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Abstract: In this paper, we show the simulation result to find the suitable fish
swimming modes(specially BCF swimming) for fishlike underwater robot system.
To find the suitable swimming modes, we assume that they have the same
length, volume, and weight, but the different numbers of actuator(joint). And
we use the minimum number of the joint for each swimming mode. We derive
the dynamic equation for each system using Kane’s method and these results
are compared by DADS. We present the optimal solution of swimming mode for
some aquatic locomotion, especially faster(high propulsive efficiency) and more
maneuverable(quick turning motion). Copyright c©2005 IFAC
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1. INTRODUCTION

Many research group used the propellers to pro-
pel the underwater vehicles. But some researchers
used the tail or the overall shape of the body as
fish because of high propulsive efficiency, great
maneuverability, and good stealth recently [Bar-
rett, 2002], [Anderson, 2002]. In this paper, we
study many fish swimming modes (especially BCF
swimming mode) [Sfakiotakis, 1999] to design
aquatic robot system with high propulsion speed
and quick turning motion. The motivation is to
provide a relevant and useful data for engineers
involved in underwater vehicle design and control
and for those with an interest in the fast-growing
area of biomimetic swimming robots. The classi-
fication of swimming movements presented here
adopts the (expanded) nomenclature originally
put forth by Breder in [Breder,1926]. Most fish
generate thrust by bending their bodies into a
backward-moving propulsive wave that extends
to its caudal fin, a type of swimming classified
under body and/or caudal fin(BCF) locomotion.
Other fish have developed alternative swimming
mechanisms that involve the use of their median
and pectoral fins, termed median and/or paired

fin(MPF) locomotion. In this paper, we concen-
trate on the BCF locomotion because of their
propulsion ability. The advantages of improved
propulsive efficiency, stealth, turning radii, and
acceleration could prove to be significant if applied
to the design of fishlike underwater robot system.
Because we suggest the good swimming mode for
high propulsion speed or quick turning motion, we
derive the dynamic equation for each swimming
mode using Kane’s method [Kane, 1983]. For sim-
plicity, we assume that the minimum number of
joints for embodying each fish swimming mode
is used. And we assume that each mode has the
same length, weight, and volume. Their ability for
propulsive efficiency(high speed) and good turn-
ing radii(quick turning) can be compared by sup-
plying the same input power. In Section II, we will
explain the dynamic equation for each swimming
mode using Kane’s method. In Section III, there
will be dynamic simulation result compared by
DADS. In this section we will check the feature
for each fishlike swimming mode and present good
design mode for suitable locomotion, especially
high propulsive efficiency and quick turning mo-
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robot using Kane’s method

tion. In Section IV, there will be summary about
this paper.

2. DYNAMIC EQUATION USING KANE’S
METHOD

In this section, we will develop a dynamic model
for each swimming mode using Kane’s dynamic
equation. We assume that fish robot has n links.
We will select the N = 6+n generalized velocities
of the system as:

q̇ =
[
vx vy vz ωx ωy ωz θ̇1 · · · θ̇n

]T
(1)

where (vx, vy, vz) is the linear velocity of the fish
robot with respect to the inertial frame expressed
in the Bth coordinate frame, (ωx, ωy, ωz) is the
angular velocity of the fish robot with respect
to the inertial frame expressed in the Bth co-
ordinate frame, and (θ̇1, · · · , θ̇n) which are the
joint velocities of each link. Figure 2 show the 2
dimensional coordinate frame of fish robot using
Kane’s method [Tarn, 1996], respectively.

2.1 Kinematic Analysis

The kinematic task is more tractable and system-
atic if we exploit the use of Denavit-Hartenberg(D-
H) coordinate frames. Figure 2 illustrates the co-
ordinates that we have selected for our system.
The position vector of the C.M. of link 1 with
respect to the C.M. of the fish body expressed in
the B coordinate frame is given by:

pB
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1
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where +̃ denote the addition of the physical co-
ordinates of the two homogeneous vectors on the

right hand side, A1
B is the homogeneous trans-

formation from coordinate frame 1 to coordinate
frame B, and c1

1 is the position vector to the C.M.
of link 1 expressed in frame 1. The position vector
of the C.M. of the link 2 with respect to the C.M.
the body is given similarly by:
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B+̃A1
BA2

1c
2
2 (3)

and for an arbitrary link j, j = 1, · · · , n by the
following:

pB
j = cB

B+̃
j∏

k=1

Ak
k−1c

j
j (4)

The angular velocity of the fish body with respect
to an inertial frame E, expressed in the Bth
coordinate system is given by:

EωB = ωxx̂B + ωy ŷB + ωz ẑB (5)

where the hat denotes a unit vector and the
notation EωB denotes the angular velocity of
frame B with respect to frame E expressed in
the Bth coordinate frame. The angular velocity
of peduncle and tail with respect to the inertial
frame expressed in the Bth coordinate frame is
given by:

Eω1 = EωB + Bω1 = EωB + θ̇1ẑB (6)
Eω2 = EωB + Bω1 + Ā1

B
1ω2

= EωB + Bω1 + Ā1
B θ̇2ẑ1

...

Eωj = EωB + Bω1 +
j−1∑

l=1

l∏
m=1

Ām
m−1

lωl+1 (7)

where Ā1
B denotes the rotation submatrix of A1

B ,
Bω1 is the angular velocity of the link 1 with
respect to body and 1ω2 is the angular velocity
of the link 2 with respect to the link 1. The linear
velocity of the C.M. of the body with respect to
the inertial frame, expressed in the Bth coordinate
system is given by:

vB
B = vxv̂B + vy ŷB + vz ẑB (8)

The linear velocity of the C.M. of an arbitrary link
j with respect to the inertial frame, expressed in
the Bth coordinate frame is given by:

vB
j = vB

B +
dpB

j

dt
+ EωB × pB

j (9)

The angular acceleration about the C.M. of the
body with respect to the inertial frame, expressed
in the Bth coordinate frame is given by:

EαB = ω̇xx̂B + ω̇y ŷB + ω̇z ẑB (10)

The angular acceleration of an arbitrary link j
with respect to the inertial frame expressed in the
Bth coordinate frame is found from the following:

Eαj =
dEωj

dt
+ EωB × Eωj (11)



The linear acceleration of the C.M. of the body
with respect to the inertial frame, expressed in
the Bth coordinate frame is given by:

aB
B =

dvB
B

dt
+ EωB × vB

B (12)

The linear acceleration of the C.M. of an arbitrary
link j with respect to the inertial frame expressed
in the Bth coordinate frame is found similarly by
the following:

aB
j =

dvB
j

dt
+ EωB × vj

B (13)

where j denotes an jth link.

2.2 Inertia Forces

The generalized inertia force of the system re-
quires that we develop expressions for the inertia
force and torque of each part in the system. The
inertia force of an arbitrary link j is given by the
following:

R∗
j = −mjaB

j (14)

where mj is the mass of fish body, peduncle or
tail. The inertia torques of an arbitrary link j are
given by the following:

T∗j = −IB
j · Eαj − Eωj × IE

j · Eωj (15)

where IB
j is the central inertia matrix of fish body,

peduncle or tail, expressed in the Bth coordinate
frame. The generalized inertia force for the system
is now found to obtain the following:

F∗r =
n∑

i=B

(
∂Eωi

∂q̇r
·T∗i +

∂vB
i

∂q̇r
·R∗

i

)

(r = 1, · · · , N)

(16)

2.3 Gravity Forces

Gravity can be treated as a generalized active
force which acts at the center of mass of each part
in the system. The force due to gravity acting on
the jth link is given by:

Rgravj
= mjgB (17)

where gB = [gx, gy, gz]T is the gravity vector
expressed in the Bth coordinate frame. The gen-
eralized active force due to gravity is given by the
following:

(Fr)gravity =
n∑

i=B

mi
∂vB

i

∂q̇r
· gB (18)

2.4 Hydrodynamic Forces

The hydrodynamic forces induced by the motion
of a rigid body in an underwater environment are
very complex and highly nonlinear. The forces
may be developed using incompressible fluid flow
using Navior-Stokes equation, and rarely lead to
a closed form solution. As is often the case, these
forces may be treated as lumped approximations
for certain applications within certain underlying
assumptions. The net effect of added mass, buoy-
ancy, Froude-Kriloff, and drag are often treated
as the superposition of each individual force. The
added mass force results from the interaction of
fluid in the immediate vicinity of a submerged
link which is acceleration on the fluid through a
pressure distribution which acts on the link body.
The force required to accelerate the surrounding
fluid results in an effective inertia which can be
modeled with a 6×6 positive definite added mass
inertia matrix, IA. In general the 36 elements of
the added mass matrix, IA, for a body in a real
fluid would be distinct and may be determined
from experimental testing techniques. It has been
shown by McMillan et al. [Kane, 1983] and can
be derived from Fossen [Fossen, 1994], that the
inertia force and torque of a submerged body
induced by the added mass phenomena has the
following form:

[
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]
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]
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]

where Eω̃i and ṽB
i are skew symmetric matrices,

and IB
Ai

is the 6×6 added mass matrix for an arbi-
trary link i expressed in the Bth coordinate frame.
Substituting these two equations into results
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We can account for the relative acceleration and
velocity of the fluid by introducing the following
relationship:

vr
i = vB

i − vB
f

ar
i = aB

i − aB
f

where, vB
f is the velocity of the fluid expressed in

the Bth coordinate frame, and aB
f is the acceler-

ation of the fluid expressed in the Bth coordinate
frame. The final form of the inertia force and
torque resulting from added mass is now given by:
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The generalized inertia force due to the added
mass for the entire system is then given by the
following:

(F∗r)AM =
n∑

i=B

(
∂Eωi

∂q̇r
·T∗Ai

+
∂vB

i

∂q̇r
·R∗

Ai

)
(19)

This is a general formulation for the incorporation
of the hydrodynamic force and torque into the
dynamic model. No assumptions were necessary
on how the coefficients of the added mass matrix
are derived. The buoyancy force is proportional to
the mass of the fluid displaced by the fish body
and acts through the center of buoyancy of the
each link. For a homogeneous symmetric shape,
the center of buoyancy and center of mass are
equivalent. For our model, we assume that the
buoyancy force acts through the center of mass of
an arbitrary link j and is given by the following:

RBj = −ρVjgB (20)

where, ρ is the density of the fluid, Vj is the
volume of fluid displaced by an arbitrary link j
and gB is the gravity vector expressed in the Bth
coordinate frame. The generalized active force
due to buoyancy for the system is given by the
following:

(Fr)Buoy = −ρ

n∑

i=B

Vi
∂vB

i

∂q̇r
· gB (21)

The Froude-Kriloff force is similar to the buoy-
ancy force in that it is proportional to the fluid
displaced, but is result of acceleration of the fluid
itself. The force due to Froude-Kriloff also acts
through the center of buoyancy and is given by:

RFKj = ρViaB
f (22)

The generalized active force due to Froude-Kriloff
for the system is given by the following:

(Fr)FK = ρ

n∑

i=B

Vi
∂vB

i

∂q̇r
· aB

f (23)

The fluid damping forces are divided by drag
and lift force. The fluid damping forces exerted
on a body depends on the square of the relative
velocity of the fluid with respect to the body; the
geometric shape of the body which is character-
ized by a drag and lift coefficient and a reference
area of the body; and the density of the fluid.
The drag forces include pressure drag, skin friction
drag, and lift forces. The pressure drag force acts
in a direction opposite to the link relative velocity
with respect to the fluid and is the primary drag
force for slow moving fish robot applications. Skin
friction drag which is tangent to the link surface

may be neglected for slow moving fish robot ap-
plications. Therefore, we will only consider drag
forces could be handled for other applications in
an analogous manor. The equations for the force
and moment on each part due to pressure drag is
given by:

RDragj
=−0.5ρ

∫ L

0

CDbj‖vr
j(l)

⊥‖vr
j(l)

⊥dl

TDragj
=−0.5ρ

∫ L

0

CDbj‖vr
j(l)

⊥‖(Āj
Bx̂j × vr

j(l)
⊥)dl

where bjdl is the reference area of a jth link, bj is
the width of the rectangle that circumscribes the
frontal projection of the infinitesimal element of a
jth link, and dt is the length of the infinitesimal
element. CD is the drag coefficient, and vr

j(l)
⊥ is

the relative velocity of an arbitrary link j with
respect to the fluid normal to the part along the
length, l, of the part. The drag coefficient CD is a
function of part geometry and fluid flow angle. It
can be represented by:

CD = CD,basicsin2σ

where CD,basic is shape parameter, and σ is the
angle between the relative velocity of the fluid
and the part longitudinal axis. The generalized
active force due to the drag force and torque for
the system is then given by:

(Fr)Drag =
n∑

i=B

(
∂Eωi

∂q̇r
·TDragi

+
∂vB

i

∂q̇r
·RDragi

)

(24)

2.5 Dynamic Model

Having developed all of the generalized inertia
forces and generalized active forces for the fish
body, the equations of motion are found to obtain
the following dynamic model:

(F∗r) + (F∗r)AM + (Fr)gravity + (Fr)Buoy

+ (Fr)FK + (Fr)Drag = 0
(25)

Eq.25 may not be the most convenient form for the
equations of motion. Then, we make the following
form:

M(ξ)q̈ + C(ξ, q̇) + G(ξ) + Fexternal = 0 (26)

where ξ is the joint variable vector, M(ξ) is the
matrix of inertia term, C(ξ, q̇) is the matrix of
Coriolis/Centripetal term and G(ξ) is the vector
of gravity effect.

(M(ξ)) =−∂((F∗i ) + (F∗i )AM)
∂q̈j

(C(ξ, q̇)) =−((F∗) + (F∗)AM)−M(ξ)q̈

G(ξ) =−Fgravity

(F)external =−(F)Buoy − (F)FK − (F)Damping



Fig. 3. Anguilliform Mode Swimming Using DADs
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Fig. 4. Anguilliform Mode Swimming

3. DYNAMIC SIMULATION FOR EACH
SWIMMING MODE

In order to compare with each swimming mode,
we give the same input for each mode and examine
its x displacement and angle about x axis with
respect to the body(forward direction of C.M. of
the body). To examine easily and optimize the
hydrodynamical model for different behaviors, ob-
jective function(fitness criteria) must be selected.
The long displacement about x direction means
high forward speed(high propulsive efficiency be-
cause of the same input energy), and the large
angle about x axis during the same time means
quick turning motion.

3.1 Anguilliform Mode

In anguilliform mode, the whole body partici-
pates in large-amplitude undulations. Since at
least one complete wavelength of the propulsive
wave is present along the body, lateral forces are
adequately canceled out, minimizing any tenden-
cies for the body to recoil. Many anguilliform
swimmers like eel and lamprey are capable of
backward as well as forward swimming by alter-
ing the propagation direction of the propulsive
wave. Backward swimming requires increased lat-
eral displacements and body flexibility. To develop
the robot, we consider that they have 6 links
shown by Figure 3. Forward displacements during
the same time(long displace means high forward
speed) at anguilliform mode are shown Figure
4(a). Y direction displacement for quick turning
motion is shown Figure 4(b). In these figures, x
axis means the number of data, not time.

3.2 Subcarangiform Mode

In the subcarangiform mode(e.q., trout), the am-
plitude of the undulations is limited anteriorly,
and increases only in the posterior half of the
body. To develop the robot, we consider that

Fig. 5. Subcarangiform Mode Swimming Using
DADs
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Fig. 6. Subcarangiform Mode Swimming

Fig. 7. Carangiform Mode Swimming Using DADs
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Fig. 8. Carangiform Mode Swimming

they have 5 links shown by Figure 5. Forward
displacement is shown Figure 6(a). Y direction
displacement is shown Figure 6(b).

3.3 Carangiform Mode

For carangiform swimming, this is even more
pronounced, as the body undulations are further
confined to the last third of the body length,
and thrust is provided by a rather stiff caudal
fin. Carangiform swimmers are generally faster
than anguilliform or subcarangiform swimmers.
However, their turning and accelerating abilities
are compromised because of the relative rigidity
of their bodies. To develop the robot, we consider
that they have 3 links shown by Figure 7. Forward
displacement is shown Figure 8(a). Y direction
displacement is shown Figure 8(b).

3.4 Thunniform Mode

Thunniform mode is the most efficient locomotion
mode evolved in the aquatic environment, where
thrust is generated by the lift-based method,



Fig. 9. Thunniform Mode Swimming Using DADs
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Fig. 10. Thunniform Mode Swimming

Fig. 11. Ostraciiform Mode Swimming Using
DADs
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Fig. 12. Ostraciiform Mode Swimming

allowing high cruising speeds to be maintained
for long periods. Significant lateral movements
occur only at the caudal fin (that produces more
than 90% of the thrust) and at the area near
the narrow peduncle. To develop the robot, we
consider that they have 3 links shown by Figure 9.
This is the same number of link with carangiform,
but the length of peduncle is different. Forward
displacement is shown Figure 10(a). Y direction
displacement is shown Figure 10(b).

3.5 Ostraciiform Mode

Ostraciiform locomotion is the only purely os-
cillatory BCF mode. It is characterized by the
pendulum-like oscillation of the (rather stiff) cau-
dal fin, while the body remains essentially rigid.
Fish utilizing ostraciiform mode are usually en-
cased in inflexible bodies and forage their (usually
complex) habitat using MPF propulsion. Cau-
dal oscillations are employed as auxiliary loco-
motion means to aid in thrust production at
higher speeds, to ensure that the body remains
adequately rigid, or to air prey stalking. To de-
velop the robot, we consider that they have 2
links shown by Figure 11. Forward displacement
is shown Figure 12(a). Y direction displacement
is shown Figure 12(b).

4. CONCLUSIONS AND FUTURE WORK

In this paper, we show the simulation result to find
the suitable fish swimming modes(specially BCF
swimming) for fishlike underwater robot system.
We have proposed the dynamic equations for each
swimming mode and the appropriate swimming
mode for design by dynamic simulation. In Figure
3 − Figure 12, we can know that anguilliform
swimming is appropriate mode for quick turning
motion and thunniform swimming is good mode
for high propulsion motion. If we have better
result, we must select the optimal input signal.
In this paper, we use the only harmonic signal for
input. In the future, we must study to select the
optimal input signal to locomotion for high speed
and quick turning.
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