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Gravity Aided Navigation (GravAN) and Geomagnetism Aided Navigation (GeomAN)

are two methods for correcting Inertial Navigation System (INS) errors of Autonomous

Underwater Vehicles (AUVs) without compromising the AUV mission. One requirement for

applying these methods is the relatively large field feature variations along the navigation

trajectory. But in some regions with small gravity or geomagnetic variation, it is very difficult

to achieve a reliable result solely by GravAN or GeomAN. If these two methods were com-

bined, gravity and geomagnetism information could be complementary and the aided

navigation ability could potentially be improved, especially in those regions when neither

method is valid. Based on that concept, a Gravity and Geomagnetism Combined Aided

Navigation (GGCAN) method is consequently proposed in this paper as a possible solution.

The Gravity Anomaly Grid (GAG2) and Earth Geomagnetic Anomaly Grid (EMAG2)

are utilized as the background databases, and then a Multiple Model Adaptive Estimation

(MMAE) is adopted to obtain an optimal estimated navigation position. Furthermore, an

Optimal Weight Allocation Principle (OWAP) is introduced to the combined GravAN and

GeomAN methods, together with a weighted average. In simulation, two special regions in

the Western Pacific Ocean were chosen to test the proposed method. The results show that

GGCAN can improve the position success rate and reduce the error, compared to GravAN

or GeomAN. Results indicate that the GGCAN method proposed in this study is able to

improve the accuracy and reliability of an aided navigation system.
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1. INTRODUCTION. Inertial Navigation Systems (INSs) are the primary

navigation methods for Autonomous Underwater Vehicles (AUVs). However, the

navigation error of INS increases with operating time during extended AUVmissions.

Therefore, external aiding information is necessary to limit the INS error
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accumulation. Contrary to the situation on the water surface, where satellite and some

other radio navigation signals are easily available, the problem of underwater

navigation is more complicated due to the requirement of continuous underwater

operation for long periods. Sometimes it is unacceptable for the AUV to acquire the

navigation updates by surfacing or nearly surfacing (Wu et al., 2010; Hays et al., 2002;

Satow, 1951). However, gravimetry and magnetometry are totally non-emanating and

passive, they do not need the AUV to surface. Gravity and geomagnetic fields vary

from place to place around the Earth’s surface and this is recognizable by matching

algorithms (Liu et al., 2007; Huang et al., 2010). Thus gravity and geomagnetic

information can be employed to construct the passive aided navigation systems for

AUV.

The design of appropriate and accurate navigation algorithms is one of the most

crucial parts in gravity/geomagnetic aided navigation systems. Presently, the most

frequently used algorithms based on map matching technology are Terrain Contour

Matching (TERCOM) and Iterated Closest Contour Point (ICCP) (Deng et al., 2010).

Although both methods are able to achieve credible matching results, a sequence of

gravity or geomagnetic measurements that are collected in advance is a necessary

condition, so the matching process is by no means simultaneous (Zhao et al., 2009). In

addition to map matching technology, an Extended Kalman Filter (EKF) is another

choice to obtain an estimated position in underwater aided navigation. It handles the

issue under nonlinear filter theory and can estimate the INS navigation error in real

time. However, EKF is very sensitive to initial and process errors; small errors may

lead to divergence, so the reliability and stability of this method cannot be ensured

(Wu et al., 2011).

The focus of previous researches has been on Gravity Aided Navigation (GravAN)

or Geomagnetism Aided Navigation (GeomAN) individually (Feng et al., 2008; Hays

et al., 2002). The aided navigation result is much related to the gravity or geomagnetic

features along the trajectory. In some regions of insufficient gravity or geomagnetism

variation, if these two methods were combined together better navigation perform-

ance could be expected. Consequently, the Gravity and Geomagnetic Combined

Aided Navigation (GGCAN) is proposed in this paper. There are two main

procedures in GGCAN. First, Multiple Model Adaptive Estimation (MMAE) is

employed as a navigation algorithm, in which multiple Kalman filters are formed and

the optimal navigation positions are estimated separately from GravAN and

GeomAN. Secondly, the results from GravAN and GeomAN are combined with

the weighted average method derived from the Optimal Weight Allocation Principle

(OWAP) and the final GGCAN position result can be obtained.

Weighted average methods were extensively used in multi-sensor data fusion,

information retrieval and decision making (Hall and Llinas, 2001; Larsen, 2011). With

simple weighted average methods like Equal Weighted (EW), the accuracy of fusion

result may be less than that of one of the inputs. Thus a better weighted method is

needed so that the accuracy of the GGCAN result can be better than either of

GravAN and GeomAN. A weighted average method based on OWAP is explored in

this study. This method is more effective and convenient. Moreover, the accuracy

difference between GravAN and GeomAN is fully considered.

Two regions in the West Pacific Ocean were selected for the simulation and the

performance and reliability of GGCAN is discussed. The improvement in the success

rate and position accuracy show that OWAP is more appropriate for GGCAN than
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the equal weighted method, and GGCAN (OWAP) presented in this study is more

accurate and robust than GravAN or GeomAN.

2. PRINCIPLES OF GGCAN. In GravAN and GeomAN, the gravity and

geomagnetic data are collected point by point with onboard sensors, as the AUV

moves. After pre-processing and calibrations, the measured anomalies are matched

with the background anomaly prepared previously, and the optimal estimated

positions are obtained with MMAE. Thereafter, the estimated positions are used

to update the INS navigation information. In the proposed GGCAN method, both

gravity anomaly and geomagnetic anomaly are involved. The GGCAN system

consists of INS, aided navigation background databases, gravity/geomagnetic sensors,

aided navigation algorithms (MMAE and OWAP), and a navigation processor.

A block diagram of GGCAN is presented in Figure 1. The measured gravity/

geomagnetic anomalies and background databases are sent to MMAE modules.

Multi-module Kalman filters are employed here in the MMAE technology to ensure

that reliable position estimations are obtained from GravAN or GeomAN. Then a

weight function that is derived from the OWAP is adopted to compute the final

GGCAN combined positions from the results of GravAN and GeomAN. Finally, the

combined positions are used to modify the errors of the INS.

3. GRAVAN AND GEOMAN ALGORITHM.

3.1. Gravity Anomaly Grid Map and Geomagnetic Anomaly Grid Map. Gravity

and geomagnetic background databases are the most basic and fundamental elements

of the GGCAN system. In this research, a gravity anomaly grid map and geomagnetic

anomaly grid map are selected as the databases.
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Figure. 1. Block Diagram of GGCAN.
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With the appearance and development of satellite altimetry, the resolution of the

Gravity Anomaly Grid (GAG2) in ocean area from altimetry inversion has already

reached 2′×2′. Therefore, a KMS2002 gravity anomaly grid map with 2′×2′ resolution

is chosen for GGCAN in this paper (Andersen et al., 2005).

The Earth Magnetic Anomaly Grid (EMAG2) was released by National

Geographic Data Center (NGDC) in March 2009; EMAG2 is compiled from

satellite, continental, marine data and specified as a global 2′×2′ resolution grid of the

anomaly of the total magnetic intensity (Maus et al., 2009). So the EMAG2

geomagnetic anomaly grid map with 2′×2′ resolution (EMAG2, 2011) was utilized for

the GGCAN study.

3.2. GravAN and GeomAN Algorithm Based on MMAE. Kalman filters are

widely used in integrated navigation systems. In this paper a Kalman filter and

MMAE are utilized to construct GravAN and GeomAN algorithms. Firstly, a

confidence area was formed and the size was determined by the INS position Circular

Error Probability (CEP) and Rayleigh Distribution; it can be seen in Figure 2. Then,

Kalman filters were constructed at every regularly arranged grid in the confidence

area. The measurements for Kalman measurement equations are composed from the

differences between the measured anomaly and the anomalies of the filters. The system

model for the Kalman filter can be provided as follows:

X =
X1,k

X2,k

( )

=ϕk,k−1

X1,k−1

X2,k−1

( )

+ Gk−1
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Figure 2. Sketch Map of Confidence Interval and Validate Location.
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The subscripts 1 and 2 indicate GravAN and GeomAN respectively in the whole

paper, where:

X –Actual value of gravity/geomagnetic anomaly and it is treated as the state

vector.

Z –The gravity/geomagnetic measurement vector.

W – System noise. W1,k=N(0,q1) and W2,k=(0,q2), Q=diag(q1,q2).

V –Measurement noise. V1,k=N(0,r1) and V2,k=(0,r2), R=diag(r1,r2).

The noises are assumed to be uncorrelated with each other. Five Kalman filter

equations are listed as follows:

X−
k = ϕXk−1

P−
k = ϕPk−1ϕ

T +Q

Kk = P−
k H

T/(HP−
k H

T + R)

Xk = X−
k + Kk(Zk −HX−

k )

Pk = (I − KkH)P−
k























(3)

Kalman filter computations are executed in every filter individually. Thereafter, the

filtering residuals are defined as:

δ1,k+1

δ2,k+1

( )

=
Z1,k+1 − X1,k+1/k

Z2,k+1 − X2,k+1/k

( )

(4)

where:

δ1,k+1=N(0,P1,k/k−1+ r1) and δ2,k+1=N(0,P2,k/k−1+ r2) respectively.

P1,k/k−1 and P2,k/k−1 are the predicted covariance of the states of gravity and

geomagnetic respectively.

The weighted residual and its smoothness value are defined (Hollowell, 1990) as:

WRS1,k+1

WRS2,k+1

( )

=
(δ1,k+1)

2/(P1,k+1/k + r1)

(δ2,k+1)
2/(P2,k+1/k + r2)

( )

(5)

SWRS1,k+1

SWRS2,k+1

( )

=
α ·WRS1,k+1 + (1− α)SWRS1,k

α ·WRS2,k+1 + (1− α)SWRS2,k

( )

(6)

where;

SWRS1,0=SWRS2,0=1.0

α is smooth factor.

α=1.938p when p indicates the draft of the INS.

If SWRS is smaller, better position results can be achieved. So the smallest values of

SWRS are sought, and the corresponding positions are regarded as the estimated

results of positions for GravAN and GeomAN.
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As the positions have been estimated, the following criterion is adopted to judge the

reliability of the results:

H =
SWRS∗

min − SWRSmin
1/2

SWRSmin
1/2

. Ht (7)

where:

H is the reliability.

Ht is the threshold.

SWRSmin
1/2 is the smallest SWRS value, and SWRS∗

min is the second

smallest SWRS value in the region around the corresponding position of

SWRSmin
1/2 . For estimating the results of position for GravAN and GeomAN,

the region is defined by nine grids, including the corresponding position of

SWRSmin
1/2 and eight surrounding grids, and is illustrated in Figure 3. From

Equation (7) it can be seen that the reliability H would increase if the differences

between SWRS∗
min and SWRSmin

1/2 increased. When the reliability H is larger than

threshold Ht, the position results would be considered as valid, otherwise they

would be invalid.

As the position results of SWRSmin
1/2 are confirmed as valid, more

accurate estimation of positions can be calculated with weighted methods.

Equations (8) and (9) are presented here for position and weighted

Figure 3. Region around SWRSmin
1/2 and OWAP for GGCAN.
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calculation respectively:
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∑
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Where (λ,φ) are the coordinates of the position, the weights are calculated with

SWRS values at every grid. In Figure 3 point P1(λ1,φ1) and P2(λ2,φ2) are the more

accurate estimation results.

4. OPTIMAL WEIGHT ALLOCATION PRINCIPLE (OWAP) .

4.1. OWAP Algorithms. As the position results of GravAN and GeomAN have

been obtained, OWAP is adopted to combine the gravity and geomagnetism aided

navigation.

It is shown in Figure 3 that the position results of GravAN and GeomAN

are P1(λ1,φ1) and P2(λ2,φ2), respectively. They are affected by various errors

including measurement error, database error and the algorithm error. All the

noises and errors are assumed to obey the law of Gaussian distribution (Ling et al.,

1998):

p(P1) = N(μ1, σ
2
1) (10)

p(P2) = N(μ2, σ
2
2) (11)

After the following transformation, z1 and z2 obey the standard normal distribution:

z1 =
P1 − μ1

σ1
(12)

z2 =
P2 − μ2

σ2
(13)

The weighted average method of the gravity and geomagnetism combined aided

navigation (GGCAN) is then constructed as:

p = WP = [w1,w2][P1,P2]
T (14)

where:

W=[w1,w2] is the weight vector.

w1 and w2 are the weights of GravAN and GeomAN respectively.

P=[P1,P2]
T.
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Multiple random vectors Z obey the standard normal distribution after the

transformation below:

Z = A(P−U) (15)

where:

Z=[z1,z2].

A = diag
1

σ1
,
1

σ2

[ ]

.

U=[μ1,μ2]
T.

From Equation (15) we obtain:

P = A−1Z +U (16)

Substituting Equation (16) into Equation (14):

p = WP = W (A−1Z +U) = WU +WA−1Z (17)

According to the theory of n-dimensional multivariate statistics, the probability

density function of p is:

f ( p) = (2π)
n
2 WP−1(P−1)′W ′
∣

∣

∣

∣exp
1

2
( p−WU)(WP−1(P−1)′W ′)( p−WU)′

{ }

= (2π)−
n
2

∑

n

i=1

w2
i σ

2
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp −
1

2

∑

n

i=1

w2
i σ

2
i y−

∑

n

i=1

w2
i σ

2
i

( )2












(18)

This indicates that p obey normal distribution. In other words:

p = N
∑

n

i=1

wiμi,
∑

n

i=1

w2
i σ

2
i

( )

(19)

That is to say, the mathematical expectation of position result after fusing

is the weighted expectation of GravAN and GeomAN. And the precision of

GGCAN is:

σp =

����������

∑

n

i=1

w2
i σ

2
i

√

(20)

Apparently, if σi are given, σp is only influenced and determined by wi. As the

minimum of σp indicates the optimal accuracy of GGCAN. A mathematical model is

constructed as follows:

f (w1,w2) =
∑

2

i=1

w2
i σ

2
i (21)

∑

2

i=1

wi = 1(wi 5 0, i = 1, 2), σi(i = 1, 2) (22)

90 HUI ZHENG AND OTHERS VOL. 66

https://doi.org/10.1017/S0373463312000343 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000343


So the optimal problem is transformed into finding the conditional extreme value of

this function f (w1,w2) (Ling et al., 2000). This problem can be solved by the Lagrange

Multiplier method.

4.2. The Solution of OWAP. The Lagrange Multiplier conditional extreme value

equation can be written as below:

F =
∑

2

i=1

w2
i σ

2
i + β

∑

2

i=1

wi − 1

( )

(23)

where β is the Lagrange Multiplier.

The partial differential of the F with respect to wi(i=1,2) is assigned to 0, so a set of

equations can be written as:

∂F

∂w1

= 2w1σ
2
1 + β = 0

∂F

∂w2

= 2w2σ
2
2 + β = 0

w1 + w2 = 1



















(24)

Then the weight of GravAN and GeomAN could be obtained:

wi =
1

σ2i
∑

2

i=1

1

σ2i

(25)

Substituting Equation (25) into (20) the precision of GGCAN is:

σp =

����������

∑

2

i=1

w2
i σ

2
i

√

√

√

√ =
1
������

∑

2

i=1

1

σ2i

√ (26)

4.3. Precision Analyses of OWAP. Let the precisions of GravAN and GeomAN

be σ1 and σ2, respectively. Assuming that σ1≤σ2, the following inequality can be

obtained:

σp =
1

���������

1

σ21
+

1

σ22

√ 4
1
���

1

σ21

√ 4
1
���

1

σ22

√ (27)

This inequality indicates that with OWAP the precision of GGCAN is

improved with respect to either GravAN or GeomAN. This is the essential difference

between OWAP and other fusion methods. So more precise position results can be

gained with the combination of gravity and geomagnetism aided navigation after

OWAP.

5. GGCAN. The flow chart of the GGCAN algorithm is shown in Figure 4. With

the MMAE-based GravAN and GeomAN algorithms mentioned in Section 3, and

OWAP method mentioned in Section 4, the GGCAN algorithm can be provided. The

fusing algorithm OWAP only works when both GravAN and GeomAN are valid.
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As the criterion function, H in Equation (7) can, to a certain extent, be regarded as

the precision of aided navigation. It is assumed that:

σ1 =
SWRS∗

1 − SWRSmin
1

SWRSmin
1

σ2 =
SWRS∗

2 − SWRSmin
2

SWRSmin
2



















(28)

Thereafter, the weight matrix is formed according to Equation (25). With the

weights the position result P1(λ1,φ1) of GravAN and the position result P2(λ2,φ2) of

GeomAN are taken to calculate the final GGCAN position result which is marked

with a red dot in Figure 3.

The final GGCAN position result can be obtained from the following equation:

λ = w 1 · λ 1 + w 2 · λ 2, φ = w 1 · φ 1 + w 2 · φ 2 (29)

6. SIMULATION RESULTS AND DISCUSSION. Gravity and geo-

magnetic anomaly maps for simulation are illustrated in Figure 5. Two special
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Figure 4. Flow Chart of GGCAN Algorithm Based on MMAE and OWAP.
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Regions A and B in the West Pacific Ocean are selected, which are marked with

black rectangles in Figure 5. The statistical information of gravity and geomagnetic

anomalies in the two regions are collected and listed in Table 1. From this table it

can be found that the standard deviation of the geomagnetic anomaly is bigger

than the gravity anomaly in Region A, and smaller than the gravity anomaly in

A

B

A

B

Figure 5. GAG2 (top) and EMAG2 (bottom) Maps in West Pacific Ocean and the Simulation

Two Regions.
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Region B. So it perhaps means that there is more geomagnetic information in

Region A and more gravity information in Region B.

Simulation parameters including initial position errors, INS drift, measurement

errors, AUV velocity, smooth factor and reliability threshold Ht are assigned; their

values are listed in Table 2. The actual trajectories are simulated form South West to

North East in Regions A and B. Under the same conditions four methods, GravAN,

GeomAN, GGCAN(EW) and GGCAN(OWAP) were used to provide position

information in Regions A and B. The GGCAN(EW) was tested to prove the

performance of OWAP. The trajectories of four aided navigation methods are showed

in Figure 6. The position errors of these methods are showed in Figure 7.

It can be seen from Figures 6 and 7 that INS position errors increase with time.

With the four methods, GravAN, GeomAN, GGCAN(EW) and GGCAN(OWAP),

the INS position errors can be corrected effectively by different amounts. The position

errors of GGCAN(OWAP) were marked with red pentagrams in Figure 7 and, in

these diagrams, GGCAN(OWAP) was lower and more steady than the three other

methods.

For further quantitative analysis, the statistical parameters about navigation

results are counted and listed in Table 3. In this table it can be seen that in Region A

the performance of GeomAN is better than GravAN and in Region B this comparison

is opposite. So, as mentioned before, it is apparent that there is more geomagnetic

Table 1. Gravity and geomagnetic parameters in the simulation regions.

Parameter

Value

A B

Longitude range (deg) 130–135 134–139

Latitude range (deg) 23–28 6–11

Grid interval (min) 2 2

Gravity anomaly (mgal) Minimum −166·32 −248·36

Maximum 134·98 280·76

Standard deviation 34·57 64·23

Geomagnetic anomaly (nT) Minimum −279·87 −233·68

Maximum 387·23 229·36

Standard deviation 88·02 51·14

Table 2. Simulation parameters.

Parameter Value

Initial North location error (deg) 0·003

Initial East location error (deg) 0·003

INS North drift (deg/h) 0·48

INS East drift (deg/h) 0·64

Gravimeter measure noise (mgal2) 10

Magnetometer measure noise (nT2) 10

AUV velocity (n mile/h) 20

Smooth factor 0·969

Ht 0·4
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Table 3. Simulation results of four types of aided navigation systems.

GRAVAN GEOMAN GGCAN (EW) GGCAN (OWAP)

A Measure times 213 213 213 213

Validate times 112 183 195 195

Success rate 52·58% 85·92% 91·55% 91·55%

Error (n mile) Mean 1·81 1·73 1·57 1·51

variance 0·95 0·85 0·77 0·59

B Measure times 213 213 213 213

Validate times 169 148 199 199

Success rate 79·34% 69·48% 93·43% 93·43%

Error (n mile) Mean 1·53 1·99 1·36 1·34

variance 0·90 0·92 0·79 0·65

 
6a). True, INS, GravAN, GeomAN, GGCAN(EW) and GGCAN(OWAP) Trajectories in Region A. 

6b). True, INS, GravAN, GeomAN, GGCAN(EW) and GGCAN(OWAP) Trajectories in Region B. 

Figure 6. The Trajectories of the Two Simulation Tests in Region A and B.
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information than gravity in Region A, and more gravity information than

geomagnetic in Region B.

In the four aided navigation methods, GGCAN(EW) and GGCAN(OWAP) have a

distinct advantage in success rate and position error than GravAN and GeomAN, in

either Region A or B. In Region A the success rate of GGCAN(OWAP) is 91·55%,

a). INS, GravAN, GeomAN, GGCAN(EW) and GGCAN(OWAP) Location Errorsin Region A.

b). INS, GravAN, GeomAN, GGCAN(EW) and GGCAN(OWAP) Location Errorsin Region B.

Figure 7. Four Types of Aided Navigation Errors in Region A and B.
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much higher than 52·58% of GravAN and 85·92% of GeomAN. Similarly, in Region

B the success rates are 93·43%, 79·34% and 69·48%, respectively. This means that

GGCAN(OWAP) can be valid when GravAN or GeomAN fails. In Region A the

mean position error of GGCAN(OWAP) is 1·51 n. miles, smaller than 1·81 n. miles of

GravAN and 1·73 n. miles of GeomAN. In Region B these errors are 1·34, 1·53 and

1·99 n. miles. The improvement in success rate and position accuracy show that the

GGCAN(OWAP) method presented in this study is more accurate and robust than

GravAN or GeomAN.

Moreover, in both Regions A and B, the success rate of GGCAN(EW) and

GGCAN(OWAP) are equal, but the position errors of GGCAN(OWAP) are smaller.

This indicates that the proposed weighted method of OWAP is more suitable for

GGCAN than the equal weighted method.

7. CONCLUSIONS. Some aided navigation methods are necessary to correct

the INS position error in underwater passive navigation. Gravity aided navigation

and geomagnetic aided navigation are two suitable methods for establishing

aided navigation systems on Autonomous Underwater Vehicles (AUVs). But in

some regions, gravity or geomagnetic navigation may fail due to the inconspicuous

gravity/geomagnetic variation and some other errors. In this paper, the Gravity-

Geomagnetism Combined Aided Navigation (GGCAN) is proposed. In this method a

Kalman filter and Multiple Model Adaptive Estimation (MMAE) are utilized to get

the position results of Gravity Aided Navigation (GravAN) and Geomagnetic Aided

Navigation (GeomAN). With the weighted method of Optimal Weight Allocation

Principle (OWAP), the two results are weighted and combined. Two regions in the

West Pacific Ocean were selected in the simulation and the improved success rate and

position accuracy show that OWAP is more suitable for GGCAN than the equal

weighted method, and GGCAN(OWAP) presented in this study is more accurate and

robust than GravAN or GeomAN.
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