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SIMULATION OUTPUT ANALYSIS USING 
STANDARDIZED TIME SERIES*t 

PETER W. GLYNN AND DONALD L. IGLEHART 

Stanford University 

The method of standardized time series (STS) was proposed by Schruben as an approach for 
constructing asymptotic confidence intervals for the steady-state mean from a single simula- 
tion run. The STS method "cancels out" the variance constant while other methods attempt to 
consistently estimate the variance constant. Our goal in this paper is to generalize the STS 
method and to study some of its basic properties. Starting from a functional central limit 
theorem (FCLT) for the sample mean of the simulated process, a class of mappings of C[O, 1] 
to R is identified, each of which leads to a STS confidence interval. One of these mappings 
leads to the batch means method. A lower bound is obtained for the expected length of the 
asymptotic (as the run size becomes large) STS confidence intervals. This lower bound is not 
attained, but can be approached arbitrarily closely, by STS confidence intervals. Methods that 
consistently estimate the variance constant do realize this lower bound. The variance of the 
length of a STS confidence interval is of larger order (in the run length) than is that for the 
regenerative method. 

1. Introduction. A principal problem in the simulation literature is to construct 
asymptotic (as the run length becomes large) confidence intervals for steady-state 
parameters of the simulation output process from a single simulation run. There are 
two basic approaches to this problem. The first is to consistently estimate the variance 
constant in the relevant central limit theorem. This is the approach used in the 
regenerative, spectral, and autoregressive methods. The second approach, proposed by 
Schruben (1983), is based on standardized time series (STS), and essentially "cancels 
out" the variance constant in a manner reminiscent of the t-statistic. For other work on 
STS see Chen and Sargent (1985), Goldsman and Schruben (1984), Glynn and Iglehart 
(1985), and Nozari (1986). 

Our goal in this paper is to generalize the method of STS and to study some of its 
basic properties. The starting point for the STS method is the existence of a functional 
central limit theorem (FCLT) for the sample mean of the simulated process. These 
FCLT's exist for stationary (and some nonstationary) f-mixing processes, strictly 
stationary strongly mixing processes, associated strictly stationary processes, and 
regenerative processes. We identify a class of mappings from C[0,1] to R, each of 
which leads to a STS confidence interval. One of these mappings yields the batch 
means method. We study the asymptotic length of these STS confidence intervals and 
develop a lower bound for the expected length; see (4.16). This lower bound is attained 
by the methods which consistently estimate the variance constant. While this lower 
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bound is not attained by any of the STS confidence intervals, it can be approached 
arbitrarily closely using the batch means mapping with a sufficiently large number of 
batches. We also study the standard deviation of the length of a STS confidence 
interval, and show that it is of order n- /2 (where n is the run length), whereas for the 
regenerative method the order is n-l; see (4.33) and (4.38). While these results show 
that STS confidence intervals are asymptotically inferior to those constructed by 
consistent estimation methods, this does not preclude the possibility that STS confi- 
dence intervals may be superior in certain small sample contexts. This question should 
be explored in a future numerical study. 

As indicated above, the main result of this paper is that STS confidence intervals are 
asymptotically less desirable than those obtained via procedures which consistently 
estimate the variance parameter. However, it should be emphasized that obtaining 
consistent estimators for the variance constant is a nontrivial task. In particular, 
consistent estimators are available only for processes enjoying certain special stochastic 
properties. For example, it is known (see Anderson 1971, pp. 522-534) that under 
certain moment and correlation assumptions, spectral density estimators are consistent 
for stationary processes. Due to the strength of the hypotheses imposed, it is possible 
that there exist processes for which spectral density estimators are inconsistent, and yet 
a FCLT is in force. This would suggest that STS methods are, in some sense, more 
robust than consistent estimation procedures. 

This remark requires some additional qualifications, however. As shown in Glynn 
and Iglehart (1988), the regenerative method applies to processes which do not 
necessarily obey a FCLT. Therefore, no universal statement can be made as to whether 
STS procedures apply to a larger class of processes than do consistent estimation 
algorithms (and are consequently more robust). It seems reasonable to argue that the 
class of processes for which both classes of methods apply is extremely large, and 
covers most cases of practical interest; the exceptional class of processes for which only 
one class applies is of less practical interest, but deserves further attention. The reader 
is referred to Glynn and Iglehart (1985) for a more complete discussion of the domain 
of applicability of the FCLT. 

In ?2 the method of STS is introduced and its basic properties are investigated. ?3 
gives examples of STS, while ?4 discusses the asymptotic behavior of the method. 

2. Standardized time series. Let Y = {Y(t): t > 0) be a real-valued (measurable) 
stochastic process representing the output of a simulation. Discrete-time processes 
Y,,: n > 0) can be handled in the usual way by setting Y(t) = Ytt. To apply the 

method of STS to the output process Y, we make the following assumption: 
(2.1) There exist finite constants 1/ and a (a positive) such that Xn = aB as 

n -, oo, where B is a standard Brownian motion, and 

Xn(t) = nl/2(Y(t)- t) with 

Yn(t) = fY(s)ds/n, forO < t < 1. 

Note that X, and B are both processes whose sample paths lie in C[0, 1], even though 
Y may not be, so that the weak convergence required by (2.1) is assumed to take place 
in the function space C[0, 1]. A variety of different output processes satisfy (2.1). We 
shall simply list these processes with appropriate references. 

(i) Stationary (measurable) p-mixing processes; see pp. 178-179 of Billingsley (1968) 
for a proof of (2.1) plus pp. 179-182 for extensions to nonstationary processes. 
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(ii) Strictly stationary, strongly mixing sequences; see Hall and Heyde (1980, p. 132), 
for a proof of (2.1). 

(iii) Associated sequences of strictly stationary random variables; see Newman and 
Wright (1981) for a proof of (2.1). 

(iv) Delayed (and nondelayed) regenerative processes; see Freedman (1967) for a 
proof of (2.1) for the Markov chain case which can easily be extended to the general 
regenerative setting. 

The continuous mapping theorem (see Theorem 5.1 of Billingsley 1968) applied to 
(2.1) yields 

X,(1) oB(1), or 

(2.2) n (Y(1) - ) aB(1) 

as n -* oo. Application of a standard converging-together argument (see p. 93 of 

Chung 1974) yields Y,(1) =/ . 
Thus, (2.1) suffices to guarantee that the steady-state estimation problem for Y 

makes sense; g is the stead-state parameter which the simulator wishes to estimate. 
Note that the CLT (2.2) could be used to obtain confidence intervals for p/, provided 

that a were known. As Schruben (1983) points out, the principle underlying standard- 
ized time series is to "cancel out" the a. To carry out the cancellation procedure in the 
next theorem involves choosing a function g from the class X; J' is the class of 
(measurable) functions g: C[0, 1] -- R such that: 

(2.3) (i) g(ax) = ag(x) for a > 0, x E C[0,1] 
(ii) g(x - /,k) = g(x) for /3 E R and x E C[0, 1], where k(t) = t, 

(iii) P{g(b) > 0) = 1, 
(iv) P{BI D(g)} = 0. 

(2.4) THEOREM. Suppose that g E .'. Under Assumption (2.1), 

B(1) (2.5) ()-B() as n -0. 
g() g(B) 

PROOF. Let h:C[O,1] -> R be the mapping defined by h(x) = x(l)/g(x) for 
g(x) - 0 (and zero elsewhere). Assumptions (2.3iii) and (2.3iv) allow one to verify that 
P{aB E D(h)} = 0. Thus, Assumption (2.1) plus the continuous mapping theorem 
guarantees that h(X,) = h(aB) as n -, oo. By (2.3i), h(aB) = B(l)/g(B) (recall that 
02 > 0). Furthermore, 

n1/2(Y(1) -) 

Yn(1)- 

h(X) = 
g(n1/2(, - )) 

Yn (1)- 

g(Yn,) 

where the last equality is due to (2.3ii). These observations immediately yield the 
theorem. 
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The proof indicates that Assumption (2.3i) is used to cancel out a, Assumption 
(2.3ii) guarantees that g(X,) does not depend on the unknown parameter /~, and 

Assumptions (2.3iii) and (2.3iv) are technical assumptions required to invoke the 
continuous mapping theorem. 

To construct confidence intervals based on (2.5), we need to learn more about the 
limit RV B(l)/g(B). We start by obtaining an alternative description of iff. Let F: 
C[0, 1] - C[0, 1] be the map defined by 

(rx)(t) = x(t) - tx(l). 

Let X be the class of functions b: C[O, 1] -> R which satisfy: 

(2.6) (i) b(ax) = ab(x) for a > 0, x E C[0, 1], 
(ii) P{(bo F)(B) > 0} = 1, 

(iii) P(B E D(bo )} = 0. 

Set /* = {g:g= boFr, b E }. 

(2.7) PROPOSITION. j* = JM. 

PROOF. We first show that X* c X.. Suppose that g = b o r, where b E X. 

Clearly, g satisfies (2.3i), (2.3iii), and (2.3iv). For (2.3ii), observe that 

(F(x - ,fk))(t) = x(t) - pk(t) - t(x(l) - lk(l)) 

= x(t) - tx(1) = (rx)(t) 

so F(x - ,/k) = Fx; hence, g(x - ,Bk) = g(x). 
To prove that /_ c X*, consider g E .. We claim that g can be represented in the 

form g = b o F, by setting b = g. Recall that g(x) = g(x - /ik) for all /3 E R. In 

particular, setting / = x(l), we see that g(x) = g(Fx), proving our assertion. 
We can now obtain the following result. 

(2.8) PROPOSITION. If g E J4, then B(1) is independent of g(B). 

PROOF. It is well known that the process B(t) - tB(1) (0 < t < 1) is independent 
of B(1) (see p. 84 of Billingsley 1968, for example). In other words, FB is independent 
of B(1), which, of course, implies that g(B) = (b F)(B) is independent of B(1). 
(Also see p. 1096 of Schruben 1983.) 

Let ?(x) = P{B(1) < x}, G(x) = Pg(B) < x}, and H(x) = P{B(l)/g(B) < 
x }. Then 

(2.9) H(x) = f O(xy)G(dy) 

by Proposition (2.8). The continuity of I(.) and the bounded convergence theorem 

imply that the right-hand side of (2.9) is continuous everywhere in x. Thus, by (2.5), it 
follows that under the conditions of (2.1), 

P{(Y() - )/g(Y) < x} -> H(x) 

as n - oo for all x E R. Hence, to obtain a 100(1 - 8)% confidence interval, one 
selects a and /3 such that H(/) - H(a) = 1 - 8 (such a, / exist since H(.) is 
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continuous; also, (2.9) implies that H(-) is strictly increasing). Then the interval 

(2.10) [Y(1) - g(Y,), Y(1) - g(Y)a] 

is an asymptotic 100(1 - 6)% confidence interval for 3. 
The process (Yn - pk)/g(Y,) is called a STS. Theorem 2.4 and Proposition 2.7 show 

that every b JE gives rise to a particular STS procedure; (2.10) is then the 
corresponding confidence interval for ,. 

3. Examples of standardized time series. Our first example of a STS captures a 
methodology which has been extensively studied in the simulation literature, namely 
the method of batch means. 

(3.1) EXAMPLE. Let bn: C[0, 1] --> R be defined by 

m -1/2 

bm(X) m= ( 1 , (x(i/m) - x((i - l)/m))2 

for m > 2. It is easily verified that bm e X, so that gm = bm o r e ' (see Proposition 
2.7). But 

m -1/2 

gm(x = m-l m (A.mX(i/m)-x(l)/m )2 , 

where Ahx(t) = x(t) - x(t - l/h). Note that AmB(i/m)(i = 1,..., m) are incre- 
ments of standard Brownian motion, and are therefore independent and identically 
distributed normal RV's with mean zero and variance 1/m. Also, B(l)/m is the 
sample mean of these increments. Hence B(l)/gm(B) has a Student's t distribution 
with m - 1 degrees of freedom. 

On the other hand, 

-m1 " ' / , -2-1/2 

8g- MY=m-1/2 r E Zm(n) - 
Z(n , where 

i=1 
r 

j=1 

Z,(n) = f/m Y(s)ds/(n/m) 
(i-1)n/m 

is the ith batch mean of the process {Y(t): 0 < t < n}. Specializing Theorem 2.4 to 
our example therefore allows us to conclude that 

,/- ,27-1/2 
(1 

m n1 n 

^^mZ,(")-J ~ E z,(n ) - tt F (m if /m 

- 1 

Zi(n) - tL E 
Zj(n) t_1 

i=1 / i=l k j=l 1 

as n - oo, where tm_1 is a Student's t RV with m - 1 degrees of freedom. To 
summarize, we have just shown that the method of batch means, with the number of 
batches fixed at m > 2, is asymptotically valid under condition (2.1). This result 
complements a similar theorem due to Brillinger [4]. 

As we have already seen, the fundamental assumption of the method of standardized 
time series is that the output process may be approximated by a Brownian motion. 
Intuitively, then, it should follow that the increments of the output process can be 
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approximated by the increments of Brownian motion. This suggests that one might try 
to extend the power of the method of standardized time series by applying the 
procedure separately to each increment of the output process, and then "patching" the 
increments together. In some sense, this phenomenon occurs in the method of batch 
means, and is related to the somewhat arbitrary nature of the parameter m. Before 
presenting our next examples we need to characterize two other classes of functions 
that belong to L; these examples are related to several presented in Schruben [18]. 

Let Ai: C[O, 1] -- C[O, 1] be the map defined by 

(Aix)(t) = x((i + t)/m) - x(i/m), 0 < t < 1 

for 0 < i < m (m > 1). The next result characterizes the first class of functions in X. 

(3.2) PROPOSITION. If b E X, then g,* E ' (m > 1), where 

m-l 

gm*= boJroAi. 
i=0 

PROOF. We shall show g* can be represented as g* = bm r, where bm E , 
thereby proving that g,* E j/*. Let 4i: C[0,1] - C[0, 1] be given by 

(xix)(t) = x((i + t)/m) - x(i/m)(l - t) - tx((i + l)/m) 

for 0 < t < 1 (0 < i < m). The following relations are easily verified: 

(3.3) i = F o Ai, i = i?r. 

It is evident from (3.3) that 

m m 

g*= Ebor,= Ebo oFr, 
i=l i=1 

so that if 

m 
bm = E bo , 

i=1 

we have a representation of gi* of the form g* = b, r. 
Clearly, bm satisfies (2.6i). For (2.6ii), observe that AiB is a Brownian motion so 

(2.6ii) implies that (b o r o Ai)(B) > 0 a.s. for 0 < i < m, thus yielding (2.6ii) for bm. 
For (2.6iii), note that the continuity of Ai implies that 

m-l 

D(g*) c U {x: Aix E D(bof)} 
i=0 

so that 

m-l 

P{B D(g*)) < E PAiB E D(bor)}. 
i=0 

But A,B is a Brownian motion so that (2.6iii) for b shows that P{ A,B E D(b o F)} = 0 
for 0 < i < m, yielding (2.6iii) for bm. Hence bm E X and we are through. 
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It is of some interest to consider the behavior of g*(B) for large m. 

(3.4) PROPOSITION. g* (B)/m2/2 E(b o r o B) as m -- oo. 

PROOF. Note that 

m-1 

g(B)/ml/2= 1 boT o(ml/2AB). 
i=O 

But (m1/2AiB: 0 < i < m has the same distribution as a collection of m independent 
standard Brownian motions (Bi: 0 < i < m}, so 

- 1 i-1 

g*(B)/m1/2 
1 

bor Bi 
i=O 

(= denotes equality in distribution). Of course, the strong law of large numbers 
guarantees that 

I m-l 

bo roB, - E(boFoB) a.s. 
i=O 

as m - oo, proving the result. 
Thus, if E(b o r o B) < oo, we observe that 

ml/2(Yn(l)- ) ml/2B(1) 

gZ(YL)/E(bo r B) g*(B)/E(bo roB) 

as n -> oo, were the limit RV, for large m, is the normally distributed quantity B(1). 
Hence, as the method of standardized time series is extended to more and more 
increments, the corresponding confidence intervals converge to those associated with a 
normal approximation. This phenomenon is consistent with that observed in the 
method of batch means, where it is known that as m -s oo, the Student's t distribution 
approaches a normal. 

A second class of functions in A involves defining the class 

2 = {b eX: P{B e D(b2or)} = 0), 

where b2(x) = b(x) * b(x). The following proposition has a proof similar to that of 
Proposition 3.2 and will be omitted. 

(3.5) PROPOSITION. If b E 2, then gm E ' (m > 1), where 

'm-1 1/2 

gm= E b2oroAi 
i i=O 

The analogue to Proposition 3.4 is then given by 

(3.6) PROPOSITION. gm(B) = (E(b2 o r o B))1/2 as m - oo. 

Thus, confidence intervals based on gm(-) will, for large m, correspond to that 
associated with a normal approximation. We now turn to some specific examples of 
g* 's and gm's. 

(3.7) EXAMPLE. Let b: C[O, 1] -, R be defined by b(x) = | fJx(t) dt (. To calculate 
the distribution of g*(B) and gm(B), it is convenient to first find the distribution of 
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(b o r)(B). Note that the continuity of B implies that 

I m 1 
(3.8) m f(rm B)(t)dt 

i=1 

as m - oo, a.s. The left-hand side of (3.8) is normally distributed with mean zero and 
variance 

I m m 

mi2 E ' cov[(rB)(k/m), (rB)(I/m)] 
k=l 1=1 

m2kl lE min -,- - -7 =v(m). 

Note that v(m) is a Riemann approximation to the integral 

f o [min(s, t) - st] dsdt 

which has value 1/12. Thus, v(m) -, 1/12; hence, taking characteristic functions of 
both sides of (3.8) shows that the right-hand side of (3.8) is normally distributed with 
mean-zero and variance 1/12. Since AoB,..., Am_lB are independent Brownian 
motions, it follows that 

m-1 

12mg*(B) E B) Bi (1) 
i=O 

where Bo,..., Bm_1 are independent standard Brownian motions; on the other hand, 

m-l \1/2 

12m g (B) = E B(1) (X2m)1/2 
i=0 

where X2 denotes a chi-square RV with m degrees of freedom. The chi-square 
property of gm(B) makes standardized time series based on gm particularly attractive, 
since in that case 

B(1) 

(12m)12 gm(B) 

where tm is the Student's t distribution with m degrees of freedom; the limit theorem 
(2.5) can then be used to construct confidence intervals for [y. These confidence 
intervals, which were suggested by Schruben [18], are based on the so-called standard- 
ized sum process (Y,(1) - ,/(12m)l/2gm(Yn()). 

(3.9) EXAMPLE. The map b: C[0,1] -, R defined by 

b(x)= flIx(t) dt 

also lies in the class "X. Furthermore, the distribution of (b o ?)(B) is known; see 
Johnson and Killeen {14}. However, the distributions of both g*(B) and gm(B) are 

quite complicated, and this would appear to limit the applicability of this method. 
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(3.10) EXAMPLE. Let b: C[0, 1] -- R be defined by 

b(x) = x(t*)/(t*(1 - t*))1/2 

where t* = inf{t > 0: x(t*) = M*}, M* = max{x(t): 0 < t < 1}. Schruben [17] 
showed that (b2 oF)(B) has a chi-square distribution with 3 degrees of freedom. 
Consequently, 

m-gm ( B ) -9 ( X2m )1/2 V gm (B) 3 

so that 

B(1) 9 
t3m 

rmgm(B 3m 

where t3m is a Student's t RV with 3m degrees of freedom. Confidence intervals based 
on gm(B) as defined above are related to the standardized maximum intervals of [18]. 

4. Asymptotics for standardized confidence intervals. In this section, we study 
certain asymptotic properties of standardized confidence intervals. In particular, we 
consider the asymptotics of the expected length of such confidence intervals, as well as 
the end-point variability of these intervals. 

Now, from (2.10), it is clear that the width of the interval (2.10) is given by 
Ln= g(Yn) (3 - a). 

(4.1) PROPOSITION. Assume g E X, and that (2.1) holds. 
(a) If g is nonnegative, then 

lim inf n1/2EL > aEg(B) * (/ - a). 
11 - 00 

(b) If g(X,,): n > 1} is uniformly integrable, then 

lim n1/2EL0 = oEg(B) * (/3 - a). 
n oo00 

PROOF. Using the properties of g, it is easy to show that n1/2L = g(Xn) ? (B - a). 
Assumption (2.1) and the continuous mapping theorem guarantees that if g E X, then 

(4.2) g(X) =* ag(B), 

as n - oo. If g is nonnegative, then Fatou's lemma (see Billingsley [2, p. 32]) can be 
applied to (4.2) to conclude that 

Eg(B) < liminfEg(X,), 
n - 00 

proving (a). On the other hand, it is well known (see Chung [6, p. 96]) that uniform 
integrability implies that 

Eg(B) = lim Eg(Xn), 
n - oo 

proving (b). 
Clearly, it is desirable to obtain confidence intervals with as small an expected length 

as possible. From Proposition 4.1, it seems reasonable to therefore choose a, f/, and 
g E J such that Eg(B) * (,/ - a) is minimized. 

9 
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(4.3) PROPOSITION. Suppose g E MJ. Then, for a 100(1 - 8)% confidence interval, 
/ - a is minimized by choosing 

/ = z(g; 1 - 8/2), a= -/, 

where z(g; x) solves the equation H(z(g; x)) = P{B(1)/g(B) < z(g; x)} = x (in other 
words, the confidence interval should be centered at Yn(1)). 

PROOF. We proceed in two steps. First, for any a E R and b, y > 0, it is easily 
verified that 

(4.4) (D((a + 2b)y) - ((ay) ~< 0(by) - ?(-by). 

Integrating both sides of (5.4) with respect to G(dy) and using (3.14), we get 

(4.5) H(a + 2b) - H(a) < H(b) - H(-b). 

Furthermore, the symmetry of D and (3.14) implies that H is also symmetric, in the 
sense that H(b) - H(0) = H(0) - H(-b) for b > 0. 

For the second step, observe that the symmetry of H proves that H(z(g; 1 - 8/2)) 
- H(-z(g; 1 - 8/2)) = 1 - 8. Set b = z(g; 1 - 8/2). Then, for any a E R, (4.5) 
yields 

H(a + 2b) - H(a) < 1 - 8. 

Thus, in order that H(,/) - H(a) = 1 - 8, it must be that ,/ - a > 2b; proving our 
assertion. 

We turn now to the choice of g E A. Our goal is to find g minimizing 

(4.6) p(g) = Eg(B) . z(g; 1 - 8/2). 

Next we show that the criterion (4.6) is scale-invariant. 

(4.7) LEMMA. For b > O, 4((bg) = (g). 

PROOF. Note that z(g; 1 - 8/2) solves 

1 - 8/2 = P{B(1) < z(g; 1 - 8/2) . g(B)} 

= P{B(1) < z(g; 1-/2) b g(B) 

= P{B(1) l< z(bg;1 - 8/2) b g(B)} 

so that the continuity and strict monotonicity of H imply that 

1 
z(gb; 1 - 8/2) = Wz(g; 1 - 8/2). 

Relation (4.6) then yields the lemma. 

(4.8) THEOREM. Suppose g E #. Then 

(g) > - 
1-(1 -8/2), 

where - 1 is the inverse of the normal distribution function 0. 
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PROOF. By Lemma 4.7, we may scale g so that 

(4.9) z(g; 1 - 8/2) = 1. 

Now, (4.9) implies that 

H(1) = 1 - 8/2, or 

fo (y)Gg(dy) = 1 - 8/2, 

where Gg(dy) = P g(B) E dy (see (2.9)). Thus, we are to show that 

(4.10) +(g) = Eg(B) * z(g; 1 - 8/2) 

= (1 - Gg(y)) dy > -1(1 - 8/2), 

subject to 

(4.11) jlo(y)Gg(dy) = 1 - 8/2. 

Integrating by parts, we find that 

f??(y)Gg(dy) = - [D(y)Gg(y )]o + fc(y) ) dy 

-= j[Gg(y) + 
l](y)dy, 

where Gg(y) = 1 - Gg(y) and >(y) is the normal density function. 
Let K(y) be the distribution function defined by 

K(y) = 0' y < p, 
y1 y > p, 

where p = (-1(1 - 8/2). Note that 

fo[K(y) + 1]q(y)dy = 1 - 8/2 and 

oK(y) dy =p, 

where K(y) = 1 - K(y). Thus, we can reformulate (4.10) and (4.11) as follows: 

(4.12) fO(Gg(y) 
- 

K(y)) dy > 0 

subject to 

(4.13) (Gg(y) 
- 

K(y))4(y) dy = 0. 

11 
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Since f is strictly decreasing on [0, oc), and because 

G(y) - K(y) 0 for y <p, 

Gg(y)-K(y) >0 fory>p, 

it follows that 

(4.14) (Gg(y) - K(y)) dy (p) > fP(Gg(y) 
- K(y))c(y) dy and 

(4.15) f (Gg(y) - K(y)) dy . (p) >, (Gg(y) 
- 

K(y))+(y) dy. 
p P 

Adding (4.14) and (4.15) together, we get 

{(Gg(y) 
- 

K(y)) dy + p(p) >| (Gg(y) 
- 

K(y))f(y) dy. 

Relation (4.13) then yields (4.12). 

(4.16) COROLLARY. Suppose g E ' is nonnegative. Under Assumption (2.1), 

lim n/2EL, > 2a -1(l - 8/2). 
n - oo 

This corollary follows immediately from Propositions 4.1 and 4.3, and Theorem 4.8. 
The lower bound of Corollary 4.16 has an important interpretation. Consider a 

steady-state simulation output analysis algorithm which is based on constructing an 
estimator s,1 which consistently estimates a: 

(4.17) sn = a, 

as n > oo. Among the algorithms of this type are the regenerative method of 
simulation, spectral methods, and autoregressive procedures (see Chapter 3 of Bratley, 
Fox and Schrage [3] for a description of these techniques). The following proposition is 
a straightforward application of the converging-together lemma (see p. 25 of [2]). 

(4.18) PROPOSITION. If Sn is an estimator satisfying (4.17), then (2.1) implies that 

(4.19) nl/2(Yn(1) - la)/sn = B(1), 

as n -> oo. 

The weak convergence result (4.19) permits construction of asymptotic 100(1 - 8)% 
confidence intervals for /s: 

(4.20) [Yn(1) 
- z(n)1 ' Y,(1) + z(8) n2 

where z(8) = -1(1 - 8/2). If Ln is the length of the interval (4.20), it is clear that as 
n -- oo, 

nl/2L, = 2a -'(1 - 8/2), 

12 
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which is precisely the lower bound of Corollary 4.16. If {Sn; n > 1) is uniformly 
integrable (conditions guaranteeing this appear in Glynn and Iglehart [11, Section 6]), 
then we further have that 

(4.22) lim n'/2EL, = 2(a-l(l -- 8/2). 
n - oo 

Corollary 4.16 and the limit theorems (4.21) and (4.22) suggest that, from the 
viewpoint of expected confidence interval length, output analysis methods which 
consistently estimate o dominate standardized time series procedures asymptotically. 

One further point, pertinent to expected confidence interval length, remains to be 
investigated. The examples of ?3 show that for any k > 1, there exists gk E J such 
that B(l)/gk(B) has a Student's t distribution with k degrees of freedom. If gk(Xn) is 
uniformly integrable, then it follows that if L,(k) is the length of such a confidence 
interval, 

lim nl/2ELn(k) = 2oHk-1(1 - 8/2), 
n -* oo 

where H '(p) is the pth quantile of a Student's t with k degrees of freedom. Since 

lim H '(1 - 8/2) = -1(l - 8/2), 
k -oo 

this discussion proves that 

(4.23) inf lim nl/2ELn = 2ao-1(1 - /2); 
gEf 

- 
g n- oo 

thus, the lower bound of Corollary 4.16 is tight. Relation (4.23) raises the question of 
whether there exists g E X/ such that 

(4.24) lim nl/2EL, = 2ao-l(1 - 8/2); 
n - oo 

in other words, is the lower bound attained with X? 
A glance at the proof of Theorem 4.9 shows that p(g)> ~-l(1 - 8/2) unless 

Gg(dy) is a point-mass distribution. Thus, in order to find g e X satisfying (4.24), it 
must be that 

(4.25) P g(aB) = aa} = 1 

for some a > 0. Our next result shows that such a g cannot exist. 

(4.26) PROPOSITION. There exists no g E J/ such that (4.25) holds. 

PROOF. We will prove something stronger: the requirements .P{B E D(g)} = 0 
and (4.25) are incompatible. We start by showing that for every x E C[0O, 1] {x E 
C[0, 1]: x(0) = 0} and E > 0, 

(4.27) P p(aB, x) < e} > 0, 

where p is the uniform metric on C[0, 1]. To see this, fix x E C[0O, 1] and 8 > 0. Since 
[0, 1] is compact, x is uniformly continuous on [0,1], so there exists N = N(e) such 
that 

ix(t) - x(k/N)I < c/4 

13 
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for kN < t < (k + 1)/N, where 0 < k < N. Now, the independent increments of 
Brownian motion imply that if Az(k/N) - z((k + 1)/N) - z(k/N), then 

(4.29) 

P(A(c)) P{ IAB(k/N) - Ax(k/N)l < E/4N, 

a max IB(t) - B(k/N)I < c/2, 0 < k < N} 
k/N.< t < (k + 1)/N 

N-1 

= I P{ oAB(k/N) - Ax(k/N)l < E/4N, 
k=0 

a k max IB(t) - B(k/N)l < e/2 > 0, 
k/N< t <(k + 1)/N 

by virtue of the fact that for any z with Izl < q, P(IB(t) - zi < -, maxo.<<,lB(s)l < 
2, } > 0. Now, on the event A(E), a simple triangle inequality argument shows that 
laB(t) - x(t)l < E for 0 < t < 1 (use (4.28)), proving (4.27). 

From (4.27) and (4.25), it follows that for some a > 0 

P(p(aB, x) < , g(aB) = aa} > 0, 

so that there necessarily exists y = y(x, E) such that p(y, x) < c with g(y) = aa. 
Thus, the range of g over any E-neighborhood of x contains the set aa: a > 0}; 
clearly, then g cannot be continuous at x. 

Hence, x E D(g). Since x was arbitrary, this implies that D(g) = C[0O, 1], violating 
the assumption P{B e D(g)} = 0. 

We now turn to the question of end-point variability. To be precise, observe that if 
g E X, then (2.1) implies that 

(4.30) nl/2Ln og(B) * (/3 - a) 

as n -- oo (see (4.2) for a more complete argument). The limit distribution of the 
confidence interval length is, of course, degenerate if (and only if) g(B) is degenerate. 
Suppose that, in fact, g(B) is degenerate so that there exists a such that P g(B) = a 
= 1. Note that a > 0 by (2.3iii). On the other hand, it follows from (2.3i) that 

(4.31) P{g(oB) = ao} = 1 

for all a > 0. But (4.31) is, of course, just (4.25); Proposition 4.26 therefore proves that 
no such g can exist. Consequently, we may conclude that g(B) must be nondegener- 
ate. The limit theorem (4.30) therefore states that Ln exhibits nondegenerate random 
fluctuations of order n-1/2 

Another way to quantify the above phenomenon is to examine the quantity 
E(L - EL)2. 

(4.32) PROPOSITION. If {g2(Xn): n > 1} is uniformly integrable, then under (2.1), 

(4.33) lim nE(Ln - ELn)2 = a2E(g(B) - Eg(B))2( - a)2 
n -- oo 

provided g E M. Furthermore, the right-hand side of (4.33) is positive. 

14 
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PROOF. The uniform integrability of {g2(Xn): n > 1} implies that {g(X,): n > 1} 
(see p. 100 of [6]), so 

lim n1/2Eg(Y,) = lim Eg(X,) = Eg(B) and 
n oo0 n - oo 

lim nEg2(Y,) = lim Eg2(X) = Eg2(B); 
n - oo n -*oo 

combining the above two limit relations yields (4.33). As for the positivity, this follows 
from the nondegeneracy of g(B) for g E '. 

We now wish to compare the end-point variability of standardized time series 
procedures to that obtained via methods which consistently estimate a. Our analysis 
will be restricted to the regenerative method of simulation; we do this only because the 
required limit theorems are available in this context. 

As (4.21) indicates, n1/2L, converges to a degenerate RV. Thus, Ln asymptotically 
exhibits no random fluctuations of order n- /2. We can, in fact, be more precise. 

(4.34) PROPOSITION. Let Y be a regenerative process and f a real-valued function on 
the state space of Y. Assume that 0 and Tr are the first two regeneration times, 
Yl(f) = Jolf(Y(s)) ds, and E(Y\(lf )8 + ,8) < oo. Then, ifs, is the regnerative estima- 
tor for a (see, for example, [10]), there exists 71 such that 

(4.35) (i) n(L, - EL,) q qN(0,1) as n - oo; 
(ii) n2E(Ln - EL,)2 -_ r12 as n -> oo. 

PROOF. Under the above moment hypothesis, there exists K such that 

(4.36) n1/2(s, - a) = KN(0,1), 

as n - oo; furthermore, the sequence (n(s, - a)2: n > 1} is uniformly integrable (see 
Sections 5 and 6 of [10]). Thus, 

(4.37) nE(Ln - 2z( ) / 0, 

as n - oo; combining (4.36) and (4.37), we get (4.35i). For (ii), we use the uniform 
integrability to obtain nE(s, - a)2 -> K2; this evidently imples that 

(4.38) n2E(L- EL,)2 - 4z2(8)K2, 

proving (ii). 
We conclude that the end-point variability of the regenerative confidence interval is 

of order n- , as opposed to n-1/2 for standardized time series. 
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