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ABSTRACT 

This paper presents a simulation optimization of a real 
scheduling problem in industry, simulated annealing is in-
troduced for this purpose. Investigation is performed into 
the practicality of using simulated annealing to produce 
high quality schedules. Results on the solution quality and 
computational effort show the inherent properties of the 
simulated annealing. It is shown that when using this 
method, high quality schedules can be produced within 
reasonable time constraints. 

1 INTRODUCTION 

In manufacturing one of the purposes of an optimization 
algorithm is to generate practical schedules that may be 
implemented on the shopfloor as described by Hopp 
(1996). Huchison (1990) provides classification of sched-
uling methods and suggests that offline heuristic methods 
will in the future provide high quality scheduling solutions. 
The execution time is a constraint of the algorithm that is 
particularly important as the optimization process will be 
repeated many times for different production schedules. 
Investigation has been performed into the feasibility of us-
ing simulated annealing (SA) for this purpose. 

Simulated annealing has the potential to generate high 
quality solutions for combinatorial optimization problems 
such as the job shop-scheduling problem (JSSP). Modern 
computation technique reviews for scheduling problems 
have been undertaken by ; Choi (2000), Jain and Meeran 
(1998), Jones and Rabelo (1998). These reviews show that 
for large optimization problems local search techniques 
such as SA are popular, matured optimization methods that 
provide high quality solutions.  

Further work on scheduling and local search has been 
carried out but Aarts et al (1994) and Vassens (1995) these 
reviews provide comparison of different local search tech-
niques for the JSSP. Studies show that simulated annealing 
requires more computation effort to achieve quality solu-

 

tions then other methods with the advantage of being gen-
erally applicable. 

Other researches have investigated customized flow-
shop problems using SA these including; Parthasarathy and 
Rajendran (1998), Raine et al (1999), Ruiz-Torres et al 
(1997). These studies have practical implications for the 
manufacturing industry as simulation and computation be-
comes more affordable. 

There is a practical limit to the amount of computa-
tional effort that can be applied to this problem. Investiga-
tion into the SA algorithm is constrained within the limit of 

6102 ×  non-stochastic simulations of one week of shop 
floor production. This simulation limit and corresponding 
time limit was defined through consultation with produc-
tion planners. SA is similar to many heuristic algorithms 
with regards to execution time, the longer the search is per-
formed the higher the probability of obtaining high grade 
solutions thus a trade off must be applied. Some compari-
sons are applied between the SA and previous work using 
iterative improvement.  
 This paper is organized as follows. In Section 2, 
scheduling optimization problem is described. Then, repre-
sentation of solution is discussed in Section 3. In Section 4, 
simulated annealing algorithm is briefly explained.  Next, 
cost mapping function is described in Section 5. In Section 
6, neighborhood selection function is presented. Then, ex-
perimental results are discussed in Section 7. Finally, the 
concluding remarks are provided in Section 8. 

2 THE SCHEDULING  
OPTIMIZATION PROBLEM 

The device to be scheduled is a plastic rotational molding 
machine that may be generalized into a flow shop or more 
specifically a power and free system. This instance of the 
power and free system has three jigs, processes and buffers 
in the arrangement shown in Figure 1. The maximum 
buffer length is one, and the jigs cannot overtake one an-
other on the power and free tracks. For every different part 
type, there is a specific die that needs to be installed on the 
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Figure 1: Power and Free Schematic 
 

jig prior to processing. In this instance, there is only one 
die available of each part type. There are three jigs in the 
system named J1, J2 and J3. J1 is of a different type to J2 
and J3. This places further constrains on the system as only 
one type of die fits on J1, and a different type of die fits on 
J2 and J3. In order to produce a part, the part must go 
through three processing stations P1, P2 and P3. Each 
processing station requires a different quantity of process-
ing time depending on the type of part being produced. The 
cycle time of the system is defined as the amount of time 
required for the jig 1 to perform a lap of the system. This 
time is measured from the start of first process. Installing a 
die onto a jig requires a fixed amount of setup time that is 
dependent on the type of the die. The die setup time may 
be considered as an extension of the P1 process time for 
the first part produced using the die. 
 Production demand is placed on the device in the form 
of a job list. A job consists of the number of parts of cer-
tain type that need to be produced. The cycle time is inter-
dependent between jigs and dies. J1 completes a cycle to-
gether with J2 and J3. This interaction cause the make-span 
of the job list to be altered depending upon the production 
sequence of the job list.  One objective of the algorithm is 
to search for the sequence with the smallest make-span. 
However this is not the only objective of the algorithm as 
other objectives must be taken into account in order to 
make any solution practical to implement. Each die setup 
not only requires time but also has a cost in terms of labor. 
Production planners also require a means to increase the 
priority of producing a job as production deadlines must be 
met. These are incorporated into the algorithm through the 
cost mapping function. 
 One general measure of the quality of a schedule is 
device efficiency. This is a measure for the quality of pro-
duction sequencing. The device efficiency is calculated us-
ing a job list that is generated for the schedule to be evalu-
ated. The jobs list is used to calculate the ideal quantity of 
machine time required to produce the job. The ideal pro-
duction time is equivalent to the amount of system time it 
would take to produce the job, if it was the only job run-
ning. The actual production time is the amount of time the 
die was actually in use on the system for a particular 
schedule, this is calculated from simulation. Using this data 
the overall efficiency of the device is calculated using the 
formula given in Equation 1. 

 
 
 
 (1) 
 
 
 

 In these experiments, more than one week of activities 
is scheduled and the efficiency is measured for the first 
week. Other common performance measures are make-
span and mean tardiness. These measures are restricted to 
particular jobs or job lists where device efficiency may be 
applied to incomplete jobs and job lists. Device efficiency 
may be calculated from any schedule for the device, it al-
lows performance comparison between schedules with dis-
similar job lists, manually generated schedules, and his-
torical device data. Distinction needs to be made between 
the fitness or cost mapping and the device efficiency. The 
fitness is generated from the cost mapping function and is a 
continuous variable is optimized by the algorithm. Fitness 
is a comparative measure of the quality of solutions of the 
same scheduling problem and takes many factors into con-
sideration. Device efficiency allows comparison between 
different problems and scheduling methods and is less am-
biguous than fitness. 

3 REPRESENTATION OF THE SOLUTION 

Several investigators have determined empirically, that op-
timal schedules do not necessarily produce all parts of a par-
ticular job in one batch. Also there are times when it is bene-
ficial to not produce any parts at all on one or more 
machines for a number of process opportunities. To facilitate 
the skipping of process opportunities, the concept of a null 
part is introduced. A null part is when an arm is run with an 
empty die; when this occurs the processing time for a null 
part is zero. The average cycle time of the system is 127.7 
minutes and the production period that is available for 
scheduling is approximately one week. When this informa-
tion is taken into account sequencing the machine, one part 
at a time seems to be a practical proposition. In order to gen-

n jo bfo r   t imep ro d u c t io n A c tu a l  A p t(n )
n jo b o f  t imep ro d u c t io n id e a l T h e  Ip t (n )

c re a te d . jo b sd iffe re n t   o fn u mb e r  T h e  N

Effic ie n c y D e v ic e 
A p t(n )

Ip t (n )

N

100
Eff

1

=
=

=

∑ =×=
=n

N



Cave, Nahavandi, and Kouzani 

 
eralize the system for other applications, it may be useful to 
consider a single part as a batch of arbitrarily set size. 
 An example scheduling sequence is shown in Figure 2. 
The algorithm uses the same representation for simulation 
of the process times. The elements within the collections 
A1, A2 and A3 represent production of a single part of a 
part-type that is represented by the numerical value of the 
element. The permutation of the collections represents the 
sequence of production for the jigs. The elements of value 
0 represents null parts, also shown is the two important 
concepts of systems cycle and transitional edge. 
 

3 parts concurrently 
produced is one cycle
of the system

J1 = {1,1,1,2,2,2,2,0,0,1,1,1,1,1,0}

J2 = {3,3,3,3,3,3,3,3,4,4,4,4,4,4,0}

J3 = {6,6,6,6,6,6,6,6,5,5,5,5,5,5,0}
Transitional Edge
Die change required

A part of Job 4 to be 
produced on J2

Production Order  
Figure 2: The Part Sequencing Representation 

 
It has been calculated that for a typical week schedul-

ing problem of one week of production, the size of the so-

lution domain is approximately 1101077.7 × . The size of 
the solution domain grows exponentially as a function of 
the job list. As this growth is faster then any polynomial 
function and the cost mapping of the algorithm to be opti-
mize is a continuous variable. The problem may be catego-
rized as NP-Hard. This calculation also shows that the so-
lution domain is too large to use exhaustive enumeration 
with practical time limits and justifies the use of heuristic 
search algorithms for this problem. 

4 SIMULATED ANNEALING 

Simulated annealing is a local search process and is analo-
gous to simulation of annealing of solids, van Laarhoven 
(1987) provides a thorough description of this method. It is 
based on the idea that making small changes may improve 
a given solution; if the small change degenerates the solu-
tion then it will be accepted with a probability that is re-
lated to the size of the degeneration.  

For any possible solution, there is a cost mapping 
ℜ→FC : which is the function to be optimized. The 

neighborhood function is the mapping ': FFN → , which 
defines for every solution Fi ∈ , a neighborhood exists 

FiN ⊆)( . Each solution in )(iN  is called a neighbor of i . 

The execution of a local search algorithm defines a walk in 
F such that each solution visited is a neighbor of the previ-
ous one. A solution i is called a local optima with respect to 
the neighborhood function N  if )(),()( iNjjCiC ∈∀≤ or 

there is no neighbor of i with a cost mapping that is less 
then )(iC . 
A cooling schedule proposed by Kirkpatrick et al 
(1982) is used. The initial value 0c  is set so that 80% of 

random sampled degenerative transitions are accepted ac-
cording to Equation 2. The value ,....,2,1,0=k  relates to the 

temperature of the algorithm k is incremented according to 
the criterion that there is a fixed number (g) of failed subse-
quent transition attempts. The control parameter kc for 

0>k  is calculated by kk cc •=+ α1 where 95.0=α . 

By choosing a random transition j from the neighbor-
hood of i there is an associated difference in the cost map-
ping )()( jCiCCij −=∆ . The probability ( P ) for configu-

ration j to be the next accepted configuration in the sequence 
is 1, if 0<∆Cij and is given by the Metropolis criterion 

proposed by Metropolis et al (1953) is shown in Equation 2 
if 0≥∆Cij . For a non-homogenous SA algorithm the value 

kc is incrementally decreases in magnitude as the algorithm 

progresses according to the cooling schedule. This decreas-
ing of kc causes degenerative transition to be accepted with 

a lower probability as the algorithm progresses and corre-
sponds to a lowering of temperature. 
 

 



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=

k

ij

c

C
P exp      (2) 

 
Limiting the maximum value for k sets the stopping 

criterion. The maximum values for k and g was set through 

initial experimentation. High k relates to a very low prob-
ability acceptance and is set to a level that is sufficient for 
the progress of the algorithm to cease. The parameter g  

influences the length of the Markov chain for each lower-
ing to the algorithm temperature. The length of this chain 
decreases for each subsequent lowering of temperature. 
The target maximum of simulations for each run of the al-

gorithm is 6102× and g is set to a threshold so this target is 

achieved prior to the control parameter k  terminating the 
algorithm.  

5 COST MAPPING 

It is the objective of the algorithm to maximize the fitness 
of the schedule subject to the hard constraints that exist 
within the system. The cost mapping function evaluates the 
relative fitness of a particular solution or schedule. It is this 
process that drives that heuristic algorithm towards better 
solutions. The objectives of the algorithm is a combination 
of several factors that include the urgency of job produc-
tion, reduction in the make span of the schedule, reduction 
of the labor requirement of the system and reduction of in-
ventory. The operation of the machine is continuous not 
discrete. The priority of production must be considered by 
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the system. This priority is set by the required supply date. 
Releasing all known jobs into the scheduling algorithm 
may result in better machine efficiency over a given make 
span but early production results in greater levels of inven-
tory. Thus the optimum schedule for a given time period is 
difficult to define with regards to a single variable that is to 
be a measure of the fitness of the schedule. 
 As the cost mapping function takes many different ob-
jectives into account it is a better measurement of the fit-
ness of a schedule than the efficiency alone for the pur-
poses of schedule optimization. The fitness value of a 
schedule is a subject measure of device performance as it is 
influenced by the desires of the operator of the algorithm 
with respect to the urgency of jobs and is relative to the ini-
tially created random solution. In practice the long-term 
performance of the machine is measured in efficiency and 
is subject to all schedules being feasible to implement. 

6 NEIGHBORHOOD FUNCTION 

The neighborhood selection function plays a key role in the 
overall efficiency of local search algorithms as described 
by Hao (1996). For SA to work it is required that the entire 
solution domain that is to be searched is accessible through 
neighborhood transitions. This requirement causes the size 
of the neighborhood to be larger than is required for other 
search methods such as iterative improvement. 

The function mapping between solutions of these ex-
periments is achieved by swapping the positions of two 
parts on the production sequence. This swapping operator 
is broken down into three operations; primary part selec-
tion, secondary part selection and swapping. 

The neighborhood function is a form of limited ran-
dom selection. The only restriction in generation of transi-
tions is that the part found in secondary selection cannot be 
of the same job type as the part found by primary selection. 
Typically for this problem the size of this neighborhood 
function is 4500 possible transitional steps from any given 
solution. 

7 EXPERIMENTS 

The objective of the experiments was to test the feasibility 
of SA based optimization as applied to practical scheduling 
problems. Three different job lists were generated where 
each lists represents more than one week of production for 
the device. The three job-lists named JBL1, JBL2 and 
JBL3 were selected to represent difficult scheduling prob-
lems as encountered on the factory floor and were ex-
tracted from historical management data. 

Simulation is usually the most computationally expen-
sive component of simulation optimization problems. The 
number of simulations that can be afforded may be the lim-
iting factor with regards to algorithm selection. The simu-
lation was modeled in C++ using UML. This method of 
modeling was selected primarily for speed of execution. 
The device that was investigated is an NC machine where 
most operation are timed and were modeled deterministi-
cally. The manual operations that may not reasonably be 
represented deterministically have only minor impact upon 
the overall cycle time. Verification of the model showed 
that for a planning interval of 1 week the fidelity of the 
model is acceptable for planning purposes. For this reason 
process times are modeled in a non-stochastic manner. 
Non-stochastic modeling eliminates the need for multiple 
sampling of models and thereby decrease computational 
effort. Verification of the model was performed by other 
researchers and the simulation model was is use prior to 
this optimization work for production schedule testing and 
resource planning using what if analysis. 

The amount of computational effort for each run of the 

algorithm was set to an approximate limit of 6102 × simu-
lations. The experiments are performed on a Pentium III 
processor running Windows 2000 and each run requires 
approximately 1.5 hours of computation. Each run was  re-
peated 100 times for each job list in order to generate sta-
tistical data. 

Data on the machine efficiency is shown as a measure 
of the general performance of the algorithm. Statistical 
data collected from cost mapping function is also pre-
sented. Cost mapping is not a direct function of efficiency 
however it servers the purpose of allowing insight into the 
behavior of the algorithm. Please see Table 1 for statistical 
data collected from experimental measurements at termina-
tion of the algorithm. 

Figure 3 shows trace measurements for a typical SA run 
for JBL2. It shows the decreasing cost of a schedule as the K 
value increases, or the algorithm progress. The gradient of 
the K value line is indicative of the length of the Markov 
chain for each temperature decrement of the algorithm.  
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Figure 3: Cost Mapping and K Values vs Simulation Num-
ber of Typical Run of JB2  
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Table 1:  Experimental Results  
          Efficiency Cost Mapping

Best Mean StDev Best Mean StDev
JBL1 75.15 72.825 0.96 0.303 0.3237 0.0063
JBL2 74.456 71.708 1.25 0.300 0.3234 0.0061
JBL3 76.363 74.436 0.94 0.300 0.3434 0.0051  

8 CONCLUSIONS 

In this paper, algorithmic scheduling optimization was in-
vestigated. An example was given on the synthesis of the 
neighborhood function, solution representation, cost map-
ping and correct parameter selection for successful imple-
mentation of simulated annealing. 

The experimental results were compared against aver-
age data collected during the operation of the system. The 
results show that SA can be used to resolve practical 
scheduling problems. SA produces quality results with a 
low degree of variance. 

Further work tailoring the algorithm to the system to 
be optimized should yield high quality results with less 
computational effort.  
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