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The objective of this paper is to study the vortex shedding from a circular cylinder near a 
moving ground; this is done using the Vortex Method. A moving ground has been widely 
used in the field of experimental vehicle aerodynamics, especially of high-performance 
racing cars, to properly consider the ground effect on the vehicles aerodynamic. In 
experimental work as well as in numerical simulations, the ground plane develops a 
boundary layer that interferes with the body viscous wake, leading to not so precise 
results. A ground moving with the incoming flow velocity, however, does not allow the 
development of a boundary layer. The results of our numerical simulations show that the 
critical drag behavior is directly related to a global change in the wake structure of the 
cylinder in the ground effect. Comparisons with experimental data are encouraging. 
Keywords: moving ground, near wake structure, aerodynamic loads, vortex method 
 
 
 
 
 

Introduction 

1The flow around circular cylinders has been extensively studied 

due to its importance in many practical applications, such as heat 

exchangers, chimneys and off-shore platforms. In scientific terms, 

the flow around circular cylinders includes a variety of fluid 

dynamics phenomena, such as separation, vortex shedding and the 

transition to turbulence. The mechanisms of vortex shedding and its 

suppression have significant effects on the various fluid-mechanical 

properties of practical interest: flow-induced forces, vibrations and 

noises, and the efficiencies of heat and mass transfer, for example. 

Cylinders having a two-dimensional structure are very suitable for 

restricting the complexity and thus observing the fundamental 

features of the flow. 

The fluid flow around a circular cylinder close to a plane wall is 

governed not only by the Reynolds number but also by the gap 

between the cylinder and the ground, h, characterized by the gap 

ratio h/d (d is cylinder diameter). The fundamental effects of gap 

ratio have been observed by Taneda (1965), Roshko et al. (1975), 

Bearman and Zdravkovich (1978), Burest and Lanciotti (1979), 

Angrilli et al. (1982), Grass et al. (1984), Zdravkovich (1985a), 

Price et al. (2002) and Lin et al. (2005). 

The influence of the boundary layer that develops on the ground 

and interferes with the body viscous wake is complex and is still 

unclear despite several intensive studies reported so far. Roshko et 

al. (1975) measured the time-averaged drag and lift coefficients, CD 

and CL, for a circular cylinder placed near a fixed wall in a wind 

tunnel at Re = 2.0 x 104, which lies in the upper-subcritical flow 

regime; they showed that CD rapidly decreased and CL increased as 

the cylinder came close to the wall. Zdravkovich (1985b) observed, 

in his force measurements performed at 4.8 x 104 < Re < 3.0 x 105, 

that the rapid decrease in drag occurred as the gap was reduced to 

less than the thickness of the boundary layer δ/d on the ground, and 

concluded that the variation of CD was dominated by h/δ rather than 

by the conventional gap ratio h/d. He also noted that the CL could be 

significantly affected by the state of the boundary layer, although it 

was insensitive to the thickness of the boundary layer. 

Zdravkovich (2003) reported the drag behavior for circular 

cylinder placed near a ground running at the same speed as the 

freestream for higher Reynolds number of 2.5 x 105, which lies 

within the critical flow regime rather than the subcritical flow 

regime. The experiment by Zdravkovich (2003) showed some 
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differences to all the above studies. First, practically no boundary 

layer was developed on the ground. Second, the decrease in drag 

due to the decrease in h/d did not occur in his measurements. The 

differences found were attributed to the non-existence of the wall 

boundary layer or the higher Reynolds number that seems to be 

within the critical flow regime rather than within the sub-critical 

flow regime, or any other influencing factors. 

Nishino (2007) presented experimental results of a circular 

cylinder with an aspect ratio of 8.33, with and without end-plates, 

placed near and parallel to a ground running at the same speed as the 

freestream; on the ground surface almost none boundary layer 

development was observed. Measurements were carried out at two 

upper-subcritical Reynolds numbers of 0.4 and 1.0 x 105. The results 

produced new insights into the physics of the phenomena. 

According to experiments for the cylinder with end-plates on which 

the oil flow patterns were observed to be essentially two-

dimensional the drag rapidly decreases as h/d decreases to less than 

1.0, but become constant for h/d less than 0.85, unlike the usually 

observed results obtained with a fixed ground (as will be plotted 

later in Fig. 6(a)). 

This paper describes a mesh-free method used to calculate 

global as well as local quantities of a high Reynolds number flow 

around a circular cylinder located near a moving ground. The two-

dimensional aerodynamic characteristics are investigated at a 

Reynolds number of 1.0 x 105; due to this fact, even with such a 

high Reynolds number value, no attempt for turbulence modeling 

were made once these aspects have a strong three-dimensional 

component; see Alcântara Pereira et al. (2002). We use the Vortex 

Method to analyze the influence of the ground on the flow and force 

characteristics; with a ground running at the same speed as the 

freestream, no shear layer develops on its surface and, therefore, no 

vorticity generation is necessary except on the cylinder surface. 

Comparisons are made with experimental results presented by 

Nishino (2007).  

Vortex Methods have been developed and applied for the 

analysis of complex, unsteady and vortical flows, because they 

consist of simple algorithm based on physics of flow (Kamemoto, 

2004). Important features of the Vortex Method (Chorin, 1973; 

Leonard, 1980; Sarpakaya, 1989; Lewis, 1999; Kamemoto, 2004; 

Alcântara Pereira et al., 2004; Stock 2007) are:  

(i) It is a numerical technique suitable for the solution of 

convection/diffusion type equations like the Navier-Stokes ones;  

(ii) It is a suitable technique for direct simulation and large-

eddy simulation; 
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(iii) It is a mesh free technique; the vorticity field is 

represented by a cloud of discrete free vortices that move with the 

fluid velocity. 

Vortex cloud simulation offers a number of advantages over the 

more traditional Eulerian schemes for the analysis of the external 

flow that develops in a large domain; the main reasons are: 

(i)  As a fully mesh-less scheme, no grid is necessary; 

(ii)  The computational efforts are directed only to the regions 

with non-zero vorticity and not to all the domain points as it is done 

in the Eulerian formulations; 

(iii)  The far away downstream boundary condition is taken 

care automatically, which is relevant for the simulation of the flow 

around a bluff body (or an oscillating body) that has a wide viscous 

wake. 

Nomenclature 

CLA  = Mean lift coefficient amplitude 

DC  = Drag coefficient 

LC  = Lift coefficient 

PC  = Pressure coefficient 

d  = Cylinder diameter 

f  = Vortex shedding frequency 

G = Green´s function 

h = Gap between the cylinder and the ground 

K = Biot-Savart kernell 

n = Coordinate normal to solid surface 

p  = Pressure field 

Re  = Reynolds number 

S  = Domain boundary 

1S  = Body surface 

2S  = Ground surface 

∞S  = Far away boundary 

tS  = Strouhal number 

U = Uniform incoming flow 

u  = Velocity field 

ui  = Velocity induced by the incident flow 

ub  = Velocity induced by the solid surfaces 

uv  = Velocity induced by the vortex cloud 

Y  = Specific work 

 

Greek Symbols 

β = Panel angle 

Γ  = Vortex strength 

∆S = Panel length 

σς  = Vorticity Gaussian distribution 

θ = Clockwise angle starting from the stagnation point 

υ  = Kinematic viscosity 

σ = Core of a Lamb vortex 

τ  = Coordinate tangent to solid surface 

χ  = Random walk displacement 

ψ = Source strength per length 

�  = Fluid domain 

ω  = Vorticity field 

ω  = Component of the vorticity field 

Mathematical Formulation 

Consider the flow around a circular cylinder immersed in a large 

fluid region bounded by a moving plane surface, as shown in Fig. 1. 

A uniform incoming flow with freestream velocity U  from left to 

right is assumed. The fluid is Newtonian with constant properties 

and flowing in a two-dimensional plane; the compressibility effects 

are neglected. Figure 1 shows the domain Ω  with 

boundary ∞∪∪= SSSS 21 , S1 being the body surface, S2 the 

moving plane running at the same speed as the incident flow and 

∞S the far away boundary. 

 

 

 

 

Figure 1. Flow around a circular cylinder near a moving ground. 

 
 

Due to the no-slip condition, a shear flow is set on the cylinder 

surface and, as a consequence, vorticity is generated. The vorticity 

that develops in the body boundary layer is carried downstream into 

the viscous wake; further developments of this wake will be 

influenced by the presence of the nearby moving ground. 

As there is no shear flow on the surface of the moving ground, 

no vorticity is generated as already mentioned. However, it is worth 

to mention the necessity of imposing the impermeability condition 

on this surface. The fluid flow is governed by the continuity and the 

Navier-Stokes equations, which can be written in the form: 
 

0=⋅∇ u  (1) 

 

uuu
u 2

Re

1
p

t
∇+−∇=∇⋅+

∂
∂

. (2) 

 

The above equations are non-dimensionalized in terms of U and 

d (cylinder diameter). The Reynolds number is defined by: 
 

υ

Ud
Re =  (3) 
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where υ  is the fluid kinematic viscosity coefficient; the 

dimensionless time is d/U. 

The impermeability condition on the cylinder and ground 

surfaces is given by: 
 

nn vu = , at 
1S  and

2S . (4) 

 

The no-slip condition is imposed only on the cylinder surface: 
 

ττ vu = , at 
1S . (5) 

 

In the equations above, 
nu  and 

τu  are, respectively, the fluid 

normal and tangential velocities, and 
nv  and 

τv  are, respectively, 

the solid boundary normal and tangential velocities. One assumes 

that, far away, the perturbation caused by the body and moving 

ground fades as: 
 

 1u → , at ∞S . (6) 

The Numerical Method 

The governing equation in Vortex Methods is the vorticity 

transport equation, obtained by taking the curl of the momentum 

equation. In two-dimensions, this equation reduces to: 
 

ω
Re

1
ω

t

ω 2∇=∇⋅+
∂
∂

u  (7) 

 

where ω(x,t) = ∇× u(x,t) represents the only non-zero component of 

the vorticity field (observe that the pressure is absent from the 

formulation). The Vortex Method proceeds by discretizing spatially 

the vorticity field using a cloud of elemental vortices, which are 

characterized by a distribution of vorticity, 
iσ
ς (commonly called 

the cut-off function), the circulation strength 
i
Γ  and the core 

size
iσ . Thus, the discretized vorticity is expressed by: 

 

( ) ( ) ( ) ( )( )∑
=

−=≈
Z

1i

iσi

h tςtΓt,ωt,ω
i

xxxx   (8) 

 

where Z is the number of point vortices of the cloud used to 

simulate the vorticity field. 

In this paper, as the diffusion effects are simulated using the 

random displacement method, we assume that the core sizes are 

uniform ( σσi = ), and use the Gaussian distribution as the cut-off 

function. This choice of the cut-off function leads to the Lamb 

Vortices (Leonard, 1980); thus: 
 

( )













−=

2

2

2σ
σ

exp
πσ

1
ς

x
x .  (9) 

 

The velocity is obtained from the vorticity field by means of the 

Biot-Savart law: 
 

( ) ( )( ) ( )
( ) ( ) ( )( )t,ωdt,ω

dt,ωt,

xKxxxxK

xxxxGxuv

'''

'''

∗=−=

=−×∇=

∫
∫

  (10) 

 

where K = ∇ ×G is the Biot-Savart kernel, G is the Green’s function 

for the Poisson equation, and ∗  represents the convolution operation. 

The vorticity transport is simulated, in this discretized form, by 

convecting the particles with the local fluid velocity and using a 

random walk displacement ( )
2j1jj
χ,χχ ≡  to account for the diffusion 

effects. 

The convection of each vortex particle (j) is governed by the 

equation: 
 

( )t,
dt

d
j

j
xu

x
=  (11) 

 

and, according to the Random Walk Method (Lewis, 1999), the 

diffusive displacement of each vortex particle (j) is given by: 
 

       ( ) ( ) ( )[ ]Q   π2isinQ   π2cos
P

1
ln

Re


t  4
χ,χχ

2j1jj +






=≡  (12) 

 

where j = 1,Z, 1i2 −= , P and Q are random numbers between 0.0 

and 1.0. 

The velocity field u(x,t) can be split in three parts (Alcântara 

Pereira et al., 2003): 
 

( ) ( ) ( ) ( )t,t,t,t, xuvxubxuixu ++= . (13) 

 

The contribution of the incident flow is represented by ui (x,t). 

For a uniform incoming flow its components take the form: 
 

1ui1 =  and 0ui2 = . (14) 

 

The body and moving ground contribute with ub(x,t), which can 

be obtained, for example, using the Boundary Element Method 

(Katz and Plotkin, 1991). The two components can be written as: 
 

∑
=

−=
NP

1k

kj

i

jkkji
)x(t)(xcψt),(xub  , 1,2i =  and j = 1,Z. (15) 

 

where NP is the total number of flat source panels representing the 

body and moving ground. It is assumed that the source strength per 

length is constant such that 
kψ = const and )x(t)(xc

kj

i

jk
−  is the ith- 

component of the velocity induced, at vortex j, by a unit strength flat 

source panel located at k. 

Finally, the velocity uv(x,t) due to the vortex interactions has its 

components written as: 
 

∑
=

−=
Z

1k

kj
i
jkkji (t))x(t)(xcΓt),(xuv , 1,2i = and j=1,Z. (16) 

 

where Γk is the k-vortex strength and )x(t)(xc
kj

i

jk
−  is the ith- 

component of the velocity induced, at vortex j, by a unit strength 

vortex located at k. As we use the Lamb vortex: 
 


























−−−=

2

0

2

jk

jk

kjk

θ
σ

r
5.02572exp1

r

1

2π

Γ
u  (17) 

 

where jk

θ
u  is the induced velocity of the kth-vortex in the 

circumferential direction at jth-vortex, 
jk

r  is the radial distance 

between two general vortices, j and k, and 
0σ  is the core radius of 

these vortices defined by Mustto et al.(1998). 

To the first order Euler scheme, the solution to Eq. (11) is 

written as:  
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tt),(u(t)x
t)(tx
jjj

∆+=+ x , Z1,j =  

 (18) 

tt),(v(t)y
t)(ty
jjj

∆+=+ x , Z1,j = . 

 

To this solution, the diffusive displacement, see Eq. (12), is 

added. Hence, the position of each vortex at the instant (t + ∆t) is 

given by: 
 

1jjjj
χtt),(u(t)x
t)(tx +∆+=+ x , Z1,j =  

2jjjj
χtt),(v(t)y
t)(ty +∆+=+ x , Z1,j = .1 (19) 

 

With the vorticity field, the pressure calculation starts with the 

Bernoulli function, defined by Uhlman (1992) as: 
 

u=+= u  ,
2

u
pY

2

. (20) 

 

Kamemoto (1993) used the same function, and starting from the 

Navier-Stokes equations was able to write a Poisson equation for the 

pressure. This equation was solved using a finite difference scheme. 

Here solution was obtained through the following integral 

formulation (Shintani and Akamatsu, 1994): 
 

( )

( )∫

∫∫∫

⋅×∇−

+×⋅∇=⋅∇−

S

ni

�
i

S

nii

dSG
Re

1

d�GdSGYYH

eω

ωue

 (21) 

 

where H = 1.0 in the fluid domain, H = 0.5 on the boundaries, G is a 

fundamental solution of the Laplace equation and 
ne  is the unit 

vector normal to the solid surfaces (Alcântara Pereira et al., 2002). 

The drag and lift coefficients can be expressed by (Ricci, 2002): 
 

( )

∑

∑

=

=
∞

−

=−−=

NP

1k

kkP

NP

1k

kkkD

sinβ
SC

sinβ
Spp2C

 (22) 

 

( )

∑

∑

=

=
∞

−

=−−=

NP

1k

kkP

NP

1k

kkkL

cosβ
SC

cosβ
Spp2C

 (23) 

 

where ∆Sk is the length and βk is the angle and both of the kth-panel. 

 

Simulations of Unsteady Flows past a Circular Cylinder 

Isolated Cylinder 

As a preliminary study, the flow around an isolated cylinder in a 

large fluid region was simulated using our numerical code. This 

allows us to analyze its consistency and define some numerical 

parameters, as for example the number of panels used to define the 

cylinder surface. For this particular configuration, we used NP = 300 

flat source panels with constant density. The simulation was 

performed up to 1000 time steps with magnitude ∆t = 0.05. The time 

increment was evaluated according to ∆t = 2πk/NP, 0 < k < 1; see 

Mustto et al. (1998). 

The standard numerical strategy is to represent the vorticity in the 

fluid domain by a large number Z of discrete vortices with strength 

Γj. The numerical analysis is conducted over a series of discrete 

time steps ∆t for each of which a discrete vortex element with 

strength Γj is shed from each panel used to represent the cylinder 

surface. The intensity Γj of these newly generated vortices is 

determined using the no-slip condition, see Eq. (5), and they are 

placed at a distance ε = σ0 = 0.001 d on a straight-line normal to the 

panel, see Ricci (2002). 

The aerodynamic loads computations are evaluated between t = 

28.3 and t = 48.0, see Fig. 2. The results of the numerical simulation 

are presented in Tab. 1; the results of Blevins (1984) are 

experimental ones with 10% uncertainty and those of Mustto et al. 

(1998) were obtained numerically using a slightly different Vortex 

Method from the present implementation. 

 

 

Table 1. Mean lift and drag coefficients for isolated circular cylinder. 

Re = 1.0 x 105 DC  
L

C  St  
 

LCA  

Blevins (1984) 1.20 - 0.19 
 

- 

Mustto et al. (1998) 1.22 - 0.22 
 

- 

Present Simulation 1.25 0.02 0.21 
 

1.06 

 

 

 

The Strouhal number is defined as: 
 

U

fd
St =  (24) 

 

where f is the detachment frequency of vortices. 

The agreement between the two numerical methods is very good 

for the Strouhal number, and both results are close to the 

experimental value. The present drag coefficient shows a higher 

value as compared to the experimental result. One should observe 

that the three-dimensional effects are non-negligible for the 

Reynolds number used in the present simulation (Re = 1.0 x 105). 

Therefore, one can expect that a two-dimensional computation of 

such a flow must produce higher values for the drag coefficient. On 

the other hand, the Strouhal number is insensitive to these three-

dimensional effects. The mean numerical lift coefficient, although 

very small, is not zero which is due to numerical approximations. 

Computed values for the drag and lift coefficients are plotted in 

Fig. 2. The vortex shedding effect can be seen in the oscillations of 

the lift and drag coefficients. As soon as the numerical transient is 

over and the periodic regime is reached (from t = 20 on, 

approximately) the lift coefficient oscillates between -1.11 and 1.01, 

approximately, with a dimensionless frequency (Strouhal number) 

that is one half the frequency of oscillation of the drag coefficient 

curve, as expected. The mean amplitude of the lift coefficient curve 

is indicated by 
LCA  in Tab. 1. 
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Figure 2. Time history of drag and lift coefficients for isolated circular 
cylinder. 

 

 

Figure 3 shows plots of instantaneous pressure distributions on 

the cylinder surface. Distributions A, B, C, D and E are related to 

instants A, B, C, D and E as indicated in Fig. 2. 

Instant A is defined by a maximum value of the lift coefficient. 

At this moment, a large clockwise vortex structure (in fact a cluster 

of vortices) is detaching from the upper surface and moving towards 

the viscous wake; see Fig. 4(a). As this clockwise vortex structure 

moves downstream, it pushes away an anti-clockwise structure that 

was stationed behind the cylinder, and the drag coefficient increases. 

Instant B is defined as the moment that the anti-clockwise 

structure detaches from the cylinder and is incorporated into the 

viscous wake; this process creates a low pressure region at the rear 

part of the cylinder; see Fig. 3 and Fig. 4(b). 

The above described sequence of events repeats all over again. 

Therefore, the lowest value of the lift coefficient is observed when 

another cluster, now rotating in the anti-clockwise direction, leaves 

the body surface, see point C in Fig. 3 and Fig.4(c), and point D in 

Fig 4(d). 

 

 

 

Figure 3. Instantaneous pressure distribution on the surface of an isolated 
circular cylinder. 

 

 

 

Gerrard (1966) has given an equivalent physical description of 

the mechanics of the vortex-formation region. A key factor in the 

formation of a vortex-street wake is the mutual interaction between 

the two separating shear layers. It is postulated by Gerrard (1966) 

that a vortex continues to grow fed by circulation from its connected 

shear layers, until it is strong enough to draw the opposing shear 

layers across the near wake. The approach of oppositely signed 

vorticity, in sufficient concentration, cuts off further supply of 

circulation to the growing vortex, which is then shed and moves off 

downstream. 

 

 

 
(a) t = 39.4: Point A 

 

 
(b) t = 40.6: Point B 

 

 
(c) t = 41.6: Point C 

 

 
(d) t = 42.9: Point D 

Figure 4. Near wake behavior for isolated cylinder at Re = 1.0 x 105. 
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Computed value of the mean pressure coefficient along the 

cylinder surface is compared with other results available in the 

literature. Figure 5 shows the mean pressure distribution calculated 

for an isolated cylinder to be compared with the potential flow 

pressure distribution, the pressure distribution presented by Mustto 

et al. (1998) and the experimental values presented by Blevins 

(1984). The present result agrees very well with the experimental 

ones, except in a small neighborhood of θ ∼  75°. From the Fig. 5, 

one can observe that the predicted separation point occurs at 

around θ = 85º, while the experimental value (Blevins, 1984) is 

around θ = 82º. Another experimental investigation made by Son 

and Hanratty (1969) determined a value of θ = 78º for the 

separation angle. A very interesting observation was made by 

Achenbach (1968) for Re = 1.0 x 105 (sub-critical flow): it was 

found that the laminar boundary layer separates at θ = 78º. Just 

before transition into the critical region at Re = 2.6 x 105, the 

boundary layer is still laminar and separates at an angle equal θ = 

94º. Hence, separation takes place in the laminar mode as 

experimentally expected for a sub-critical Reynolds number 

forming free shear layer. An immediate transition to turbulence 

close to the cylinder is observed accompanied by a very short 

recirculation region. 

 

 

 

Figure 5. Predicted pressure distributions for isolated circular cylinder at 
Re = 1.0 x 105

. 

 

Circular Cylinder near a Moving Ground 

To study the mechanisms of the ground effect, we use a ground 

running at the speed of the freestream flow. In doing so, no 

boundary layer develops on the ground surface to interfere with and 

to modify the viscous wake. The main features of this flow are 

discussed in the experimental work of Nishino (2007). Although the 

fundamental effects of the gap ratio (h/d) on the flow and force 

characteristics have been observed, the relation between the 

destruction of the orderly Kármán vortex street and the significant 

drag reduction is still unclear. 

For the numerical simulation we used the same 300 panels for 

the cylinder surface plus 300 panels to represent the moving ground. 

As already mentioned, no vorticity is generated on the ground 

surface which avoids the development of a viscous boundary layer. 

Table 2 presents values of the drag coefficient for a circular 

cylinder placed at different values of the gap ratio. One can easily 

observe three gap regimes: large-gap (h/d > 1.0), intermediate-gap 

(0.85 < h/d < 1.0), and small-gap (h/d < 0.85) regimes. 

Nishino (2007) measured the drag coefficient at two upper-

subcritical Reynolds numbers (0.4 and 1.0 x 105). According to him, 

an essentially two-dimensional flow around a cylinder with end-

plates was observed, which was confirmed analyzing the surface oil 

flow patterns. Significant effects of the gap ratio were observed on 

the near wake structure and also on the time-averaged drag 

coefficient. For the large-gap regime, large-scale Kármán vortices 

were generated just behind the cylinder, resulting in higher drag 

coefficients of about 1.3. For the intermediate-gap regime, the 

Kármán vortex shedding became intermittent, and hence the time-

averaged drag coefficient rapidly decreased as h/d was reduced from 

1.0 to 0.85. For the small-gap regime, the Kármán vortex could not 

be observed and instead a dead fluid zone was created, bounded by 

two nearly parallel shear layers each producing only small-scale 

vortices. For the cylinder without end-plates, on the other hand, no 

such significant effects of h/d were observed either on the near wake 

structure or on the drag coefficient. 

Roshko et al. (1975) measured the time-averaged drag and lift 

coefficients for a circular cylinder placed near a fixed wall in a wind 

tunnel at Re = 2.0 x 104, which lies in the upper-subcritical flow 

regime, and showed that CD decreases rapidly while CL increases as 

the cylinder came close to the wall. 

Columns 5 and 6 of Tab. 2 present results obtained using 

numerical methods. The results of Moura (2007) were obtained using 

the vortex cloud simulation with fixed ground at Re = 1.0 x 105. The 

present results, referred to as Bimbato (2008), for the time-averaged 

drag and lift coefficients acting on a circular cylinder in moving 

ground are plotted in Fig. 6. The aerodynamic forces computations are 

evaluated between t = 40 and t = 60. 

The following analysis for the drag behavior is based on Fig. 6.a. 

The results from Nishino (2007), obtained with a running 

ground, show that the drag acting on the cylinder without end-plates 

increases and becomes more or less constant when the distance 

between the cylinder and the ground is very small. A cylinder with 

end-plates presents an almost constant value for the drag coefficient, 

but higher than the case when the end-plates are not used; it is worth 

to observe that in this situation, due to experimental difficulties, he 

was not able to perform the tests for small-gap regime. 

The results presented by Roshko et al. (1975) show that drag 

decreases as the gap-ratio decreases, starting already for the 

intermediate-gap regime; these results were obtained with a fixed 

ground. 

The numerical results for the drag obtained with a fixed ground 

by Moura (2007) follows the experimental ones for the large and 

intermediate-gap regimes but does not reproduce them well for the 

small-gap regime. 

The present results, obtained with a running ground, show that 

the drag remains an almost constant value for the large and 

intermediate-gap regimes as predicted by the experiments of 

Nishino (2007); the values are a little higher, however. For the 

small-gap regime, the drag decreases as the gap-ratio decreases and, 

unfortunately, there are no experimental results to compare with. It 

is interesting to observe that the drag coefficient converges to the 

same value obtained experimentally by Nishino (2007), without 

end-plates, for very small gap-ratio. 
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Table 2. Summary of results for drag coefficient on the flow around a circular cylinder near a plane boundary. 

dh  Nishino (2007) 

 without end-plates 

Nishino (2007) 

 with end-plates 

Roshko et al. 

(1975) 

Moura 

(2007) 

Bimbato 

 (2008) 

0.50 - - 0.795 - - 

0.55 0.965 - 0.857 1.809 1.154 

0.60 0.958 - - - 0.832 

0.65 0.952 - 0.954 1.656 1.293 

0.70 0.939 - - - 1.376 

0.75 0.933 - 1.029 1.440 1.406 

0.80 0.930 - - - 1.393 

0.85 0.931 - - - 1.415 

0.90 0.922 - 1.136 1.365 1.421 

0.95 0.926 1.311 - 1.453 1.403 

1.00 0.924 1.323 - 1.491 1.391 

1.10 0.920 1.373 1.281 1.466 1.383 

1.30 0.899 1.385 - 1.410 1.362 

1.40 - - 1.266 - - 

1.50 0.881 1.375 - 1.385 1.346 

2.00 0.854 1.337 - 1.346 1.277 

2.30 - - 1.243 - - 

2.50 0.845 1.304 - - 1.269 

3.50 - - 1.234 - - 

 
 

 

 
(a) Drag force 

 

 
(b) Lift force 

Figure 6. Time-averaged drag and lift coefficients vs. gap ratio for different 
end conditions. 

Figure 6(b) shows that the lift coefficient curve obtained 

numerically follows quite well the values obtained experimentally, 

except when 0.7 < h/d < 1.0, where the calculated values are 

smaller. For smaller values of the gap-ratio, there are no 

experimental values available when the end-plates are added to the 

cylinder. However, it is worth to observe that all the experimental 

and numerical results indicate the same limiting value for really 

small gap-ratio. 

Figure 7 shows the instantaneous pressure distributions on the 

cylinder surface when the ground is moving; this sample refers to 

the gap-ratio h/d = 0.95. The pressure distributions A, B, C, D and E 

are related to points A, B, C, D and E indicated in Fig. 8. At the 

instant represented by the point A one can observe a low pressure 

distribution on the rear surface of the cylinder, leading to a 

maximum value of the drag curve; at the same time, a high pressure 

distribution is found on the lower surface which leads to a high lift 

value. The pressure distribution of instant B is almost symmetrical 

with respect to the x axis while maintaining low values at the rear 

part, thus explaining the zero value of the lift curve. Similar 

observations can be made about the pressure distributions and the 

lift and drag curves behavior at the other instants. 

 

 

 
 

Figure 7. Instantaneous pressure distribution on the surface of a circular 
cylinder using moving ground for h/d = 0.95. 
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Some important features of the curves presented in Fig. 8 are: 

(i) As expected, the absolute value of the maximum of the CL 

curve is bigger than the absolute value of the minimum of 

the same curve. 

(ii) The CD curve oscillates at a frequency that is twice the 

frequency of the CL curve. 

(iii) Due to the proximity of the moving ground, the CD curve, 

in Fig. 8, presents a pair of small extreme values (small 

departure of the maximum and minimum values from the 

mean drag value) followed by a pair of large extreme 

values (large departure of the maximum and minimum 

values from the mean drag value). 

(iv) As the gap-ratio diminishes, the small extreme values 

become even smaller and eventually disappear. Therefore, 

the drag and lift curves oscillate at the same frequency. 

 

 

 

Figure 8. Time history of drag and lift for circular cylinder using moving 
ground for h/d = 0.95. 

 

 

Figure 9(a) shows the near field flow pattern at instant A; at this 

instant, we observe a maximum value of the CL curve and a “small” 

maximum value of the CD curve. The analysis of the flow pattern at 

instants right before and after the instant A shows that a cluster of 

vortices is moving on the upper side of the cylinder surface (leading 

to a high value of the lift) and pulls the anti-clockwise vortex 

structure toward the viscous wake. This vortex structure is deformed 

and somehow stretched by the presence of the nearby moving 

ground, leading to a “small” maximum value of the drag curve. 

A similar analysis can be done for all the other instants 

identified in Fig. 8; the near field flow pattern for those instants are 

shown in Fig. 9. For instance, in Fig. 9(b), the near field flow 

pattern at instant B is depicted. At this instant, a clockwise vortex 

structure is observed at the rear part of the cylinder surface; this 

clockwise structure is deformed when it pulls the anti-clockwise 

structure away from the body surface. This configuration is the one 

responsible for a “small” minimum value of the CD curve and a zero 

value of the CL curve. Figures 9(c) and 9(d) are associated to 

instants C and D at which the extreme values of the CD are “large”; 

observe that the near field vortex structures do not deform. 
 

 
 

 (a) t = 46.4: Point A 

 

 

 
 

 (b) t = 47.6: Point B 

 

 

 
 

 (c) t = 48.7: Point C 

 

 

 
 

 (d) t = 50.1: Point D 

 

 

Figure 9. Near wake behavior using moving ground for h/d = 0.95 at  
Re = 1.0 x 105. 

 

 

 

Figure 10 shows the time variation of the drag and lift 

coefficients for h/d = 0.55. From this figure one can observe the 

tendency to the cessation of the periodic vortex shedding due to the 

presence of a plane wall placed in the close vicinity of the cylinder. 

After all, the gap between the lowest point of the cylinder and the 

wall is equal to 0.05 d. 
 



Simulation of Viscous Flow around a Circular Cylinder near a Moving Ground 

J. of the Braz. Soc. of Mech. Sci. & Eng.    Copyright    2009 by ABCM July-September 2009, Vol. XXXI, No. 3 / 251 

 

Figure 10. Time history of drag and lift for a circular cylinder using moving 
ground for h/d = 0.55. 

 

Just for the sake of illustration, the flow pattern at instant t = 62 

is shown in Fig. 11 for two gap-ratios [(h/d) = 0.55 and (h/d) = 

0.95]. For really small gap, Fig. 11(a), the vortex shedding becomes 

intermittent, which might be an explanation for the fast decay of the 

time-averaged drag coefficient as observed in the experiments from 

Nishino (2007). For a not so small gap, Fig. 11(b), the wake seems 

to be formed by a series of “mushroom” type of vortex structure, 

which will be destroyed far away by the moving ground. 

Conclusions 

The main conclusions that can be drawn are: 

(i) As already used in the experimental work dealing with the 

aerodynamic of high speed racing cars, the moving ground 

model used in the numerical simulations (although with a 

simple geometrical form body) is able to predict the main 

features of the flow around a body in close proximity of a 

flat surface. 

(ii) The experience gained with the present work added to the 

ones from previous one, in which the ground was kept fixed, 

allows one to analyze complex situations, where relative 

motions between bodies are present. These extend the 

applicability of the numerical code. 

(iii) The use of global as well as local quantities combined to the 

near field flow pattern observations can be used to 

understand the complex mechanisms that lead the origin and 

the time evolution of the aerodynamic loads. The 

methodology developed in this paper is greatly simplified by 

the utilization of the Vortex Method. 

(iv) The instantaneous pressure distribution on the cylinder 

surface allows one to follow, in time, its evolution. This 

feature can be of importance when the body is oscillating 

near a ground plane and in many other situations of practical 

interest. It becomes obvious that one has a powerful tool if 

the time evolution of the pressure distribution is analyzed 

simultaneously with the integrated loads (lift and drag). 

(v) Further analyses are necessary to fully understand the drag 

behavior as well as the wake development when the body is 

brought close to a ground. Fig. 11 gives us only some hints. 

 

 

 

 
 

(a) h/d = 0.55 

 

 

 
 

(b) h/d = 0.95 

 

Figure 11. Final position of the vortices for the flow past a circular cylinder in moving ground at Re = 1.0 x 105
. 
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