
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

SIMULATION SOFTWARE COMPONENT ARCHITECTURE FOR
SIMULATION-BASED ENTERPRISE APPLICATIONS

Charles R. Harrell

Department of Manufacturing Engineering
Brigham Young University
Provo, Utah 84602, U.S.A.

Donald A. Hicks

Senior Vice President
PROMODEL Corporation
Orem, Utah 84058, U.S.A.

in
s
g
s
a
d

a
e
e
e
y
n

o
l

s
o
i
s

s
io
th
c
t

n

e
e
b
y

i

as

ed

e

l
e
e
t
nd
e

r

e

nd
y
y

y
nd
ly
en
ABSTACT

This paper examines trends and technologies lead
towards simulation-based enterprise application
Component, internet and distributed computin
technologies are presented as enablers of simulation-ba
enterprise applications. Examples are given of typic
applications that can take advantage of distribute
simulation components. The goal of this paper is to prese
a high level component architecture that will work in
current enterprise information technology (IT)
environments.

1 INTRODUCTION

Historically, discrete-event simulation has been viewed
a standalone, project based technology. Simulation mod
were built to support an analysis project, to predict th
performance of complex systems, and to select the b
alternative from a few, well defined alternatives. Typicall
these projects were time consuming and expensive, a
relied heavily on the expertise of a simulation analyst
consultant. The models produced were generally “sing
use” models which were discarded after the project.

Over the last few years, the simulation industry ha
seen increasing interest in extending the useful life
simulation models by using them on an ongoing bas
(Hicks 1998). Front-end spreadsheets and push-button u
interfaces are further making these models accessible
decision makers. In these flexible simulation model
controlled changes can be made to the model configurat
and management rules for decision support throughout
system life cycle. This trend is growing to include dynami
links to databases and other data sources enabling en
models to be actually built and run in the background usi
data already available from other enterprise applications.

The trend to integrate simulation as an embedd
component in enterprise applications is part of a larg
trend to develop software components that can
distributed over the internet. This trend is being fueled b
1717
g
.

ed
l

nt

s
ls

st

d
r
e

f
s
er
to
,
n
e

ire
g

d
r
e

three new information technologies (Wolf, Smith, and Ch
1998): (1) component technology which delivers true
object orientation, (2) The internet or world wide web
(WWW) which connects business communities and
industries, and (3) distributed computing standards such
Common Object Request Broker Architecture (CORBA)
and Distributed Component Object Model (DCOM).

The objective of this paper is to outline a generic
software component architecture that can be used to emb
simulation computational power into other applications
producing simulation-based enterprise applications. W
intend to first outline the problem environment and
resulting software design requirements. Then we wil
discuss the functional requirements that enterpris
computing environments impose upon simulation softwar
design. We will outline a high level component design tha
meets these requirements, discuss the technological a
software development issues that arise from th
implementation of this design, and finally draw
conclusions about the implications this architecture has fo
embedding simulation technology into the enterprise
computing environment.

2 PROMISE VERSUS PRACTICE

It is difficult to argue with the economics of reusing
technology that has already been paid for to get mor
return on the initial investment. If Company X pays for a
simulation project it is often paying largely for the answers
that the project will get them. However, if the simulation
model that yielded those answers can be used for a seco
or third project, Company X can save considerably b
getting the benefits of the projects without having to pa
each time for a new model build.

While this is sound economics in theory, in practice
companies often find it extremely difficult to reuse
simulation models. Discrete-event simulation is frequentl
used to examine and analyze very detailed problems, a
hence produces very detailed simulation models. Rare
are the details of two operational problems the same, ev

Harrell and Hicks

a
tio
ca

in
th
 t

bje
wi
te
w
tu
th

 th
 it
n

l”
et
is
 th
n
e

ed
ia
ba
ine
lta
a
 a
em

to
ate
an
ca
r o
en
y
 a

y t
e
en
tri
m

 a
el
ist
pe
ed
le

es.
he
te
l.
te
ng
nd
d

ed

ve

ld

hat
ite
rts
n

as
gle
er.
ral
ite
g

the
e
is
es,

nts

al
he
 a
ta

ill
e
s,
ed

ata
he
ta
ase.
a
hat
w

if the problems are dealing with similar issues. This me
that, from a detailed modeling perspective, every situa
is a unique situation, and cannot be modeled generi
with a reusable simulation.

3 THEORY OF PROBLEM DOMAINS

One of the more difficult tasks in designing and build
discrete-event simulation models is determining
appropriate level of detail. The modeler must translate
real system into an abstract system of objects, o
interactions with other objects, and object interactions
the system environment. A modeler who seeks to crea
abstract representation of some operation is faced
three options: (1) model the operation in detail to cap
actual cause and effect relationships, (2) model
operation without much detail to capture only some of
interactions, or (3) “black box” the operation expressing
presence through a math model or probability distributio

A model builder will make his “level of detai
decision based on whether he thinks that additional d
will significantly affect the output statistics he
attempting to calculate. Thus, the modeler may decide
the operation in question is not relevant to the questio
is interested in answering, and choose to simply ignor
effects.

The ability to resolve “level of detail” decisions bas
on their relationship with overall objectives is not a triv
skill. Experts make these decisions on a case by case
and rely on extremely complicated and difficult to def
heuristic decision making procedures. Ask a consu
how he knew to black box one issue and collect dat
another, and you’re likely to get an answer such
“Because I’ve done a number of these kinds of probl
before,” or “Based on experience.”

The important concept here is that there seems
general classes of problems that are commonly simul
and that behave similarly in terms of their structure
guidelines for level of detail selection. For example,
center operations are simulated quite often to answe
of several questions. Every single call center is differ
so if you wanted to model each call center precisel
determine some statistic to which the smallest details
relevant (such as the number of sticky notes used b
staff each day), you could expect that you would hav
model each one from scratch. Fortunately, most call c
simulations are focused on determining several key me
such as staff utilization, customer service, and custo
waiting time parameters.

For this class of problems, which we term
“simulation problem domain,” the simulation mod
required to get the answers most users want is cons
and definable. An experienced simulation develo
should be able to define all of the data requirements ne
to build the call center model, and then further be ab
171
ns
n
lly

g
e
he
ct

th
 an
ith
re
e
e
s
.

ail

at
he
its

l
sis,

nt
on
s,
s

be
d,
d
ll
ne
t,

to
re
he
to
ter
cs
er

ent
r
ed
to

construct appropriate models from those data tabl
Hence, the developer can write software that would, for t
call center problem domain, consistently genera
simulation statistics given only the call center data mode

The concept of simulation problem domains is qui
important. It establishes a new framework for evaluati
the use of simulation technology in decision making, a
breaks the idea of simulation modeling into two broa
application types: simulation projects, and embedd
simulation-based decision support tools.

Some sample simulation problem domains that we’
identified to date include:

• Call Center Applications
• Emergency Room Modeling
• Manufacturing Capacity Planning
• Inventory (Demand-Supply) Simulation
• Business Process Simulation (Harrell and Fie

1996)

4 SOFTWARE COMPONENTS AND PROGRAM
SERVICES

The requirements placed upon a software program t
facilitates embedded simulation applications are qu
different from the requirements of a program that suppo
user driven model development. In traditional simulatio
model building, the simulation software application acts
a model development environment. It is used on a sin
workstation or PC and data is entered primarily by the us
The simulation development environment is a gene
modeling environment that must support a nearly infin
variety of modeling situations. Hence, the modelin
language and the software will be used in ways that
designer never anticipated, making it likely that th
software will throw exceptions on a regular basis. It is th
core issue, designing software to handle infinite use cas
that makes simulation software development environme
extremely difficult to make robust and error free.

In simulation development environments, a graphic
user interface is the primary means of interacting with t
application. The application is nearly always run as
stand-alone executable file, and will occasionally pull da
from other sources, acting as a client.

Simulation-based applications, on the other hand, w
not involve direct simulation by humans. Instead, th
simulation application takes data from existing source
applies discrete-event simulation to the problem as defin
by the simulation problem domain, and creates new d
output which is put back into the database. T
simulation-based application effectively maps input da
tables to output data tables in the same enterprise datab

The simulation-based application is likely to adopt
distributed architecture. The user who takes an action t
triggers a requirement for simulation may not even kno
8

Simulation Software Component Architecture for Simulation-Based Enterprise Applications

r is
tion
ion
an

st
ted
ram
ed t
rise
hed
A o

ion
us

s

ent
that
 an
ed
ct a
rea
ms

ent
ery
tion

le
ts
d.

n

or
is

ct

s

l
t
rve
,
an
f
n
e

of
,

or
he’s asking for a simulation to be run. Rather, the use
using some application on the network, and the applica
is the one requesting the simulation. The simulat
program in this case is required to be a server, rather th
client.

Additionally, the simulation software program mu
have an extremely well defined and documen
programmatic interface and extensive APIs. The prog
must operate as a software component that is design
support requests for its services. In today’s enterp
computing environment, this means adopting a publis
and widely accepted interface standard such as CORB
DCOM.

Table 1 shows a comparison of the applicat
characteristics found in simulation projects vers
embedded simulation applications:

Table 1: Requirements for Simulation Projects Versu
Embedded Simulation Applications

Characteristic
Simulation
Projects

Embedded
Simulation

Nature of
problem

Strategic/Planning Tactical/Opera-
tional

Application General Domain Specific
Interactive Role Client Server
Primary
interface

Graphical (GUI) Programmatic
(CORBA,
DCOM)

Sources of input
data

User, flat files ERP, Corp.
database

Model Builder Human Software routine
Destination of
output data

Flat file report ERP, Corp.
database

User of Output Human Other software
objects

To summarize, a simulation model developm
environment is a robust, graphical-oriented application
generally runs as a stand-alone application and solves
possible problem equally well. A simulation-bas
application requires a simulation component that can a
a server on a local area network (LAN) or wide a
network (WAN), can simulate a few types of proble
extremely well and with no exceptions.

5 SIMULATION AND OPTIMIZATION
COMPONENTS

Figure 1 illustrates how traditional simulation developm
environments are typically constructed. Of course, ev
simulation software package has its own unique varia
to this approach.
1719
a

o

r

y

s

Simulation
Processor

Statistical
Processor

Model
Processor

Modeling
Interface

Output
Interface

Simulation
Interface

data
model

data
output

data
simulation

Animation
Processor

Figure 1: Traditional Components of Simulation Software
(Harrell and Tumay 1994)

In traditional simulation software architectures the
basic software components are all integrated into a sing
monolithic application. Interfaces between the componen
are internally and are not exposed to the outside worl
This is fine for PC based off-line planning and
improvement projects. All of the processing happens o
one machine, which optimizes the program for quick
response to the user’s actions. There is no waiting time f
a server and no load placed on the network. However, th
is totally unsuitable for integrated simulation applications
that don’t have any graphical components, and that intera
with a large number of external applications written by
other developers who probably don’t know what interface
the simulation program has implemented.

It is common in simulation, even for traditional
simulation model development, for other externa
applications to be used. Almost every simulation projec
uses a spreadsheet to manipulate tabular data, a cu
fitting component to convert data into probability models
an optimizer or scenario manager to run experiments,
output report generator, and probably some kind o
commercial editor (such as MS Word, PowerPoint, or a
HTML editor). These other components should not b
overlooked in formulating an architecture for simulation
because they are just as important to the process
improving corporate decision making. At the same time
instead of communicating at the API level, these
components often use the user himself as the vehicle f
transferring data.

Harrell and Hicks

n

me
oth
and
ure

n be
in.
are
ong

 is
d to

hil
on
 the
ing
 of
an
nd
cal
ata

 A
lar
tion

 of

rest
to

he

 is
lly
y a
d.
ta

that

nt
ors.
as
hat
to

uch
ide
e

ch
uch
 the

a
al
ise
nd
e
r a

ry
ed

ned
s,
n
X

ed

for
se
on-
ent

lf-
 be
et,
e

Table 2: Software Components Required for Simulatio
Based Applications

Software Component
Services Provided by
Component

Curve Fitting Translates raw data lists into
probability distributions

Enterprise Database Provides a repository for
process definition and
transaction data

Simulation Database Provides a repository for
simulation problem specific
data

Data Retriever Retrieves the data required by
the simulation database from
all sources of data in the
enterprise

Simulation Engine
Component

Translates simulation database
into experimental results
database

Animation Component Displays graphical animation
of model experiment

Optimization/Goal
Seeking Component

Conducts multiple simulation
experiments in order to
achieve a specific goal

In simulation-based applications, these sa
components in the simulation software system, b
external and internal, come together to transform
generate new data for decisions. By adopting a p
component architecture, however, the components ca
reused and tightly linked for a specific problem doma
Below is a table of the software components that
required to configure a simulation-based application, al
with the major services those components will provide.

6 OUTPUT AND ANIMATION ISSUES

In this application framework, the simulation engine
basically a translator, or data mapping device. It is use
translate an input database into an output database. W
this is not essentially different from what simulati
software packages do today, it is important because
focus and main usage has shifted from model build
activities to decision-support activities. In the paradigm
simulation-based applications, model building as
activity is performed when the problem is formulated a
structured. Hence, the focus shifts from graphi
interaction (both in model development and output) to d
model interaction.

Of particular interest is the issue of animation.
simulation component that is used to offer its particu
services to other applications may not generate anima
directly. In stead it may generate detailed output
1720
e

graphical object movements and status changes of inte
in the model. It is then up to other components
determine how to use this information, stored in t
experiment output database, to display visualizations.

Animation, seen from the component perspective,
simply another means of displaying output data. It is rea
no different than other detailed output data produced b
simulation experiment, except in how it is displaye
Thus, the onus of animating and displaying da
graphically is placed on the components in the system
is responsible for display.

7 INTEGRATING SIMULATION-BASED
APPLICATIONS INTO THE ENTERPRISE
ENVIRONMENT

Interoperability has become one of the most importa
issues for corporate IT departments and software vend
What was once a wide open “wild west” of computing h
quickly converged around several standard protocols t
are relevant to integrating simulation components in
enterprise applications.

Corporate databases, mainframes, ERP systems s
as SAP R/3, BaanERP, Oracle, and PeopleSoft all prov
much of the structural information required to produc
simulation models. In addition, these applications, whi
many companies have already implemented, contain m
of the detailed transactional data necessary to complete
building of complete simulation models.

Structured Query Language (SQL) is already
standard protocol for communicating with relation
databases. Additionally, most of the major enterpr
applications used by companies have well defined a
relatively complete APIs which can be utilized by th
simulation application to gather the data necessary fo
problem.

CORBA and DCOM are now accepted indust
standards for distributed computing. CORBA was releas
in 1994 by the Object Management Group and is desig
to implement applications across multiple network
languages and platforms. DCOM is Microsoft’s solutio
for distributed applications and is based on Active
component technology. DCOM is currently only support
by Windows and a few UNIX systems.

8 CONCLUSIONS

This paper presents concepts and technologies
implementing embedded simulation in enterpri
applications. These applications support complex decisi
making and shared data. Component software developm
allows simulation software to be constructed in se
contained modules with well defined interfaces that can
easily embedded in other applications. The intern
CORBA and DCOM permit software components to b

Simulation Software Component Architecture for Simulation-Based Enterprise Applications

e

h
ed
n
g

g

e

r

distributed and no longer bound to a stand-alon
environment.

This new direction in simulation technology holds
exciting opportunities for deploying simulation on a muc
broader scale than the specialized, project-orient
applications of the past. Simulation is rapidly becoming a
integral component in enterprise applications providin
powerful, simulation-based decision making capability.

REFERENCES

Harrell, C. and K. Field 1996. Integrating Process Mappin
and Simulation, In Winter Simulation Conference
Proceedings ed. J.M. Charnes, D.J. Morrice, D. T
Brunner, and J. J. Swain, 1292-1296.

Harrell, C. and K. Tumay 1994. Simulation Made Easy,
Norcross, Georgia: IIE Press.

Hicks, D. 1998. Simulation Market Forces Can’t b
Ignored, In IIE Solutions, May 1998, 18-19.

Wolf, Philip M., R. L. Simith, and Y. Chi. 1998. WWW,
CORBA and Java: New Information Technologies fo
Industrial Engineering Solutions. In Solutions ’98
Proceedings. 1-6.
1721

