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The accuracy of empirical force fields is critical for meaningful molecular

dynamics simulations of concentrated ionic solutions. Current models are

typically developed on the basis of single ion properties such as the monohydrate

energy in the gas phase, or the absolute hydration free energy at infinite dilution.

However, the failure of these models to represent accurately the properties of

concentrated solutions cannot be excluded. Here, these issues are illustrated for

a polarizable potential based on classical Drude oscillators. To model accurately

concentrated ionic solutions, the parameters of the potential functions are

optimized to reproduce osmotic pressure data. The sodium-chloride potential of

mean force in solution calculated from the empirically-adjusted model is

consistent with the results from that calculated from ab initio CPMD simulations.

1. Introduction

Computer simulations of atomic models are increasingly used to study a broad range
of physical and biological processes. Ions play a fundamental role in many of these
complex molecular systems, and for meaningful computer simulations studies, accu-
rate force fields are absolutely critical. Modeling ions and strong electrolytes accu-
rately is particularly challenging because of the long-range nature and strength of
electrostatic interactions that are involved. The ion models widely used in molecular
dynamics (MD) simulations are generally developed on the basis of single ion prop-
erties, such as the energy and geometry of the monohydrate ion in the gas phase and
the absolute hydration free energy of the ion at infinite dilution.1–5 It has been re-
ported that ion models developed with this strategy can dramatically fail to represent
accurately the properties of concentrated solutions, such as the solubility3,4 and
osmotic pressure.6 Even if a model is optimized to match the gas-phase monohydrate
energy and geometry, the hydration free energies in the bulk phase at infinite dilu-
tion, as well as dynamic transport properties, may be in good agreement with exper-
imental data and high-level ab initio calculations,5 but it is not guaranteed that the
thermodynamic properties of concentrated solutions will be accurately represented.
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The thermodynamic properties of concentrated solutions depend sensitively on
the propensity of ion pairs. However, exploiting this information to test, validate
and improve the force fields is difficult because the available data provide only indi-
rect information about ion pairing. Neutron and X-ray scattering yield the average
structure factor of a solution and multiple experiments involving isotopic substitu-
tions as well as extensive analysis are needed to extract individual solvent–solvent,
ion–solvent, and ion–ion pair correlation functions.7–9 The amount of ion pairing
can indirectly be related to conductivity measurements,10 although this involves
additional assumptions. Ion-pairing in aqueous solution has been studied using
a wide range of computational and theoretical methods, including classical force
field molecular dynamics (MD)6,11–14 and Monte Carlo (MC) simulations,15,16 simple
models based on a polarizable continuum,17,18 and quantum mechanical Car–Pari-
nello MD (CPMD) simulations.19 Nevertheless, in spite of these efforts, our ability
to assess computationally the accuracy of force field models of electrolyte solutions
at very high concentrations remains fairly limited.
One experimental observable that is potentially of great interest to test, validate,

and refine force field models used in computer simulations of concentrated ionic
solutions is the osmotic pressure. It is one of the key thermodynamic properties
that can be measured for a wide range of conditions and it offers a measure of
the strength of the effective solvent-mediated interaction between ions in the solu-
tion. For non-ideal solutions the osmotic pressure is equal to P ¼ fP*, where f

is the osmotic coefficient defined with respect to the osmotic pressureP* for an ideal
solution by the Van’t Hoff equationP*¼ cRT (c is the total concentration of mobile
ions and R is the gas constant). Theoretical studies of thermodynamics of ion-pair-
ing, such as activity coefficient and osmotic coefficients of electrolyte solutions have
often been based on statistical mechanical frameworks such as the McMillan–Mayer
(MM)20 and Kirkwood–Buff (KB)21 theories. Some studies have aimed at calculating
Kirkwood–Buff Integrals (KBIs) directly using computer simulations.22–29 Statistical
mechanical integral equation theories, such as the mean spherical approximation
(MSA)30,31 or the hypernetted chain (HNC) equation32 were used to derive pair
correlation functions needed to calculate f. The multicomponent reference interac-
tion site model HNC (RISM-HNC) theory was used to incorporate effects arising
from the molecular nature of water.33 For a review see ref. 6.
While these approaches are useful, they do not provide a simple route for estab-

lishing a quantitative relationship between the force field used in a computer simu-
lation and the osmotic pressure. It is largely to address this issue that we previously
developed a simple and practical approach allowing the direct calculation of the
osmotic pressure from all-atomMD simulations of concentrated aqueous solutions.6

The basic concept is to introduce ‘‘virtual’’ walls to represent the effect of ideal semi-
permeable membranes, separating the high concentration region from the pure
water region. The walls keep the solutes confined but the water molecules are al-
lowed to pass through freely, permitting an equalization of their chemical potential
throughout the entire system. The mean force per unit area exerted on the solutes by
the virtual walls during the simulations directly reports the osmotic pressure.
In the present study, the Drude polarizable force field for K+, Na+ and Cl� is

tested by calculating the osmotic pressure over a wide range of concentrations. A
polarizable force field is crucial for the realistic simulations of charged or highly
polar species, and also for describing accurately the electrostatic properties of the
hydrophobic region in protein and membranes. In the Drude force field, the induced
electronic polarization is introduced by an auxiliary particle attached to each polar-
izable atom via a harmonic spring. The Drude ion models were previously devel-
oped to be consistent with the SWM4-NDP water model.5,34 Here, the osmotic
pressure of NaCl and KCl aqueous solution are calculated over a wide range of
concentrations (up to 5 m) and compared with the experimental values.35 The results
show that the osmotic pressure depends sensitively on ion pair interactions, in
agreement with previous studies.36,37 The present study demonstrates that the
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osmotic pressure is a powerful route for validating and parameterizing accurate
atomistic force fields.

2. Methods

2.1. Classical Drude polarizable model

The present simulations of ionic solutions are based on the SWM4-NDP polarizable
water model34 and the set of polarizable models developed recently for the alkali-
halide series.5 The SWM4-NDP model correctly reproduces the static dielectric
constant of liquid water, which makes it appropriate for simulating systems where
water-mediated electrostatic interactions have dominant effects,34 such as concen-
trated electrolyte aqueous solutions. The gas-phase experimental geometry of water
is maintained rigidly, and the static charge distribution of the isolated molecule gives
rise to a dipole of 1.85 D, in accord with experiment. In the classical Drude oscillator
model, electronic induction is represented by introducing a mobile auxiliary charged
particle attached to a polarizable atom via a harmonic spring of force constant kD.
The relative displacement of the atom–Drude pair gives rise to an electric dipolar
moment. Assuming that the Drude particle carries a qD and the atom carries an
opposite charge �qD, the molecular polarizability a is equal to q2D/kD.

38 In the
present models, the charge carried by the Drude particles is always negative, to
mirror the physical effects of the electronic density around positively charged nuclei.
An anharmonic restoring force was introduced to damp atom–Drude separations
larger than 0.2 �A to prevent numerical instabilities with the highly polarizable
anions.5 Atomic dispersion and electronic overlap effects are represented in a pair-
wise additive way using the Lennard-Jones (LJ) 6–12 potential. The electrostatic
interaction energy of a single monovalent ion with a water molecule is comprised
of a sum of charge-charge Coulomb interactions running over all nuclei and Drude
particles.
All dynamical simulations were performed by considering the dynamics of an

extended Lagrangian in which a small mass and kinetic energy is attributed to the
Drude particles. The equations of motion of the atom–Drude pair are separated
into the global motion of the center-of-mass, and the relative internal motion of
the oscillator (reduced mass). To ensure that the time course of the induced dipoles
stays close to the self-consistent field (SCF) solution, the amplitude of the atom–
Drude oscillations away from the local energy minimum is controlled with
a low-temperature thermostat acting in the local center-of-mass reference frame
of each atom–Drude pair.38 The trajectories generated according to this
extended Lagrangian are very close to those generated by the SCF regime of induced
polarization.38

For the present study, MD trajectories were generated with the program
CHARMM39 and NAMD2.8.40 In the simulations generated with the program
CHARMM,39 the two-temperature isothermal-isobaric ensemble was simulated
using a Nos�e–Hoover thermostat scheme41,42 and the modified Anderson–Hoover
barostat.43 The simulations were propagated using the velocity-Verlet algorithm
with a 0.5 fs time step. The internal geometry of the SWM4-NDP water molecule
was kept rigidly fixed using the SHAKE/Roll and RATTLE/Roll algorithm.44,45

Long-range electrostatic interactions were computed using particle mesh Ewald
summation (PME).46 A smooth real space cutoff is applied between 10 and 12 �A
with an Ewald splitting parameter of 0.34 �A�1, a fast-Fourier grid density ofz1 �A�1,
and a sixth-order interpolation of the charge to the grid. The LJ potential is
smoothed with a switching function with the same cutoff scheme, and a long range
correction of the energy and pressure from the LJ potential is included.47

In the simulations generated with the program NAMD2.8,40 a dual-Langevin
scheme is employed to propagate the trajectory of the polarizable Drude model.48

While the concept is similar to the dual Nos�e–Hoover thermostat in the program

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 160, 135–149 | 137
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CHARMM,38 the dual-Langevin scheme in NAMD2.8 enables large-scale simula-
tions of the Drude model on massively parallel supercomputers, such as Blue-
Gene/P.48 To ensure near-SCF conditions, the thermostat for the relative motion
of the Drude particles with respect to their parent atoms was set at a temperature
of 1 K with a damping coefficient of 0.1 ps�1. The thermostat for the center-of-
mass was set at a temperature of 298 K with a damping coefficient of 0.05 ps�1.
The geometry of the SWM4-NDP water molecule was maintained using SETTLE.49

A multiple time-step integration scheme was used, with 0.5 fs for the calculation of
the internal energy terms, and 1.0 fs for the calculation of the nonbonded LJ and
electostatics terms. The shorter time-step 0.5 fs time step is necessary for stable inte-
gration due to the anharmonic restoring force introduced to prevent the hyper-
polarization of anions at the finite concentrations.5 The electrostatic interactions
were treated using PME.46,50 A smooth real space cutoff is applied between 10
and 12 �A with grid density of z1 �A�1, and a sixth-order interpolation of the charge
to the grid. The same cutoff is used for the LJ potential with a switching function.

2.2. Single ion pair potential of mean force (PMF) simulation details

The 1D-PMF of single ion pair in bulk was calculated as a function of the cation–
anion separation, r¼ krc� rak, using umbrella sampling.51 A total of 26 independent
biasing windows in which the two ions were harmonically restrained by the potential
ui(r) ¼ k(r � Ri)

2/2, were set up at different separation Ri and force constant k to
ensure good sampling and overlap of neighboring windows (0.2 �A increments
between 2.5 �A to 3.5 �A with force constant of 30 kcal mol�1�A�2, 0.25 �A increments
between 3.5 �A to 7.0 �A with force constant of 30 kcal mol�1�A�2, and 0.5 �A for the
rest with the force constant of 20 kcal mol�1�A2). The simulations were carried out
using the program CHARMM,39 with one ion pair placed in a periodic cubic box
containing 395 explicit SWM4-NDP water molecules. The chloride ion was harmon-
ically restrained near the center of water box to prevent any significant drift of the
ion pair. Each window simulation of 500 ps was initially started from a configuration
with the ion near the restraint position and equilibrated for 50 ps. The results from
the 26 windows were unbiased using the weighted histogram analysis method
(WHAM),52 with a bin size of 0.05 �A and a stringent tolerance of 0.0001 kcal
mol�1 on every point in the PMF. The radial PMF resulting directly from umbrella
sampling simulations biased by a simple distance restraint implicitly contains an
additional hidden term, +2kBT ln(r), arising from the increasing volume element
in the configurational space at large ion–ion separation.53 This can be seen by con-
verting the two Cartesian coordinates of the cation and anion, rc and ra, into the
relative spherical coordinates in the biased Boltzmann configurational integral,
yielding the Jacobian 4pr2. To obtain the PMF that is a simple function of ion–
ion separation, we write W(r) ¼ Wradial(r) + 2kBTln(r) + C, where the constant C
is chosen such that W(r) ! 0 as r !N. In practice, the offset constant was chosen
such that W(r) matches the value expected in a dielectric continuum with 3 ¼ 7934 at
an ion–ion distance of 7 �A.

2.3. Osmotic pressure simulation details

The osmotic pressure for KCl and NaCl aqueous solutions was calculated by intro-
ducing an idealized virtual semi-permeable membrane separating a salt solution
from pure water, according to a method described previously.6 Here, the idealized
virtual semi-permeable membrane is made of two half-harmonic walls acting only
on the ions to keep them within the salt solution region. The water molecules can
freely cross the virtual semi-permeable membrane and move throughout the system.
Averaging the force acting on the ions from the half-harmonic walls under these
conditions directly yields the osmotic pressure in the system. The osmotic pressure
MD simulations were carried out with periodic boundary conditions using the

138 | Faraday Discuss., 2013, 160, 135–149 This journal is ª The Royal Society of Chemistry 2013
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program NAMD2.8.40 The shape of the entire simulation cell is orthorhombic with
dimension 96 � 96 � 96 �A3 and is comprised of approximately 150 000 atoms. The
central region corresponds to a salt solution with dimensions 96 � 96 � 48 �A3. A
flat-bottom half-harmonic planar restraint with a force constant of 10 kcal mol�1�A�2

was applied to the ions at z¼�24 �A to keep them inside the region corresponding to
the salt solution. The virtual walls acting on the ions were setup via a Tcl script in
NAMD. No restraint was applied to the water molecules. The molality scale
(mhmol kg�1) is used throughout the manuscript to compare directly to the exper-
imental osmotic pressure data. The atomic systems were first setup at different
molarity concentrations (1, 2, 3, 4, and 5, mol l�1), as in our previous simulations
of nonpolarizable models,6 and the effective molality concentrations of the solution
were estimated after equilibration. After a 400 ps equilibrium run under NPT condi-
tions at 298.15 K and constant area, 6 independent 800 ps simulations (different
initial configuration and initial velocity) were carried out under NVT condition
for each concentration and the coordinates of the ions were saved every 0.1 ps.

3. Results and discussion

Fig. 1(a) and 1(b) show the calculated osmotic pressure for the NaCl and KCl
aqueous solutions using the Drude polarizable force field with standard LJ param-
eters. Without any additional adjustments, the force field for KCl is able to repro-
duce the experimental osmotic pressure quite well, with a slight deviation from
the experimental value at higher concentrations (above 2 m). For the NaCl solution,
however, the osmotic pressure is systematically underestimated, even at concentra-
tions as low as 1 m. Although the discrepancy is larger than previously observed
for the nonpolarizable NaCl ion models, the analysis showing that such a systematic

Fig. 1 The osmotic pressure as a function of the NaCl (a) and KCl (b) salt concentration. The
red line is experimental values; the black line is obtained from MD simulations with the Lor-
entz–Berthelot combination rule. In (a), the cyan line is from simulations with adjusted Na–Cl
Rmin 4.09�A LJ parameters using NBFIX; the green line is from simulations with a Thole shield-
ing screening parameter tij 2.10. The error bars were estimated from the variance amongst
6 independent 800 ps simulations.
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underestimation of the osmotic pressure in electrolyte solution reflects an excess of
ion pairing6 remains valid. A simple explanation is that the osmotic pressure is
directly affected by the actual concentration of mobile species in solution, cations
and anions. For example, if all cations and anions were bound together to form
stable pairs, the resulting osmotic pressure would be roughly reduced by a factor
of two compared to a fully dissociated electrolyte solution. Thus, excessive ion pair-
ing caused by inaccuracies in the force field model results in an underestimated
osmotic pressure. To improve the accuracy of the model, it is necessary to alter
and optimize the potential function. This is possible by using the experimental
osmotic pressure as target data.
The origin of the problem with the model with standard LJ parameters starts with

the over-binding of the Na–Cl pair in vacuum. Within the Drude polarizable force
field, the potential energy between two ions is written as a sum of Coulombic inter-
actions summed over all charges (from the atom and the Drude particles), and a Len-
nard-Jones (LJ) 6–12 potential to account for the core–core repulsion and the van
der Waals dispersive attraction between the two atoms. The default parameters of
the LJ potential for the interactions between two ions i and j, that is, Rij

min and Eij
min,

are generated with the standard Lorentz–Berthelot combining rule. The latter uses
the arithmetic mean for

Rij
min ¼ (Rii

min + Rjj
min)/2

and the geometric mean for the well depth E
ij
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eii

minE
jj
min

q
. Fig. 2(a) shows the

potential energy of an NaCl ion pair in vacuum as a function of distance. The energy

minimum obtained from the Drude model with default LJ parameters is 25 kcal

mol�1 lower than the ab initio value. The ab initio quantum chemical computation

Fig. 2 (a) Potential energy of NaCl ion pair in vacuum as a function of distance. The ab initio
quantum chemical computation is carried out at MP2/aug-cc-pVDZ level (BSSE corrected)
using Gaussian03 (54). (b) Potential of mean force (PMF) of the single ion pair in bulk calcu-
lated fromMD simulation with different Na–Cl pair parameters. The PMF from CPMD simu-
lation is taken from ref. 19.
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shown here was carried out at the MP2/aug-cc-pVDZ level (BSSE corrected) using

Gaussian03.54 Therefore, there is considerable over-binding of the cation–anion pair

in vacuum according to the polarizable Drude model with default LJ parameters.

The over-binding of Na+ and Cl� in vacuum represents a failure of the complete
model, with default LJ parameters. It is important to realize, however, that the LJ 6–
12 potential is only an approximation to the quantum mechanical cation–anion
interactions, and the usage of the Lorentz–Berthelot combination rule is merely
a convenient route for generating pairwise parameters between unlike atoms.55

The LJ parameters of the model were previously optimized to reproduce accurately
single-ion properties such as the geometry and energy of the monohydrate, and the
solvation free energy in bulk water at infinite dilution.5 Thus, the current model is
not constrained by any experimental information at finite concentrations where
ion–ion interactions become important. For example, it is perfectly reasonable to
imagine that by increasing the radius, Rij

min, the cation and anion will be pushed
further apart, decreasing the favorable association that leads to an excess of ion pair-
ing and an under-estimated osmotic pressure. Ultimately, several different methods
may be considered to alter and improve the polarizable Drude model. In the
following, two different methods were considered.
First, we developed pair-specific LJ parameters between Na+ and Cl�. This is

perhaps the simplest correction to the model, as it keeps all other features of the
potential function unchanged. To override the values generated from the standard
combination rule, the pair-specific LJ parameters are assigned using the NBFIX
option of the CHARMM parameter file. Importantly, the LJ parameters controlling
the direct interaction between the ions and water remain untouched by the NBFIX
option. A second approach was to introduce a shielding function to alter the bare
Coulombic interactions between the cation and the anion,�

qiqj

rij

�
!
�
qiqj

rij

�
S
�
rij
�

(1)

where S(rij) is a screening function given by,

S
�
rij
� ¼ 1�

 
1þ rij tij

2
�
aiaj

�1=6
!
e�rij tij=ðaiajÞ1=6 (2)

where ai and aj are the polarizability of atom i and atom j, respectively, and tij is the
Thole parameter modulating the strength of the electrostatic screening for the ij pair.
This functional form is consistent with the general idea that the Coulomb interaction
between delocalized clouds of electronic charges does not diverge as 1/r at short
distances. It was first introduced by Thole to account for intramolecular polariza-
tion.56 In the Drude polarizable force field, the S(r) shielding function has been
utilized to treat the intramolecular 1–2 and 1–3 bonded interactions.57 More
recently, it was used to ‘‘tame’’ the very strong electrostatic interactions between
divalent ions (Zn2+, Mg2+, Ca2+, Sr2+, Ba2+) and the induced dipole component of
the oxygen of the water molecules.5 Such shielding is unnecessary for the interactions
of monovalent ions with the water molecules, but it could be needed to treat accu-
rately the cation–anion pairs. Here, a pair-specific Thole parameter was introduced
between Na+ and Cl� using the option NBTHOLE of the CHARMM potential
function parameter file.
Using either the pair-specific LJ parameter (NBFIX) modification and the Thole

shielding (NBTHOLE), it ought to be possible to correct for the over-binding of
theNa–Cl pair.However, in trying to optimize and improve the force field parameters,
it is difficult to rely directly on the ab initio data in vacuum in a meaningful way. The
interactions of the ions in vacuum is simply too different from the effective interac-
tions in bulk solution, and the impact of any modifications to the vacuum interaction
on the thermodynamic properties in the bulk is difficult to predict. Amore productive
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route to assess the defaultmodel is to start fromconsiderations of the effective solvent-
mediated potential of mean force (PMF) of the single ion pair in bulk water. Here,
a key piece of information is provided by the PMF between an Na+ and a Cl� in
bulk water previously calculated by Kuyucak and co-workers using CPMD simula-
tions.19 In Fig. 2(b), the PMF from the Drude model with default LJ parameters is
compared with the PMF calculated from CPMD simulations. While the two PMFs
are in near-quantitative agreement at large andmoderate distances they differ strongly
at short distances (i.e., less than 3�A) in the regionwhere the core repulsion begins to be
important. The discrepancy at short distances affects the depth of the first free energy
well in the PMF, which corresponds to the situation where the cation and anion form
a contact pair. As shown in Fig. 2(b), the Drude model with default LJ parameters
gives the first minimum of NaCl PMF 1.6 kcal mol�1 deeper than the first minimum
obtained from CPMD.19 Obviously, the depth of the first free energy well directly
affects the propensity for cation–anion association.
To clarify the features of the model having the most direct impact on ion pairing,

it is useful to separate the total PMF from the default model into a long-range and
short-range contributions,

WMD
lr (r) ¼ DWMD

lr (r) + ULJ(r) (3)

where DWMD
lr (r) represents all the long-range electrostatic contributions along with

the effects of solvent, other than the cation–anion short-range repulsion and van der
Waals dispersion, which are modeled by the LJ potential, ULJ(r), with default
parameters generated from the standard combining rule. The function WMD

lr (r) ex-
tracted from the PMF that was calculated from the simulations with the default
LJ parameters for NaCl is shown in Fig. 3(a). This contribution to the PMF bears
some similarities with the indirect cavity potential that is sometimes considered in
integral equation studies.33 At moderate distances, the oscillations in DWMD

lr (r)
reflect the complexity of the hydration shell around the cation and anion. At short
distances, in the region where the core repulsion begins to be important, the function
DWMD

lr (r) becomes strongly attractive. This strong attraction is compensated by the
short-range repulsion, which essentially controls the depth of the free energy well in
the PMF at ion–ion contact. It is worth pointing out that the steepness of the cavity
potential largely undermines our ability to be accurately predictive about the
opposing short-range repulsive core potential, a problem noted long ago by Dang
et al.58 For this reason, relying on the osmotic pressure data to adjust empirically
the force field is absolutely necessary and unavoidable to obtain accurate models.
Although the separation given in eqn (3) is trivially satisfied by construction, it

seems plausible on physical grounds that the indirect cavity potential contribution
to the PMF should be fairly insensitive to the details of the short-range contribution
of the model. This suggests that the function DWMD

lr (r) evaluated from the default
model could be used to extract the short-range cation–anion repulsive potential
that is needed to best-match the PMF from CPMD. Following this argument, one
may write,

UCPMD
sr (r)hWCPMD(r) � DWMD

lr (r) (4)

where DWMD
lr (r) is the long-range contribution shown in Fig. 3(a). The short-range

potential UCPMD
sr (r) extracted from the CPMD simulations via eqn (4) is shown in

Fig. 3(b). The function UCPMD
sr (r) can then be used as a ‘‘target’’ to help design an

optimal model for Na+ and Cl� that is able to reproduce the PMF from ab initio
WCPMD(r). The default value of the LJ parameter Rij

min for the Na–Cl pair is 3.94
�A. By visual inspection of Fig. 3(b), the pair-specific radius Rij

min must be adjusted
to 4.03 �A to match the short-range repulsion extracted from the PMF calculated
from CPMD. Further simulations showed that the experimental osmotic pressure
were obtained with a Na–Cl Rij

min of 4.09 �A. As shown in Fig. 1(a), Rij
min 4.09 �A
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can reproduce the experimental osmotic pressure very well for a broad range of
concentrations, up to the solubility limit of 6 m. Fig. 2(a) shows the Na–Cl potential
with this empirically adjusted pair-specific LJ parameters. The energy minimum for
the ion pair in vacuum is increased by 10 kcal mol�1, but is still about 15 kcal mol�1

less than the ab initio value. Alternatively, it is also possible to derive an accurate
model with Na–Cl Thole shielding. This was achieved by trying to match the
vacuum energy and PMF calculated from the optimized NBFIX model (with
Rij

min ¼ 4.09 �A). Following this procedure, an optimal value of 2.10 was obtained
for the Thole shielding parameter tij. All pair-specific parameter results are summa-
rized in Table 1.
Based on the above results, it is clear that the two approaches, the pair-specific LJ

parameter modification and the Thole shielding, can both be utilized to empirically

Fig. 3 (a) The DW(r) (red line) is extracted from the default PMF profile (black line) sub-
tracted by the default LJ pair potential (green line); (b) the black line is the target LJ potential
needed to fit the CPMD PMF; the cyan line is the fitted LJ potential using the standard 6–12
potential giving an estimation of Rmin as 4.03 �A (the default value is 3.94 �A); the magenta line
corresponds to the Buckingham potential fitting; (c) the black line is the PMF calculated from
CPMD; the cyan line is the PMF from the LJ potential fitting; the magenta line is the PMF
from the Buckingham potential fitting.
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improve the model in order to reproduce the experimental osmotic pressure data in
a broad concentration range. It is worth pointing out that the optimized models ob-
tained here are not concentration dependent and that the models are, thus, transfer-
able to any finite concentrations. From this point of view, the current strategy
departs from approaches based on a concentration-dependent dielectric constant
used to account for the many-body interactions in implicit solvent models.14,36,59

However, comparing the PMF and also the interaction energy in vacuum with the
corresponding ab initio data (Fig. 2(a) and 2(b)), the electrostatic Thole shielding
strategy produces the energy minimum at a similar position as the ab initio data,
while increasing the radius (Rmin) has pushed the energy minimum about 0.6 �A
further apart in both vacuum energy and bulk phase PMF profiles. Also, it is known
that the classical Drude model does not allow charge transfer between atoms at the
short distance. This approximation may cause the electrostatic interaction at short
distances to be too favorable, which causes the excess ion pairing. In both cases,
the Thole shielding strategy seems more reasonable and precise than LJ parameter
modification for the Drude ion pair parameters. As observed in Fig. 3(b), it is of
interest to note that the Buckingham potential is able to reproduce accurately the
target short-range cation–anion repulsion better than a standard LJ 6–12 potential,
particularly for distances shorter than 2.75 �A. This is expected, as it is well under-
stood that the r�12 repulsion from the LJ potential is much too steep at short
distances and that the exponential functional form of the Buckingham potential is
a better physical model for the core repulsion. Nevertheless, the LJ potential, which
remains a simple and popular approximation that is widely used in the field of
biomolecular simulations, can also yield reasonably accurate results for the concen-
trated ionic solutions.
The osmotic pressure of concentrated electrolyte solution appears to result from

a delicate balance of strongly attractive and repulsive interactions. A useful frame-
work to deepen our understanding of these systems is provided by the McMillan–
Mayer (MM) theory.60 According to MM theory, the osmotic virial series for
a non-ideal solution can be expressed as,

P ¼ (1 + Btot
2 c + .)cRT (5)

where c is the concentration of dissociated ionic species and Btot
2 is the second

osmotic coefficient. The latter is related to the effective inter-particle potential via,

Btot
2 ¼ � 1

2

X
ij

ð
dr
�
e�Wij ðrÞ=kBT � 1

�
(6)

where Wij(r) is the PMF between ion i and j (the indices run over the cation and
anion). The osmotic virial coefficient Btot

2 is, thus, directly related to the Na–Cl,
Na–Na and Cl–Cl inter-ionic PMFs. Long-range ionic screening is ignored in this
discussion focused on the direct ion–ion PMF. The running integrals for the second

Table 1 LJ parameter of ions and pair-specific parameters

Ion ½Rii
min (�A) ½Eii

min (kcal/mol)

Na+ 1.4616800 �0.0315100

Cl� 2.4811139 �0.0719737

Na+–Cl� Rij
min (�A) tij

Combination rule 3.94 —

LJ NBFIX 4.09 —

Thole shielding 3.94 2.10
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osmotic coefficient Btot
2 are shown in Fig. 4 for a few different models. It is observed

that the coefficient Btot
2 determined from the default model based on the LJ param-

eters determined from the combination rule is extremely large, with an estimated
value at a distance of 6.5 �A of �420 �A3. In contrast, the second osmotic coefficient
Btot

2 for the two optimized models remain much smaller. Their estimated value at
a distance of 6.5 �A the running integral for the model with an optimized pair-specific
LJ parameters (NBFIX) yields �74 �A3, and the model with the optimized cation–
anion Thole shielding yields �54 �A3 (Fig. 4(b)). It is interesting to note that the
Na–Cl contribution from the two optimized models are both very close to the
CPMD estimates, further strengthening the present optimized models for NaCl
aqueous solutions at finite concentration.
While eqn (6) is truly valid only at low concentration c, it can nevertheless serve as

a useful guide to highlight the large opposing contributions that are at play in the
electrolyte. An important observation is that the osmotic pressure of the NaCl solu-
tion does not markedly deviate from the ideal relation, P ¼ cRT (see Fig. 1(a)). For
this reason, it is imperative that the second osmotic coefficient Btot

2 in eqn (6) be rela-
tively small. The indirect implication is that the contribution from the cation–anion
pair and that from the like-charged ion pairs (Na–Na, Cl–Cl) must almost cancel
each other out. The near-ideal behavior of the NaCl aqueous solution implies that

Fig. 4 The second virial coefficient B2 as a function of ion pair distance. (a) The black line is B2

from CPMD PMF; the blue solid line is B2 of Na–Cl ion pairs from LJ combination rule; the
blue dashed lines are the sum of B2 from all ion pairs; the red line is B2 of Na–Na pairs and the
magenta line is B2 of Cl–Cl pairs, calculated from the radial distribution of like-charged ion
pairs in bulk solution (see supplementary material†). (b) The black, red and magenta lines
are the same as in (a); the green and cyan solid lines are B2 coefficients of Na–Cl pairs from
LJ nbfix and Thole shielding respectively; the green and cyan dashed lines are the sum of B2

from all ion pairs from LJ nbfix and Thole shielding respectively.
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there is an underlying balance in the Na–Na, Cl–Cl and Na–Cl pairs in this system.
For the present model, the contributions for like-charged ion pairs are on the order
of +200 �A3 and +230 �A3 for Na–Na and Cl–Cl, respectively (these estimates were
obtained from the radial distribution function directly extracted from the unbiased
simulations of the NaCl salt solution; see Supplementary Information†). As the
latter are dominated by the long-range Coulombic repulsion, these values are ex-
pected to be fairly insensitive to the details of the models. Thus, the total contribu-
tion from the like-charge pairs can be used to set an empirical upper-bound on the
Na–Cl contribution. This means in practice that the Na–Cl contribution should not
considerably exceed �430 �A3 to be in agreement with the near-ideal solution exper-
imental osmotic pressure. This shows that the estimated contribution for the Na–Cl
pair of the default model based on the LJ parameters determined from the combina-
tion rule, which amounts roughly to �840 �A3, is clearly much too large due to over-
binding of the cation–anion pair. This cannot be compensated by the opposite
Na-Na and Cl–Cl repulsive contributions, hence resulting in an osmotic pressure
that deviates strongly from an ideal solution. Despite the limitations of the BLYP
density functional theory used in the CPMD simulations.19 it is comforting to
note the relatively good agreement with the PMF calculated from the optimized
Drude force field that was empirically adjusted to match the osmotic pressure
data. The good accord between the two optimized models, as well as with the
CPMD calculations, is a strong indication that the association of Na+ and Cl� in
aqueous solution should be consistent with these 3 different approaches.

4. Conclusion

The osmotic pressure simulation is used to validate the polarizable classical Drude
oscillator ionic parameters at finite concentrations. The ion models were previously
optimized in conjunction with the polarizable SWM4-NDP water model, to be accu-
rate in the infinite dilution limit.5 However, there’s no guarantee that the model is
accurate at finite concentrations. The osmotic pressure MD simulation method
offers a direct way to measure the thermodynamic properties of electrolyte solution
at a wide range of concentrations, up to the solubility limit. In this study, the osmotic
pressure of NaCl and KCl aqueous solutions are calculated from all-atomMD simu-
lations for a variety of concentrations. It was found that the NaCl parameters under-
estimate the osmotic pressure significantly even at 1 m. Two sets of pair-specific
parameters, electrostatic Thole shielding and the pairwise LJ parameter, are intro-
duced to modify the ion pair potential in order to reproduce the experimental
osmotic pressure for a wide range of concentrations. The fitting procedure is done
carefully and hierarchically, from vacuum pair potentials, single ion pair PMFs in
bulk to the osmotic pressure at finite concentrations. The fitting results show that
the experimental osmotic pressure can be reproduced by either increasing the LJ
radius by 0.15 �A from the default combination rule or by assigning a Thole shielding
factor of 2.10. The PMF profiles of a single ion pair in the bulk and the ion pair
interaction energy in vacuum show that the electrostatic Thole shielding strategy
is able to shift the magnitude of the interaction energy and preserve the position
of the energy-well at the same time, while increasing the pair-specific LJ radius
(Rmin) pushes the most favorable interaction position further apart in both vacuum
energy and bulk phase PMF profiles. Also, introducing the electrostatic Thole
shielding at short distances seems more reasonable to take into account the lack
of the charge transfer effect between atoms in the Drude polarizable models.
The second virial coefficients Bij

2, which are directly related to the pair interactions,
were also calculated from the ion pair PMF profiles. It is clear that the Bij

2 coefficients
from the fitted pair-specific parameters are very close to the CPMD data, and much
smaller than the one from the default Drude model. The sum of the Bij

2 coefficients of
Na–Cl, Na–Na and Cl–Cl ion pairs is close to zero with the pair-specific parameters,
but around �400 �A3 with the default Drude parameters. The fact that Btot

2 is small
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suggests that the non-ideal contributions from the like-charged ion pairs and unlike-
charged ion pairs cancelled each other out. It is again consistent with the fact that the
osmotic pressure of NaCl solution is very close to the ideal solution.
This work illustrated the important role of the osmotic pressure simulation in vali-

dating and calibrating the empirical force field under realistic conditions. Small
adjustments of the pair-specific interactions can improve the thermodynamic prop-
erties of electrolyte solution at finite concentrations significantly. Relying on the
experimental osmotic pressure data to adjust empirically the force field gets around
the problems arising from our limited ability to accurately predict these interactions
from first principles. It is worth pointing out that the osmotic pressure MD simula-
tion method can be used for a large variety of molecular fragments to validate and
adjust the empirical force field for lipids or other biomolecular systems. It offers
a novel strategy for advanced parameterization.
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