of the numerically computed magnetic field across the source surface from Inside to 

outside, because there might be a significant error locally In doing so (despite the 

global mlmmlzatlon of cr). Thus, the footpolnt of the Interplanetary segment of a 

field line coincides with the point at which the coronal segment of the same field 

line touches the source surface from the Inside. We accept the small discontinuity 

In n x B that is ineVitable In such a construction when the source surface is non-

spherical, but we would assume the continUity of n· B across the source surface in 

order to calculate the magmtude of IBI in Interplanetary space (Schulz et aJ., 

1978). The actual calculation of IBI along a field line outside the source surface 
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Involves numerical application of differential geometry and Is not yet completed. 

Thus, we have been content In the present work to obtain the direction of B from 

the fact that 

(AB) 

and to trace the fteld lines themselves by means of equation (13). Field lines 

would be rectiUnear outside the source surface except for the garden-hose effect 

caused by the rotation of the sun (Parker, 1958). Indeed, at heliocentric 

distances r.!10 R0 the 'field lineS described by equation (13) deviate negligibly 

from rectlUnear projections of the outward normals it from the various points on the 

source surface, and We have used this fact to simplify the computations underlying 

Figures 3, 7, and 8. However, the spiral conftguratJon of B Is very important at 

Interplanetary distances. as Is well known. Thus, It has been absolutely essential 

to USe equation (13) In Ita full generality for the purpose of locating the 

Interplanetary current sheets In Figure 12 (especially so In Figure 12b). 
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