
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SIMULATION OF TRANSPORT PROTOCOLS OVER
WIRELESS COMMUNICATION NETWORKS

Hala ElAarag
Mostafa Bassiouni

School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816, U.S.A.

ABSTRACT

In this paper, we describe a general-purpose
communication network simulator that we designed to
examine the performance of transport protocols over
wireless networks. The general-purpose simulator can be
used to study various aspects of performance of
communication networks. In particular, we use it to
examine, evaluate and predict the performance of wireless
networks under a variety of the most commonly used
transport protocols. We also examine the use of newly
suggested protocols specifically designed for wireless
networks. In this paper, we present our models for each
protocol. We discuss various performance measures that
can be studied using our simulator. These measures are
hard to evaluate with analytical models.

1 INTRODUCTION

The explosive growth of wide-area cellular systems and
local-area wireless networks are just the beginning of �the
wireless revolution�. Mobile computers and their wireless
communication links will be an integral part of the future
internetworks. Making truly tetherless computing possible
demands that we carefully evaluate, enhance and perhaps
re-design our networks, systems, algorithms, and
applications.

Generally, wireless networks are composed of a
wired backbone network and a wireless network. The
wireless network is geographically divided into cells, each
of which contains a base station (BS) that provides a
connection end-point for the mobiles. The base stations are
connected to the wired infrastructure with fixed hosts (FH).
They provide a gateway for communication between the
wireless network and the backbone interconnect. Figure 1
illustrates a typical wireless network topology. Mobile
networks are fundamentally different from conventional
wired computer networks. One reason, among many
others, is that wired links have low bit error rates, as
1

Figure 1: Typical Wireless Network Topology

opposed to wireless links that suffer from high bit error
rates (BER).

UDP and TCP form the very core of today�s Internet.
However, they were designed for networks made up of
fixed hosts and wired links. Thus when a packet is lost
regular TCP, for example, assumes that it is due to
congestion. If regular TCP is used on a mobile network, it
will encounter packet losses that may be unrelated to
congestion. Nonetheless, these losses will trigger
congestion control procedures at the fixed host. These
procedures will result in significant reductions in
throughput and unacceptable interactive delays for active
connections. Thus severely degrading performance.

Several modifications have been proposed to the TCP
loss-recovery and congestion control mechanism to
improve data throughput in the event of random loss. Reno
TCP (Jacobson 1990, Stevens 1997) is an example of that.
It is the most widely used version of TCP on the Internet.

Several researchers proposed protocols to enhance the
performance of TCP on wireless networks. One example
is a mechanism called split TCP (Yavatkar and Bhagawat
1995, Bakre and Badrinath 1997, Brown and Singh 1997).

Fixed host
FH

 Mobile Host
MH

wired
wireless

Base
Station
 BS
235

ElAarag and Bassiouni

2 GENERAL PURPOSE COMMUNICATION
NETWORK SIMULATOR

We developed a general-purpose discrete event simulator
that models a multi-stage, multi server queuing network.
We used Concurrent C (Gehani 1986) as our simulation
language. Concurrent C is an extension of the C
programming language that provides concurrent
programming facilities. A concurrent C program is
structured as a set of processes that execute concurrently.
In our simulator, we model each queue and each server as a
Concurrent C process. This is a natural way to simulate
communication networks. In real networks, queues and
servers run independently and interact when necessary, so
as the processes. For example, the simple queuing system
in Figure 2 uses three processes: one for the source, one for
the queue, and one for the server. Each process performs a
well-defined series of operations independently.
Sometimes one of these operations involve interacting with
another process, e.g. a server taking the next item form the
queue.

Figure 2: A Simple Queuing Network

One important step in Concurrent C programming is to
identify the interactions between the processes and map
them into transactions calls. It is convenient to divide the
processes into two categories: active processes such as
sources and servers, and passive processes such as queues.
Passive processes usually wait for requests from active
processes. For example, the queue process has two types of
transactions: a �put� transaction and a �take� transaction.

2.1 STRUCTURE OF THE

SIMULATION PROGRAM

Our simulation program has seven basic types of processes.

The scheduler process manages the simulated time. It
maintains the simulated clock and advances it appropriately.
The simulated clock is independent of the real-time clock.
For each delay request from a process, the scheduler
determines the simulated time at which to re-activate the
process, and saves this in an �activation request� list. When
all the processes are waiting, the scheduler picks the next
process to run, advances the simulated clock to that time,
and reactivates the process. The simulated clock advances
only when all processes are waiting; thus any computation
done by a process takes place in zero simulated time. If
several processes are waiting to be reactivated at the same
simulated time, the scheduler awakens all of them
simultaneously. Thus at any given time each process has to
be in one of three states. Waiting for an explicit delay from

source queue server
12
the scheduler (waiting), computing in zero simulated time
(active), or waiting for an event other than a delay request
from the scheduler (passive).

The queue process can have several clients. Clients are
either consumers (�takers�) or producers (�putters�). For
example, a source process is a producer, a server is a
consumer for its input queue and a producer for its output
queue. The queues are of finite capacity with a DROPTAIL
policy. That is, arriving packets more than the maximum
number of packets that the queue can hold are dropped.

The source process generates the packets according to
the transport protocol used. We implemented several
transport protocols. User Datagram Protocol (UDP) and
several implementations of Transmission Control Protocol
(TCP): Tahoe TCP, Reno TCP and split TCP. These
protocols are described in Section 3.

The server process is a process that merely transfers
packets from their input queue to their output queue(s). If
the server is defined to be a base station then it also
determines which packets are lost due to the wireless link
BER. Packets are lost due to the wireless (lossy) link
according to an exponential distribution. The choice of the
exponential distribution for packet loss is motivated by the
work in (Balakrishnan et al. 1997). Balakrishnan et al.
showed that the performance results using an exponential
distribution for errors are also applicable under other
patterns of wireless loss. Bursts are also possible in this
error model because the standard deviation of the
exponential distribution is equal to its mean.

The sink process can be one of two kinds. A TCP sink
or a UDP sink. The TCP sink (MH) is responsible for
returning ACKs to the peer TCP source after processing it.
It generates one ACK per packet received. The ACK
returned represents the last in order packet it received. The
UDP sink discards each packet after processing it.

The source-server process performs the job of a
source and a server that we described earlier. It generates
packets according to the transport protocol used and also
determines if the packets are lost due to the wireless link
BER. The server-source is used in our split TCP model as
explained in Section 3.3.

The main process creates the other processes and
connects them together appropriately. Examples of parts of
the main process are provided in the next Section.

3 TRANSPORT PROTOCOLS

3.1 UDP

UDP is an unreliable, connectionless transport protocol. It
does not use acknowledgements to make sure messages
arrive, it does not order incoming packets and it does not
provide feedback to control the rate at which information
flows between the machines. Thus, UDP packets can be lost
or arrive faster than the recipient can process them. Figure 3
36

ElAarag and Bassiouni

shows the model for UDP for the network topology in Figure
1. Packets are issued at FH (a source process) according to a
Poisson distribution, λ represents the average of the inter-
arrival time of the packets at FH. The service rates at BS (a
server process) and MH (a sink process) are exponentially
distributed with means 1/µ1 and 1/µ2 respectively. Packets
are lost due to the wireless (lossy) link according to an ex-
ponential distribution with mean (1/p). The following code is
part of the main process that creates the topology of Figure 3:

/* create queues and servers */
 q1 = create queue(s, queue_size, makeName(�Q1�));
 q2 = create queue(s, queue_size, makeName(�Q2�));
 create source(s, q1, iit, servt1, sim_time, makeName(�Fixed host�));
create server(s, q1, q2, servt2, d2,p,makeName(�Base Station�));
create sink(s, q2, c_nullpid, servt2,d2, makeName(�Mobile host�));

Figure 3: UDP Model

3.2 TCP

TCP is a connection-oriented protocol. It is a reliable
transport protocol that adapts to the network requirements.
It regulates the number of packets it sends by inflating and
deflating a window. To do that the TCP sender uses the
cumulative acknowledgements (ACKs) sent by the
receiver. TCP also adapts to problems on the wired link.
The main problem is the delay caused by packet losses due
to congestion. Our TCP model is shown in Figure 4. This is
illustrated by the following code of the main process:

/* create queues and servers */
q1 = create queue(s, queue_size, makeName(�Q1:FH_BS�));
q2 = create queue(s, queue_size, makeName(�Q2:BS_MH�));
q3 = create queue(s, queue_size, makeName(�Q3:MH_BS�));
q4 = create queue(s, queue_size, makeName(�Q4:BS_FH�));
create source(s, q1,q4, servt1, d1,nGen,implem,init_cwnd, dupack_thresh,
ssthresh,W_max, makeName(�Fixed host�));
create server(s, q1, q2, servt2, d2, p,makeName(�Base Station�));
create sink(s, q2, q3, servt3, d2, makeName(�Mobile host�));
create server(s, q3, q4, servt4,d1, p,makeName(�Base Station_ack�));

3.2.1 Tahoe TCP

The congestion control scheme in Tahoe TCP in (Jacobson
1988) implementation has three main parts:

1. Slow-start
2. Congestion avoidance
3. Fast Retransmit.

FH BS MH

1-p
λ µ1 µ2 q1

q2
123
Figure 4: TCP Model

The Slow-start algorithm works as follows: the TCP

sender starts with a congestion window (cwnd) that is equal
to 1. For each received ACK, TCP exponentially increases
the window until it is equal to a threshold (ssthresh), then it
enters the congestion avoidance phase where it continues
to increase its cwnd linearly until it reaches the receiver�s
maximum advertised window.

TCP continually measures how long
acknowledgements take to return to determine which
packets have reached the receiver, and provides reliability
by retransmitting lost packets. For this purpose, it
maintains a running average of this delay (round trip delay)
and an estimate of the expected deviation from this
average. If the current delay is longer than the timeout
interval, TCP assumes that the packet was lost. TCP then
retransmits the lost packet.

TCP also assumes that the packet was lost if the sender
receives a number of duplicate acknowledgements (usually
three). This is because the receiver acknowledges the
highest in-order sequence number. If it receives out-of-
order packets, it also generates acknowledgements for the
same highest in-order sequence number and that results in
duplicate acknowledgements. TCP then activates the Fast
Retransmit algorithm. The Fast Retransmit algorithm
assumes that the missing packet starts with the sequence
number immediately after the number acknowledged by
the duplicate ACK� s, and thus retransmits it. TCP reacts
to any packet lost by:

1. Dropping ssthresh into half the current window or

2 (whichever is larger) to reduce the amount of
data.

2. Resetting its transmission (congestion) window
size to 1, thus activating the slow-start algorithm
to restrict the rate at which the window grows to
previous levels.

3. Resetting the retransmission timer to a backoff
interval that doubles with each consecutive
timeout according to Karn�s exponential timer

FH BS

µ1 µ2
-

MH

µ3

µ4

q1 q2

q3

q4

Window
adaptation
scheme
7

ElAarag and Bassiouni

backoff algorithm (Karn and Partridge 1991). This
also results in the reduction of the traffic load at
the intermediate links and therefore controls the
congestion in the network.

Roundtrip Time Estimation and Retransmission Timer
Selection: A timeout process is created by the source
process to calculate the timeout timer. Four variables are
used to estimate the roundtrip time and set the
retransmission timer (Fall and Floyd 1996): rtt, srtt, rttvar,
and backoff. Roundtrip time sample arrives with new
ACKs. The rtt sample is computed as the difference
between the current time and a time field in the ACK
packet, which is equal to the time the packet was issued at
the source. When the first sample is taken, its value is used
as the initial value for srtt. Half the first sample is used as
the initial value for rttvar. For subsequent samples, the
values are updated as follows:

The backoff is initially 1. The retransmission timer is set to
the current time plus

The backoff factor doubles each time a timeout occur to a
maximum of 64 (Karn�s exponential timer backoff (Comer
1991).

3.2.2 Reno TCP

Reno TCP is like Tahoe TCP except it includes fast
recovery. The TCP sender enters fast recovery if it receives
three duplicate acknowledgments. The sender retransmits
the lost packet and reduces ssthresh by half. Unlike TCP
Tahoe, the sender then does not enter slow start. It reduces
the value of the congestion window (cwnd) by half, then
increments it by one for each duplicate acknowledgement
received. When a �new� ACK is received, the sender exits

rttsrttsrtt ×+×=
8
1

8
7

srttrttrttrtt −×+×=
4
1var

4
3var

() 1 rttvar 4 srtt backoff +×+×
12

fast recovery, sets cwnd to ssthresh and enters the
congestion avoidance phase where it increases the window
linearly. A �new� ACK is an ACK with a value higher than
the highest seen so far i.e. a non-duplicate ACK.

3.3 Split TCP

The main idea behind the split connection approaches is to
isolate mobility and wireless related problems from the
existing network protocols. This is done by splitting the
TCP connection between the mobile host and the fixed host
into two separate connections: a wired connection between
the fixed host and the base station, and a wireless
connection between the base station and the mobile host. In
this way, the wired connection does not need have to
include changes in the existing software on the fixed host
while the wireless connection can use a mobile protocol
specialized to provide better performance.
 In our split mechanism model, the TCP connection is
split at BS. There are two TCP connections: one
connection between FH and BS where FH is the source and
BS is a sink, and another connection between BS and MH
where BS is the source (server-source process) and MH is
a sink. Bulk data are transferred via ftp from FH to BS and
from BS to MH. Packets are deleted from the buffer only
when BS receives an Ack from MH indicating that the
packet successfully arrived. Since Acks are cumulative, the
arrival of a new (non duplicate) Ack causes the removal of
all packets in the buffer with packet numbers less than or
equal to the number of the arriving Ack. Our model for
split TCP is shown in Figure 5. It is illustrated by the
following code from the main process:

/* create queues and servers */
q1 = create queue(s, queue_size, makeName(�Q1:FH_BS_ack�));
q2 = create queue(s, queue_size, makeName(�Q2:BS_MH�));
q3 = create queue(s, queue_size, makeName(�Q3:MH_BS�));
q4 = create queue(s, queue_size, makeName(�Q4:BS_FH�));
q5 = create queue(s, queue_size1, makeName(�Q5:FH_BS�));
buff=create queue(s,buff_size, makeName(�BS: buffer�));

 ss=create server_source(s, q2, q5,q3,buff, servt2,d2, p,nGen, implem,
init_cwnd, set_ssthresh, dupack_thresh,
ssthresh_wireless,W_max,nPkts,makeName(�Base Station�));
create source(s, ss,q4,q1,q5, servt1,d1, nGen,implem, dupack_thresh,
ssthresh_wired,W_max, makeName(�Fixed host�));
 create sink(s, q2, q3, servt3,d2, nPkts, makeName(�Mobile host�));
 create sink(s, q1, q4, servt4,d1, nPkts, makeName(�Base Station_ack�));

38

ElAarag and Bassiouni

 Figure 5: Model of Split TCP Connection

FH

BS-sink

q1

q3

µ1

µ4

buffer

BS
MH q2

q4

µ2 µ3

1-p

cwnd
4 PERFORMANCE MEASURES

There are many performance measures that we can study
using our simulator. These measures are hard to obtain
using analytical models. This makes simulation very
appealing in the study of communication networks. Some
of the measures we use are throughput, goodput, average
packet delay, transfer time, inter-arrival time of packets
and its jitter. The following is our definition to these
measures:

• Throughput is the number of packets per second
received by MH.

• Goodput is the number of useful data to the total
data sent. Goodput is an indication of the
utilization of the network.
• Wireless goodput is the ratio between the

number of packets received by MH to those
sent by BS. That is the goodput of the
wireless link.

• Wired goodput is the number of packets
received by BS to that sent by FH.

• Average packet delay is the average time the
packet stays in the system. It is calculated from
the time the packet is issued at FH until the time
its corresponding ACK is received.

• The transfer time is the time needed to transfer
certain number of packets.

• the inter-arrival time of packets is the average
inter-arrival time of packets arriving at MH

• delay jitter is the standard deviation of the inter-
arrival time of packets. The latter two measures
are very important to delay sensitive data like
multimedia application that have strict
requirements.
12
5 EXAMPLE SIMULATION

We ran experiments to evaluate and compare the
performance of the different transport protocols over
wireless networks. We tested the protocols and different
traffic loads and protocol and network parameters. This
Section illustrates an example of a simulation we ran to
study the effect of the different BER of the wireless link on
Tahoe TCP (end-to-end) and split TCP. We considered
BER ranging between 10-6 and 10-4 corresponding to
packet loss probability of 0.001 and 0.1 respectively. We
chose the network topology in Figure 1. This topology is
motivated by the recent experiments of TCP performance
over wireless mobile links; see for example (Bakshi et al.
1997, Balakrishnan et al. 1997). The simulation
environment used by Fall and Floyd (Fall and Floyd 1996)
to compare several TCP implementations on a wired
network is also similar to that of Figure 1 but with BS
replaced by a finite-buffer drop-tail gateway and MH
replaced by a wired data receiver. In our simulation
environment, the wired link between the fixed host and the
base station is of bandwidth 1.5Mb and delay (D1) of
10ms. The wireless link between the base station and the
mobile host is of bandwidth 0.8Mb and delay (D2) of
100ms. For TCP parameters, we had ssthresh = 32, Wmax
= 50, duplicate Ack threshold = 3, packet size = 1000
bytes, Ack size = 40 bytes, and Queue sizes = 50 packets.
Bulk data are transferred via ftp from FH to MH. Figures 6
and 7 show some of our results.
39

ElAarag and Bassiouni

Inter-arrival time in WANs

56
.3

56
.5
4

57
.6
5

62
.8
4

74
.8
4

11
8.
26

49
9.
07

56
.5
7

56
.9
6

58
.1
2

59
.1
8

66
.9
3

82
.1
2

32
9.
59

50
100
150
200
250
300
350
400
450
500

10
^-6

2x
10
^-6

5x
10
^-6

10
^-5

2x
10
^-5

5x
10
^-5

10
^-4

BER

in
te

ra
rr

iv
al

 ti
m

e
in

 m
s

end-to-end split

Figure 6: Inter-arrival Time of Packets. vs. BER of End-
to-end and Split Mechanisms in WANs

Figure 7: Jitter vs. BER of End-to-end and Split
Mechanisms in WANs

 From our simulations, we notice that the higher the
BER, the less the throughput and the wireless (and wired in
case of end-to-end) goodput, and the higher the average
inter-arrival time of packets at MH and its jitter, for both
split and end-to-end TCP in both LANs and WANs. We
also notice that the impact of increasing BER on split and
end-to-end TCP was the same in LANs and WANs.
Increasing BER one order of magnitude from 10-6 to 10-5
has a slight impact on performance of both
implementations. Both end-to-end and split TCP
implementations had comparable performance, in terms of
the four measures we used here, for BER higher than 10-5
in LANs and WANs. Increasing BER one order of
magnitude from 10-5 to 10-4 has a tremendous impact on
performance. Split TCP resulted in better overall
performance for BER higher than 10-5. For example, the
throughput of split at BER = 2 x 10-5 in LANs was 91.64
pkts/sec, almost double that of end-to-end, of throughput

Jitter in WANs

11
6

12
0

12
3 24
2 54
2

11
70

34
30

12
0

12
4

12
7 30
8 65
9

19
13

12
6

100

1100

2100

3100

10
^-6

2x
10
^-6

5x
10
^-6

10
^-5

2x
10
^-5

5x
10
^-5

10
^-4

 BER

jit
te

r i
n

m
s

end-to-end split
124
53.35 pkts/sec. There is also a colossal difference between
the performance of split and end-to-end in terms of the two
multimedia measures (inter-arrival time of packets and its
jitter). Split TCP behaved much better in those two metrics
which makes it more suitable for the transfer of multimedia
applications as shown in Figures 6 and 7. Also the split-
connection isolated the TCP source (FH) from the wireless
losses. BS performed all the retransmissions resulting from
the packet losses on the wireless link, resulting in a wired
goodput equal to 1.0. We also need to note here that in case
of split connection, the congestion window of FH becomes
large and does not suffer any deflating, thus stays large
resulting in high bandwidthutilization on the wired link.
Contrary to the congestion window of FH in case of end-
to-end, where it fluctuates rapidly (ElAarag and Bassiouni
1999).

6 CONCLUSION

In this paper we presented a general-purpose discrete event
network simulator. The simulator can be used to study
various aspects of communication networks. We used this
simulator to study the performance of several transport
protocols over wireless networks. We presented numerous
performance measures that we can study using the
simulator. These measures are hard to study with analytical
models.

ACKNOWLEDGMENT

This work has been supported by ARO under Grant No.
DAAH04-95-1-0250 and by an I-4 Corridor grant from
Harris Corporation and the State of Florida. The views and
conclusions herein are those of the authors and do not
represent the official policies of the funding agencies or the
University of Central Florida.

REFERENCES

Bakre A. and Bardinath B.R. 1997. Implementation and

performance evaluation of indirect TCP, IEEE
Transactions on Computers, Vol. 46, No. 3, March
1997, pp. 260-278.

Bakshi B. et al. 1997. Improving performance of TCP over
wireless networks, 17th International Conference on
Distributed Computing Systems, pp.365-373.

Balakrishnan H., Padmanabhan V., Seshan S., and Katz R.
1997. A comparison of mechanisms for improving tcp
performance over wireless links. IEEE/ACM
Transactions on Networking, Vol.5, No. 6, Dec. 1997.

Brown K. and Singh S. 1997. M-TCP: TCP for mobile
cellular networks. Computer Communication Review,
July 1997, pp. 19-43.

Comer D. 1991. Internetworking With TCP/IP, Vol.1, 2
&3, New York: Prentice Hall.
0

ElAarag and Bassiouni

ElAarag H. and Bassiouni M. 1999. Transport control
protocols for wireless connections. IEEE 49th
Vehicular Technology Conference, pp. 337-341.

Fall K. and Floyd S. 1996. Simulation based comparisons
of Tahoe, Reno, and SACK TCP. ACM Computer
Communication Review, 26(3), pp.5-21.

Gehani N. H., and Roome W. D. 1986. Concurrent C
Software- Practice and Experience.

Jacobson V. 1988. Congestion avoidance and control�.
SIGCOMM Symposium on Communications
Architectures and Protocols, pp. 314-329.
<ftp://ftp.ee.lbl.gov/papers/congavo
id.ps.Z> for an updated version.

Jacobson V. 1990. Modified TCP congestion avoidance
algorithm. Technical Report 30, April 1990. Available
at ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt

Karn P., and Partridge C. 1991. Improving round-trip time
estimates in reliable transport protocols. ACM
Transactions on Computer Systems, 9(4):364-373.

Stevens W.R. 1994. TCP/IP Illustrated, vol.1, New York:
Addison-Wesley.

Yavatkar R. and Bhagawat N. 1995. Improving end-to-end
performance of TCP over mobile internetworks.
Proceedings of the Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, pp. 146-
152.

AUTHOR BIOGRAPHIES

HALA A. ELAARAG is a Ph.D. candidate in the school
of Electrical Engineering and Computer Science at the
University of Central Florida. She received her M.Sc. and
B.Sc. from Alexandria University, 1991, 1989 respectively.
She is IEEE member. Her research interests include
wireless networks, parallel and distributed systems, RISC
architectures. Her email and web addresses are
<elaarag@cs.ucf.edu> and <www.cs.ucf.
edu/~elaarag/>.

MOSTAFA BASSIOUNI is a professor in the school of
Electrical Engineering and Computer Science at the
University of Central Florida. His research interests
include distributed simulation, computer networks, and
real-time protocols. His email and web addresses are
<bassi@cs.ucf.edu> and <www.cs.ucf.
edu/csdept/faculty/bassi.html>

1241

