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Abstract—The restructuring of power systems with the 
introduction of electricity markets and decentralized structures 
increased the number of participating entities. This is 
particularly true in generation and retailing which are now 
provided under competition. Accordingly, it is important to 
develop models to simulate the behavior of these agents and to 
optimize their participation in electricity markets. Among them, 
it is essential to adequately model generation agents namely in 
countries having a large share of hydro stations. This paper 
describes an agent-based approach to model the day-ahead 
electricity market having a particular emphasis on hydro 
generation. Apart from the characterization of the agents, the 
paper details the introduction of the Q-Learning algorithm in 
the model as a way to enhance the performance of generation 
agents. This paper also presents some preliminary results taking 
the Portuguese generation system as an example. 

Index Terms--hydro stations, electricity markets, operation 
planning, agent-based models. Q learning. 

I. INTRODUCTION 

The continuous development of power systems and the 
challenges and opportunities created by these changes have 
radically modified the simulation and optimization of the 
operation of power systems. Specifically, the optimization of 
the operation of the power systems with a large share of hydro 
generation has been regaining interest both in the research 
community and the electricity industry due to the impact of 
these units not only from the technical point of view but also 
regarding the financial results of generation companies. In 
fact, the characteristics of hydro power plants such as 
reliability, availability, storage capability and reduced 
response time turn this type of assets very important for power 
system operation. Currently, the existence of pumping 
capabilities in an increasing number of hydro plants turns the 
management of these assets very important for generation 
companies as a way to increase the overall revenues. On the 
other hand, the mentioned characteristics turn hydro power 
plants very appealing as a very efficient way to provide 
reserve services so that they are becoming more and more 

important from the point of view of the TSO’s. Additionally, 
their dynamic characteristics combined with their storage 
capability turn hydro power plants an important asset to help 
the management of power systems having a large share of 
renewable generation associated to volatile primary resources 
as wind and solar. These concerns are particularly relevant in 
the Iberia Peninsula given the important share of wind and 
solar generation in the global generation mix. 

Taking all these concerns into account, it is easily 
understood the importance of developing new and more 
specific models so that generation companies can adequately 
respond to competition. The role of modeling and simulation 
to support decision-making in complex systems has been 
widely established as a valid technique. Recently, agent-based 
models were reported as a complement to equilibrium models 
when the problems are too complex to be analyzed by 
traditional approaches. Agent-based simulation follows the 
metaphor of autonomous agents and multi-agent systems as 
the basis to conceptualize complex systems. That is, a model 
is built taking advantage of the interaction between agents 
acting in a simulation environment. 

There are several approaches in the literature to optimize 
and simulate generation systems operating in market 
environment. However, the presence of a large share of hydro 
generation, specially pumping hydro, is not adequately 
addressed [1]. Accordingly, this paper presents a model using 
an agent-based environment that was originally described in 
[2-3] and in which we are now introducing a Q learning 
procedure. This enhanced Agent-Based Model is then used to 
simulate the Portuguese generation system. In this scope, we 
considered four types of hydro plants: run of river stations, 
storage stations, pumping storage stations and pure pumping 
stations. Hydro plants are modeled as agents that can produce 
and also consume (in the pumping case) meaning that they 
have to negotiate energy in the market as introduced in [2-3]. 
To support the hydro-pumping decisions different 
optimization models were already developed as described in 
[4, 5] namely using nonlinear programming and Genetic 
Algorithms. In this paper, we introduced a Q learning 
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methodology to provide the agents with learning capabilities 
in stand of the optimization models reported in [4, 5].  

Following these ideas, this paper is structured as follows. 
After this Introduction, Section II overviews the Iberian 
Electricity Market, given that Portugal participates in this 
market together with Spain. Then, Section III gives an 
overview on the existing approaches to deal with the hydro 
scheduling problem with particular emphasis on agent-based 
models. Section IV details the developed agent-based model 
and Section V presents the results obtained so far. Finally 
Section VI draws the most relevant conclusions. 

II. ELECTRICITY MARKETS REVIEW 

A.  New Structures and the Unbundling Model 

During the last 25 years, several countries restructured 
their power systems with the main goal of introducing 
competitive mechanisms in some parts of the value chain. 
These changes included the segmentation of the traditional 
vertically integrated utilities in several activities, namely 
generation, transmission, distribution and retailing. At the 
same time, the advent of independent regulation, the increase 
of the number of agents namely in the generation and retailing 
and the decoupling between market functions, assigned to 
Market Operators, and technical operation issues assigned to 
System Operators brought more complexity to this area. 

Regarding the activities mentioned above, usually 
generation and retailing are liberalized and operated under 
competition while transmission and distribution network 
services are provided by regulated monopolies. In addition, in 
order to match the demand and the supply new mechanisms 
were created, namely the day-ahead pool markets, the bilateral 
forward contracts and ancillary services (as for instance 
secondary and tertiary reserve markets in several European 
countries). The day-ahead market that exists in several 
European countries (as for example NordPool for the Nordic 
European countries and the MIBEL involving Portugal and 
Spain) corresponds to a short term day ahead mechanism 
based on the matching of the submitted selling and buying 
bids for each trading hour of the next day. The market clearing 
prices are obtained under a marginal basis and can be very 
volatile. In order to deal with this volatility, long-term 
contracts are also possible in most market implementations 
under different horizons and conditions. 

Another important issue to understand the recent evolution 
of power systems is related with the increase of dispersed and 
volatile generation. Several countries were very successful in 
increasing the installed capacity in wind parks, photovoltaic 
and other thermal renewable stations because of the adoption 
of subsidized feed-in tariffs. Because of this movement, in 
countries as Portugal and Spain the share of feed-in generation 
in the total installed capacity is above 35% (22% for wind 
parks) and the share of renewable generation is above 50% 
admitting average hydro years. About 60% of these units are 
connected to distribution networks which is forcing changing 
the operation paradigm of these grids. Considering this issue, 
hydro power plants play an important role in systems having a 
large share of renewables due to their dynamic characteristics 
and storing capabilities.  

B. The Iberian Electricity Market  

In line with what was mentioned above, the Portuguese 
and Spanish power systems went through several changes 
since the late 1990’s. In Portugal, the power industry was 
nationalized in the 1970s with the creation of a vertically 
integrated utility. This structure started to change in 1995 
when a new electricity law was passed admitting the 
coexistence of a public and a market driven sector. Later, in 
2006, a new electricity law was passed organizing the industry 
in generation, transmission, distribution and retailing 
activities. The Regulatory Agency was created in 1995 and is 
responsible for the publication of several codes and for setting 
the tariffs. Since 2007, all clients are eligible and by the end of 
2015 the free market represented 89% of the total demand.  

The Spanish power system was also organized in terms of 
vertically integrated utilities having a regional distribution. A 
new law was also passed in 1995 in a first attempt to introduce 
competitive mechanisms. Later on, by the end of 1997 a new 
law was approved enabling the launch of the electricity day-
ahead market on the 1st of January 1998. Since then, a fast 
transition of regulated captive clients to the free market was 
implemented so that full eligibility was achieved in 2003. The 
implementation of the common electricity market, MIBEL, 
started with the signature of a memorandum by the Portuguese 
and the Spanish governments in 2001. After several delays, a 
common bilateral contract trading mechanism was set in place 
in 2006 and the joint day-ahead market started on the 1st of 
July 2007 as an extension of the already existing Spanish day-
ahead market. In the first operation years the electricity prices 
in the two areas were different in a large number of hours due 
to the application of market splitting to solve congestion in the 
interconnections. Nowadays, due to the increase of the 
interconnection capacity and the increasing share of 
generation connected to distribution networks, transmission 
grids are less loaded so that the number of congested hours 
declined. As a result, the prices converged to common values 
in almost 85% of the hours in 2013 and 2014. 

Regarding the generation mix, both countries have a large 
share of hydro plants with a huge variation in their annual 
output. In terms of the renewable share, both countries were 
very successful in increasing the amount of renewables. This 
corresponded to a strategic policy adopted by successive 
governments to use more intensively endogenous resources, to 
enlarge the energetic independency and also to develop new 
industrial activities thus creating new jobs. By the end of 
2015, wind power reached an installed capacity of 4634 MW 
out of 18553MW in Portugal (25%) and of 22854 MW out of 
102613 MW in Spain (22 %) with a contribution to demand 
supply of 24% in Portugal and 19% in Spain. 

III. LITERATURE REVIEW ON HYDRO UNITS IN MARKETS 

A. Hydro Scheduling Problem 

One of the main problems that generation companies 
having hydro power plants in their portfolio have to face is to 
build the most profitable operation strategy in order to 
maximize their revenues. In a competitive environment, they 
have to prepare selling and buying bids, when they have 
pumping, and submit them to the day-ahead Market Operator. 
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In addition, the nonlinear relation between the power, the flow 
and net head, and the uncertainty associated to the hydro 
conditions turn the optimization of hydro power plants in a 
complex and nonlinear problem. There are several approaches 
available in the literature to deal with this kind of problems. In 
[6] the author’s use dynamic programming to solve the hydro 
scheduling problem but this technique usually leads to the 
well-known “curse of dimensionality”. Other authors use 
mixed integer linear programming [7] and meta-heuristics, as 
Simulated Annealing [8], Neural Networks [9] and Genetic 
Algorithms [5]. The mentioned nonlinear relation can also be 
addressed using an iterative procedure as described in [4]. 

B. Electricity Markets Modeling 

There are several works that were developed to model 
electricity markets using different techniques. These 
approaches can be organized in four main areas [10]: 

• Optimization problems, addressing a single company 
also known as single firm optimization models; 

• Equilibrium Models based on Game Theory, 
considering a larger number of competitors; 

• Agent-Based Models, ABM, that simulate the behavior 
of the companies and the interactions between agents; 

• Hybrid solutions. 

Optimization models typically address the maximization 
of the revenues of a single company, often considered as a 
price taker. Some examples were described in Section III-A. 
Equilibrium Models represent the market behavior 
considering the competition between all participants. More 
recently, Agent-Based Models are becoming an interesting 
alternative when the complex level of the problem prevents 
using traditional equilibrium framework. Agent-based 
computational economics (ACE) corresponds to the 
computational study of economic dynamic systems modelled 
as virtual worlds of interacting autonomous agents in an 
environment. 

C. Agent-Based Models in Electricity Markets 

Currently there are several models, most of them having 
commercial nature, addressing this issue. AMES (Agent-based 
Modeling of Electricity Systems) is an open source platform 
to simulate the strategic trading behaviors in restructured 
markets considering AC grids [11]. EMCAS (Electricity 
Market Complex Adaptive Systems) is a commercial ABM 
software developed by the Argonne National Lab having the 
capability of taking decentralized decision-making along with 
learning and adaptation for agents. EMCAS is linked to the 
VALORAGUA model [12] that provides longue term 
operation planning strategies for hydro plants. With this 
information, EMCAS uses the price forecasts and weekly 
hydro schedules given by VALORAGUA to do intra-week 
hydro plant optimization for hourly supply offers. Finally, 
MASCEM (Multi Agent based Electricity Market) is a 
simulation platform based on a multi-agent framework [13]. It 
includes day-ahead, and balancing markets and considers both 
simple and complex bids turning it both in a short and a 
medium term model. 

Nevertheless, hydro generation, specially pumping hydro 
stations, is not adequately characterized taking into account 
the increase of renewable volatile sources. For instance, 
EMCAS includes the VALORAGUA model turning it very 
dependent on the performance of this model. This also means 
that EMCAS does not include the definition of bidding 
strategies to hydro power plants. Taking this into account, the 
main objective of this research is to simulate hydro generation 
in a market environment using an ABM platform, especially 
regarding hydro with pumping given the extra flexibility these 
stations have in terms of buying electricity in off peak hours 
when eventually extra wind generation is available and selling 
it in peak hours. This will allow us to study their impact on 
systems having a large penetration of renewable sources, 
especially wind. 

D. Q learning  

The characteristics of electricity markets contribute to 
create a complex dynamic and adaptive system. Each market 
player faces an uncertain environment mainly due to the 
inherent uncertainty of power system conditions and the lack 
of complete knowledge about the competitor’s strategic 
behavior. In these circumstances, learning and constructing 
the model of the economic system is a very complicated task 
for market participants, and a model free learning can be an 
appropriate alternative to build a desired bidding strategy [14]. 
Q learning is a reinforcement learning methodology [15] in 
which agents can learn a task by interacting with the 
environment through a trial and error search. The Q learning 
algorithm was initially proposed in [16] and it can be 
classified as a free model because it doesn’t need an explicit 
knowledge about its environment. Instead, the knowledge of 
the optimal strategy increases while the historic interaction 
with the environment is being built by trial and error.  

Q learning is a useful algorithm to solve Markov decision 
problems, and this is done by evaluating the payoff for a 
given state-action pair. So, the Q learning matrix is composed 
by cells known as Q values. These Q-values are calculated for 
each pair of state (s) and action (a), and therefore they can 
also be described as Q(s, a). As the Q learning focuses on the 
impacts of rewards (R) on the choices of actions in each state, 
the Q values are obtained by a function that provides the 
expected utility of taking a given action in a given state [16]. 
The Q(s, a) function is typically given by (1). 

 Q(st,at) = (1 - λ)Q(st,at) + λ[R(st,at) + γmax Q(st+1,at)] (1) 

In (1) λ ϵ (0,1) is the learning  rate,  which  controls the  
degree  to  which  recently  learned information will override 
the old one (λ equal to 0 makes the agent not learn, while 
equal to 1 induces the agent to consider only the most recent 
information). The parameter γ is the discount factor that 
determines the importance of future reinforcements (γ equal 
to 0 makes the agent myopic by only considering current 
rewards, while values closer to 1 turn distant rewards more 
important). The expression max Q(st+1,at) represents the best 
the agent thinks it can do in state st+1 [16].  

In addition to λ and γ, an agent can use the ε parameter, 
known as ε-greedy strategy, to make a tradeoff between 
exploitation and exploration [17]. It means that the agent 
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selects the action that has the maximum Q value with high 
probability (1−ε) and an arbitrary action from all admissible 
actions with small probability ε, regardless of the Q values. 

IV. DEVELOPED AGENT-BASED MODEL  

As mentioned before the main goal of this paper is to 
introduce a Q learning procedure in the Agent-Based Hydro 
plants model detailed in [1], [2] and [3]. 

A. Agent-Based Model hydro modeling 

Hydro agents have to bid their energy in the market and 
their strategy depends on the type of hydro. In our work, the 
bid strategy just depends on the bid price since we admitted 
that the bided quantity corresponds to the power associated 
with the water that is available in the unit. Depending on the 
type of hydro unit, the bidding price strategy is determined by 
the water value on the reservoir, by a learning parameter α 
and by a decision supporting tool, all of them originally 
described in [2, 3] and modeled by (2). The water value 
function f(water value) provides each plant with a reference 
bid price that depends on the reservoir level, as illustrated in 
Figure 1. This curve indicates that if the reservoir level is 
larger, then the value of the stored water is more reduced and 
so a more reduced biding price can also be used. This water 
value function is calculated for each week according to the 
procedure detailed in [2]. In [2] we use an optimization model 
to compute the shadows prices of each reservoir (water 
values), for several hydro conditions. 

 Bid price strategy = f(water value)+bid up/down (α) (2) 

 
Figure 1. Base bid price in function of the reservoir level. 

The bid up/down parameter α used in (2) models an agent 
strategy to increase or decrease its bid price as a way to 
increase the profit. This parameter is given by the Q learning 
procedure and it is modeled using a sigmoid function that 
reflects the risk profile of each agent. If an agent has a higher 
risk profile, the bid range is larger. On the other hand, a low 
risk profile will lead to a smaller bid range as illustrated in 
Figure 2. This strategy is an adaptation of the derivative-
following strategy presented in [18] and discussed in [13] and 
also used in [12]. 

 
Figure 2. Bidding strategy taking into account the risk profile of each agent 

(higher risk profile on the left and lower on the right). 

The developed ABM model considers four types of hydro 
agents having different bidding strategies [3] as briefly 
outlined below: 

• Run of river – these agents typically have a water 
value function near 0, so they will have more focus on 
their bid up/down strategy; 

• Storage - these agents will have a bid value directly 
related to their water value function as well as to their 
bid up/down strategy; 

• Storage with pumping - the bid price is linked to their 
water value function and to the bid up/down strategy. 
They also have the possibility of buying energy to 
pump water to their reservoir, taking advantage of low 
prices; 

• Pure pumping - these agents are assigned a zero water 
value because these reservoirs are usually small. They 
will use decision support tools to forecast the day-
ahead electricity prices so that they can define an 
arbitrage strategy based on price differential between 
peak and off peak hours [3]. 

The ABM model also includes thermal and renewable 
generation agents, that have a similar strategy of the hydro 
power plant agents, but in which the water value function is 
substituted by their marginal cost in the case of thermal units 
and by 0 €/MW.h in renewable generation agents in order to 
model their dispatch priority according to the Portuguese 
legislation. 

The Market Operator agent is an artifact agent, because it 
doesn’t have a decision making process [1]. It performs the 
market clearing operation determining the market price and 
communicating the market results to all market agents. 
Regarding demand agents, we considered two types of 
agents: inelastic agents that buy energy at the maximum value 
allowed in the MIBEL rules (180 €/MW.h), and elastic agents 
that are designed to model the behaviour of consumers that 
can directly participate in the market, typically large 
industries or hydro pumping stations. Elastic consumers will 
display some demand response regarding price variations in 
their buying curves. Finally, a Regulator agent is also used. 
Its main goal is to monitor the generator bids and penalize the 
generation agents if the bid prices are very different of the 
marginal cost regarding thermal stations or of the water value 
for hydro stations.  

B. Q learning methdology 

In this work we used a bid up/down (α) parameter to 
model the strategy of each agent by increasing or decreasing 
its bid price as a way to increase the profit. This behavior is 
modeled by the sigmoid function in Figure 2 to reflect the 
risk profile of each agent. As mentioned, Q learning is a 
useful algorithm to solve Markov decision problems, and this 
is done by evaluating the payoff for a given state-action pair 
Q(s,a). In our work, and in order to simplify the problem we 
used 7 states (s1 to s7) as illustrated in Figure 3 to discretize 
this sigmoid function. 

Max bid up 

Max bid down Strategy (α) 

Max bid up 

Max bid down 

Strategy (α) 

Higher Risk Lower Risk 

bid 

Reservoir levelMax Min 
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Figure 3. States (s1 to s7) used in Q learning procedure. 

State s1 indicates a maximum bid down, s4 means that 
neither bid up nor bid down is used and s7 represents a 
maximum bid up. The actions (a) represent the choice of a 
different state, as for example a12 is the action of passing 
from s1 to s2. The reward function corresponds to the profit 
that each agent obtains in the market due to the use of an 
action in a given state. In our simulation, the agents will learn 
through their experience or training. In an initial phase, the 
agents will explore randomly state to state until they reach the 
end of exploration period. In this case, the end of the 
exploitation period occurs when the Q values are no longer 
increased more than 5% (convergence) regarding the values in 
the Q matrix in the previous iteration. Then, with the Q values 
defined, the agents start their bidding offers taking into 
account the learned experience. In our work, the selection of 
the best action that has the maximum Q value has a 
probability of (1−ε) and an arbitrary action from all admissible 
actions is possible with small probability ε, regardless of the Q 
values. In this case ε was set at 10%. 

Using these ideas the Q learning algorithm evolves as 
follows. 

1. Initialize the matrix Q as zero matrix;  
2. During the exploitation period, for each bid:  

A. Randomly select the initial state;  
B. Do while not reach the end of exploitation:  

a.  Select one among all possible actions for 
the current state;  

b.  Using this possible action, consider to go to 
the next state;  

c.  Get the maximum Q value of the next state 
based on all possible actions; 

d. Compute the pay-off given by equation (1); 
e.   Set the next state as the current state;                    
End Do. 

End For. 
3. Select the bids with the best Q values with probability 
of (1−ε).  

V. PRELIMINARY RESULTS 

In this paper the test case was based on a simplified 
version of the Portuguese generation system, to allow a better 
analysis of the results from the Q Learning algorithm. We 
considered 22 hydro power plants having constant inflows and 
11 thermal (coal and CCGT) units. The generation mix also 
includes 5 reservoir pumping plants. In the simulations we 
used the 2013 historical generation profile for renewable units. 
The demand is assumed totally inelastic and prepared to pay 
the maximum price admitted in MIBEL, 180 €/MW.h. The 
used demand profile corresponds to the 2013 demand data. 
For simplification and to better understand the results it was 

considered that all generators have the same risk profile and 
that the maximum bid up and bid down were set at 5 €/MW.h 
and at -5 €/MW.h. For hydro power plants, we used the hydro 
condition of 2013 (average hydro year). 

A. Difinition of the learning parameters 

As indicated in (1), there are 2 parameters that have to be 
defined. Their values are typically case dependent, and in our 
work we tested several combinations and evaluated the 
corresponding global average market price. The criterion to 
select the final combination was to choose the learning 
parameters that lead to a higher market price, which means 
that the agents were more effective in maximizing their 
profit. In the first place, we set γ at 1 and tested different 
values for λ. Then for the λ associated with the largest 
average price that was obtained, we changed the value of γ to 
get the best combination. The results are presented in Table 1. 

 
Table 1. Testing different learning parameters. 

λ 
Average annual Market 

Price (€/MWh) 
γ Average annual Market 

Price (€/MWh) 

1 49,13 1 49,21 
0.75 49,15 0.75 49,41 
0.5 49,25 0.5 49,23 
0.25 48,95 0.25 49,24 

 
Although the differences among the annual average 

market prices are very small we can conclude that the best 
values for λ and for γ are 0,5 and 0.75. These values were 
used in the subsequent simulations. 

The ε parameter represents the probability of choosing an 
arbitrary action and it was set at 0.1. Using this value means 
that an agent can select a decision different from the best one, 
but it is important to “experiment” other actions rather than 
the one suggested by the largest Q values as a way to enhance 
the learning capabilities of the agents. 

B. Bidding strategies results 

Figure 4 shows the evolution of the bidding strategy along 
the first 3 months of the simulation period. In this figure we 
present the results for 4 types of power plants: run of river 
(yellow chart), hydro with pumping (blue chart), coal (brown 
chart and CCGT power plant (red chart).  

 
Figure 4. Example of hourly bidding strategies for different generation units. 

As we can see, there is an initial phase where the agents 
are exploring the strategies, and bid randomly to get the Q 
values. After the Q values are no longer increased, the agents 

Max bid up 

Max bid down 

Strategy (α) s1         s2  s3   s4  s5   s6      s7 



6 
 

tend to adopt a more “stable” strategy. In the case of hydro 
power plants, there is a small trend to bid down, because this 
bid price reduction guarantees a 100% of utilization of the 
available water. Apart from that, this strategy doesn’t also 
expose these agents to negative profits, because they have a 
zero generation cost. In the case of coal units, the biding trend 
is to bid up, because of the cost of coal, and a bid down 
strategy could originate negative profits. The CCGT agent 
converges to bid at its marginal cost. In this case, a bidding 
down strategy increases the danger of getting negative profits, 
and a bid up decision would mean putting these units out of 
the dispatch taking into account that they are currently the 
marginal technology in the Iberian market. This is explained 
because feed in generation has a large installed capacity and 
it has priority in the dispatch thus moving some technologies, 
namely CCGT, to the marginal position.  

 

 
Figure 5. Bidding strategies examples for a CCGT with less competition 

To further test the Q learning algorithm, we simulated the 
generation system again now removing 5 CCGT units. The 
bidding result is presented in Figure 5. As we can see, since 
there are less CCGT units in the bidding process, competition 
is more reduced and so the remaining CCGT’s are now 
bidding 1 €/MWh above as the initial step is finished. In other 
words, once some CCGT units are removed, we are 
increasing the market power of the agent that owns the 
remaining ones. To increase its profit, this agent adopts a bid 
up strategy that is it bids above its marginal cost thus reacting 
to a change of its environment. This shows that the agents 
learn by experience and by interacting the environment by the 
application of Q learning procedure. In our simulation the 
demand is inelastic (only hydro pumping have elasticity). The 
consideration of other elastic demand, as for example 
electrical vehicles may change this strategies.   

VI. CONCLUSIONS 

This paper presents the preliminary results obtained with 
an ABM model to simulate the electricity market focusing on 
hydro units and including a Q learning strategy. The results 
confirm that the agents have learning capabilities and are 
maximizing their profit using this reinforcement learning 
strategy. Nevertheless there are some issues to be enhanced. 
The Q learning algorithm needs some time to allow agents to 
learn by experience, that is, it takes some time to build the Q 
matrix by trial and error. On the other hand, the dynamic of 
electricity markets is large meaning that markets prices are 
volatile, due to the renewable variability and the variation in 
the hydro conditions. These changes can turn the learning 
process more complicated. Therefore, future developments 

include the combination of Q-learning with an internal 
optimization procedure to reduce the learning time and to 
enhance the capability of reacting to environmental changes. 
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