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SIMULATION STUDIES COMPARING DAGUM AND

SINGH-MADDALA INCOME DISTRIBUTIONS

Kazuhiko Kakamu ∗

Abstract

Dagum and Singh–Maddala distributions have been widely assumed as models for income distribution

in empirical analyses. The properties of these distributions are well known and several estimation methods

for these distributions from grouped data have been discussed widely. Moreover, previous studies argue that

the Dagum distribution gives a better fit than the Singh-Maddala distribution in the empirical analyses. This

study explores the reason why Dagum distribution is preferred to the Singh–Maddala distribution in terms

of the Akaike Information Criterion through Monte Carlo experiments. In addition, the properties of the

Gini coefficients and the top income shares from these distributions are examined by means of root mean

square errors. From the experiments, we confirm that the fit of the distributions depends on the relationships

and magnitudes of the parameters. Furthermore, we confirm that the root mean square errors of the Gini

coefficients and top income shares depend on the relationships of the parameters when the data-generating

processes are a generalized beta distribution of the second kind.

Key Words: Akaike Information Criterion (AIC); Dagum distribution; Gini coefficients; root mean square

error (RMSE); Singh–Maddala distribution; top income share
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1 Introduction

Kleiber (1996) shows that Dagum and Singh–Maddala income distributions are closely related, although he

states that the Dagum distribution should provide a better fit than the Singh–Maddala distribution. Moreover,

Tadikamalla (1980) shows that the shape of the Dagum distribution is considerably more flexible than that of

the Singh–Maddala distribution. Therefore, the Dagum distribution more often is assumed as the income dis-

tribution in empirical analyses. Accordingly, Kleiber (2008) reviews studies that examine income distributions

of the Dagum type.

In empirical analyses, grouped data have been utilized widely and many works have examined several

distributions from grouped data (e.g., McDonald and Ransom 1979a). Although McDonald and Mantrala

(1995) show that the estimates are different if the number of groups is different, even if the same data source

is used,1 the properties of the estimators have been examined rarely. As far as we know, the properties of the

estimators have been examined only by McDonald and Ransom (1979b), who assume a gamma distribution.

However, their focus is on comparing several estimation methods. In addition, the properties of the model

selection criteria have not been examined, in spite of the fact that several model selection criteria, including the

Akaike Information Criterion (AIC), have been utilized widely in empirical analyses. Therefore, we consider

that the properties of the model selection criteria, which take into account the effect of group numbers, become

important when we use these distributions in empirical analyses.

Moreover, the parameters are used not only for their own inferences, but also for the inference of the

Gini coefficients (e.g., Atoda et al. 1988; Chotikapanich and Griffiths 2000; Nishino and Kakamu 2011).

However, it is well known that the Gini coefficients are highly nonlinear functions of the parameters. As

shown by Gelfandet al. (1990), the MCMC method can yield valid inferences on nonlinear functions of the

parameters, such as the Gini coefficients. Therefore, it would be worthwhile to examine the properties of the

Gini coefficients in a Bayesian framework.2

Recently, researchers of inequality have become concerned with not only the Gini coefficient but also the top

income share. For example, Atkinson et al. (2011) examine the history of the top income shares and Brzezinski

(2013) examines the properties of the top income share. While the Gini coefficient measures inequality among

whole households or individuals, top income share is constructed as ratios (portions) of upper tails to total

income of households or individuals. Therefore, top income share might be sensitive to the choice of the

1Kakamu and Nishino (2014) show that the estimates of the generalized beta (GB) distribution do not change, even if the number

of groups is different when a Markov chain Monte Carlo (MCMC) method is utilized. Therefore, we also utilize the MCMC method to

estimate the parameters of the models.
2It is desirable to use the maximum likelihood estimates to calculate the Gini coefficients. However, as stated in the Appendix, it

is sometimes difficult to find the mode of parameters by the maximum likelihood estimates when we assume the Dagum and Singh–

Maddala distributions are the income distribution. This is another reason why we use the MCMC method.
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underlying hypothetical distributions. Thus, we analyze top income share as an alternative inequality measure

to the Gini coefficient.

This study has two objectives. One is to explore the reason why Dagum distribution is preferred to Singh–

Maddala distribution in terms of AICs through Monte Carlo experiments, in which the data-generating pro-

cesses (DGPs) are the generalized beta distribution of the second kind (GB2 distribution). This involves con-

sidering the Dagum and Singh–Maddala distributions as special cases. The other objective is to examine the

properties of the Gini coefficients and top income shares for these two distributions by means of root mean

square errors (RMSEs). From the experiments, we confirm that the fit of the distributions depends on the rela-

tionships and magnitudes of the parameters and that the RMSEs of the Gini coefficients and top income shares

also depend on the relationships of the parameters.

The rest of this paper is organized as follows. In Section 2, we briefly discuss the relationship between

the Dagum and Singh–Maddala distributions and set forth the framework for Bayesian inference. Section 3

presents the results obtained from the Monte Carlo simulations. Finally, brief conclusions and remaining issues

are presented in Section 4.

2 Dagum and Singh–Maddala Income Distributions

Dagum (1970) and Singh–Maddala (1979) distributions are special cases of the GB2 distribution proposed by

McDonald (1984). The probability density function (PDF) of the GB2 distribution with parameters a > 0,

b > 0, p > 0, and q > 0 is defined as

fGB2(x) =
axap−1

bapB(p, q)
[

1 +
(x

b

)a]p+q , x > 0,

where B(·, ·) is a beta function, b is a scale, and a, p, and q are shape parameters. In particular, parameter p

makes the shape of the upper tail change and parameter q makes the shape of the lower tail change. The distri-

bution proposed by Majumder and Chakravarty (1990) is simply a reparameterization of the GB2 distribution.

This four-parameter family nests most of the previously considered income distributions as special or lim-

iting cases. Our notations are as follows: GB2(a, b, p, 1) = DA(a, b, p) and GB2(a, b, 1, q) = SM(a, b, q),

where GB2(a, b, p, q), DA(a, b, p), and SM(a, b, q) are GB2 distribution with parameters a, b, p, and q; the

Dagum distribution has parameters a, b, and p; and the Singh–Maddala distribution has parameters a, b, and q.

These relationships and related distributions are summarized in Kleiber and Kotz (2003) in detail. In addition,

Kleiber (1996) shows that X ∼ SM(a, b, r) ⇔
1

X
∼ DA

(

a,
1

b
, r

)

. Therefore, we can confirm that the

Dagum and Singh–Maddala distributions are related closely.
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The PDF and cumulative density function (CDF) of the Dagum distribution are expressed as

fDA(x) =
apxap−1

bap
[

1 +
(x

b

)a]p+1 , x > 0, (1)

FDA(x) =

[

1 +
(x

b

)

−a
]

−p

, x > 0, (2)

respectively. On the other hand, the PDF and CDF of the Singh–Maddala distribution are given as

fSM (x) =
aqxa−1

ba
[

1 +
(x

b

)a]1+q
, x > 0, (3)

FSM (x) = 1−
[

1 +
(x

b

)a]−q

, x > 0, (4)

respectively. As shown above, these two distributions have closed-form expressions in their CDFs, unlike the

GB2 distribution; furthermore, their CDFs are invertible. Therefore, these two distributions are tractable and it

is possible that the statistical inference is implemented using these PDFs and CDFs.3

To estimate the parameters of the income distribution from grouped data, Kakamu and Nishino (2014) show

that the Bayesian approach is preferred to the maximum likelihood method. Therefore, we take the Bayesian

approach and introduce the likelihood function, following Nishino and Kakamu (2011). Let θ be the vector of

parameters of the relevant income distribution and let x = (x1, x2, . . . , xk) be the vector of observed income

in the form of grouped data. Then, xis are strictly known. In the general form, the likelihood function given by

the PDF and CDF is expressed as follows

L(x|θ)

= n!
F (x1)

n1−1

(n1 − 1)!
f(x1)

{

k
∏

i=2

(F (xi)− F (xi−1))
ni−ni−1−1

(ni − ni−1 − 1)!
f(xi)

}

×
(1− F (xk))

n−nk

(n− nk)!
, (5)

3Once the parameters are estimated, we could calculate the Gini coefficients from the parameters. The Gini coefficients from the

Dagum and Singh–Maddala distributions are expressed by

GDA =
Γ(p)Γ(2p+ 1/a)

Γ(2p)Γ(p+ 1/a)
− 1,

GSM = 1−
Γ(q)Γ(2q − 1/a)

Γ(q − 1)Γ(2q)
,

where Γ(·) is a gamma function.

Moreover, χ% top income share from these distributions, where χ = 100× (1− z), are expressed by

TDA,χ = 1− It(p+ 1/a, 1− 1/a), where t = z1/p

TSM,χ = 1− It(1 + 1/a, q − 1/a), where t = 1− (1− z)1/q,

where Ix(a, b) is the incomplete beta function ratio. In this study, we focus on 10% (z = 0.9) top income shares.
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where ni is the number of observations when income is less than xi and n is the number of total observations.

If we substitute (1) and (2) into (5), then we could derive an inference for the Dagum distribution. Similarly, if

we use (3) and (4), we could draw an inference for the Singh–Maddala distribution.

To proceed with the Bayesian analysis, we need to assume the prior distribution as π(θ). Given the likeli-

hood function (5) and the prior distribution π(θ), the posterior distribution is expressed as

π(θ|x) ∝ π(θ)L(x|θ).

Using this posterior distribution, posterior inference via the MCMC method proposed by Chotikapanich and

Griffiths (2000) is implemented.4

Finally, we specify the prior distribution as π(θSM ) ∝ b−1, which is the same assumption as in Chotika-

panich and Griffiths (2000). In addition, we assume that the prior distribution for the Dagum distribution is

π(θDA) ∝ b−1.

3 Monte Carlo Experiments

We now explain the setup for the Monte Carlo simulations. First, we set the number of observations as n =

10, 000 and 100, 000 to evaluate the effect of the number of observations. In addition, we assume the number

of groups as quintile (k = 4) and decile (k = 9) to evaluate the effects of the number of groups.

Given n and k, we assume the true DGP to be a GB2 distribution, and L samples of xi for i = 1, 2, . . . , k

are generated. That is, we perform L simulation runs for the Dagum and Singh–Maddala distributions; in this

section, L = 500.

The simulation procedure in this section is as follows:

(i) Given a = 3.0; b = 6.0; p = 0.5, 0.6, 0.7, . . . , 2.9, 3.0; and q = 0.5, 0.6, 0.7, . . . , 2.9, 3.0, we

generate random numbers xjs, j = 1, 2, . . . , n from the GB2 distribution. 5

4Some modifications are required to estimate the parameters. Therefore, the details of the modified algorithm are summarized in

the Appendix.
5To generate a random number from GB2 with parameters a, b, p, and q, we first generate Z from a beta distribution with parameters

p and q. Then, X = b

(

Z

1− Z

) 1

a

becomes the random number from the GB2 distribution. In addition, the Gini coefficient from the

GB2 distribution is as follows

GGB2 =
B(2p+ 1/a, 2q − 1/a)

B(p, q)B(p+ 1/a, q − 1/a)

×

[

1

p
3F2(1, p+ q, 2p+ 1/a; p+ 1 + 1/a, 2(p+ q); 1)

−

1

p+ 1/a
3F2(1, p+ q, 2p+ 1/a; p+ 1 + 1/a, 2(p+ q); 1)

]

,

where 3F2 is a hypergeometric function. However, we calculate the Gini coefficient as well as the top income share by the numerical

integration for the same reason as Hajargasht et al. (2012). Moreover, we examine several different values of a and b. However, as
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(ii) Sort the random numbers in ascending order and pick up xi, which corresponds to the ni-th observation,

i = 1, 2, . . . , k.

(iii) Given x = (x1, x2, . . . , xk), we obtain the estimates using the Dagum and Singh–Maddala distributions.

In the MCMC procedure, we run the MCMC algorithm, with 7, 000 iterations excluding the first 1, 000

iterations.

(iv) We repeat (i)–(iii) L times, where L = 500, as mentioned above.

(v) From L estimates, we compute the AIC and RMSE for Gini coefficients and top income shares, as follows

AIC = −2L(x|θ(l)) + 2p,

RMSEG =

(

1

L

L
∑

l=1

(G(l) −G)2

)

1

2

,

RMSET =

(

1

L

L
∑

l=1

(T (l) − T )2

)

1

2

,

where θ(l), G(l), and T (l) represent the estimators of θ, the Gini coefficient and the 10% top income share

in the l-th simulation run, respectively, and p denotes the number of parameters.

We compare the fit of the distributions by the AICs and the accuracy of the estimators of the Gini coefficient

and 10% top income share from the Dagum and Singh–Maddala distributions by RMSEs through the Monte

Carlo studies. All the results reported here are generated using Ox version 7.00 (OS X 64/U) (see Doornik

2009).

Fig. 1 shows the selected frequencies of the Dagum distribution compared with the Singh–Maddala dis-

tribution, where the AICs are smaller.6 From the figure, the standard results can be confirmed: the selected

frequency increases as the number of observations or the number of groups increase, and when the DGPs are

true. Moreover, we can establish that the selected frequencies are almost the same if p = q. On the other

hand, the Singh–Maddala distributions are selected if p < q and p > 1.0, while the Dagum distributions are

selected if p > q and q > 1.0. However, if p < 1.0 or q < 1.0, the opposite results can be confirmed in some

regions, that is, the Singh–Maddala distributions are likely to be selected if p > q, while the Dagum distribu-

tions are likely to be selected if p < q and the frequencies depend on the relationship between the parameters

p and q. Therefore, we can conclude that the fit of the distributions seems to depend on the relationships and

magnitudes of the parameters p and q if we compare the models by AIC. In fact, for example, McDonald and

Mantrala (1995) estimate the parameters of Dagum, Singh–Maddala, and GB2 distributions and show that the

similar tendencies can be found, we focus on the cases of a = 3.0 and b = 6.0.
6The detailed tables, which are the source of the figures, are available upon request from the author.
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Dagum distribution is preferred to the Singh–Maddala distribution when the parameters of GB2 distribution

are p = 0.5186 and q = 1.358. From the figure, we can confirm that the Dagum distribution is preferred to the

Singh–Maddala distribution at this point.

Fig. 2 shows the differences of the RMSEs of the Gini coefficients. From the figure, similar tendencies

can be found, even if the number of observations n and/or the number of groups are changed. First, we find

that the differences of the RSMEs are almost zero if p = q, p > 1, and q > 1. Second, the RMSEs from the

Singh–Maddala distributions are smaller than those from the Dagum distributions if p < q and p > 1, while

the RMSEs from the Dagum distributions are smaller than those from the Singh–Maddala distributions if p < q

and q > 1. Moreover, the difference increases when parameters p and q move far away from p = q and the

differences become largest when p or q approaches 1. In other words, the RMSEs from the true distribution are

smaller than those from the competing distribution. However, exceptions appear in the case of p < 1 or q < 1.

In the case of p < 1, we find the parameter region where q < 1.5, while in the case of q < 1, the differences

become smaller and cross zero, that is, the RMSEs from the Singh–Maddala distributions are smaller than those

from the Dagum distributions. Therefore, we can conclude that the accuracy of the distribution seems to depend

on the RMSE relationship of the parameters p and q, which is the same as the results from the AIC.

Fig. 3 shows the differences of the RMSEs of the top income shares. From the figure, similar tendencies

can be found, even if the number of observations n and/or the number of groups are changed and the tendencies

are almost the same as the results from the Gini coefficients. First, we find that the differences of the RSMEs are

almost zero if p = q, p > 1, and q > 1. Second, the RMSEs from the Singh–Maddala distributions are smaller

than those from the Dagum distributions if p < q and p > 1, while the RMSEs from the Dagum distributions

are smaller than those from the Singh–Maddala distributions if p < q and q > 1. Moreover, the differences

increase when parameters p and q move far away from p = q and the differences becomes largest when p or q

approaches 1. In other words, the RMSEs from the true distribution are smaller than those from the competing

distribution. However, exceptions appear in the case of p < 1 or q < 1. In the case of p < 1, we find the

parameter region where q < 1.5, while in the case of q < 1, the differences become smaller and cross zero,

that is, the RMSEs from the Singh–Maddala distributions are smaller than those from the Dagum distributions.

Therefore, we can conclude that the accuracy of the distribution seems to depend on the RMSE relationship of

the parameters p and q, which is the same as the results from the AIC and Gini coefficients.

Summarizing the results, if the DGPs are GB2 distribution, the case in which p = 1 and q = 1 plays

an important role and the selected frequencies or RMSEs from the Gini coefficients or the top income shares

appear as a type of saddle point; moreover, around the point, the performance of the AIC, Gini coefficients,

and top income shares change. Therefore, it is important to check whether parameters p and/or q in the GB2

distribution are one, even when we choose the Dagum and Singh–Maddala distributions as income distribution.
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4 Conclusion

This study compared the fit of the distributions in terms of AIC and the accuracy of the estimators of the

Gini coefficients and top income shares from the Dagum and Singh–Maddala distributions by RMSEs through

Monte Carlo experiments. From the experiments, we confirmed that the fit of the distributions depends on the

relationships and magnitudes of the parameters p and q and that the RMSEs of the Gini coefficients and top

income shares depend on the relationships of the parameters when the DGPs are GB2 distribution. Therefore, a

possible reason why the Dagum distribution is preferred to the Singh–Maddala distribution is that the estimated

parameters lie in the desirable regions where the Dagum distribution is preferred when the GB2 distribution is

estimated.

Finally, we mention issues that remain to be analyzed. We examined the fit of the distributions only by AIC.

However, there are several other model selection procedures or tests. Therefore, it is worthwhile examining

other methods, including, for example, the marginal likelihood by Chib and Jeliazkov (2001) and the Bayesian

goodness-of-fit test by Johnson (2004). Moreover, we assume GB2 distribution as the DGP. However, the

true income data might not be generated from the GB2 distribution but from the double Pareto-lognormal

distribution by Reed and Jorgensen (2013) or some mixture of distributions. Therefore, it would be worthwhile

to examine the performance of the Dagum and Singh–Maddala distribution when the true GDP is not GB2.

However, we believe that our findings from the Monte Carlo experiments represent an interesting first step.

Appendix: Markov Chain Monte Carlo Methods

In this appendix, we introduce a Markov chain Monte Carlo (MCMC) method to estimate the parameters of the

distributions, which is proposed by Chotikapanich and Griffiths (2000) for the Singh–Maddala distribution. As

the estimation procedure of the Dagum distribution is the same as that of the Singh–Maddala distribution, we

continue the explanation focusing on the Singh–Maddala distribution.

Chotikapanich and Griffiths (2000) first proposed the MCMC method to estimate the parameters of the

distribution from grouped data using a random walk Metropolis–Hastings (RWMH) algorithm. However, it

is sometimes difficult to estimate the parameters using their algorithm. Therefore, some modifications are

required. Their algorithm with some modifications is as follows.

1. Generate a candidate value θ
new
SM from N (θ

(m−1)
SM , c2Σ), where c is a tuning parameter and Σ is the

maximum likelihood covariance estimate.7

7It is sometimes difficult to find the mode of the parameters by maximum likelihood method. Thus, we implement the simulated

annealing of Goffe et al. (1994). Moreover, if the Cholesky decomposition of Σ fails, the modified Cholesky of Nocedal and Wright

(2000) is utilized.
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2. Compute

α
(

θ
(m−1)
SM ,θnew

SM

)

= min

{

1,
π(θnew

SM |x)

π(θ
(m−1)
SM |x)

}

,

and if any of the elements of θnew
SM fall outside the feasible parameter region, then α

(

θ
(m−1)
SM ,θnew

SM

)

= 0.

3. Generate a value u from U(0, 1), where U(a, b) is a uniform distribution on the interval (a, b).

4. If u ≤ α
(

θ
(m−1)
SM ,θnew

SM

)

, set θ
(m)
SM = θ

new
SM , otherwise θ

(m)
SM = θ

(m−1)
SM .

5. Return to step 1, with m set to m+ 1.
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shows those from decile data and n = 10, 000, the bottom left side shows those from
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and n = 100, 000, respectively.

Figure 1: Selected frequency from the AIC
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Note: The differences of the RMSEs from Singh–Maddala and Dagum distributions are

displayed. Therefore, if the differences are larger than zero, the RMSEs from Dagum

distribion are smaller than those from Singh–Maddala distribution and vice versa. The

top left side shows the results from quintile data and n = 10, 000, the top right side

shows those from decile data and n = 10, 000, the bottom left side shows those from

quintile data and n = 100, 000, and the bottom right side shows those from decile data

and n = 100, 000, respectively.

Figure 2: Differences of RMSEs of Gini coefficients
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Note: The differences of the RMSEs from Singh–Maddala and Dagum distributions are

displayed. Therefore, if the differences are larger than zero, it means that the RMSEs

from Dagum distribution are smaller than those from Singh–Maddala distribution and

vice versa. The top left side shows the results from quintile data and n = 10, 000, the

top right side shows those from decile data and n = 10, 000, the bottom left side shows

those from quintile data and n = 100, 000, and the bottom right side shows those from

decile data and n = 100, 000.

Figure 3: Differences of RMSEs of top income shares
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