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ABSTRACT

Simulation models can be used as the objective func
and/or constraint functions in optimizing stochast
complex systems. This tutorial is not meant to be 
exhaustive literature search on simulation optimizati
techniques. It does not concentrate on explaining w
known general optimization and mathematic
programming techniques either. Its emphasis is mostly
issues that are specific to simulation optimization. Ev
though a lot of effort has been spent to provide
reasonable overview of the field, still there are metho
and techniques that have not been covered and valu
works that may not have been mentioned.

1 INTRODUCTION

Computer simulation is a powerful tool in evaluatin
complex systems. These evaluations are usually in the f
of responses to "what if" questions. Practical questio
however, are often of  "how to" nature. "What if" questio
demand answers on certain performance measures f
given set of values for the decision variables of the syst
"How to" questions, on the other hand, seek optimu
values for the decision variables of the system so tha
given response or a vector of responses are maximize
minimized. These decision variables could be quantitat
variables such as the number of machines needed f
given manufacturing line, the inventory level at 
warehouse or the duration of a traffic light in a
intersection. They could, however, be some no
quantitative characteristics of the system such as the 
of machines to purchase, the production routing proced
or the layout of an office space.

Comprehensive reviews of literature on Simulatio
optimization have been   provided   by  Glynn (1986
Meketon (1987), Jacobson and Schruben (1989), Safiza
(1990) and Andradottir (1998). In this tutorial thes
citations will not all be repeated.  Instead, issues that m
simulation optimization distinct from generic optimizatio
procedures will be addressed, various classifications
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these problems will be presented and solution procedu
suggested in the literature and applied in practice will 
explored.

2 SPECIFIC ISSUES

Using simulation as an aid for optimization presen
several specific challenges.  Some of these issues are t
involved in optimization of any complex and highl
nonlinear function. Others are more specifically related
the special nature of simulation modeling. Simply stated
simulation optimization problem is an optimizatio
problem where the objective function (objective function
in case of a multi-criteria problem) and/or som
constraints, are responses that can only be evaluated
computer simulation. As such, these functions are o
implicit functions of decision parameters of the system.
addition, these functions are often stochastic in nature
well. With these characteristics in mind, the major issues
address when comparing them to generic non-line
programming problems are as follows:

• There does not exist an analytical expression
of the objective function or the constraints.
This eliminates the possibility of
differentiation or exact calculation of local
gradients.

• The objective function(s) and constraints are
stochastic functions of the deterministic
decision variables. This presents a major
problem in estimation of even approximate
local derivatives. Furthermore, this works
against even using complete enumeration
because based on just one observation at each
point the best decision point cannot be
determined.

• Computer simulation programs are much
more expensive to run than evaluating
analytical functions. This makes the
efficiency of the optimization algorithms
more crucial.
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• Most practitioners use some kind of
simulation language for modeling their
systems. Optimization, on the other hand,
requires using some other kind of
programming language that differs from one
practitioner to the next. Interfacing simulation
models with generic optimization routines is
not always a simple task. This is especially
true for newer higher level user friendly
simulation languages.

There are, however, advantages in using simulation
optimization that can be exploited. In particular:

• Complexity of the system being modeled
does not significantly affect the performance
of the optimization process.

• For stochastic systems, the variance of the
response is controllable by various output
analysis techniques.

• Where structural optimization of systems are
considered, simulation provides an advantage
that is often not possible in classical
optimization procedures. Here, by employing
appropriate techniques, the objective function
or constraints can be changed from one
iteration to another to reflect alternative
designs for the system.

We will address the effect of each of these issues 
each particular situation in the following sections.

3 GENERAL FORMULATION

The formulation of simulation optimization problems i
often done for  maximization or minimization of the
expected value of the objective function of the system. Th
however, does not have to be the case. Operation of a sys
might be considered optimal if the risk of exceeding 
certain threshold is minimized. On other situations, o
might be interested in minimizing the dispersion of th
response rather than its expected value. Here, we li
ourselves to optimization of the expected values.

Another pertinent issue in formulating simulatio
optimization problems is the treatment of stochas
constraints. These constraints, like the objective functio
are sometimes functions of deterministic decision variab
and are supposed to define a deterministic feasible reg
For instance, the goal in a resource allocation problem m
be to minimize the lead time subject to a limited in-proce
inventory. The lead  time and in-process inventories cou
be stochastic responses of a simulation model. One co
try to come up with the optimum values of the decisio
variables such that the expected value of the lead time
minimized. However, stating that the optimization shou
94
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be done such that the expected value of the in-proces
inventories not to exceed a certain threshold may not be th
right approach. Inventories are physical entities and requir
physical space. Even if their expected values are within
accepted limits, their actual values may exceed the physica
space constraints. In practice, many decision makers prefe
to deal with their constraints as the risk of violation of a
particular constraint rather than being within a certain
range for the expected value of the feasible region.

Then two alternative ways of formulating the general
simulation optimization problem are:

Maximize(Minimize)    f(X) = E[z(X)]

Subject to:        g(X) = E[r (X)] < 0                        (1)

       and                      h(X) < 0

where z and r  are random vectors representing several
responses of the simulation model for a given X, a p-
dimensional vector of decision variables of the system. f
and g are the unknown expected values of these vector
(their theoretical regression functions) that can only be
estimated by noisy observations on z and r . h is a vector of
deterministic constraints on the decision variables.

The alternative formulation is:

 Maximize(Minimize) f(X) = E[z(X)]

Subject to:              P{ g(X)< 0} > 1 - αααα                      (2)

  and                       h(X) < 0

where P is the vector of  probabilities of violation of
constraints and αααα is the vector of risks of these violations the
decision maker is prepared to accept. This formulation yield
itself well to simulation analysis because the constraints ca
easily be transformed into a manageable form as follows:

           UCL1-αj gj(X) < 0                                         (3)

where UCL1-αj indicates the upper confidence limit
calculated for the response gj at 1-αj level. This form of
constraint can be easily used to check whether a decisio
point is feasible, because one can use available means 
estimating confidence intervals for a given X.

4 PROBLEM CLASSIFICATION

There are several ways simulation optimization problems
can be classified. Each class can be considered as a spec
case of the above general formulation. If f(X) is a one-
dimensional vector, the problem is reduced to a single
objective optimization while in its general form it is a
multiple objective problem. If elements of X are
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Simulation Optimiz

continuous variables the problem is often easier to solve 
available stochastic search methods. If they are discrete 
still quantitative, the problem will be closer to those
addressed by integer programming techniques. If X
represents a vector of qualitative decision policies
optimization becomes more difficult because of the lack o
available analytical tools to treat this type of problems. I
addition, for such problems there will be a need fo
automatic generation of simulation models according to
systematic process. here, we refer to those problems 
non-parametric optimization problems.

In following sections we will cover available solution
procedures for various classes of these problems. Fir
procedures applied to single objective problems wit
continuous or discrete quantitative decision variable
subject to deterministic or stochastic constraints will b
discussed. Multiple objective problems will be addresse
next. Finally, a discussion on non-parametric optimizatio
problems will be presented. In each case, the issu
pertaining specifically to simulation will be explored.

5 SINGLE OBJECTIVE PROBLEMS

Some popular approaches to solving these problems are:

• Gradient based search methods
• Stochastic approximation methods
• Sample path optimization
• Response surface methods
• Heuristic search methods

5.1  Gradient Based Search Methods

These methods attempt to take advantage of the v
amount of literature available on search methods develop
for non-linear programming problems. The majo
contribution of practitioners in simulation optimization to
this field has been the various methods of efficien
estimation of gradients. Two major factors in determinin
the success of these methods are the reliability and t
efficiency. Reliability is important because simulation
responses are stochastic and a large error in gradi
estimation may result in a movement in an entirely wron
direction. The efficiency is a major factor becaus
simulation experiments are expensive and it is desirable
estimate gradients with minimum number of function
evaluations. The gradient estimation methods ofte
employed in simulation optimization are as follows:

5.1.1 Finite Difference Estimation

This is the crudest method of estimating the gradien
Partial derivatives of f(X) in this case are estimated by:

δz/δXi=[z(X1,..,Xi+∆Xi,..,Xp)-z(X1,..,Xp)]/∆XI        (4)
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As a result, to estimate the gradient at each point at le
p+1 evaluations of the simulation model will be require
Furthermore, to obtain a more reliable estimate of t
derivatives there may be a need for multiple observatio
for each derivative.

The distinction between using this technique for 
more defined objective function compared to a response
a simulation model is that the responses here are stocha
in nature.  Since observations are only a noisy estimat
of the objective function, it is quite likely that one estima
of the gradient point the search to an entirely wron
direction.

5.1.2  Infinitesimal Perturbation Analysis (IPA)

Perturbation analysis, when applied properly and to mod
that satisfy certain conditions estimates all gradients of 
objective function from a single simulation experimen
Since its introduction to simulation field a significan
volume of work on this topic has been reported in t
literature. A sample of these works can be found in H
(1984), Ho et al (1983), Ho et al (1984), and Suri (1983).
complete discussion of all issues in IPA has been publish
in a book by Ho and Cao (1991).

The main principle behind perturbation analysis is th
if a decision parameter of a system is perturbed by 
infinitesimal amount, the sensitivity of the response of t
system to that parameter can be estimated by tracing
pattern of propagation through the system. This will be
function of the fraction of the propagations that die befo
having a significant effect on the response of interest. T
fact that all derivatives can be derived from the sam
simulation run, represents a significant advantage to IPA
terms of the efficiency. However, some restrictiv
conditions have to be satisfied for IPA to be applicable. F
instance, if as a  result of perturbation of a given parame
the sequence of events that govern the behavior of 
system changes, the results obtained by perturbat
analysis may not be reliable. Considering the compl
nature of most simulation models this condition may not 
satisfied most of the time. Heidelburger (1986) present
study of deficiencies of IPA in estimating the gradient
There are also reports that additional work done in this a
in recent years may alleviate some of the problems in 
application to simulation optimization.

One difficulty with application of IPA to simulation
optimization problems is that the modeler has to have
thorough knowledge of the simulation model and in som
situations must have built it from scratch to be able to a
additional tracking capabilities that are needed by IP
Most practitioners build their simulation models usin
some kind of simulation language. With the advance 
object oriented simulation methodology and languages
will become even more difficult to build these additiona
tracking capabilities into a reusable simulation model.
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 5.1.3  Frequency Domain Analysis

Frequency domain analysis in estimating the sensitiv
and gradients of the responses of simulation models w
suggested by Schruben and Cogliano (1981). Addition
work on the subject has been reported by Jacobson (19
and Jacobson and Schruben (1988). The gradients 
estimated by analyzing the power spectrum of th
simulation output function which is affected by inducin
specific sinusoidal oscillations to the input parameters. In
recent work, Jacobson and Schruben (1991) have used 
in applying the Newton's method to simulation
optimization. The frequency domain analysis suffers fro
the same difficulty as IPA because of the complexity 
incorporating it with independently built simulation
models. Besides, it may not be possible to indu
sinusoidal oscillations to some input parameters of intere

5.1.4  Likelihood Ratio Estimators

Glynn (1987) presents an overview of Likelihood Ratio
Estimators and their potential use in simulatio
optimization. Two algorithms are discussed by which th
gradient of a simulation response function with respect 
its parameters can be estimated. Rubenstein (19
suggests a variation of this method and shows how it c
be used in estimation of Hessians and higher lev
gradients to be incorporated in the Newton's method.

Once the method of estimating the gradients is decid
upon, one of the available search techniques can 
employed to search for the optimum. For a work usin
Quasi-Newton's method refer to Safizadeh (1992).

5.2 Stochastic Approximation Methods (SAM)

Stochastic approximation methods refer to a family 
recursive procedures that approach to the minimum 
maximum of the theoretical regression function of 
stochastic response surface using noisy observations m
on the function. These are based on the original work 
Robbins and Monro (1951) and Kiefer and Wolfowit
(1952). The original recursive formula is given for a sing
variable function and is stated as:

  Xn+1=Xn+(an/2cn)[f(X n+cn)-f(Xn-cn)]                      (5)

where an and cn are two series of real numbers that satis
the following conditions:

Σan<∞, Limn→∞(cn)=0, and Limn→∞ (an/cn)
2<∞     (6)

It has been proven that as n approaches infinity n

approaches to a solution such that the theoretical regress
function of the stochastic response is maximized 
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minimized. This proof has been extended to mul
dimensional decision variables as well.

A neat characteristic of the stochastic approximati
method when applied to simulation optimization is th
the optimum of the expected value of the response co
be reached using noisy observations. The difficulty 
that a large number of iterations of the recursive formu
will be required to obtain the optimum. Besides, fo
multi-dimensional decision vectors, p+1 observatio
will be needed for each iteration. Glynn (1986) h
provided estimates of speed of convergence for so
variations of this method. The other difficulty with thes
methods is the incorporation of the constraints into t
optimization.

An earlier work  applying stochastic approximatio
method to simulation optimization is reported b
Azadivar and Talavage (1980). In this work an automa
optimum seeking algorithm was developed that could 
interfaced with any independently built simulation mode
This algorithm also applies to problems with decisio
variables constrained by a set of linear determinis
constraints.

5.3 Response Surface Methodology (RSM)

Response surface methodology is the procedure of fitt
a series of regression models to the responses of 
simulation model evaluated at several points and trying
optimize the resulting regression function. The proce
usually starts with first order regression function and af
reaching the vicinity of the optimum, higher degre
regression functions are utilized. Among the earlier wor
in application of RSM to simulation optimization ar
those of Biles (1974) and Smith (1976). Additional wo
has been reported by Daugherty and Turnquist (198
and Wilson (1987). Smith developed an automa
optimum seeking program based on RSM that could 
interfaced with independently built simulation model
This program was developed for both constrained a
unconstrained problems. Compared to many gradi
based methods, RSM is a relatively efficient method 
simulation optimization in terms of the number o
simulation experiments needed. However, Azadivar a
Talavage (1980) show that for complex functions wi
sharp ridges and flat valleys it does not provide go
answers.

5.4 Sample Path Optimization

In these methods, the deterministic optimization techniqu
are applied to a sample path observed on the simula
model. The expected value of the objective function 
estimated by the average of a large number of observat
at each point. Some descriptions of these methods site
the literature and conditions for these to be effective 
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given by Chen and Schmeiser (1994), Shapiro  (1996), and
Gurken, Ozge, and Robinson (1994). The problem wi
this method with respect to simulation optimization is th
large number of system evaluations involved.

5.5 Heuristic Methods

There are two heuristic methods that have shown prom
in application of simulation optimization. These are Box
(1965) Complex Search method and Simulated Annealing

5.5.1  Complex Search

Complex search is an extension of Nelder and Mea
(1965) Simplex search that has been modified fo
constrained problems. The search starts with evaluation
points in a simplex consisting of p+1 vertices in th
feasible region. It proceeds by continuously dropping th
worst point from among the points in the simplex an
adding a new point determined by the reflection of th
point through the centroid of the remaining vertices.

The major issue in applying this procedure t
simulation models is the determination of the worst poin
Since the responses are stochastic, an apparently w
point may actually be one of the better points and droppi
it may take the search away from the optimum region.

Azadivar and Lee (1988) developed a program bas
on Complex Search that automatically applies this proce
to any given simulation model. The decision variables 
these models can be constrained by deterministic as wel
stochastic constraints that may be responses of the sam
other simulation models. In order to avoid making a wron
decision regarding the worst point the values of th
responses at vertices are compared statistically. If the res
of the multiple comparison is conclusive and shows th
one point is significantly worse than others, it is droppe
Otherwise additional simulation runs are made to redu
the variance and the comparison is repeated.

Huphery and Wilson (1998) report on a revise
simplex search that they believe resolves several 
shortcomings of regular simplex search methods such 
sensitivity to starting values and premature termination.

5.5.2  Simulated Annealing

A description of this procedure is presented by Egle
(1990). Simulated annealing is a gradient search meth
that attempts to achieve a global optimum. In order not 
be trapped in a locally optimum region, this procedur
sometimes accepts movements in directions other th
steepest ascend or descend. The acceptance of an u
rather that a downhill direction is controlled by a sequen
of random variables with a controlled probability. Alrefae
and Andradottir (1995) present a variation of simulate
annealing in which they keep the cooling temperature fixe
97
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and show that under mild condition it almost sure
converges to the global optimum.

6 MULTI-CRITERIA OPTIMIZATION

In addition to the common difficulties with all other multi-
criteria optimization problems, multi-criteria simulation
optimization possesses its own complexities, which a
mostly due to the stochastic nature of the respon
functions. Most of the works done in this area are slig
modifications of the techniques used in operations resea
for generic multi-objective optimization. Some of thes
approaches are:

• Using one of the responses as the primary
response to be optimized subject to certain
levels of achievement on the other objective
functions. Biles (1975,1977) uses this
approach in conjunction with a version of
Box's complex method and alternatively with
a variation of gradient and gradient projection
method.

• Variations of goal programming approach as
those reported by Biles and Swain (1980),
Clayton et al (1982), and Rees et al (1985).

• Multi-attribute value function methods such
as the one used by Mollaghasemi et al (1991)

Teleb and Azadivar (1992) exploit the stochast
nature of the responses to the advantage of optimizati
They use the Complex search method but suggest 
alternative way of comparing the responses at vertices. 
each point in the complex they calculate a probability th
the response vector belongs to the random vec
representing the best value for all objective functions. T
point with the lowest probability is dropped and it
reflection with respect to the centroid of the rest of th
points is added to the simplex.

7 ON-PARAMETRIC OPTIMIZATION

Many industrial, service, and other complex systems th
are modeled by computer simulation need to be optimiz
in terms of their structural designs and operational policie
For instance, instead of the optimum number of machin
in a workstation, one might be interested in the wa
workstations are arranged on the factory floor. Or, inste
of the level of in-process inventory at each station, t
problem of interest could be the routing policies fo
finished parts coming out of each station.  Mathematic
programming techniques are not usually applicable in the
situations. In order to address these problems, ea
function evaluation requires a new configuration of th
simulation model. This is equivalent to changing th
objective function in each iteration. Furthermore, sinc
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decision variables are not quantitative, regular 
climbing, infinitesimal perturbation analysis, and stocha
approximation methods are not quite applicable. To d
with these problems an automatic model generation a
new optimization procedure have to be developed.

The most common approaches to solving these 
blems have been complete enumeration or random samp
Complete enumeration is possible only if the number
configurations for the system is small. However, even fo
modest problem such as a production system with only 4
tions, 3 product types, 3 routing policies for each station 
4 different maintenance policies, 144 different simulat
models might need to be built for a complete enumeratio

The next best thing to complete enumeration is 
evaluate a random sample of system configurations and s
the best using some type of selection and comparison ana
Random sampling is still among the best alternatives whe
number of feasible configurations is too large. Various ru
could be used to select the random sample of cases fro
possible alternatives. However, often one has to select a
candidate alternatives at the same time. The “wait and 
approach common in regular quantitative optimizat
problems cannot be implemented here.

In “wait and see” random search one takes a sm
sample and based on the information obtained from 
sample additional points are selected more intellige
than if all the points were selected at once. Gradient se
and simplex methods are examples of this philoso
where the next point to consider is selected by a move
geometrically defined n-dimensional decision variab
space. In non-parametric optimization, however, 
solution space cannot be defined geometrically.  Ther
no increasing or decreasing direction for the value
decision variable can assume.

Genetic algorithms  (GA) have recently emerged a
powerful approach for solving these problems. In gen
algorithms, the search can be guided systematically f
one sample to the next without the need to define 
decision variables space geometrically.

GAs are computer imitation of a simplified and idealiz
evolution. DNA is represented as a string where each pos
in the string may take on one of a finite sets of values.  
fitness of the organism is determined by a fitness function
function decodes the string and returns a real scalar v
The more desirable the value (larger for maximization 
smaller for minimization problems) more fit the individual. 
group of strings taken together forms a population.

The transition from one population to the next 
achieved by performing GA operators of crossover 
mutation among the individual members of the populat
With crossover operation, the strings representing 
individual members of the population are broken and cer
portions of the strings are exchanged between the two st
thus creating two new strings. In mutation, a certain pos
in a string is selected at random and with a predeterm
98
ivar

l
c
al
 a

o-
g.
f
a
ta-
d

o
ect
sis.
he
s
 all
he
e”

ll
is
y
ch
y
 a
s
e
is
a

a
c
m
e

on
e
e
e.
d

d
.
o
in
gs
n
ed

probability the value of the variable represented by th
position is changed. After crossovers and mutation a n
population is selected from among the existing and the n
members of the previous population. Davis, (1991) an
Goldberg, (1989) present comprehensive descriptions of 
concepts and techniques in genetic algorithms.

The final step from the biological to the systems real
is made by linking a string to a system.  To accomplis
this, two steps need to be taken. First, a mechanism ne
to be developed through which systems could b
represented by a string containing places for assigni
critical design parameters of the system. Second, t
information contained in a string needs to be automatica
translated into a simulation model for the system.

Azadivar and Tompkins (1999) developed a procedu
that utilizes GA in design and optimization of flexible
manufacturing systems. This process involves a gene
algorithm linked with an automated simulation mode
generator, which interact with each other. It also contai
an input data collection where users can provide data 
the structure of the system.

8 CONCLUSIONS AND RECOMMENDATIONS

The choice of the procedure to employ in simulatio
optimization depends on the analyst and the problem to
solved. However, we believe the modeler is often not
good mathematician and the mathematician is n
necessarily a good simulation modeler. When it com
time to model a complex system a team of experts w
work on developing a valid simulation model. Thes
models are usually rather complex and do not yie
themselves to the type of tracking needed in perturbati
analysis and frequency domain analysis. Until a significa
progress is made in these areas, practitioners will treat th
simulation models as black boxes. Instruction from th
optimization routines should be such that they can direc
interface with these black boxes and operate on them in
input output mode without putting too much demand on th
modelers to modify them for each iteration.

We recommend, parallel to additional efforts spent o
advancing theoretical concepts such as IPA and frequen
domain analysis, researchers work on making simulati
optimization procedures more suitable to be interfaced w
independently built models. We believe intelligen
frameworks to perform these interfaces will make this ta
more feasible.
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