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Abstract

This paper presents results of a numerical study using finite-difference
methods of non-stationary heat transfer processes in permafrost from
heat sources generated by various technical systems (production wells)
as well as from cold sources used for thermal stabilization of the soil, for
example, seasonal cooling devices. In the simulation a number of cli-
matic factors (monthly average temperature variation and power of so-
lar radiation which are characteristic of a considered geographic place),
thermal parameters and lithology of the soil, as well as the technical
features of considered engineering facilities are taken into account.
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1 Introduction

Permafrost (a soil which conserves a negative temperature during, at least, two
years) takes place about 25% of the total land area of the globe [6]. For ex-
ample, in Alaska, these areas cover 80% of the total area, in Canada — 50%.
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Highlands may also be a permafrost zone (in China these areas takes place
11% of the territory, in Austria – 2%). In Russia permafrost covers 65% of the
total area, and reserves of underground ice permafrost are about 19000 km3,
which allows to call this permafrost as underground glaciation. It had been
thought that the average thickness of permafrost in these areas ranges from 10
to 800 meters. Ice-saturated rocks thawing due to global warming, or various
technogenic influences will be followed by the earth surface subsidence and
development of cryogenic hazardous geological processes, called thermokarst.
Extraction and transportation of oil and gas also has a significant effect on per-
mafrost, as heat flux from heated oil in wells and pipelines leads to permafrost
thawing. Note that more than 75% of all Russian buildings and structures
in the permafrost zone are constructed and operated on the base of principle
of conservation of frozen soil foundation. Therefore the problem of reducing
the intensity of thermal interaction in the “heat source — permafrost” zones
is of particular importance for solving problems of energy saving, environ-
mental protection, safety, cost savings and improve the reliability of various
engineering structures. In order to reduce permafrost thawing near engineer-
ing structures there are used different methods of thermal stabilization of soils
such as insulation materials and various devices to cool the soil, for example,
seasonal cooling devices (SCDs), which operate without any external source
of energy only by the laws of physics. In Russia there are produced various
kinds of SCDs that are used for thermal stabilization of soils. In this paper,
in simulation of thermal fields in the soil a seasonal vapor-fluid cooling device
is considered. It is consisted of a hermetically sealed and filled by a cooling
media metal pipe with diameter of 57 mm and length of 10 meters or more. It
includes an aerial parts (condenser fins) up to 2.5 meters and an underground
part. To simulate the propagation of heat from wells in permafrost the math-
ematical model is suggested, which takes into account not only climatic and
physical factors [2], but also thermophysical parameters of applied thermal in-
sulations, as well as any devices (such as SCDs) used for thermal stabilization
(cooling) of the soil. This leads to solution of three-dimensional quasilinear
thermal diffusivity equation for a Stephan problem in an area with engineering
objects having different specifications and sizes, as well as multi-scale thermal
insulation shell (thickness from a few millimeters to the sizes of domains up to
100 meters).

2 Mathematical model. Basic equations.

To describe heat (cold) propagation from various engineering devices in per-
mafrost a quasi-linear heat equation will be used. Applicability of this ap-
proach to solution of Stefan problem is presented in [3]. Choice of this ap-
proach without explicit separation of the boundary of phase transitions, when
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the volumetric or specific heat of melting is introduced using Dirac delta func-
tion as a point of phase transition heat in heat capacity [4], is justified by the
fact that in our case there are a number of moving fronts.
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Figure 1: The main heat flows and boundary conditions

In this problem cyclic movement of fronts of phase transformation (in this
case, we consider a zero temperature isotherm) arises due to seasonal climatic
changes in air temperature (upper layers of the soil cyclically freezes and
thaws). Other non-monotonic movement of the fronts of phase transforma-
tion arises in using SCDs for thermal stabilization (cooling) of the soil, when
the laws of physics in the cold time of the year turns it on to cool the soil, and
in the warmer months these devices are turned off.

Solar radiation can also affect the thermal processes in the soil. For ex-
ample, in spring this influence is very significant, when the air temperature is
still negative, but due to the power of solar radiation the surface temperature
is increased and became positive.

This paper presents results of numerical simulations of thermal fields from
different constructions in permafrost. Simulations of a well makes it possible
to choose an upper part of the well to another structure, in order to reduce
thermal influence on permafrost and to provide optimization of insulating shells
of the well. To minimize the influence of thermal effects that can occur when
different engineering units are used, and some simulations illustrate a process
of thermal stabilization of the soil, when a well operates.

The computational domain is a three-dimensional box Ω, where x and y
axes are parallel to the ground surface and z axis is directed downward. It
includes n engeneering constructions Ωi = Ωi(x, y, z), i = 1, . . . , n, (Fig. 1).
Let T = T (t, x, y, z) be soil temperature at point (x, y, z) at time moment t
and for t = 0 an initial temperature T0(x, y, z) is given in Ω.

In this case, following [3] and [4], to describe thermal fields in Ω taking into
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account the boundary conditions as in [2], let consider heat equation

ρ(cν(T ) + kδ(T − T ∗))
∂T

∂t
= div (λ(T )gradT ), (1)

where ρ is density [kg/m3], T ∗ is temperature of phase transition [K],

cν(T ) =

{

c1(x, y, z), T < T ∗,
c2(x, y, z), T > T ∗,

is specific heat [J/kg K],

λ(T ) =

{

λ1(x, y, z), T < T ∗,
λ2(x, y, z), T > T ∗,

is thermal conductivity coefficient [W/m K ],

k = k(x, y, z) is specific heat of phase transition, δ is the Dirac delta function.
For equation (1) we have an initial condition

T (0, x, y, z) = T0(x, y, z), (2)

and let describe in more detail a boundary condition on the surface of the soil.
Let q = q(t, x, y) be a total solar radiation in time moment t at point

(x, y), which depends on angle of incidence of the sun rays and on season in
considered region, defined by geographical coordinates. Let α = α(t, x, y) be
a part of energy that is formed to heat the soil. Then the energy for the soil
heating is q1 = αq.

Let q2 be a thermal exchange of the soil surface z = 0 and air. If Tair =
Tair(t, x, y) denotes the temperature in the surface layer of air, which varies
from time to time in accordance with the annual cycle of temperature. Then
q2 = b(Tair − T (t, x, y, 0)), where b = b(t, x, y) is a heat transfer coefficient.

On the other hand, z = 0 eliminates as a “heated black body” with emission
q3 = εσ(T 4(t, x, y, 0) − T 4

air). Here σ = 5, 67 · 10−8 W/(m2K4) is Stefan–
Boltzmann constant, ε = ε(t, x, y) is the coefficient of emissivity. Also on

surface z = 0 it is necessary to know an internal thermal flux q4 = λ∂T (t,x,y,0)
∂z

,
where λ = λ(T ) is thermal conductivity coefficient.

Thus, a boundary condition on the upper surface z = 0 is defined by an
flows balance equation, having the form

q1 + q2 = q3 + q4,

from which the following nonlinear boundary condition is obtained

αq + b(Tair − T (t, x, y, 0)) = εσ(T 4(t, x, y, 0)− T 4
air) + λ

∂T (t, x, y, 0)

∂z
. (3)

Note that the data for each month based on amount of solar radiation q
and air temperature Tair is defined by specifying latitude and longitude, and is
possible to be obtained from NASA climate databases. Other parameters b, ε,
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λ have to be given, and an iterative algorithm is developed to refine these values
in dependence with the known thermal and thermo-physical characteristics of
the soil in the considered region.

Usually, before starting construction in oil and gas fields a geophysical
surveys of the area takes place, and shallow (up to 15 meters) exploration
wells are drilled, in which temperature of the ground is measured for a number
of time points and geophysical characteristics of the soil may be determined.
These data is enough to specify parameters b, ε, λ, for a given geographic
location. But even if we know only temperature of permafrost Tp at the depth
below the zone of influence of cyclical changes of air temperature (according to
our calculations and experimental data, the depth is approximately 10 meters),
and in this case it is possible to determine these parameters too.

Let consider, for example, the results of calculations for one of the northern
Russian oil and gas fields for which the parameters in boundary condition (3)
have been defined. During numerical simulations of problem (1)–(3), with
using a finite-difference methods for temperature Tp = −1.5◦C the following
results are obtained. In Fig. 2b curves of temperature distribution are shown
as a functions of depth in Ω, obtained for different seasons.

Let assume that in the comutational domain there is no artifical inner heat
sources Ωi. Furthermore, it is assumed that there is no thermal insulation of
the ground surface (ripraps consisting for example of penopleks, sand and con-
crete) required to prevent premature thawing of permafrost base, as well as for
technical capability to deploy technology to start drilling operations. Compu-
tations of temperature distribution in the simulated soil for several years are
followed by an algorithm to specify parameters in boundary condition (3) so
as to obtain the desired temperature distribution in the soil. Computations
are performed up until the resulting temperatures in the soil with the chosen
parameters do match (with some accuracy) with an experimental data, and is
equal to Tp after 10 meters.

In Fig. 2a a comparison of the graphs for temperature changes in the soil
in the presence of a two-meter riprap on the surface of the soil, consisting of
sand (thickness 1.7 m) and concrete (thickness 0.30 m). Analysis of changes
in temperature depending with the depth shows that riprap is indeed prevents
heating in the summer, but also prevents penetration of cold in winter, which
may allow to coservate permafrost. It is possible to include a number of de-
vices appeared to be a cold or heat source in the ground. It is possible to
be, for example, wells and SCDs. To simulate the thermal fields from these
engineering devices on the specified boundaries of these objects Ωi in accor-
dance with specifications of these devices, we define temperatures Ti, which, in
general, vary with time or dependent with z. Thus, the boundary conditions
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Figure 2: Profiles of temperatures for soil with Tp = −1.5◦C: (a) — with
riprap, (b) — no riprap.

are completed by

T
∣

∣

∣

∣

Ωi

= Ti(t), i = 1, . . . , n. (4)

In order to use numerical methods on the faces of parallelepiped Ω, located
in the ground, we have to set, for example, boundary conditions

∂T

∂x

∣

∣

∣

∣

x=±Lx

=
∂T

∂y

∣

∣

∣

∣

y=±Ly

=
∂T

∂z

∣

∣

∣

∣

z=−Lz

= 0, (5)

which for larger sizes of the parallelepiped will have no essential influece on
the solution. When we set (5) let assume −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly,
−Lz ≤ z ≤ 0.

Thus, the simulation of heat transfer in three-dimensional domain with
the phase transition is reduced to solving the initial-boundary value problem
(1)–(5).

3 Numerical experiments

On the base of ideas in [4] a finite difference method is used with splitting by
the spatial variables in three-dimensional domain to solve the problem (1)–
(5). The base of this numerical method is an algorithm with good reliability
in finding thermal fields of underground pipelines [1, 5], but in view of speci-
ficity, related to the possible phase transitions in the soil [2]. We construct an
orthogonal grid, uniform, or condensing near the ground surface or to the sur-
faces of Ωi. The original equation for each spatial direction is approximated by
an implicit central-difference scheme and a three-point sweep method to solve
a system of linear differential algebraic equations is used. On surface z = 0,
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Figure 3: Termal fields for a non-insulated well

there is an algebraic equation of fourth degree, which is solved by Newton’s
method.

Consider a producing well operation with temperature +45◦C. Soil tem-
perature is Tp = −0.7◦C, radius of the wells is 0.089 m. As a basic soil
we will use a loam with the following parameters. Thermal conductivity:
frozen — 1.82W/(m K), melted — 1.58W/(m K), volumetric heat: frozen —
2130kJ/(m3 K), melted — 3140kJ/(m3 K), volumetric heat of phase transition
— 1.384·105kJ/(m3K).

There is a layer of riprap of 2.5 m. The riprap consists of three lay-
ers: penoplex (0.2 m), sand (2.0 m) and the concrete slab on the top (0.3
m). Parameters: concrete slab with density 2500kg/m3, thermal conductiv-
ity 1.69W/(m K), specific heat 0.84kJ/(kg K); sand with density 1600kg/m3,
thermal conductivity 0.47W/(m K), specific heat 0.84kJ/(kg K), penoplex with
density 35kg/m3, thermal conductivity 0.031W/(m K), specific heat
1.53kJ/(kg K).

In Fig. 3 thermal fields on February are shown for non-insulated well which
is in exploitation during 3 and 9 years. The upper figures show the vertical sec-
tion of the computational domain, the lower figures — the horisontal sections
in the depth of 10 meters.
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Figure 4: Thermal fields for an insulated well

As mentioned above it is required to minimize thermal effect on permafrost
from various engineering facilities in order to prevent any changes in the soil,
leading to accidents destruction wells and environment pollution. One such a
way is to isolate the upper part of production well by various methods. The
well has a cement shell with thickness of 0.176 m, and the the upper part up
to 22 m has two additional insulating shells: a penoplex layer is inserted up
to radius 0.410 m, cement — up to radius 0.5 m. In this case (see Fig. 4) the
calculations show how the front of propagation of phase transformation (zero
temperature isotherm, or the radius of thawing) is changed. The calculations
show that the additional insulation allows 2 to reduce the radius of thawing
from the well almost by 5 meters in 9 years of the well exploitation. To further
reduce the radii of thawing from the well for stabilization (cooling) of soil,
for example, SCDs may be used. These devices start to work, in our case,
when Tair < −5◦C, for warmer temperatures these devices are turned off. In
accordance with the technical specifications we can approximately assume that
the surface of SCDs during the operation is Tscd = Tair/3.

In Fig. 5 thermal fields for insulated well with 8 SCDs are shown. SCDs are
at the distance of 1 m from the well. The calculations show that SCDs using
allows to reduce radius of thawing at a depth of 10 meters for an insulated
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well for 9 years by 2 meters in addition.
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Figure 5: Thermal fields for an insulated well with 8 SCDs

4 Conclusion

On the basis of a mathematical model taking into account a number of factors
that influence on thermal field in permafrost a finite-difference method and a
software are developed for numerical studies and simulations of heat transfer
processes in upper layer of permafrost. In the proposed model the following
actual physical factors are taken into account: thermal diffusion properties of
soil, soil heterogeneity, heating the soil surface by air including heat emissiv-
ity, annual climatic cycle (monthly average air temperature and intensity of
solar radiation). Initial and boundary parameters may be adapted to a spe-
cific geographic location. The developed software package makes it possible to
carry out a series of numerical experiments to simulate thermal stabilization
of permafrost soil by SCDs, to make long-term predictions about permafrost
thawing in the presence of wells and other technical devices. The proposed
approach and the results of numerical simulations will allow experts to review
and make recommendations on optimal parameters of insulations and place-
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ment of wells and other technical systems in work sites of northern oil and gas
fields.
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