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ABSTRACT 
 
In this paper, we describe a general-purpose 
communication network simulator that we designed to 
examine the performance of transport protocols over 
wireless networks. The general-purpose simulator can be 
used to study various aspects of performance of 
communication networks. In particular, we use it to 
examine, evaluate and predict the performance of wireless 
networks under a variety of the most commonly used 
transport protocols. We also examine the use of newly 
suggested protocols specifically designed for wireless 
networks. In this paper, we present our models for each 
protocol. We discuss various performance measures that 
can be studied using our simulator. These measures are 
hard to evaluate with analytical models.  
 
1 INTRODUCTION 
 
The explosive growth of wide-area cellular systems and 
local-area wireless networks are just the beginning of  �the 
wireless revolution�. Mobile computers and their wireless 
communication links will be an integral part of the future 
internetworks. Making truly tetherless computing possible 
demands that we carefully evaluate, enhance and perhaps 
re-design our networks, systems, algorithms, and 
applications.  

Generally, wireless networks are composed of a 
wired backbone network and a wireless network. The 
wireless network is geographically divided into cells, each 
of which contains a base station (BS) that provides a 
connection end-point for the mobiles. The base stations are 
connected to the wired infrastructure with fixed hosts (FH). 
They provide a gateway for communication between the 
wireless network and the backbone interconnect. Figure 1 
illustrates a typical wireless network topology. Mobile 
networks are fundamentally different from conventional 
wired computer networks. One reason, among many 
others, is that wired links have low bit error rates, as  
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Figure 1: Typical Wireless Network Topology 
 

opposed to wireless links that suffer from high bit error 
rates (BER).  

UDP and TCP form the very core of today�s Internet. 
However, they were designed for networks made up of 
fixed hosts and wired links. Thus when a packet is lost 
regular TCP, for example, assumes that it is due to 
congestion. If regular TCP is used on a mobile network, it 
will encounter packet losses that may be unrelated to 
congestion. Nonetheless, these losses will trigger 
congestion control procedures at the fixed host. These 
procedures will result in significant reductions in 
throughput and unacceptable interactive delays for active 
connections. Thus severely degrading performance.  

Several modifications have been proposed to the TCP 
loss-recovery and congestion control mechanism to 
improve data throughput in the event of random loss. Reno 
TCP (Jacobson 1990, Stevens 1997) is an example of that. 
It is the most widely used version of TCP on the Internet. 

Several researchers proposed protocols to enhance the 
performance of TCP on wireless networks.  One example 
is a mechanism called split TCP (Yavatkar and Bhagawat 
1995, Bakre and Badrinath 1997, Brown and Singh 1997). 
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2 GENERAL PURPOSE COMMUNICATION 
NETWORK SIMULATOR 

 
We developed a general-purpose discrete event simulator 
that models a multi-stage, multi server queuing network. 
We used Concurrent C (Gehani 1986) as our simulation 
language. Concurrent C is an extension of the C 
programming language that provides concurrent 
programming facilities. A concurrent C program is 
structured as a set of processes that execute concurrently. 
In our simulator, we model each queue and each server as a 
Concurrent C process.  This is a natural way to simulate 
communication networks. In real networks, queues and 
servers run independently and interact when necessary, so 
as the processes. For example, the simple queuing system 
in Figure 2 uses three processes: one for the source, one for 
the queue, and one for the server. Each process performs a 
well-defined series of operations independently. 
Sometimes one of these operations involve interacting with 
another process, e.g. a server taking the next item form the 
queue. 

Figure 2: A Simple Queuing Network 
 

One important step in Concurrent C programming is to 
identify the interactions between the processes and map 
them into transactions calls. It is convenient to divide the 
processes into two categories: active processes such as 
sources and servers, and passive processes such as queues. 
Passive processes usually wait for requests from active 
processes. For example, the queue process has two types of 
transactions: a �put� transaction and a �take� transaction.  

 
2.1 STRUCTURE OF THE  

SIMULATION PROGRAM 
 
Our simulation program has seven basic types of processes. 

The scheduler process manages the simulated time. It 
maintains the simulated clock and advances it appropriately. 
The simulated clock is independent of the real-time clock. 
For each delay request from a process, the scheduler 
determines the simulated time at which to re-activate the 
process, and saves this in an �activation request� list. When 
all the processes are waiting, the scheduler picks the next 
process to run, advances the simulated clock to that time, 
and reactivates the process. The simulated clock advances 
only when all processes are waiting; thus any computation 
done by a process takes place in zero simulated time. If 
several processes are waiting to be reactivated at the same 
simulated time, the scheduler awakens all of them 
simultaneously. Thus at any given time each process has to 
be in one of three states. Waiting for an explicit delay from 

source queue server 
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the scheduler (waiting), computing in zero simulated time 
(active), or waiting for an event other than a delay request 
from the scheduler (passive).  

The queue process can have several clients. Clients are 
either consumers (�takers�) or producers (�putters�). For 
example, a source process is a producer, a server is a 
consumer for its input queue and a producer for its output 
queue. The queues are of finite capacity with a DROPTAIL 
policy. That is, arriving packets more than the maximum 
number of packets that the queue can hold are dropped.  

The source process generates the packets according to 
the transport protocol used. We implemented several 
transport protocols. User Datagram Protocol (UDP) and 
several implementations of Transmission Control Protocol 
(TCP): Tahoe TCP, Reno TCP and split TCP. These 
protocols are described in Section 3. 

The server process is a process that merely transfers 
packets from their input queue to their output queue(s). If 
the server is defined to be a base station then it also 
determines which packets are lost due to the wireless link 
BER. Packets are lost due to the wireless (lossy) link 
according to an exponential distribution. The choice of the 
exponential distribution for packet loss is motivated by the 
work in (Balakrishnan et al. 1997). Balakrishnan et al. 
showed that the performance results using an exponential 
distribution for errors are also applicable under other 
patterns of wireless loss. Bursts are also possible in this 
error model because the standard deviation of the 
exponential distribution is equal to its mean. 

The sink process can be one of two kinds. A TCP sink 
or a UDP sink. The TCP sink (MH) is responsible for 
returning ACKs to the peer TCP source after processing it. 
It generates one ACK per packet received. The ACK 
returned represents the last in order packet it received. The 
UDP sink discards each packet after processing it. 

The source-server process performs the job of a 
source and a server that we described earlier. It generates 
packets according to the transport protocol used and also 
determines if the packets are lost due to the wireless link 
BER. The server-source is used in our split TCP model as 
explained in Section 3.3. 

The main process creates the other processes and 
connects them together appropriately. Examples of parts of 
the main process are provided in the next Section. 

 
3 TRANSPORT PROTOCOLS 
 
3.1 UDP 
 
UDP is an unreliable, connectionless transport protocol. It 
does not use acknowledgements to make sure messages 
arrive, it does not order incoming packets and it does not 
provide feedback to control the rate at which information 
flows between the machines. Thus, UDP packets can be lost 
or arrive faster than the recipient can process them. Figure 3 
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shows the model for UDP for the network topology in Figure 
1. Packets are issued at FH (a source process) according to a 
Poisson distribution, λ represents the average of the inter-
arrival time of the packets at FH. The service rates at BS (a 
server process) and MH (a sink process) are exponentially 
distributed with means 1/µ1 and 1/µ2 respectively. Packets 
are lost due to the wireless (lossy) link according to an ex-
ponential distribution with mean (1/p).  The following code is 
part of the main process that creates the topology of Figure 3: 
 
/* create queues and servers */ 
 q1 = create queue(s, queue_size, makeName(�Q1�)); 
 q2 = create queue(s, queue_size, makeName(�Q2�)); 
 create source(s, q1, iit, servt1, sim_time, makeName(�Fixed host�)); 
create server(s, q1, q2, servt2, d2,p,makeName(�Base Station�)); 
create sink(s, q2, c_nullpid, servt2,d2, makeName(�Mobile host�)); 
 

Figure 3: UDP Model 

 
3.2 TCP 
 
TCP is a connection-oriented protocol. It is a reliable 
transport protocol that adapts to the network requirements. 
It regulates the number of packets it sends by inflating and 
deflating a window. To do that the TCP sender uses the 
cumulative acknowledgements (ACKs) sent by the 
receiver. TCP also adapts to problems on the wired link. 
The main problem is the delay caused by packet losses due 
to congestion. Our TCP model is shown in Figure 4. This is 
illustrated by the following code of the main process: 
 
/* create queues and servers */ 
q1 = create queue(s, queue_size, makeName(�Q1:FH_BS�)); 
q2 = create queue(s, queue_size, makeName(�Q2:BS_MH�)); 
q3 = create queue(s, queue_size, makeName(�Q3:MH_BS�)); 
q4 = create queue(s, queue_size, makeName(�Q4:BS_FH�)); 
create source(s, q1,q4, servt1, d1,nGen,implem,init_cwnd, dupack_thresh, 
ssthresh,W_max, makeName(�Fixed host�)); 
create server(s, q1, q2, servt2, d2, p,makeName(�Base Station�)); 
create sink(s, q2, q3, servt3, d2, makeName(�Mobile host�)); 
create server(s, q3, q4, servt4,d1, p,makeName(�Base Station_ack�)); 

 
3.2.1 Tahoe TCP 
 
The congestion control scheme in Tahoe TCP in (Jacobson 
1988) implementation has three main parts: 
 

1. Slow-start 
2. Congestion avoidance 
3. Fast Retransmit. 

FH BS MH 

1-p 
λ µ1 µ2 q1 

q2 
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Figure 4: TCP Model 
 
The Slow-start algorithm works as follows: the TCP 

sender starts with a congestion window (cwnd) that is equal 
to 1. For each received ACK, TCP exponentially increases 
the window until it is equal to a threshold (ssthresh), then it 
enters the congestion avoidance phase where it continues 
to increase its cwnd linearly until it reaches the receiver�s 
maximum advertised window. 

TCP continually measures how long 
acknowledgements take to return to determine which 
packets have reached the receiver, and provides reliability 
by retransmitting lost packets. For this purpose, it 
maintains a running average of this delay (round trip delay) 
and an estimate of the expected deviation from this 
average. If the current delay is longer than the timeout 
interval, TCP assumes that the packet was lost. TCP then 
retransmits the lost packet.  

TCP also assumes that the packet was lost if the sender 
receives a number of duplicate acknowledgements (usually 
three). This is because the receiver acknowledges the 
highest in-order sequence number. If it receives out-of-
order packets, it also generates acknowledgements for the 
same highest in-order sequence number and that results in 
duplicate acknowledgements. TCP then activates the Fast 
Retransmit algorithm. The Fast Retransmit algorithm 
assumes that the missing packet starts with the sequence 
number immediately after the number acknowledged by 
the duplicate ACK� s, and thus retransmits it.   TCP reacts 
to any packet lost by: 

 
1. Dropping ssthresh into half the current window or 

2 (whichever is larger) to reduce the amount of 
data. 

2. Resetting its transmission (congestion) window 
size to 1, thus activating the slow-start algorithm 
to restrict the rate at which the window grows to 
previous levels. 

3. Resetting the retransmission timer to a backoff 
interval that doubles with each consecutive 
timeout according to Karn�s exponential timer 

FH BS 

µ1 µ2 
-

MH 
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q4 
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backoff algorithm (Karn and Partridge 1991). This 
also results in the reduction of the traffic load at 
the intermediate links and therefore controls the 
congestion in the network. 

 
Roundtrip Time Estimation and Retransmission Timer 
Selection: A timeout process is created by the source 
process to calculate the timeout timer. Four variables are 
used to estimate the roundtrip time and set the 
retransmission timer (Fall and Floyd 1996): rtt, srtt, rttvar, 
and backoff. Roundtrip time sample arrives with new 
ACKs. The rtt sample is computed as the difference 
between the current time and a time field in the ACK 
packet, which is equal to the time the packet was issued at 
the source. When the first sample is taken, its value is used 
as the initial value for srtt. Half the first sample is used as 
the initial value for rttvar. For subsequent samples, the 
values are updated as follows: 
 

 

 
The backoff  is initially 1. The retransmission timer is set to 
the current time plus 
 

 
The backoff factor doubles each time a timeout occur to a 
maximum of 64 (Karn�s exponential timer backoff (Comer 
1991). 
 
3.2.2 Reno TCP 
 
Reno TCP is like Tahoe TCP except it includes fast 
recovery. The TCP sender enters fast recovery if it receives 
three duplicate acknowledgments. The sender retransmits 
the lost packet and reduces ssthresh by half. Unlike TCP 
Tahoe, the sender then does not enter slow start. It reduces 
the value of the congestion window (cwnd) by half, then 
increments it by one for each duplicate acknowledgement 
received. When a �new� ACK is received, the sender exits 

rttsrttsrtt ×+×=
8
1

8
7

srttrttrttrtt −×+×=
4
1var

4
3var

( ) 1 rttvar   4 srtt  backoff +×+×
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fast recovery, sets cwnd to ssthresh and enters the 
congestion avoidance phase where it increases the window 
linearly. A �new� ACK is an ACK with a value higher than 
the highest seen so far i.e. a non-duplicate ACK. 
 
3.3 Split TCP 
 
The main idea behind the split connection approaches is to 
isolate mobility and wireless related problems from the 
existing network protocols. This is done by splitting the 
TCP connection between the mobile host and the fixed host 
into two separate connections: a wired connection between 
the fixed host and the base station, and a wireless 
connection between the base station and the mobile host. In 
this way, the wired connection does not need have to 
include changes in the existing software on the fixed host 
while the wireless connection can use a mobile protocol 
specialized to provide better performance. 
 In our split mechanism model, the TCP connection is 
split at BS. There are two TCP connections: one 
connection between FH and BS where FH is the source and 
BS is a sink, and another connection between BS and MH 
where BS is the source (server-source process) and MH is 
a sink. Bulk data are transferred via ftp from FH to BS and 
from BS to MH. Packets are deleted from the buffer only 
when BS receives an Ack from MH indicating that the 
packet successfully arrived. Since Acks are cumulative, the 
arrival of a new (non duplicate) Ack causes the removal of 
all packets in the buffer with packet numbers less than or 
equal to the number of the arriving Ack. Our model for 
split TCP is shown in Figure 5. It is illustrated by the 
following code from the main process: 
 
/* create queues and servers */ 
q1 = create queue(s, queue_size, makeName(�Q1:FH_BS_ack�)); 
q2 = create queue(s, queue_size, makeName(�Q2:BS_MH�)); 
q3 = create queue(s, queue_size, makeName(�Q3:MH_BS�)); 
q4 = create queue(s, queue_size, makeName(�Q4:BS_FH�)); 
q5 = create queue(s, queue_size1, makeName(�Q5:FH_BS�)); 
buff=create queue(s,buff_size, makeName(�BS: buffer�)); 
 
 ss=create server_source(s, q2, q5,q3,buff, servt2,d2, p,nGen, implem, 
init_cwnd, set_ssthresh, dupack_thresh, 
ssthresh_wireless,W_max,nPkts,makeName(�Base Station�)); 
create source(s, ss,q4,q1,q5, servt1,d1, nGen,implem, dupack_thresh, 
ssthresh_wired,W_max, makeName(�Fixed host�)); 
 create sink(s, q2, q3, servt3,d2, nPkts, makeName(�Mobile host�)); 
 create sink(s, q1, q4, servt4,d1, nPkts, makeName(�Base Station_ack�)); 
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                Figure 5: Model of Split TCP Connection 
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4 PERFORMANCE MEASURES 
 
There are many performance measures that we can study 
using our simulator. These measures are hard to obtain 
using analytical models. This makes simulation very 
appealing in the study of communication networks. Some 
of the measures we use are throughput, goodput, average 
packet delay, transfer time, inter-arrival time of packets 
and its jitter. The following is our definition to these 
measures: 
 

• Throughput is the number of packets per second 
received by MH.  

• Goodput is the number of useful data to the total 
data sent. Goodput is an indication of the 
utilization of the network.  
• Wireless goodput is the ratio between the 

number of packets received by MH to those 
sent by BS. That is the goodput of the 
wireless link.  

• Wired goodput is the number of packets 
received by BS to that sent by FH. 

• Average packet delay is the average time the 
packet stays in the system. It is calculated from 
the time the packet is issued at FH until the time 
its corresponding ACK is received.  

• The transfer time is the time needed to transfer 
certain number of packets. 

• the inter-arrival time of packets is the average 
inter-arrival time of packets arriving at MH 

• delay jitter is the standard deviation of the inter-
arrival time of packets. The latter two measures 
are very important to delay sensitive data like 
multimedia application that have strict 
requirements. 
12
5 EXAMPLE SIMULATION 
 
We ran experiments to evaluate and compare the 
performance of the different transport protocols over 
wireless networks. We tested the protocols and different 
traffic loads and protocol and network parameters. This 
Section illustrates an example of a simulation we ran to 
study the effect of the different BER of the wireless link on 
Tahoe TCP (end-to-end) and split TCP. We considered 
BER ranging between 10-6 and 10-4 corresponding to 
packet loss probability of 0.001 and 0.1 respectively. We 
chose the network topology in Figure 1. This topology is 
motivated by the recent experiments of TCP performance 
over wireless mobile links; see for example (Bakshi et al. 
1997, Balakrishnan et al. 1997). The simulation 
environment used by Fall and Floyd (Fall and Floyd 1996) 
to compare several TCP implementations on a wired 
network is also similar to that of Figure 1 but with BS 
replaced by a finite-buffer drop-tail gateway and MH 
replaced by a wired data receiver. In our simulation 
environment, the wired link between the fixed host and the 
base station is of bandwidth 1.5Mb and delay (D1) of 
10ms. The wireless link between the base station and the 
mobile host is of bandwidth 0.8Mb and delay (D2) of 
100ms. For TCP parameters, we had ssthresh = 32, Wmax 
= 50, duplicate Ack threshold = 3, packet size = 1000 
bytes, Ack size = 40 bytes, and Queue sizes = 50 packets. 
Bulk data are transferred via ftp from FH to MH. Figures 6 
and 7 show some of our results.  
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Inter-arrival time in WANs
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Figure 6:  Inter-arrival Time of Packets. vs. BER of End-
to-end and Split Mechanisms in WANs 

Figure 7: Jitter vs. BER of End-to-end and Split 
Mechanisms in WANs 
 
 From our simulations, we notice that the higher the 
BER, the less the throughput and the wireless (and wired in 
case of end-to-end) goodput, and the higher the average 
inter-arrival time of packets at MH and its jitter, for both 
split and end-to-end TCP in both LANs and WANs. We 
also notice that the impact of increasing BER on split and 
end-to-end TCP was the same in LANs and WANs. 
Increasing BER one order of magnitude from 10-6 to 10-5 
has a slight impact on performance of both 
implementations. Both end-to-end and split TCP 
implementations had comparable performance, in terms of 
the four measures we used here, for BER higher than 10-5 
in LANs and WANs. Increasing BER one order of 
magnitude from 10-5 to 10-4 has a tremendous impact on 
performance. Split TCP resulted in better overall 
performance for BER higher than 10-5. For example, the 
throughput of split at BER = 2 x 10-5  in LANs was 91.64 
pkts/sec, almost double that of end-to-end, of throughput 
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53.35 pkts/sec. There is also a colossal difference between 
the performance of split and end-to-end in terms of the two 
multimedia measures (inter-arrival time of packets and its 
jitter). Split TCP behaved much better in those two metrics 
which makes it more suitable for the transfer of multimedia 
applications as shown in Figures 6 and 7. Also the split-
connection isolated the TCP source (FH) from the wireless 
losses. BS performed all the retransmissions resulting from 
the packet losses on the wireless link, resulting in a wired 
goodput equal to 1.0. We also need to note here that in case 
of split connection, the congestion window of FH becomes 
large and does not suffer any deflating, thus stays large 
resulting in high bandwidthutilization on the wired link. 
Contrary to the congestion window of FH in case of end-
to-end, where it fluctuates rapidly (ElAarag and Bassiouni 
1999). 
 
6 CONCLUSION 
 
In this paper we presented a general-purpose discrete event 
network simulator. The simulator can be used to study 
various aspects of communication networks. We used this 
simulator to study the performance of several transport 
protocols over wireless networks. We presented numerous 
performance measures that we can study using the 
simulator. These measures are hard to study with analytical 
models. 
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