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Abstract

This report provides a detailed elaboration on the simulation study of a miniload-workstation
order picking system, which was carried out by the Systems Engineering Group at TU/e
under the FALCON project. The study is regarded as a starting point towards creating a fast,
simple and accurate model for performance analysis based on simulation models.

The purpose of this simulation study is to create a detailed simulation model that represents
an operating, industrial scale distribution center (DC). As a reference case, an existing DC
was selected. The main characteristic of the reference case DC is the use of state-of-the-
art Automated Storage/Retrieval System (AS/RS), which is becoming a common practice for
large scale DC. The type of AS/RS used in this DC is referred to as the miniload-workstation
order picking system, or the end-of-aisle system.

Our approach is to create a flexible and modular model architecture such that the model is not
restricted to be used only for the reference case. The proposed architecture allows different
system structures to be modeled by adding slight changes to the current architecture. The
simulation model is built using a process algebra based simulation language χ. The proposed
model is structured into three areas and four layers. Furthermore, clustered subsystems and
decentralized controls are applied to the model architecture.

We validated the proposed model and performed some experiments to evaluate the perfor-
mance of the DC in terms of flowtime and throughput. Furthermore, we show that different
system configurations can be modeled using the proposed architecture. We conclude that our
model has covered sufficient details from the reference case and hence can be used further as
the base model for evaluating the performance of aggregation methods under development.
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Glossary of terms

The following glossary gives a description for some terms that are used in this report.

1. SKU : Stock Keeping Unit, an article number that is uniquely identified.

2. Orderline : An orderline is the reference number under which a delivery of goods
for one specific product is requested. An orderline can be split into
multiple orderline-splits. An order line always refers to one SKU, but
the number of individual (one) item may vary.

3. Order : A request to deliver specified quantities of goods or to render
specific services. An order is the reference under which a delivery of
goods from a distribution center is requested. An order is comprised of
one or more orderlines.

4. Suborder : A part of an order. A suborder also consists of one or more orderlines.

5. Miniload : A type of Automated Storage and Retrieval System (AS/RS) that
handles small items that are typically contained in small containers,
totes or trays.

6. Tote : A (re-useable) box-shaped container used to convey a collection of
items.

7. Product tote : A tote that contains items of an SKU, from which items are picked
at the workstation.

8. Order tote : A tote that contains items that have been picked from several SKUs.
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Chapter 1

Introduction
Contributor: W.W.H. de Koning

FALCON (Flexible Automated Logistic CONcepts) [FAL07] is a joint research project of three
Dutch technical universities, the Embedded Systems Institute, and Vanderlande Industries.
The FALCON project considers the design of a new generation of distribution centers and
warehouses where a considerable amount of item picking functions will be automated by
means of robotized systems. Falcon aims to develop methods and tools for the design of
such automated distribution centers or warehouses regarding the integrated logistic system,
the (robotized) hardware functionality, and the software-based control.

The contribution of the Systems Engineering group at TU/e is on model-based optimization
and model-based control. Key aspect is the development of methods for aggregate model
building such that aggregate models can be cast in a multi-level modeling framework for
system design, optimization, and control.

In this report, a simulation model of a reference case distribution center (DC) is presented,
which is needed to develop suitable aggregate models for the DC. An operating, industrial
scale DC has been chosen as the reference case. The architecture of the model is such that
the control and data storage is distributed over various (local) control processes, contrary to
the current centralized control system architecture of the above mentioned industrial scale
DC.

The main purpose of this report is to provide the readers with a detailed description of the
proposed modeling technique. Throughout the chapters in this report, the readers will find
how each processes is modeled using a process algebra based simulation language χ 1.0
[HR08]. The main contribution of this simulation study is developing a flexible and modular
model architecture with regards to system structure and design parameters.

The remainder of this report is organized as follows. Chapter 2 elaborates the structure of
the reference case DC in detail. In Chapter 3 the architecture of the simulation model is
presented. In Chapters 4 and 5, detailed simulation models of the miniload system and
the workstation system, respectively, are explained. Then, in Chapter 6 the collection of
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real-life data is considered. In Chapter 7, a validation experiment is carried out. After that,
in Chapter 8, different experiments using the simulation model presented in this report
are done. Finally, conclusions are drawn and ideas for further research are presented in
Chapter 9.
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Chapter 2

System Description
Contributor: R. Andriansyah

In this chapter, an overview of the reference case DC is presented. We mainly focus on the
physical structures and their corresponding operations.

1 Physical structure

The system structure of the reference case DC is shown in Figure 2.1. Three main areas can be
distinguished, namely the miniload, workstation, and conveyor. Miniloads provide temporary
storage spaces for product totes. At the workstation, items are picked from the product totes
and put into the order totes. . A conveyor loop connects the miniload area to the workstation
area for moving the product totes. Two other areas, namely the receiving and consolidation
areas are not considered in detail.

1.1 Miniloads

Miniloads are essentially automated storage racks equipped with cranes to serve two main
functions, namely the storage and retrieval of product totes. Each miniload consist of two
single-deep racks with a single crane in the middle to access product totes. Each crane is
capable of holding up to four product totes simultaneously. The cranes move horizontally
along the aisle between the racks, while the holder of product totes move vertically to store or
retrieve the totes. There are five miniloads present in the system.

1.2 Workstations

Each of the three workstations in the system consists of three input buffers and one out-
put buffer (see figure 2.1). There are maximal three suborders active at the same time at a
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Figure 2.1: Miniload-workstation order picking system

workstation, and thus maximal nine suborders are active in the whole workstation area. An
operator will work on one suborder at a time, putting all items picked from the product totes
belonging to one suborder into an order tote. The operator is not allowed to start working on
the next suborder when not all items for the current suborder have been picked.

1.3 Conveyor

The central conveyor loop transports product totes from the miniload area to the workstation
area, and the other way around. As there are only a limited number of places for totes at the
conveyor, only product totes that have successfully reserved a window are allowed to enter the
conveyor. The replenishment product totes (full totes) have lower priority than the returning
product totes from the workstation area (broken totes) when trying to enter the conveyor
loop. This requirement is needed to ensure that there will be sufficient storage spaces at the
miniload for the returning product totes.

2 Operations

The operation of the miniload-workstation order picking system is triggered by orders that
enter the system at any time. An order consists of several suborders. Each suborder can
contain up to 316 order lines. An order line represents an SKU type and the required amount
of items for that SKU. In total, 1624 SKUs are handled in this order picking system.
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2.1 Retrieval

Retrieval takes place at the miniload and starts when the miniload controller has chosen
the next suborder to be completed from a list of all arriving suborders. After a suborder is
selected, the inventory position of each SKU is updated. The inventory position serves as
the base for the replenishment process, that is, ordering additional items from the outside
suppliers. In this system, an order-up-to level replenishment policy (s, S) is used, where a
number of replenishment items are ordered just enough to bring the inventory position back
to a pre-determined level S, when the current inventory position has reached or dropped
below a certain threshold value s.

The chosen suborder will be further divided into jobs, which specify the SKU type and the
required number of items to be picked. These jobs are then assigned to the five available
miniloads. As a rule, a job will be assigned to the miniload that stores the oldest tote for the
SKU required by the job. A job corresponds to one or more product totes to be retrieved,
since it is possible that one product tote does not contain enough items to fulfill the job.
Subsequently, a list of totes to be retrieved is generated, and the retrieval action is executed
if and only if there are at least four totes present in the list or a certain time has elapsed.
Following a stochastic retrieval time, the retrieved totes are then put on the output buffer
of the miniload, waiting to get access to the central conveyor loop to be sent to one of the
workstations.

2.2 Item picking

Once a product tote has reached its destination workstation, an operator will pick the required
amount of items from the tote and put the item(s) into an order tote. We assume that an order
tote corresponds to one suborder, and a suborder can have more than one order tote. In the
real system, however, it is possible that an order tote contains items from different suborders.
When all items required for a suborder are picked into the order tote, a new order tote for the
next suborder is prepared. The finished order tote is moved to the take-away conveyor.

After item picking, the operator checks whether the product totes becomes empty. If this is
the case, the empty product tote will be put on the take-away conveyor along with the finished
order totes to be sent to a consolidation area. Alternatively, if the product tote still contains
any items left, the tote will be put on the central conveyor loop to be stored again in one of the
miniloads. This product tote is referred to as a returning product tote.

2.3 Storage

The destination miniload for a returning product tote is not necessarily the same miniload
from which it was retrieved. One selection criterium for the destination miniload is the
miniload having available storage space with the least amount of items for the SKU type
contained in the returning product tote. After the destination miniload is determined, the
product totes travel to the input buffer of the destination miniload, waiting for the miniload
crane to store them into the miniload racks. Similar to the retrieval, a storage action will only
be executed once the number of totes waiting in the miniload input buffer reaches four or a
certain time has elapsed. A stochastic storage time then applies.

Product totes for storage may also come from the replenishment process. In this case, the
incoming product totes are new totes full with items. The destination miniload is determined
in the same fashion as it is for the returning product totes, and the above control rule for
storage also applies.
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Chapter 3

Model Architecture
Contributor: W.W.H. de Koning

In the previous chapter, the system structure of the reference case DC has been explained.
Next, we model the reference case DC using χ 1.0. The architecture of the simulation model
is presented in this chapter.

1 Complete architecture

Figure 3.1 depicts the complete model architecture with all processes involved. Similar to
the physical structure of the system, the three areas consist of a miniload, conveyor, and
workstation area. Note that the conveyor in Figure 3.1 spans from TMin to TWout in the
lowest level of the material flow layer. In addition to these areas, four layers of operations can
be distinguished in the model, namely the order layer, global control layer, local control layer, and
material flow layer.

1.1 Order layer

The order layer consists of all operations that are related to the administration of demand and
supply. These operations include the creation of new customer orders by order generator
GO and the placement of inventory replenishment orders by replenishment planner PR. The
arriving customer orders are delivered to the miniload area by miniload planner PM.

1.2 Control layer

The control layer contains processes that record all relevant information that is used for
decision-making in each area within the system. This layer is further divided into global
control and local control. The main difference between the two is the scope of information that
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Figure 3.1: Model architecture

is accessible in each layer.

The global controller holds information over all subsystems beneath its supervision. In this
model, the miniload global controller (GM) possess (simpified) information about all five
miniload subsystems (MLS). Similarly, the workstation global controller (GW) has access to
(abstracted) information of the three available workstation subsystems (WS).

The local controller contains information pertaining to the specific subsystem within its scope.
A miniload local controller (LM), for example, has access to information only from the physical
miniload (ML) under its supervision. As such, a local controller is not aware of the presence
of other local controllers in the system. The same condition applies to the workstation local
controllers (LW).

1.3 Material flow layer

The material flow layer represents the physical material (product totes) movement. Processes
that belong to this layer includes the input and output (I/O) buffers (BI, BO, BW, and BWout),
I/O conveyor windows (TI, TO, Tdiv, Tmer), and the physical miniload and workstation (ML
and MW, respectively).

Conveyor windows TI, TO, Tdiv and Tmer in the model altogether form the conveyor area.
Note that the conveyor area is treated differently than the other two areas. The controller for
the conveyor area is actually integrated with the controller for the miniload and workstation ar-
eas. The conveyor windows require information about the destination miniload/workstation
for the totes. This information, which is provided by the miniload/workstation controller,
is already contained in the totes themselves. As such, there is no need to model a separate
controller for the conveyor. Note that in other systems, it might be beneficial to model the
controller for the conveyor area separately.

2 Simplified architecture

In Figure 3.2, an simplified overview of the simulation model is presented. In this figure, it
can be seen that the model consists of the following components:

14 Model Architecture
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Figure 3.2: Overview of the χ model

• Total environment;

• Miniload environment;

• Workstation environment;

• Miniload system;

• Workstation system.

The total environment contains processes that take care of the generation of orders, replen-
ishment, and consolidation of orders. The miniload (workstation) environment makes sure
that the miniload (workstation) system is controlled and behaves correctly. Furthermore, the
actual miniload (workstation) system is implemented in the miniload (workstation) model.
The total environment, miniload environment, and workstation environment are considered
in detail in this chapter. The miniload system and workstation system are explained in the
following chapters.

3 Data types

The data types that are used in the χ simulation model are presented in the following lines
of code.

type line = ( sku: nat // ordered product type
, qty: nat // ordered quantity
)

, subord = ( id: nat // belonging to order identity
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, seq: nat // sequence number
, list: [line] // order line
)

, item = ( sku: nat // product type
, qty: nat // quantity
)

, ptote = ( id: nat // tote identifier
, timeIn: real // starttime of tote
, sku: nat // type of items
, qty: nat // number of items in tote
)

, ttote = ( tote: ptote // product tote information
, ord: nat // belonging to order (99 = no info)
, seq: nat // belonging to suborder (99 = no info)
, src: nat // Source (99 = no info)
, des: nat // Destination (99 = no info)
, req: nat // Items to pick (99 = no info)
)

, field = 3 * [nat] // buffer lane fill

In this code, it can be seen that a suborder subOrd consists of identity subOrd.id, se-
quence number subOrd.seq, and list of products ordered subOrd.list. This list con-
tains items of type line, which each consist of SKU number line.sku and quantity or-
dered line.qty. Furthermore, field is used for the contents of the workstation buffer
lanes.

The data types used for physical elements are item, pTote, and tTote. As stated earlier, an
item, which can be picked by an operator, does not necessarily consist of one single product.
It can, for instance, represent multiple toothbrushes in one box. Therefore, item consist of
SKU number item.sku and quantity item.qty. A product tote, which is represented by
pTote, contains tote identifier pTote.id, a time stamp indicating the moment at which
the product tote enters the system pTote.timeIn, SKU number pTote.sku, and number
of items in the tote pTote.qty.

When a product tote is transported from the miniload system to the workstation system and
vice versa, its information is stored in a transport tote tTote. The variable tTote.pTote
indicates the product tote to be transported. Information about order and suborder to which
the tote belongs is contained in the variables tTote.ord and tTote.seq respectively.
tTote.src and tTote.des show the source and destination of the tote, respectively. Fi-
nally, the number of items to be picked from the tote is represented by tTote.req.

Constant identifiers can be found throughout the model. These identifiers are used to define
the constant values repeatedly used in many parts of the model, for example the number of
miniloads, workstations, batch size, etc. As we will see later on, constant identifiers simplify
adjustment to the model structure. The following lines of codes define all constant identifiers.

const NML: nat = 5 // no. of miniloads
, NWS: nat = 3 // no. of workstations
, NTOTE: nat = 5503 // no. of totes after initialization
, NCELL: nat = 6250 // no. of storage cells in a miniload
, NWIP: nat = 100 // threshold no. of totes
, NSKU: nat = 1624 // no. of SKUs in the system
, MAXSUBORD: nat = 9 // no. of maximum active suborders

16 Model Architecture



, NBATCH: nat = 4 // batch size at miniload

As constant identifiers are not yet implemented in χ 1.0 during the time of model creation,
we have used a pre-processor [APH+07] instead.

4 Total environment

As stated earlier, the environment takes care of the generation and consolidation of orders,
and replenishment of the system. In Figure 3.2, it can be seen that the environment consists
of order generator process GO, a miniload order process PM, replenishment process PR, tote
generator GR, and exit process EX. The behavior and implementation of these processes are
explained in detail in this section.

4.1 Order generator GO

Figure 3.3: Communication in GO

Order generator GO is implemented in the following lines of code.

proc GO(chan a?: void, b!, c?: (nat, real), d!: subord, e?: void
, f!: void) =

|[ var dm: -> real = uniform(0.0,1.0)
, j,k,n: nat, p: [line], x: (nat,nat,real), xs: [(nat,nat,real)]
, dr: -> real = uniform(0.0,1.0), r: real
, dq: -> nat = poisson(0.22), q: nat
, i: nat = 0, t: real
, skuvec: [(nat,nat,real)]

:: e?; f!
; *( a?

; skuvec:= initskus()
; p:= []
; j:= numLines(sample dm)
; j > 0

*> ( r:= sample dr
; k:= searchSKU(r,skuvec)
; q:= 1 + sample(dq)
; n:= numreq(q,k,skuvec) min 5
; p:= p ++ [(k,n)]
; skuvec:= updatesku(k,n,skuvec)

17 Total environment



; j:= j - 1
)

; d!(i,i,p); i:= i + 1
)

|| *( c?(n, t); b!(n, t) )
]|

GO generates suborders (which consist of orderlines) based on customer requests to the DC.
These suborders are generated when the initialization phase of the miniload is finished.
The initialization phase is the period when the miniloads are filled with totes according to a
certain replenishment policy, assuming that the miniloads are empty at the beginning. Once
the initialization phase is finished, a signal is received from PM via channel e and forwarded
to EX via channel f. Upon receiving this signal, the time instant for performance analysis at
EX is recorded and suborders are allowed to enter the system.

Suborders are generated using a pull framework. That is, GOwill only generate new suborders
if a signal via channel a is received from PM. After initialization of variables skuvec and p,
the number of orderlines j in the suborder is determined using the function numLines. For
each orderline, the SKU type k and the required number of items n is defined according to
the data provided (see Chapter 6). Once all orderlines in the suborder is defined, the suborder
is then sent to PM via channel d.

Parallel to the above statements, GO receives information via channel c from PM and forwards
this information to EX to determine the suborder flowtime.

4.2 Miniload order process PM

Figure 3.4: Communication in PM

Miniload order process PM is implemented in the following lines of code.

proc PM( chan a?, b!, c?, d!: subord, e!: (nat, real), f?, g!: void
, h?, i!: void ) =

|[ var p, q: subord, ps: [subord] = [], qs: [nat] = []
:: *( a?p; ps:= ps ++ [p]

| len(ps) > 0 -> b!hd(ps); ps:= tl(ps)
| c?q; d!q; qs:= qs ++ [q.seq]
| len(qs) > 0 -> e!(hd(qs),time); qs:= tl(qs)
| f?; g!
| h?; i!
)

]|
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In this code, it can be seen that PM receives suborders from GO over channel a, which are
forwarded to the miniload environment over channel b. Furthermore, information about a
suborder that is retrieved by the miniload system is received over channel c. This information
is then forwarded to replenishment process PR over channel d. Channel e sends the starting
time to GO for calculation of flowtime for suborder that has just been chosen by GM. Channel
f receives a void signal that requests a new suborder to be released into the system. This
signal will be forwarded to GO via channel g, which will create a new suborder each time
the void signal is received. Similarly, channel h receives a void signal that marks the end of
initialization phase and that the generation of suborders can be started. This void signal is
also forwarded to GO via channel i.

4.3 Replenishment process PR

Figure 3.5: Communication in PR

Replenishment process PR decides if items of a certain SKU number should be replenished
using a (s, S) ordering policy [SPP98]. Using this policy, a number of replenishment items
are ordered just enough to bring the inventory position back to a pre-determined level (S),
when the current inventory position has reached or dropped below a certain threshold value
(s). Process PR is implemented in the following lines of code.

proc PR( chan a?: subord, b!: line ) =
|[ var p: subord

, IPs: [nat], IP: %NSKU * nat
, mns: [nat], mn: %NSKU * nat
, mxs: [nat], mx: %NSKU * nat
, s : line, Qty, skunr: nat

:: IP:= list2vec(IPs); IPs:= initIP()
; mns:= initMin(); mn:= list2vec(mns)
; mxs:= initMax(); mx:= list2vec(mxs)
; *( a?p

; len(p.list) > 0

*> ( s:= hd(p.list); p.list:= tl(p.list); skunr:= s.sku
; IP.(skunr):= IP.(skunr) - s.qty
; ( IP.(skunr) <= mn.(skunr)

-> Qty:= mx.(skunr) - IP.(skunr)
; b!(skunr,Qty)
; IP.(skunr):= IP.(skunr) + Qty

| IP.(skunr) > mn.(skunr)
-> skip

)
)

)
]|
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In this code, it can be seen that for each line of a suborder, which is received from channel
a, the inventory position of the corresponding SKU number, IP.(s.sku) is updated. If
this inventory position drops below the reorder point r.(s.sku), a replenishment order, of
which the quantity is q.(s.sku), is sent to tote generator GR over channel b.

4.4 Tote generator GR

Figure 3.6: Communication in GR

Tote generator GR is implemented in the following lines of code.

proc GR( chan a?: line, b!: ttote, v!: void ) =
|[ var q, r: line, qs: [line] = []

, tcs: [nat], tc: %NSKU * nat
, i,k: nat = (0,0)
, Qty: nat
, IPs: [nat], IP: %NSKU * nat

:: IPs:= initIP(); IP:= list2vec(IPs)
; tcs:= inittote(); tc:= list2vec(tcs)
; k < %NSKU

*> ( IP.k > 0

*> ( Qty:= IP.k min tc.k
; b!((i,time,k,Qty),99,99,99,99,99)
; i:= i + 1; IP.k:= IP.k - Qty
; delay 10.0

)
; k:= k + 1

)
; *( a?q; qs:= qs ++ [q] )

|| *( len(qs) > 0 -> r:= hd(qs); qs:= tl(qs)
; r.qty > 0

*> ( Qty:= r.qty min tc.(r.sku)
; b!((i,time,r.sku,Qty),99,99,99,99,99)
; v!
; i:= i + 1; r.qty:= r.qty - Qty
; delay 10.0

)
)

]|

As can be seen in this code, GR first makes sure that the system is filled. After that, GR is
able to receive replenishment orders q from PR via channel a. A number of totes is then sent
into the system, such that the quantity ordered is satisfied.
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4.5 Exit EX

Figure 3.7: Communication in EX

Exit EX is implemented in the following lines of code.

proc EX( chan a?: ttote, b?: (nat, real), c?: (nat,real), d?: void
, u!, v!: (nat, real), w!: real ) =

|[ var x: ttote
, i: nat, j, k: nat = (0,0), t, f: real, fs: [real] = []
, ps: [(nat, nat, real)] = []
, mf: real = 0.0, tstart: real
, s2phi: real = 0.0, th: real

:: *( a?x; k:= k + 1; u!(k,(time - tstart) / 3600)
| b?(i, t); ps:= ps ++ [(i, t)]
| c?(i, t); j:= j + 1; (f,ps):= detFlowTime(ps, i)

; f:= t - f; fs:= fs ++ [f]
; v!(j,(time - tstart) / 3600)
; ( j > 1 -> s2phi:= s2phi * (j - 2) / (j - 1) + (1 / j) * (f - mf)^2

| j <= 1 -> s2phi:= 0.0
)

; mf:= mf * ( (j - 1) / j ) + f / j
; th:= j / (time - tstart)
; ( j mod 100 = 0 -> !!mf, "\t", th, "\t", s2phi, "\n"

| j mod 100 > 0 -> skip
)

; w!mf
| d?; tstart:= time
| j >= 10000 -> skip; delay -1.0
)

]|

As can be seen in this code, EX receives empty totes from the workstation over channel a.
Furthermore, EX receives information about suborders that are retrieved and suborders that
are finished over channel b and channel c, respectively. Using this information, EX is able
to calculate performance indicators, such as suborder throughput and suborder flow time.
A signal is received via channel d that marks the end of initialization phase, after which the
performance analysis of the system can be started. We determine that the simulation will be
terminated once 10,000 suborders are finished.
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5 Miniload environment

As stated earlier, the miniload environment makes sure that the miniload system is controlled
and behaves correctly. As can be seen in Figure 3.2, the miniload environment consists of a
miniload inbound transporter TMin, a miniload outbound transporter TMout, and a global
miniload controller GM. The behavior and implementation of these processes are explained
in detail in this section.

5.1 Global miniload controller GM

GM is the global controller of the miniload processes, which has as its main task to divide sub-
orders among the miniloads and to determine in which miniload an arriving tote is stored.
One of the main objectives to separate the control of the miniload system into local con-
trollers and a global controller, is to save as much information as possible locally. Therefore,
the only information saved in GM is the minimum amount of information needed for GM to
successfully perform its tasks.

Because GM plays a central role in the system, as can be seen in Figure 3.2, its behavior is
explained in detail in this section. First of all, the communication of GM with its surrounding
processes is explained. After that, the data administration in GM is presented. Then, assign-
ing an arriving tote to one of the miniloads is explained. Finally, the process of dividing
suborders among the miniloads is considered.

Communication with surrounding processes

The communication of GM with its surrounding processes is presented in Figure 3.8, and
implemented in the following lines of code.

proc GM( chan a!: subord // to PM
, b?: subord // from PM
, c!: (nat,nat) // (qNo,mlNo)
, d?: (line,bool) // ((skuId,qty),prior)
, e!: %NML # (nat,nat,nat,nat)// (skuId,qtyReq,subordId,subordSeq)
, fIn?: %NML # (real,nat,nat) // (timeIn,skuId,toteQty)
, fRes?: %NML # (real,nat) // (newTimeIn,toteQty)
, fOut?: %NML # nat // retTotes
, g?: void // leaving tote
, h!: (subord, nat) // (suborder, #totes)
, i?: void // request
, l!: void // add suborder
, m!: void // start flowtime calculation
, u!: nat // visualization
, v!: %NML * nat // visualization
, w!: void // visualization
, w2!: nat // visualization
, w3!: (nat, nat) // visualization
, w4!: (real, real) // visualization

) =
|[ var k: nat

, p, pTemp: subord, ps: [subord] = []
, r: nat = 0
, totetimeIn: real, toteSkuId, toteQty, toteId: nat
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Figure 3.8: Communication of GM

, calc: bool = false
, zs: [(real,nat,nat)]
, z: (real,nat,nat), z1,z2: nat
, zsa: %NSKU * [(real,nat,nat)]
, x: line, xs: [line] = [], xsP: [line] = []
, ya: %NML * nat = yaInit()
, yat: nat = yatInit()
, yatin: nat = 0
, wa: %NSKU * (%NML * nat)
, MLno, retTotes, n: nat
, prior: bool
, pline: line
, timeIn: real
, MLdstr: -> nat = uniform(0,5*4*3*2*1)
, send: bool = false, Ntote, np: nat = 0
, start: bool = false
, sublen: nat = 0, msublen: real = 0.0, varsublen: real = 0.0

In this code, it can be seen that GM receives suborders from PM over channel b. When a sub-
order is retrieved, information about this suborder is sent back to PM via channel a. Process
GM communicates with inbound miniload transporter TMin over channels c and d. Informa-
tion about totes that must be retrieved by the miniloads are sent to the miniload system over
channel e. Information is received from the miniload system when a tote is stored, retrieved,
or reserved for a suborder. Therefore, channel f consists of three different channels: fIn,
fOut, and fRes. Furthermore, GM receives information about departing totes from TWout
via channel g. GM also sends information about a suborder that is going to be retrieved to
global workstation controller GW over channel h, and receives request to retrieve a new sub-
order from GW over channel i. Channel l is used to send a void signal in order to request
GO to create a new suborder into the system. Finally, channel m are used to mark the end of
initialization phase to process PM, respectively. The initialization phase is ended when the
last tote for the initial filling of the miniloads has been stored in the destination miniload.

Data administration

As stated earlier, the data stored in GM is the minimum data needed for GM to correctly per-
form its tasks. This data is stored in three different administrations: a physical adminis-
tration, a store administration, and an order administration. These administrations, which
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contain different data, are needed for different tasks, and updated after different events.

The physical administration is used to determine in which miniload an arriving tote can
be stored. As a tote can only be stored in a miniload that has at least one empty position,
the physical administration contains the number of totes stored in, and assigned to, each
miniload. A tote is added to the physical administration when it passes TMin, where it is
assigned to a miniload. A tote is removed from the physical administration when it is re-
trieved by the miniload crane. As only information about the number of totes stored in, and
assigned to, each miniload is required, the data type used in the χ model is a vector ya con-
taining NML natural numbers, where NML denotes the number of miniloads and initialized
by ya: NML * nat = yaInit().

A different physical administration is used to determine if a new tote, i.e. a tote arriving from
tote generator GR, is allowed to enter the system. This administration, variable yat in the χ
model, is a natural number representing the total number of totes in the system. If the value
yat is smaller than the total miniload capacity, a new tote can be allowed to enter the system.

The store administration is used to determine in which miniload an arriving tote should be
stored. In order to make sure that items are available in multiple miniloads, an arriving tote of
a certain SKU should be stored in the miniload that contains the fewest items of this SKU. As
a consequence, the items of a tote are added to the store administration when the tote passes
TMin, where it is assigned to a miniload. A tote is removed from the store administration
when it is reserved for a suborder, as it can then no longer be used to serve other suborders.
The data type used for the store administration is an array wa which, for each SKU, contains
a vector of NML natural numbers containing the number of items of the corresponding SKU
in each miniload. In the χ model, array wa is initialized by wa: NSKU * (NML * nat).
Here, the constant variable NSKU represents the number of SKU contained in the system.

The order administration is used to determine if a suborder can be served, and, if so, which
items needed for the suborder are retrieved from which miniload. Because the system con-
tains products that are ordered rarely, i.e. slow movers, always the tote containing the oldest
items of a certain SKU should be retrieved when items of this SKU are needed for a subor-
der. Therefore, the order administration contains data about the age of the oldest item in each
miniload, and, consequently, knows in which miniload the oldest item of a certain SKU is
stored. In the χ model the order administration is saved in vector of lists zsa, which is of the
following type: zsa: NSKU * [(real, nat, nat)]. In this vector, for each SKU a list
is saved containing tuples of type (real, nat, nat). In these tuples, the first element
is the age of the oldest tote in a miniload, the second element is the corresponding miniload
id, and the third element is the total number of items in this miniload.

Assign an arriving tote to a miniload

As stated earlier, one of the main tasks of the global miniload controller is to assign arriving
totes to one of the miniloads, which is done when a tote arrives at the inbound transporter
TMin. This process is implemented in the following lines of code.

| d?(x,prior)
; ( prior -> xsP:= xsP ++ [x]

| not prior -> xs:= xs ++ [x]
)

| len(xsP) > 0
-> x:= hd(xsP); xsP:= tl(xsP); k:= x.sku

24 Model Architecture



; MLno:= MLassign(ya,wa.k,sample MLdstr)
; c!(1,MLno); ya.MLno:= ya.MLno + 1
; wa.k.MLno:= wa.k.MLno + x.qty

| len(xsP) = 0 and len(xs) > 0 and yat < %NML * %NCELL
-> x:= hd(xs); xs:= tl(xs)
; k:= x.sku
; MLno:= MLassign(ya,wa.k,sample MLdstr)
; c!(0,MLno); ya.MLno:= ya.MLno + 1
; wa.k.MLno:= wa.k.MLno + x.qty
; yat:= yat + 1

As can be seen in this code, the process of assigning an arriving tote to one of the miniloads
starts with a request from TMin over channel d, which contains tote information x and a
boolean variable prior that is true in case of a returning tote, i.e. a priority tote. If prior is
true, the tote is always allowed to re-enter the system. If, on the other hand, prior is false,
the tote can only enter the system if yat, i.e. the total number of tote in the system, is smaller
than the total miniload capacity, as explained earlier.

The destination of an arriving tote is determined by function MLassign, which is imple-
mented in the following lines of code.

func MLassign( val ya: %NML * nat, wa: %NML * nat, x: nat ) -> nat =
|[ var j: nat = 0

, xs: [(nat,nat)] = []
:: j < %NML

*> ( ( ya.j < %NCELL -> xs:= MLList(j,wa.j,xs)
| ya.j >= %NCELL -> skip
)
; j:= j + 1

)
; ret hd(drop(xs,x mod len(xs))).0

]|

As stated earlier, an arriving tote should be stored in the miniload that contains the fewest
items of the corresponding SKU number. In the code presented above, it can be seen that
MLassign checks in which miniloads the tote can be stored, i.e. the miniloads of which ya,
the number of totes stored in the miniload, is smaller than the maximum capacity NCELL.
For these miniloads, function MLList is used to determine which miniload contains the
fewest items of the SKU number under consideration.

Divide suborders among miniloads

GM is responsible in assigning workloads to all miniloads, by means of dividing the suborders.
In order to do this, GM requires three inputs. First, there must be a suborder available to be
processed. New suborders are received from PM via channel b. Second, there must be a
request from GW that indicates a workstation is able to receive a new suborder. This request is
received via channel vti. Third, there should be sufficient amount of items in the miniloads to
fulfill the number of required items for each SKU in the suborder. With this regard, updates
regarding additional items in the miniload is essential. As such, when one or more arriving
totes are stored in a miniload, GM receives data about the tote via channel fIn, after which
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the order administration zsa is updated. If one of these three events happens, a boolean
variable calc becomes true and GM is allowed to divide the suborders among the miniloads.
The following lines of code is used to model the above behavior.

; ( b?p; ps:= ps ++ [p]; send:= false; calc:= true
| ( |, j <- 0..%NML-1, fIn.j?(totetimeIn,toteSkuId,toteQty)

; zsa.toteSkuId:= zsUpdate(zsa.toteSkuId,j,totetimeIn,toteQty)
; yatin:= yatin + 1
; calc:= true
; ( Ntote < %NTOTE

-> Ntote:= Ntote + 1
; ( Ntote = %NTOTE -> start:= true; m!; w!

| Ntote /= %NTOTE -> skip
)

| Ntote >= %NTOTE -> skip
)

)
| i?; r:= r + 1; calc:= true

If calc is true, function detSubOrder determines if a new suborder can be served by
checking if all items needed for a certain suborder are available in the miniloads:

; ( not calc -> skip
| calc -> (calc,p):= detSubOrder(take(ps,%NWIP),r,zsa)

If detSubOrder returns a suborder p that can be served, GM starts to divide the items
ordered among te miniloads. This process is implemented in the following lines of code.

; pTemp:= p
; len(pTemp.list) > 0

*> ( pline:= hd(pTemp.list); pTemp.list:= tl(pTemp.list)
; zs:= zsa.(pline.sku)
; pline.qty > 0

*> ( z:= hd(zs); zs:= tl(zs); z1:= z.1; z2:= z.2
; e.z1!(pline.sku,pline.qty,p.id,p.seq)
; w3!(3,z1)
; fRes.z1?(timeIn,toteQty)
; w3!(6,z1)
; pline.qty:= pline.qty - ( pline.qty min toteQty )
; wa.(pline.sku).z1:= wa.(pline.sku).z1 - toteQty
; ( z2 > toteQty -> z:= ( timeIn,z.1,z2-toteQty )

; zs:= insert(zs,z,incAge)
| z2 = toteQty -> skip
)

; n:= n + 1
)

; zsa.(pline.sku):= zs
)

; h!(p, n)
; w3!(8,0)
; a!p
; np:= np + 1
; sublen:= len(p.list)
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; ( np > 1 -> varsublen:= varsublen * (np - 2)/(np - 1)
+ (1 / np) * (sublen - msublen)^2

| np <= 1 -> varsublen:= 0.0
)

; msublen:= msublen * (np - 1) / np + sublen / np
; msublen:= round(100*msublen)/100
; varsublen:= round(100*varsublen)/100
; w4!(msublen, varsublen)

)

Recall that a suborder consists of a number of SKUs to be picked and the required quantity,
which we refer as the suborder lines. These lines are stored in the variable p.list. Each of
the individual suborder line (pline) in p.list is treated separately. GM will first look at the
number of items that is ordered for a line, pline.qty. If the value of this variable is larger
than zero, then GM will search for the miniload that contains the oldest item corresponding
to the SKU number. This miniload is represented by z1. The tote containing the oldest item
is then retrieved via channel e. Subsequently, GM receives updated information about the
miniload via channel fRes and updates the store administration wa and order administra-
tion zsa. These tasks are repeated until the required number of items for the suborder line
has been met. The few last lines in the above code calculates the average and variance of the
suborder length, that is, the number of order lines contained in a suborder.

5.2 Miniload inbound transporter TMin

As can be seen in Figure 3.2, TMin receives both new totes from generator GR and returning
totes from TWout. Process TMin is implemented in the following lines of code.

proc TMIn( chan a?: 2 # ttote, b!: ttote, c!: (line,bool)
, d?: (nat,nat) ) =

|[ var x: ttote, xs: 2 * [ttote] = <[],[]>
, qNo, mlNo: nat
, toteToSend: ttote

:: *( ( |, j <- 0..1, a.j?x; xs.j:= xs.j ++ [x]
; c!((x.tote.sku,x.tote.qty), j = 1) )

| d?(qNo,mlNo); toteToSend:= hd(xs.qNo); xs.qNo:= tl(xs.qNo)
; toteToSend.des:= mlNo; b!toteToSend

)
]|

In this code, it can be seen that TMin receives returning (new) totes over channel a.1 (a.0),
after which the tote information is sent to GM over channel c. Furthermore, if a tote can
be sent to the miniload system, information about the destination is received from GM over
channel d, after which the correct tote is sent.

5.3 Miniload outbound transporter TMout

Outbound transporter TMout, is implemented in the following lines of code.

proc TMOut( chan a?, b!: ttote, c!: void ) =
|[ var x: ttote
:: *( a?x
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; ( x.tote.qty = x.req -> c!
| x.tote.qty > x.req -> skip
)

; b!x
)

]|

As can be seen in this code, TMout receives totes from the miniload system over channel a.
As the number of items in the tote and the number of items to pick are known, TMout can
determine if the tote will become empty after item picking. If so, a notification is sent to GM
over channel c, after which GM updates its physical administration yat. Furthermore, the
tote is forwarded to workstation inbound transporter TWin via channel b.

6 Workstation environment

As stated earlier, the workstation environment makes sure that the workstation system is
controlled and behaves correctly. As can be seen in Figure 3.2, the workstation environment
consists of a workstation inbound transporter TWin, a global workstation controller GW, and
a workstation outbound transporter TWout. The behavior of these processes is explained in
detail in this section.

6.1 Global workstation controller GW

GW is the global controller of the workstation system, which has as its main tasks to divide
suborders and arriving totes among the workstations, and to send a request to global miniload
controller GM when a new suborder can be served.

Communication with surrounding processes

The communication of GW with its surrounding processes is presented in Figure 3.9, and
implemented in the following lines of code.

proc GW( chan a!: void
, b?: (subord, nat)
, c!: (nat, nat, bool)
, d?: ttote
, e!: %NWS # (subord, nat)
, f?: (nat, bool)
, v!: nat
, val maxTotes: nat

) =
|[ var x: ttote

, p: subord
, ps: [(subord, nat)]
, k: nat, n: nat = 0, m: nat = 0, wip: nat = 0, i: nat = 0
, ns: %NWS * nat = initWS()
, maxSubord: nat = 9
, request: bool = true
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Figure 3.9: Communication of GW

, wsId, des, sortId, j: nat
, flag, new: bool
, occ: %NWS * nat = initWS()
, ts: %NWS * [(subord, nat)] = inittsNWS()

In this code and Figure 3.9, it can be seen that GW sends GM requests for new suborders over
channel a, and that information about these suborders is received over channel b. To deter-
mine to which workstation an arriving tote must be send, GW communicates with TWin over
channels c and d. If a suborder is assigned to a certain workstation, GW sends information
about this suborder to the workstation system via channel e. TWout notifies GW when a tote
leaves the workstation system via channel f. Finally, channel v is used only for visualization
purposes.

An important property of the workstation system is that totes belonging to at most three
different suborders can be arriving at a workstation simultaneously, due to the fact that each
workstation has three inbound buffer lanes. If totes belonging to more different suborders
arrive simultaneously, a workstation cannot store them in such a way that the operator is able
to handle totes belonging to a suborder subsequently. Consequently, a new suborder can be
allowed to arrive at a workstation when all totes belonging to one of the previous suborders
have arrived.

Process GW is implemented in the following lines of code.

:: *( wip < maxSubord and n < maxTotes and request
-> a!; wip:= wip + 1; request:= false

| b?(p, k); ps:= ps ++ [(p, k)]; n:= n + k; request:= true
| d?x; m:= m + 1; v!m

; (new, k, p, ps):= newSubOrder(x, ps)
; ( new -> i:= i + 1

; wsId:= detWSid(ns,occ)
; ns.wsId:= ns.wsId + k
; occ.wsId:= occ.wsId + 1
; e.wsId!(p, i)
; ts.wsId:= ts.wsId ++ [(p, i)]

| not new -> skip
)

; (ts, des, sortId, flag):= arrtote(ts, x)
; ( flag -> occ.des:= occ.des - 1

| not flag -> skip
)

; c!(des, sortId, flag)
| f?(j, flag); n:= n - 1; m:= m - 1; v!m; ns.j:= ns.j - 1

; ( flag -> wip:= wip - 1
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| not flag -> skip
)

)
]|

In order to correctly send requests for new suborders, variables maxSubord and maxTotes
are used. Variable maxSubord is used to define the maximum number of suborders in and
due to arrive at the workstation system. Variable maxTotes is used to define the maximum
number of totes in and due to arrive at the workstation system. If both the number of sub-
orders, wip, and the number of totes, n, in and due to arrive at the workstation is less than
these maximum values, a request for a new suborder can be sent.

When information about an arriving tote is received from TWin over channel d, function
newSubOrder determines if this tote is the first tote of a certain suborder. If so, function
detWSid determines to which workstation the corresponding suborder is allocated. After
this, function arrtote determines a sorting identity sortId, which is needed at the work-
station system, and a boolean variable flag, which is true if the tote is the last tote of a
suborder. This information is sent back to TWin over channel c. Subsequently, GW checks
whether the incoming tote is the last tote of a suborder (where, flag = true). If this is
the case, then the number of suborders occupying a workstation (occ) can be subtracted by
one.

GW may also receive a signal via channel f that a tote has left the workstation area. If the tote
is the last tote of a suborder, then the number of active suborder (wip) is subtracted by one.
This indicates there is a room for one suborder in the workstation area.

6.2 Workstation inbound transporter TWin

As can be seen in Figure 3.2, TWin receives totes arriving from the miniload area. Process
TWin is implemented in the following lines of code.

proc TWIn( chan a?: ttote
, c!: (ttote,nat,bool)
, d!: ttote
, e?: (nat,nat,bool)
, var dt: real

) =
|[ var ys: [((ttote, nat, bool), real)] = []

, x: ttote
, flag: bool
, wsid, sortId: nat

:: *( a?x; d!x; e?(wsid, sortId, flag); x.des:= wsid
; ys:= ys ++ [((x, sortId, flag),time+dt)]

)
|| *( len(ys) > 0

-> skip; delay ( hd(ys).1 - time ) max 0.0; c!hd(ys).0; ys:= tl(ys)
)

]|

In this code, it can be seen that totes are received over channel a. After that, its information
is sent to GW over channel d, and information about its destination is received over channel
e. Finally, totes are sent to the workstation system over channel c.
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6.3 Workstation outbound transporter TWout

Workstation outbound transporter TWout is implemented in the following lines of code.

proc TWOut( chan a?: (ttote, nat, bool), b!, c!: ttote, d!: (nat, bool)
, e!: (nat,real) ) =

|[ var x: ttote, sortId: nat, flag: bool
:: *( a?(x, sortId, flag)

; ( x.tote.qty > 0 -> b!x
| x.tote.qty = 0 -> c!x
)

; d!(x.src, flag)
; ( flag -> e!( x.seq, time-(2-x.src)*2.0 )

| not flag -> skip
)

)
]|

As can be seen in this code, totes are received from the workstation system over channel a.
If the tote is nonempty, it is sent back to the miniload area over channel b. If, on the other
hand, the tote is empty, it is sent to exit EX over channel c. Furthermore, if the tote is the last
tote of a suborder, i.e. flag is true, information is sent to EX over channel e that a suborder
has been finished.

7 Verification

In this chapter, it is verified that the simulation model behaves correctly. For this purpose, a
scaled down model, containing only 10 different SKU numbers, is considered.

7.1 Filling the system

As stated earlier, replenishment generator GR makes sure that the system is filled with the
right number of totes. As explained earlier, GR sends totes into the system until the number
of items in the system is equal to the initial inventory position, which in this case is defined
by the following function initIP.

func initIP() -> 10 * nat =
|[ ret <500,500,500,500,500,500,500,500,500,500> ]|

The number of items per tote for each SKU number is defined by the following function
initS.

func initS() -> 10 * nat =
|[ ret <10,10,10,10,10,10,10,10,10,10> ]|

Consequently, after filling the system, it should contain 50 totes per SKU number, each con-
taining 10 items.
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Using the model presented in the previous chapters, the following data is obtained after
filling the system.

sum zsa: <500,500,500,500,500,500,500,500,500,500>
ya: <100,100,100,100,100>
yat: 500

As explained earlier, zsa contains a list of totes present in each miniload, for each SKU.
Variable sum zsa in the data presented above is, for each SKU number, the sum of the
items over all totes in all miniloads. It can be seen that this is equal to the initial inventory
position defined by function initIP. Furthermore, from ya and yat it can be concluded
that each miniload contains 100 totes. Consequently, it can be concluded that the process of
filling the system is implemented correctly.

8 Processing a suborder

To check if the model behaves correctly when processing a suborder, the following suborder
is sent into the system.

p = ( 0, 0, [(0,3),(1,4),(2,3),(3,4),(4,3),(5,4),(6,3),(7,4),(8,3),(9,4)] )

Doing this, the following output is obtained.

GM new suborder is processed, suborder number: 0

TWIn receive tote sku id 0, source 4, dest 0, qty: 10, req: 3
TWIn receive tote sku id 1, source 3, dest 0, qty: 10, req: 4
TWIn receive tote sku id 5, source 2, dest 0, qty: 10, req: 4
TWIn receive tote sku id 8, source 4, dest 0, qty: 10, req: 3
TWIn receive tote sku id 3, source 1, dest 0, qty: 10, req: 4
TWIn receive tote sku id 2, source 3, dest 0, qty: 10, req: 3
TWIn receive tote sku id 4, source 0, dest 0, qty: 10, req: 3
TWIn receive tote sku id 7, source 2, dest 0, qty: 10, req: 4
TWIn receive tote sku id 9, source 3, dest 0, qty: 10, req: 4
TWIn receive tote sku id 6, source 1, dest 0, qty: 10, req: 3

TMIn receive tote, source: 0, sku no. 0, qty: 7
TMIn receive tote, source: 0, sku no. 1, qty: 6
TMIn receive tote, source: 0, sku no. 5, qty: 6
TMIn receive tote, source: 0, sku no. 8, qty: 7
TMIn receive tote, source: 0, sku no. 3, qty: 6
TMIn receive tote, source: 0, sku no. 2, qty: 7
TMIn receive tote, source: 0, sku no. 4, qty: 7
TMIn receive tote, source: 0, sku no. 7, qty: 6
TMIn receive tote, source: 0, sku no. 9, qty: 6
TMIn receive tote, source: 0, sku no. 6, qty: 7
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sum zsa: <497,496,497,496,497,496,497,496,497,496>
ya: <100,100,100,100,100>
yat: 500

In this output, it can be seen that workstation inbound transporter TWin receives totes
needed for the suborder from different miniloads, and that the suborder is assigned to work-
station 0. Furthermore, it can be seen that required quantity for each tote corresponds with
the number of items ordered. After the totes are served by the workstation, the are sent to
miniload inbound transporter TMin. In the output, it can be seen that the right amount of
items has been picked from the totes. Furthermore, it can be seen that the number of items
in the system is updated correctly in sum zsa. Consequently, it can be concluded that the
system behaves correctly when processing a suborder.

In this section, the architecture of the simulation model has been explained. In the next
sections, the miniload system and the workstation system are discussed in detail.

33 Processing a suborder



34 Model Architecture



Chapter 4

Miniload Model
Contributor: R.Andriansyah

The miniload area is one of the most important aspects of the end-of-aisle AS/RS system.
It represents the temporary storage spaces from which totes are retrieved to fulfill a (part
of) suborder and to which the totes are returned after item picking at the workstation area.
There are five miniloads present in the system and each miniload is modeled using several
processes. A complete miniload system is referred as MLS, which is depicted as follows.

Figure 4.1: Miniload system

A miniload system MLS contains local miniload controller LM, physical miniload ML, input
buffer BI, output buffer BO, input conveyor TI and output conveyor TO. We will explain in
detail each of the component of the miniload system in the following sections.
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1 Local miniload controller LM

The local miniload controller LM is responsible for making decisions based on the informa-
tion contained in one particular miniload. There are in total five independent local miniload
controllers, each of which communicates with the global miniload controller (GM)). In this
section, we will describe each processes in LM separately to cover sufficient details in the
processes.

1.1 Communication with surrounding processes

Figure 4.2: Communication in LM

The communication that takes place in LM is depicted in the following lines of code.

proc LM (chan a!: (bool,[ttote]) // send job assignment to ML
, b?: [ttote] // stored totes from ML
, cIn!: (real,nat,nat) // update stored totes to GM
, cRes!: (real,nat) // update unreserved totes to GM
, cOut!: nat // update retrieved totes to GM
, d?: (nat,nat,nat,nat) // retrieve job assignment from GM
, e?: ttote // update totes in BI
, f?: bool // update crane position
, g?: nat // update no. of totes in ML
, h?: void // update no. of totes in BO
, i?: void // receive trigger for time out at ML
, v!: 3*[ttote] // visualization
, val k: nat // miniload index

) =
|[ var skuV: %NSKU * [ptote]

, x: ptote, ys: [ttote] = [], zs: [ttote] = [], z: ttote
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, sVec: %NSKU * nat, ms: [bool], m: nat, rs: [ttote], r: ttote
, go: bool = false, calc: bool, crIn: bool = false
, inputlist: [(real,nat,nat)] = [], outputlist: nat = 0
, nBO: nat = 0, B: nat, ytake: nat, o: nat, os: [nat] = []
, ya: 3*[ttote] = <[],[],[]>, y: ttote
, row: nat = 0, skuNo, pId, pSeq, qtyReq: nat

In general, LM communicates with three other processes namely GM, ML, BI, and BO. Com-
munication with GM concerns the updating of totes either after storage, retrieval, or reserva-
tion of totes (via channel cIn, cOut, and cRes, respectively). This update is essential for GM,
since GM assigns retrieval jobs to the miniloads based on the information about tote in each of
the miniload. LM receives the new job assignment from GM via channel d. This job will then
be forwarded to the physical miniload ML via channel a. After a storage or retrieval action has
been carried out by ML, then ML will send a signal to LM in order to update some parameter
values that is important for decision making by LM. The update includes the crane position
at ML, totes in the input and output buffer (BI and BO). The channels that are involved in the
updates are channels b, e, f, g, and h. Furthermore, LM may occasionally receive a time out
signal from ML via channel i. More about this time out will be explained in section 2.

1.2 Initialization

During the initialization phase, two variables are created, namely the available product totes
per SKU in the miniload (variable skuV) and the total number of items per SKU in the
miniload (variable sVec). The initialization is modeled as follows.

:: skuV:= initskuV()
; sVec:= initNatVec()

Since the simulation is started with empty miniloads, these two variables are empty as well.
The following functions are used to initialize the two variables.

func initskuV() -> %NSKU * [ptote] =
|[ var vec: %NSKU * [ptote], i: nat = 0
:: i < %NSKU

*> ( vec.i:= []; i:= i + 1 )
; ret vec

]|

func initNatVec() -> %NSKU * nat =
|[ var vec: %NSKU * nat, i: nat = 0
:: i < %NSKU *> ( vec.i:= 0; i:= i + 1 )
; ret vec

]|

1.3 Receiving new assignments

; *( calc:= true
; ( d?(skuNo,qtyReq,pId,pSeq)

; x:= hd(skuV.skuNo); skuV.skuNo:= tl(skuV.skuNo)
; y:= (x, pId, pSeq, k, 99, x.qty min qtyReq)
; ya:= arrangeSubOrd(ya, y)
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; v!ya
; sVec.skuNo:= sVec.skuNo - x.qty
; ( len(skuV.skuNo) > 0 -> cRes!(hd(skuV.skuNo).timeIn, x.qty)
| len(skuV.skuNo) = 0 -> cRes!(0.0, x.qty)
)

LM receives new assignments from GM via channel d. These assignments are essentially or-
derlines that form a suborder. Information that is provided by GM includes the SKU type
(skuNo), required quantity (qtyReq), suborder ID (pID), and orderline sequence number
(pSeq). Based on these information, LM will decide which product totes should be use to
fulfill this assignment. LM will always select the oldest product tote with the required SKU
type in the miniload. Next, the selected tote is said to be reserved for this particular assign-
ment. This means the selected tote cannot be used for other assignments. Since the tote is
now reserved, the quantity of items for the particular SKU in variable sVec is updated by
subtracting the original amount by the total number of items in the selected tote. An update
is then sent to GM via channel cRes to inform the miniload status after the tote reservation
for an assignment. Note that at this point no storage or retrieval has been carried out yet.

A boolean variable called calc is introduced in the statement. The initial value of this vari-
able is true, which implies that LM should evaluate whether a storage or retrieval should be
performed. If in the subsequent statements the value of variable calc is changed to false,
then there is no need for LM to perform the evaluation.

1.4 Receiving update of totes to be stored

| e?z; zs:= zs ++ [z]

Updating the totes waiting to be stored is crucial since it influences the decision whether to
send storage or retrieval signal to ML. This is done via channel e as showed above, where z is
the arriving tote to be stored in the miniload. LM will subsequently put the arriving tote into
a list zs.

1.5 Receiving update of retrieved totes

| g?m
; outputlist:= outputlist + m
; calc:= false

| outputlist > 0
-> cOut!outputlist
; outputlist:= 0
; calc:= false

When a tote is already retrieved at ML, then ML will inform LM about the number of totes that
has been retrieved. This information is represented by the variable outputlist, which will
subsequently be forwarded to GM. Eventually, GM will use the updated information for the tote
allocation to the miniloads. Note that since this statement does not serve as the basis for
deciding whether to perform storage or retrieval, the variable calc is set to false.
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1.6 Receiving update of stored totes

| b?rs
; len(rs) > 0

*> ( r:= hd(rs); rs:= tl(rs)
; skuV.(r.tote.sku)

:= insert(skuV.(r.tote.sku), (r.tote), pred)
; sVec.(r.tote.sku):= sVec.(r.tote.sku) + r.tote.qty
; inputlist:= inputlist

++ [(hd(skuV.(r.tote.sku)).timeIn, r.tote.sku
, r.tote.qty)]

)
; calc:= false

| len(inputlist) > 0
-> cIn!hd(inputlist); inputlist:= tl(inputlist); calc:= false

In the same way with retrieval, when a tote is already stored into the miniload, ML will inform
LM about the totes that have been stored. Subsequently, LM will update its list of available
totes. The information about available totes (skuV) are then sorted according to the age of
the totes, where the oldest totes for an SKU will be put early in the list. The number of items
for the SKU of the tote that has just been stored is also updated in the variable sVec. Finally,
LM will forward the updated information about the oldest tote of a particular SKU in the
miniload after the storage operation has been executed.

1.7 Receiving update of crane position and number of totes at the output buffer

| f?crIn
| h?; nBO:= nBO - 1

After ML executes a storage or retrieval of totes, the crane position at ML will change. Since
the crane position is also one of the crucial factors for LM to decide whether to send a storage
or retrieval signal, an update of the crane position is clearly mandatory. This update is done
by receiving a boolean variable crIn via channel f. More discussion on the crane position
will be provided next.

Another important update concerns the number of totes at the output buffer. Each time a
retrieved tote leaves the output buffer to be put on the output conveyor TO, a signal is sent
by BO to LM. This information is taken into account when deciding whether to do retrieval or
not. Since the output buffer BO has a limited capacity of 12 totes, retrieval of totes can only be
executed when there is sufficient space at the output buffer BO for the retrieved totes.

1.8 Storage/retrieval decision

| go and crIn
-> a!(crIn, sendlist(ya, (B - nBO), row))
; (ya, ytake, row):= updateYA(ya, (B - nBO), row)
; v!ya
; nBO:= nBO + ytake
; go:= false

| go and not crIn
-> a!(crIn,take(zs,%NBATCH)); zs:= drop(zs,%NBATCH); go:= false

)
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Five variables serve as the basis for storage/retrieval decision, namely go, crIn, nBO, ya,
and zs. The function sendlist is used to choose the next totes to be retrieved, while the
function updateYA updates the list of available totes to retrieve. The variable NBATCH is
a constant variable whose value can be easily determined using a constant identifier. This
variable represents the batch size for storage/retrieval totes.

The boolean variable go decides whether a storage or retrieval action can be executed. One of
the two statements will only be executed if go returns true. The value of go is determined by
the function inOut that is evaluated each time the variable calc returns true. This process
is modeled as follows.

; ( calc -> go:= inOut(len(zs),(len(ya.0)+len(ya.1)+len(ya.2)))
| not calc -> skip
)

Furthermore, the following specification represents the function inOut. This function will
return true if the number of totes to be stored/retrieved has reached NBATCH totes.

func inOut(val x: nat, y: nat) -> bool =
|[ ( ret x >= %NBATCH or y >= %NBATCH ) ]|

The totes to be stored are physically present in the storage queue (qs) of the miniload input
buffer. The totes to be retrieved, on the contrary, are contained in a virtual retrieval queue (qr)
that is available in the miniload controller. In principle, a storage or retrieval can take place if
a batch of four totes has been formed in either queues or if the miniload crane has waited (∆)
for more than 120 seconds (qs ≥ 4 ∨ qr ≥ 4 ∨ ∆ ≥ 120). In this case, we set the value NBATCH
to 4.

The decision whether a storage or retrieval will be executed depends on the value of the
variable crIn. If crIn is true, then the crane is currently inside the miniload, ready to retrieve
totes. On the contrary, if crIn is false, then the crane is currently outside the miniload, ready
to store totes.

In the case where go is true (qr ≥ 4∨ qs ≥ 4) and the crane is inside the miniload (crIn is true),
then LM will send four totes to be retrieved by the miniload only if there is sufficient space
in the miniload output buffer. If the remaining space in the miniload output buffer is less
than four totes, then LM will only retrieve a number of totes that still can be put in the output
buffer (that is, B − nBO). In other words, the miniload will send the minimum of four totes
and remaining space at the output buffer. The minimum of these two variables and the total
available assignments in LM is defined as the variable ytake. On the contrary, if go is true
and the crane is outside the miniload (crIn is false), then LM will send four totes to be stored
by the miniload.

It is also possible that while the crane is inside the miniload, the number of totes to be stored
has formed a batch of four, thus returning a true for go. In this case, because the crane is not
at the right position to immediately store the batch of four totes, the crane will first travel to
outside the miniload by taking the all the available totes (four totes or less) even if the number
of totes has not reached four. This action is captured using the command take. The same
action will also take place when the crane is outside the miniload but the number of totes to
be retrieved has reached four totes.

An overview of miniload storage/retrieval operation is provided in Figure 4.4.
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(a) Crane inside miniload (b) Crane outside miniload

Figure 4.3: Positions of miniload crane

Figure 4.4: Miniload operation
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2 Physical miniload ML

The physical miniload ML does the physical storage and retrieval of totes, which is triggered
by LM.

2.1 Communication with surrounding processes

Figure 4.5: Communication in ML

proc ML (chan a?: (bool,[ttote]), b?: [ttote], c!: [ttote], d!: bool
, e!: nat, f!: [ttote], g!: void, v!: bool
, val k: nat) =

|[ var ps: [ttote], p: ttote, xs: [ttote]
, crIn: bool = false, t1: real, t2: -> real = constant(120.0)
, retrieve: bool, timeout: real = 120.0

ML communicates with three other components in the miniload system MLS, namely the
local controller LM, the input buffer BI, and the output buffer BO. Via channel a, a signal is
received containing the action that must be done by the physical miniload (retrieve) and
the list of totes to be retrieved (ps). When ML is signaled to do a storage, then it will receive
the list of totes to be stored via channel b. Retrieved totes are sent to the output buffer BO via
channel c. Once the storage or retrieval is done, an update of the crane position is sent to
the local controller LM via channel d. Updates regarding the status of totes after retrieval or
storage is done via channels e and f, respectively. In the case where timeout has occurred,
then ML will send a signal via channel g to trigger a storage or retrieval action, even if the
required batch size of 4 totes has not been reached yet. More on this time out behavior will
be explained next. Finally, channel v is used for visualization purposes.

2.2 Storage/retrieval action

:: *( a?(retrieve,ps)
; v!false
; ( retrieve
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-> skip
; ( len(ps) = 0 -> t1:= 23.6

| len(ps) > 0 -> t1:= 16.5 + ((len(ps) - 1) * 7.0 )
)

; delay t1
; crIn:= false; d!crIn
; c!ps
; e!len(ps)
; timeout:= time + sample t2

| not retrieve
-> b?xs
; ( len(xs) = 0 -> t1:= 23.6

| len(xs) = 1 or len(xs) = 2 -> t1:= 30.6
| len(xs) = 3 or len(xs) = 4 -> t1:= 37.5
)

; delay t1
; crIn:= true; d!crIn
; f!xs
; timeout:= time + sample t2

)
; v!true

The storage/retrieval action is started with receiving a signal with action to be accomplished,
either storage or retrieval, as reflected by the variable retrieve. If this variable returns
true, then a retrieval will be carried out. In this case, a list of totes to be retrieved is already
provided by the variable ps. The delay that occurs due to the retrieval action depends on the
number of totes to be retrieved. This is based on the real data from the reference case DC as
will be discussed next in chapter 6. Subsequently the position of the crane will be updated
by setting the value of variable crIn to false. This implies the crane position after retrieval is
outside the miniload (see Figure 4.3(b)).

On the contrary, if the variable retrieve returns false, then a storage will be executed. ML
will allow the input buffer BI to send the list of totes to be stored, which is done via channel
b. After a certain delay, the storage operation is finished and the boolean variable crIn
that represents the crane position is updated to true. This is due to the fact that the crane
will be located inside the miniload following a storage operation. Note that the delay due to
the storage operation is also dependant upon the number of totes involved, as in the case of
retrieval operation. The parameter value for the delay is provided in chapter 6.

2.3 Time out behavior

| delay ((timeout - time) max 0.0)
; g!
; a?(retrieve,ps)
; v!false
; ( retrieve

-> skip
; ( len(ps) = 0 -> t1:= 23.6

| len(ps) > 0 -> t1:= 16.5 + ((len(ps) - 1) * 7.0 )
)

; delay t1
; crIn:= false; d!crIn
; c!ps
; e!len(ps)
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; timeout:= time + sample t2
| not retrieve

-> b?xs
; ( len(xs) = 0 -> t1:= 23.6
| len(xs) = 1 or len(xs) = 2 -> t1:= 30.6
| len(xs) = 3 or len(xs) = 4 -> t1:= 37.5
)

; delay t1
; crIn:= true; d!crIn
; f!xs
; timeout:= time + sample t2

)
; v!true

In the real system under study, the miniload crane will wait until a batch of four totes has
been formed for storage or retrieval action. If after a certain delay this batch of four totes is not
yet formed, then a time out the miniload crane will take all totes that is currently available and
perform the storage or retrieval action, depending on the current position of the miniload
crane as explained in previously. In the above code, the miniload will wait for a delay of
(timeout - time), where the variable timeout is set to 120 seconds after the previous
storage/retrieval action.

From the modeling perspective, a void signal will be sent to LM via channel g when a time
out is triggered. LM will receive this signal and overrules the function inOut that requires
a batch of 4 totes to be formed before a storage or retrieval can be performed. ML will then
receive a signal from LM about the list totes to store or retrieve, which is less than four totes.
The rest of the statements are similar to the normal storage/retrieval action as is described in
the previous section.

3 Miniload input transporter TI

The miniload input transporter TI is responsible for sending totes to the correct miniload
for storage.

3.1 Communication with surrounding processes

Figure 4.6: Communication in TI

proc TI (chan a?: ttote, b!: ttote, c!: ttote, val k: nat) =
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|[ var x: ttote, xs: [(ttote,real)] = [], t: real

BI communicates with two processes, namely the input buffer BI and the output transporter
TO (refer to Figure 4.1). BI receives totes from the previous TO via channel a. After a fixed
delay of 1.0 second, the destination of the totes is determined. If the tote is destined for the
current miniload, then the tote will be sent to the input buffer BI of the current miniload via
the channel b. However, if the destination miniload of the tote is not the current tote, then
TI will send the tote to the output transporter TO via channel c. The value k indicates the
current miniload index.

3.2 Receiving a tote

:: *( a?x
; t:= time + 1.0; xs:= xs ++ [(x,t)]
; len(xs) > 0

*> ( a?x
; t:= time + 1.0; xs:= xs ++ [(x,t)]

| delay ((hd(xs).1 - time) max 0.0)
; ( hd(xs).0.des = k -> b!hd(xs).0

| hd(xs).0.des /= k -> c!hd(xs).0
)

; xs:= tl(xs)
)

The first statement in TI concerns the receiving of tote from the previous transporter. Af-
terwards, a fixed delay of 1.0 second is applied, after which the tote is ready to be sent to one
of the two available destinations: either the input buffer BI or the output transporter TO of
the current miniload. In a way, one can see TI and TO as separate conveyor windows: if the
destination miniload is not the current miniload, then the tote is transferred to the next con-
veyor window until the destination miniload is reached. Only after the destination miniload
for the tote is reached will the tote be put on the input buffer BI.

4 Miniload input buffer BI

The miniload input buffer BI holds the transport totes that are waiting to be stored into the
miniload. In this model, we assume an infinite capacity of BI.

4.1 Communication with surrounding processes

proc BI (chan a?: ttote, b!: [ttote], c!: ttote, val k: nat) =
|[ var xs: [ttote], x: ttote

BI receives totes from the input transporter TI via channel a. Channel b is used to send
totes to ML for storage. Channel c is used to send an update about the current totes that is
available at BI. Finally, the value k is used to note the miniload index.
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Figure 4.7: Communication in BI

4.2 Receiving and sending totes

:: *( a?x; xs:= xs ++ [x]; c!x
| b!take(xs,%NBATCH) ; xs:= drop(xs,%NBATCH)
)

At the moment BI receives a new transport tote x, this tote is put into the list xs and a signal
containing the tote is sent to LM via channel c. If a storage action is signaled by LM, then BI
will be able to send a list of four totes to ML via channel b.

5 Miniload output buffer BO

The miniload output buffer BO provides space for temporary storage of totes that have just
been retrieved from the miniload and are ready to be sent to the workstation. The buffer
capacity is finite with a maximum of 12 totes.

5.1 Communication with surrounding processes

proc BO (chan a?: [ttote], b!: ttote, c!: void, val k: nat) =
|[ var ys: [ttote], xs: [ttote] = []

BO receives retrieved totes from ML via channel a. These totes are then sent to the output
transporter TO via channel b. Channel c is used to send an update information about the
number of totes currently present in BO after each time a tote is sent to TO.

5.2 Receiving and sending totes

:: *( a?ys; xs:= xs ++ ys
| len(xs) > 0 -> b!hd(xs); xs:= tl(xs); c!
)
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Figure 4.8: Communication in BO

BO receives totes that are retrieved by ML, which is represented by the variable ys, and put
them into the list of totes present at BO by using variable xs. Subsequently, the totes will be
transferred to TO and a signal will be sent to LM via channel c to indicate the change in the
number of totes currently present in BO.

6 Miniload output transporter TO

The miniload output transporter TO can be regarded as the conveyor window in front of the
miniload output buffer BO. It receives totes from two sources, namely from the TI and the
BO (refer to Figure 4.1).

6.1 Communication with surrounding processes

Figure 4.9: Communication in TO

proc TO (chan a?: ttote, b!: ttote, c?: ttote, val k: nat) =
|[ var x: ttote, n,i: nat, ws: bool, priority: bool = false

, j: nat = 0, xs: [(ttote,real)] = [], t: real

TO receives totes from BO via channel a. It may also receive a tote from TI via channel c.
After a certain delay, the totes will be transferred to the next input transporter TI via channel
b. The value k is used to note the miniload index.
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6.2 Receiving and sending totes

:: *( a?x; xs:= xs ++ [(x,time + 1.0)]
; len(xs) > 0

*> ( a?x; xs:= xs ++ [(x,time + 1.0)]
| c?x; xs:= xs ++ [(x,time + 1.0)]
| delay ((hd(xs).1 - time) max 0.0)
; b!hd(xs).0; xs:= tl(xs)

)
| c?x; xs:= xs ++ [(x,time + 1.0)]
; len(xs) > 0

*> ( a?x; xs:= xs ++ [(x,time + 1.0)]
| c?x; xs:= xs ++ [(x,time + 1.0)]
| delay ((hd(xs).1 - time) max 0.0)
; b!hd(xs).0; xs:= tl(xs)

)
)

As mentioned earlier, the TO can receive totes (x) from two different sources, namely from
the output buffer BO (via channel a) and the input transporter TI (via channel c). The totes
are then put into a list xs. A delay is of 1.0 second is then applied to the totes to model the
transport time of the totes on the transporter. After this delay, the tote is forwarded to the
next TI in the system.
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Chapter 5

Workstation Model
Contributor: R.Jordan

In this section, the discrete-event simulation model of the workstation area is explained. In
the following subsections the most important processes are explained in full detail. There are
three workstations present in the system, where a complete workstation system is referred as
WS.

Figure 5.1: Workstation system

All processes belonging to a single workstation are connected in a single process called WS,
which is depicted in Figure 5.1. A WS contains conveyor processes Tdiv and Tmer, input
buffer BW and output buffer BWout, workstation operator process MW and its local controller
LW.
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proc WS(chan a?: (subord, nat), b?, c!: (ttote, nat, bool), val Id: nat) =
|[ chan BW2MW, MW2BWOut, BWOut2Tmer, Tdiv2Tmer, Tdiv2BW: (ttote, nat, bool)

, BW2LW: (nat, bool)
, LW2BW: nat
, MW2LW: (nat, nat)
, mw2viz: bool
, lw2viz: (field, nat, [nat])

:: Tdiv(b, Tdiv2Tmer, Tdiv2BW, Id)
|| BW(Tdiv2BW, BW2MW, BW2LW, LW2BW)
|| LW(a, LW2BW, MW2LW, BW2LW, lw2viz, Id)
|| MW(BW2MW, MW2BWOut, MW2LW, mw2viz, Id)
|| BWOut(MW2BWOut, BWOut2Tmer)
|| Tmer(BWOut2Tmer, Tdiv2Tmer, c, Id)
|| viz4(mw2viz, lw2viz, Id)
]|

1 Workstation transporter Tdiv and Tmer

The input conveyor windows Tdiv and output conveyor windows Tmer, are similar to those
used at the miniload. Tdiv is connected to each workstation and only allow totes with the
correct destination identifier to enter the workstation, while Tmer merges the outgoing tote-
flow from a workstation with the passing conveyor tote-flow (See Figure 5.1). At this moment
blocking is not considered and thus totes can always be put on the conveyor.

2 Workstation buffer BW

proc BW(chan a?: (ttote, nat, bool), b!: (ttote, nat, bool)
, c!: (nat, bool), d?: nat) =

|[ var xs: [(ttote, nat, bool)] = [], x: (ttote, nat, bool)
, sortId: nat

:: *( a?x; xs:= xs ++ [x]; c!(x.1, x.2)
| d?sortId; (xs, x):= findTTote(xs, sortId); b!x
)

]|

The workstation buffer BW performs the actual storage of the totes, although the sorting is
performed at the local controller LW, Section 4. BW receives totes from Tdiv via channel a,
stores the totes in list xs and sends the totes sortId and the flag (modeled as x.1 and
x.2 in the the above code, respectively) to LW. These two variables are the only information
needed by LW to effectively sort the totes in the buffer. The actual tote information contained
in ttote, is only kept at the buffer.

BW receives a signal from LW via channel d to send a tote with sortId to the operator. BW
calls function findTTote, which finds the first tote in the buffer list xs containing the
correct sortId. This tote is then sent to the operator. Function findTTote also removes
the tote from the list xs.

Figure 5.2 shows BW and its surrounding processes. The chosen construction of communica-
tions in BW is prone to deadlock. In order to prevent this deadlock from appearing, LW should
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Figure 5.2: Communication in BW

always be able to receive signals from BW. LW is explained in Section 4.

3 Workstation operator MW

proc MW(chan a?, b!: (ttote, nat, bool), c!: (nat, nat), v!: bool
, val id: nat) =

|[ var t: -> real = triangle (9.5, 12.5, 15.5 )
, x: (ttote, nat, bool)
, s: real

:: *( a?x; v!false; s:= sample t; delay s
; x.0.tote.qty:= x.0.tote.qty - x.0.req
; x.0.src:= id
; b!x
; c!(x.0.tote.sku, x.0.req)
; v!true

)
]|

MW represents the operator of the workstation. Figure 5.3 shows the communication between
MW with its surrounding processes. In MW the items are picked from the totes. MW receives a
tote from BW via channel a. The process time of MW is triangularly distributed with a mean of
12.5 seconds, a minimum of 9.5 seconds and a maximum of 15.5 seconds.

When a tote is received, a sample of the process time distribution is taken and a the process
delays for this time interval. Next the required number of items are removed from the tote
and the tote is sent to the output buffer via channel b. The information about the required
number of items to pick from a tote is included in the tote itself. Subsequently, the informa-
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tion of the SKU and the number of items to pick is sent to LW via channel c so it can update
its active suborder.

4 Local workstation controller LW

A task of LW is to sort incoming totes in the workstation buffer. This sorting is required
because it is not necessarily that all totes belonging to a single suborder fit in a single buffer
lane. In order to sort the totes, LW uses an identifier called sortId of each tote. This
identifier links a tote to a suborder. All the totes belonging to the same suborder have the
same sortId. Besides sortId, LW uses a number of variables to effectively sort the totes
in the buffer. These variables are as follows:

proc LW(chan a?: (subord, nat), b!: nat, d?: (nat, nat), c?: (nat, bool)
, v!: (field, nat, [nat]), val WSID: nat) =

|[ var ps: [(subord, nat)] = [], p: (subord, nat)
, fld: field = <[], [], []>, xs: [nat] = [], x: nat
, top: 3 * nat = <0, 0, 0>
, bottom: 3 * nat = <0, 0, 0>
, length: 3 * nat = <0, 0, 0>
, arriving: [nat] = []
, curP: subord = (0, 0, [])
, currId, skuId, n, lane: nat
, nTotes: nat = 0
, flag: bool

fld is a vector of three lists of naturals. Each list represents the filling of totes on each buffer
lane. The head of the list is the tote at bottom, the tail of the list is the tote at top. top
(bottom) represents the sortId of the top (bottom) totes in each buffer lane. length
is a vector of three natural values that represent the number of totes in each of the three
corresponding buffer lane. curP is the current suborder being processed by the operator
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and currId is the identity of the current suborder. arriving is a list of identifiers of all
suborders assigned to a particular workstation. This list only contains identifiers (sortId)
of suborders, which have not yet completely arrived in the buffer. nTotes keeps track of the
number of totes that have been sent to the operator. nTotes can be either one or zero.

The communication between LW and its surrounding processes are depicted in Figure 5.4.
LW controls the stacking of totes in the workstation buffer BW. LW also decides which totes to
send to the operator MW. For this purpose, LW receives the information about which suborders
to process from GW. When the operator MW has finished a tote, a signal is sent LW.

LW can perform a number of tasks in parallel namely receiving a suborder from GW, finishing
current suborder and start a new one, updating the current suborder, sorting an incoming
tote into one of the buffer lanes, and sending a signal to the buffer to move a tote to the
operator. Note that as in other controller processes (GM, LM, and GW), these tasks are executed
in a timeless instant.

4.1 Receive a suborder from GW

:: *( a?p; ps:= ps ++ [p]; arriving:= arriving ++ [p.1]

As we can see in Figure 5.4 LW receives from GW a suborder and a natural, representing
a new suborder being assigned to this workstation. The natural data type is the sortId
belonging to that suborder. Both the suborder and its sortId are stored in the list ps. The
list arriving, which is used to identify the sequence of arriving suborders, is extended with
the sortId from this suborder.
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4.2 Finish current suborder and start a new one

| len(curP.list) = 0 and len(ps) > 0 -> (curP, currId):= hd(ps); ps:= tl(ps)

When the current suborder does not contain orderlines anymore (that is, len(curP.list)
= 0), a new suborder should be started at the workstation. When there are still suborders
assigned to this workstation, these are stored in ps by the task mentioned above. Thus, curP
and currId are updated and the hd(ps) is removed from ps.

4.3 Update current suborder

| d?(skuId, n); nTotes:= nTotes - 1; curP:= updActiveorder(curP, skuId, n)

When the operator has finished working on a tote, MW sends the information of the tote order-
line to LW. This information contains the SKU identifier and the number of items removed
from that tote. LW now calls the function updActiveOrder to remove an orderline from a
suborder. This function is discussed in Section 6. Now nTotes can be updated since a tote
has just left the operator.

4.4 Sort an incoming tote into one of the buffer lanes

| c?(x, flag); lane:= detInLane(top, length, arriving, x)
; fld.lane:= fld.lane ++ [x]; length.lane:= length.lane + 1
; top.lane:= x
; ( not flag -> skip

| flag -> arriving:= updArriving(arriving, x)
)

; bottom:= updBottom(bottom, fld)
; v!(fld, lane, arriving)

The local controller receives information from BW when a tote arrives in the buffer. The
information received by LW (x, f lag) contains the sortId of the tote that arrived and the
flag. The sortId, here x, is the input for the function detInLane together with the
variables top, length and arriving. The function detInLane is discussed in Section
5. The function returns a natural: lane, which identifies the lane in which the new tote
should be put in. The local controller does not keep track of the contents of the totes, because
this information is not needed for the sorting.

When lane is known, the variables top, length, bottom and fld are updated. If the
tote is the last one of the suborder, this tote has a "f lag = true" attached to it. The sortId
belonging to this tote should now be removed from Arriving. Function updArriving
updates the arriving list. If the tote is not flagged, arriving should not be updated.

The function UpdArriving simply removes the identity x from the list arriving. Both
these variables are input requirements for the function. The function returns the updated
list arriving, without changing the order of identifiers in the list.

Finally when the buffer is updated, fld, lane and arriving are communicated to VizWS,
which writes the necessary information to the visualization tools.

54 Workstation Model



4.5 Send a signal to the buffer to move a tote to the operator

| len(curP.list) > 0 and nTotes < 1 and (or, j <- 0..2, bottom.j = currId )
-> lane:= detOutLane(bottom, length, currId)
; xs:= xs ++ [hd(fld.lane)]; fld.lane:= tl(fld.lane)
; length.lane:= length.lane - 1
; ( length.lane = 0 -> top.lane:= 0

| length.lane /= 0 -> skip
)

; bottom:= updBottom(bottom, fld); nTotes:= nTotes + 1
; v!(fld, lane, arriving)

| len(xs) > 0 -> b!hd(xs); xs:= tl(xs)

There are two alternative statements in the above code, as represented by the sign |. LW
determines which type of tote to send to the operator MW and stores this information in xs.
The information is sent to the buffer BW via channel b in the second alternative statement.
This two-statement construction is created to keep the communication between LW and BW
deadlock free.

The first line of the code above sets the criteria for sending a new tote to the operator. First
nTotes should be smaller than one. nTotes indicates if there is a tote at the operator or
not. nTotes is updated every time the operator finishes a tote, as explained earlier. Initially
nTotes is equal to zero, to indicate there are no totes at the operator.

As long as curP still contains orderlines, there should still be totes belonging to this suborder
in the buffer BW. Of course it could be possible that there are no totes belonging to this
suborder in the buffer. In that case the totes are still somewhere between the miniload and
the workstation. Whether or not there are actually totes available in the buffer, is checked by
the statement (line 1): (or, j <- 0..2, bottom.j = currId)

This statement checks if one of the elements of bottom contains a tote belonging to the
current suborder. As long as there are no totes belonging to the current suborder in the
buffer, none can be sent to the operator.

If the buffer does contain totes belonging to the current suborder, these totes should have
been sorted in such a way that at least one of the elements of bottom contains a tote for this
suborder, which is done using a stacking algorithm. When there is at least one tote available
at the bottom of the buffer, the function detOutLane is called to determine from which
lane a tote should be picked.

The function detOutLane chooses the tote in the lane with the greatest length from the
totes belonging to the current suborder. This is done to keep the possibility of buffer lane
overflow as low as possible. Function detOutLane returns a natural value: lane, which
indicates from which buffer lane a tote should be removed.

When the right lane is already determined, the variables fld, bottom and length are
updated. Top will only be updated when the length of the current lane is zero (lines 5
and 6), because now there is no more tote present in this buffer lane. Variable nTotes is
increased by one, so LW knows it has already picked a tote to send to the operator. Therefore
this statement may not execute again.
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5 Function detInLane

func detInLane(val top, length: 3 * nat, arriving: [nat], x: nat) -> nat =
|[ var i: nat = 0

, n: nat = 0
, NLane: nat = 3
, arr: [nat] = arriving
, se: [(nat, nat)] = []
, sg: [(nat, nat, nat)] = []

This function applies the stacking rules to the incoming totes. Function detInLane uses
the variables top, length and arriving to sort a tote belonging to a certain suborder
identified as x. Variable arriving is a list of suborder identifiers, in the sequence in which
they were assigned to the workstation. Arriving can contain more than three sortId’s
due to the fact that a new suborder is already assigned at the entry of the workstation area,
yet only the totes with identifiers at the first three positions of arriving can actually arrive
at the workstation.

Variable NLanes is the variable which scales this function to the number of buffer lanes, in
this case three. This function will also work when the number of buffer lanes is increased or
decreased. Keep in mind that the number of incomplete suborders sent to the workstation as
determined at GW, should be no greater than the number of buffer lanes.

:: len(arr) > 0

*> ( x = hd(arr) -> arr:= []
| x /= hd(arr) -> n:= n + 1; arr:= tl(arr)
)

When the function detInLane is called, it first determines which position arriving the
current tote (x) belongs to (lines 6 through 9). Depending on the position in arriving
a different rule applies, variable n is used to represent the place in arriving. When x
belongs to the first suborder in arriving, n is equal to zero. When x belongs to the second
suborder in arriving, n is equal to one, etc.

; i < NLane

*> ( ( x < top.i -> skip
| x = top.i -> se:= se ++ [(i, length.i)]
| x > top.i -> sg:= sg ++ [(i, x - top.i, length.i)]
)
; i:= i + 1

)

Now the top of each buffer lane is verified versus x. As the above code suggests, there are
three possible outcomes.

1. The identity of x is smaller than top. In this case, x can not be placed on this lane.
When a tote is put on another tote which has a higher sortId, the tote is blocked. The
suborders should be processed in increasing order. Since totes cannot be rearranged
within a lane, a low sortId may never be placed on a higher sortId.
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2. The identity of x is equal to top. As such, x can always be placed in this lane. A list se
is made which contains the lane number and the length of the lane which has a top
equal to x.

3. The identity of x is greater than top. For this case, a list sg is created which stores the
lane number, the difference between x and the top of the lane and the length of the
lane.

; ( len(sg) <= n -> skip
| len(sg) > n -> i:= hd(sort(sg, inc12)).0
; se:= se ++ [(i, length.i)]

)
; ret hd(sort(se, inc1)).0

]|

Now that all buffer lanes are evaluated and the lists sg and se have been created, the above
final part of the function can run. In this final part there are two possibilities: there are either
more items in the list sg than the value of n or there are less or equal items in sg.

If there are no more items in sg than the value of n, the current tote x can only be placed
on a row with the same identifier. One of the elements of se should be chosen. List se is
sorted in such a way, that the first element of se contains the lane with the shortest length.
The sorting is performed by function inc1. When two lane are of equal length, the most
upstream lane is put before the more downstream one.

The first element of list se now contains the lane in which the tote should be sorted. The
lane identifier is returned to LW.

func inc1(val x, y: (nat, nat)) -> bool =
|[ ( x.1 /= y.1 -> ret x.1 < y.1

| x.1 = y.1 -> ret x.0 < y.0
)

]|

When there are more items in sg than the value of n, this means the current tote x is allowed
to claim a (extra) lane for itself. List sg is sorted using function inc12. This function first
sorts sg on the smallest difference between x and top. In this case the smallest value of (x
- top). If this sorting results in two lanes having a similar difference, the shortest lanes is
chosen. If this also does not generate a single result, the most upstream lane is chosen.

func inc12(val x, y: (nat, nat, nat)) -> bool =
|[ ( x.1 /= y.1 -> ret x.1 < y.1

| x.1 = y.1 -> skip
; ( x.2 /= y.2 -> ret x.2 < y.2

| x.2 = y.2 -> ret x.0 < y.0
)

)
]|

When the function inc12 has returned a candidate lane from the list sg, this lane identifier
and its length are added to the list se. List se now contains all the possible lanes in which
to put the current tote. Now like above, list se is sorted using function inc1 and the first
element of se is returned to LW.
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6 Function updActiveOrder

Function updActiveOrder is called by LW when the operator finished working on a tote.
Since LW does not keep track of the contents of totes, it has to receive this information from
MW when it has finished a tote.

func updActiveorder(val s: subord, skuid, n: nat) -> subord =
|[ var p: subord = s

, q: subord = (s.id, s.seq, [])
, r: line

:: len(p.list) > 0

*> ( r:= hd(p.list); p.list:= tl(p.list)
; ( r.sku /= skuid -> q.list:= q.list ++ [r]

| r.sku = skuid -> skip
; ( n < r.qty -> r.qty:= r.qty - n; q.list:= q.list ++ [r]

| n >= r.qty -> skip
)

; q.list:= q.list ++ p.list; ret q
)

)
]|

UpdActiveOrder searches through the suborder it is presented with (s) to find the order-
line, with the matching SKU. When the correct orderline is found (r.sku = skuid), the
right amount of items are removed from this line. Recall that in order to satisfy an orderline,
sometimes multiple totes holding the same SKU have to be processed at the workstation. As
such, it is possible that only the requested number of items has to be updated (n < r.qty)
or the complete orderline has to be removed from the suborder (n >= r.qty). Once the
update is done, the suborder is returned to LW.
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Chapter 6

Data Collection
Contributor: R.Andriansyah

The complexity of the simulation model can be seen from the data structure that is used as
input for the model. Two types of data are distinguished in the model, namely product-related
data and equipment-related data. Product-related data are mainly obtained from the real data
of the reference case distribution center, while the equipment-related data are derived from
the assumptions used in a simulation study that was done earlier by Vanderlande Industries
at the same distribution center.

1 Product-related data

Figure 6.1 depicts the distribution of suborder length. The distribution is used to determine
the number of orderlines contained in each of the suborder generated by GO.

For the (s, S) policy for the item replenishment, a reorder point (s) of 2-day inventory is used.
The order-up-to level (S) is chosen as 8-day inventory. As such, whenever the number of items
of an SKU in the miniloads drops below the 2-day inventory level (min), replenishment items
for the SKU are ordered such that the the number of items is raised to 8-day inventory (max).
This policy applies for all 1624 SKUs in the system, where each SKU has a different min and
max level.

Another product-related data is the number of items in a full tote for each SKU type. This data
is based on the assumption used in. Specifically, two discrete uniform distributions are used,
where the values are spread from 6 to 12 and from 12 to 24. The realizations are generated
twice as much from the first distribution as from the second distribution. Eventually, an
average of 12 items in a full tote is obtained.

Summarizing, the product-related data consists of the distribution of suborder length (Fig-
ure 6.1), the demand/week for each SKU, the min and max value of the number of items in
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Figure 6.1: Suborder length distribution

the miniload for each SKU, and the number of items in a full tote for each SKU.

2 Equipment-related data

The equipment-related data represents the various processing time and data concerning the
physical attributes of the system. A summary of the data is presented in Table 2. From this
table it can be seen that no data is available regarding the retrieval time for 0 tote, which is
the time needed for an empty crane movement from the retrieval position. This is due to
the fact that it is not possible for the crane to move without retriving any totes while in the
retrieval position, since there are always totes to be retrieved available in the retrieval queue
at the miniload.
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Table 6.1: Equipment related data
No Name Value
1 Storage time (seconds)

0 tote (empty crane movement) 23.6
1 or 2 totes 30.6
3 or 4 totes 37.5

2 Retrieval time (seconds)
1 tote 16.5
2 tote 23.5
3 tote 30.5
4 tote 37.5

3 Operator picking time per item (seconds) triangular (9.5, 12.5, 15.5)
4 Transport time for one conveyor window (seconds) 1.0
5 Number of storage location per miniload 6250
6 Number of buffer places per buffer lane at one workstation 14
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Chapter 7

Validation
Contributor: R.Andriansyah

To validate the proposed simulation model, an experiment is carried out to compare the
performance of the model to that of the real system. As a performance measure, we use
the number of totes per hour that leaves the Order Sequencing Point (OSP), or TWin in our
simulation model. From a previous discussion with the systems engineer at the reference
case DC, we know that there are approximately 700 totes that pass the OSP per hour.

In the real system, the buffer places at each of the workstation has a capacity of 3 × 14 = 42
totes. Since there are three workstations in the system, the total number of totes that can be
put into the buffer places simultaneously is 126 totes. Since there will also be totes that are
still on the conveyor loop both in the miniload or the workstation area, it is reasonable to vary
the threshold number of totes in the system between 110 to 150 totes. Note that the actual
number of totes in the system may exceed the threshold. A more precise definition about the
threshold will be given in the next chapter. The result from our validation experiment is as
follows.

Table 7.1: Validation experiment
Threshold no. of totes Throughput (totes/hour) 95% CI

110 691.01 679.48 702.55
120 702.91 691.39 714.43
130 713.12 701.82 724.41
140 723.19 712.84 733.54
150 730.78 720.84 740.72

The results indicates that the throughput of totes from the OSP or the TWin in the model is
close to the real system.
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Figure 7.1: Tote throughput at Order Sequencing Point (OSP)
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Chapter 8

Experiments
Contributor: R.Andriansyah

A set of experiments are conducted to understand the behavior and to measure the perfor-
mance of the system. In particular, we are interested in system’s throughput (δ) and flowtime.
We define suborder as the unit of measurement for both throughput and flowtime. Recall
that a suborder, which is generated by GO, consists of one or more order lines. Each of the
order lines consist of the SKU type and its required quantity. An order line corresponds with
one or more product totes of a particular SKU type.

1 Effect of system traffic

One of the design parameters in the model is the maximum number of totes at the worksta-
tion area for suborder release. This parameter is defined due to the high variability of the
suborder length. As mentioned earlier, a suborder may consist up to 316 order lines. In order
to avoid a very heavy traffic of totes in the workstation area, a threshold is applied such that a
new suborder will be processed if and only if the number of totes currently present in the workstation
area is lower than the threshold. This threshold value is defined in the design variable.

In the experiment, the threshold number of totes is varied from 10 to 200 with an increment
of 10. Additionally, we also include values between 1 to 10. For each value of this thresh-
old, ten simulation replications are conducted. The simulation is terminated once the total
number of finished suborder reaches 10,000 suborders. This amount of suborder is selected
because at that point the simulation has reached a steady state condition, as observed in
several preliminary experiments. Table 1 shows the results from the experiments.

Figure 8.1 shows the plot of throughput against the threshold number of totes. There is clearly
an asymptotic relation between the two variables. The throughput of the system increases by
allowing more totes to be sent to the workstation area for item picking. However, at a certain
value of threshold number of totes, there is no further additional increase of throughput.
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Table 8.1: Effect of threshold number of totes
Threshold Mean flowtime Mean throughput Mean
no. of totes (seconds/suborder) (suborders/hr) no. of totes

1 320.86 11.15 7.89
2 322.97 13.14 9.31
3 321.54 15.10 10.74
4 319.22 17.12 12.24
5 314.33 19.10 13.72
6 308.93 21.09 15.24
7 303.34 23.01 16.75
8 297.90 24.85 18.19
9 292.30 26.67 19.61
10 287.47 28.28 20.98
20 258.16 41.26 31.94
30 268.24 48.57 40.25
40 294.43 52.49 47.12
50 322.33 54.63 52.91
60 347.57 56.11 57.24
70 368.52 56.88 60.93
80 384.82 57.81 63.14
90 399.17 58.19 65.83
100 411.26 58.72 67.46
110 423.95 58.70 69.66
120 435.39 58.80 71.19
130 443.51 59.11 72.29
140 453.21 59.20 73.50
150 463.39 59.12 74.42
160 470.35 59.28 75.01
170 476.41 59.39 75.86
180 483.84 59.38 76.26
190 489.38 59.35 77.03
200 495.58 59.21 78.34
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Figure 8.1: Plot of suborder throughput
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Figure 8.2: Plot of average suborder flowtime

This maximum throughput suggests the system capacity under the given input variables of
threshold number of totes.

Another interesting result is obtained for the plot of mean flowtime against the threshold
number of totes (Figure 8.2). The figure can be divided into two parts, where a declining trend
characterizes the first part and an increasing asymptotic trend is identified in the second part.

When the threshold number of totes is very low (i.e. smaller than 20), the average flowtime
shows a declining trend. This can be explained by the time-out behavior of the miniloads. Re-
call that a miniload waits until a batch of 4 totes to be stored or retrieved is formed. However,
if the batch size has not reach 4 totes after 2 minutes, the miniload will take all totes that are
currently available and subsequently performs storage or retrieval, depending on the current
position of the miniload crane. As such, if the threshold number of totes is set very low,
then a batch of 4 totes will hardly be formed. This will lead to a very frequent occurrence of
time-out at the miniload, which eventually increases the suborder flowtime. Allowing more
totes to be sent to the workstation area will reduce the number of time-outs, hence we see the
declining flowtime by increasing the threshold number of totes.
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Figure 8.3: Plot of average number of totes at workstation area

When the threshold number of totes is increased more than 20 totes, the flowtime increases
as well. This can be explained by the fact that increasing the threshold number of totes allows
for a longer queueing at the workstation buffer. As such, the tote waiting time at the queue
increases and so does the flowtime of suborder. In this case, the long queue of totes at the
workstation area is mainly responsible for a high suborder flowtime.

Finally, figure 8.4 shows the plot of suborder flowtime against throughput. The effect of
time-out behavior as explained previously can also be observed in this figure, namely a high
flowtime for a low throughput (i.e. for throughput ≤ 40 suborders/hr). As expected, when
the system reaches its maximum capacity, the throughput can no longer be increased and
the flowtime goes to infinity.
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Figure 8.4: Plot of suborder flowtime against throughput
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2 Effect of altering the number of miniloads

Among the central advantages of the proposed model architecture are the flexibility and mod-
ularity. Our model architecture is developed in such a way that altering the model structure
can be done quite easily. The value of constant variables, for example, can be changed in us-
ing the constant identifiers. Using this feature, we are able to alter the number of miniloads
and/or workstations in the system without affecting the rest of the processes in the model.

In this section, we will show how the different number of miniloads affect the performance
measures namely the suborder throughput and flowtime. To change the number of miniloads,
we simply alter the value of the constant variable NML from 5 to 3, 4, and 6. Running the sim-
ulation model using these various parameter values, we obtain the results as depicted in
Figure 8.5 and Figure 8.6.

As the figures suggest, subtracting miniloads from the system causes a significant loss of
throughput and a notable increase in flowtime for all values of threshold number of totes.
However, adding a miniload to the system does not necessarily lead to a significant increase
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Figure 8.5: Throughput various miniloads
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Figure 8.6: Flowtime various miniloads
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of throughput or decrease of flowtime. It is obvious that adding one miniload from four to five
will increase the performance less than adding one miniload from three to four miniloads.
This result can further be used to justify an addition/removal of miniloads.
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Chapter 9

Conclusion and Future Work
Contributor: R.Andriansyah

1 Conclusion

This report has elaborated the process of modeling an operational, industrial scale DC using
χ 1.0. The reference case DC is characterized by an AS/RS, namely the miniload-workstation
order picking system. The main purpose of the study was to develop a very detailed simula-
tion model that can be used in the performance analysis of AS/RS-supported DC.

We created a model architecture that is both flexible and modular, such that different control
rules, design parameters and model structures can be incorporated in a quick and simple
way. The main features of the proposed model architecture include a decentralized control
structure and minimized communication between processes. Autonomous controllers that
are able to make independent decisions are introduced at different layers in the model. As
such, different control rules can be implemented locally and changes in a certain process will
not affect other processes in the model as long as the communicated data types between pro-
cesses remains the same. Furthermore, the minimized communication allows an efficient
use of information in all parts of the model.

The results from the validation experiment indicated that our simulation model produced
results that are close to the real system with regards to the throughput totes per hour. Other
experiments have shown the effect of the system’s traffic intensity on the suborder flowtime
and throughput. The modularity of the model architecture is highlighted by the experiment
to see the effect on the system performance by involving different number of miniloads.
Similar experiments involving various number of workstations are also possible. In general,
we observe that the current system configuration is balanced in terms of throughput and
flowtime.
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2 Future Work

The resulting simulation model can be further used for several purposes. The flexibility of
the model architecture allows one to investigate the effect of various control strategies at dif-
ferent layers both in the miniload and/or workstation area to the overall system performance.
Furthermore, owing to the modularity of the model, applying a slight change to the current
model architecture will allow for modeling other system structures. An example of other
structures include cases in which the workstations are located far apart of one another, which
is commonly encountered in large DCs. Also, we note that the system that is considered
in this study is suitable for handling slow-moving products. DCs that handle fast-moving
products will require different system configurations. We argue that by applying small ad-
justments to the proposed model architecture, other system configurations are also possible
to be modeled. With this regard, performance analysis of various types of distribution centers
becomes an appealing research direction.

As we mentioned earlier, this study is the first step towards developing a fast, simple, yet
accurate performance analysis method based on simulation models. Our next approach is
to use the concept of Effective Process Time (EPT) [HS00] to develop a method for aggre-
gate modeling. EPT is generally defined as the total amount of time a job could have been,
or actually was, processed on a machine [JEC+03]. An aggregate model reduces the details
that need to be incorporated in the model, where all sources of variability are aggregated
into a single process time distribution, EPT. Jacobs et al. [JEC+03] proposed an algorithm to
measure EPT realizations from arrivals and departure data and applied it to a semiconductor
industry. Subsequently, [KOC08] extended the use of EPT for aggregate modeling of manu-
facturing systems. Given the latest findings from EPT and aggregate modeling, we foresee an
appealing opportunity of developing aggregate modeling techniques for AS/RS distribution
centers. Once a method for aggregate modeling has been developed, a reference model is
needed assess the quality of the aggregate modeling method. For this purpose, we will use
the results from the detailed simulation study explained in this report.
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Appendix A

χ processes

//// ENVIRONMENT

from standardlib import *

DEFINE %NML 5 // no. of miniloads
DEFINE %NWS 3 // no. of workstations
DEFINE %NTOTE 5503 // no. of totes after initialization
DEFINE %NCELL 6250 // no. of storage cells in a miniload
DEFINE %NWIP 100 // threshold no. of totes
DEFINE %NSKU 1624 // no. of SKUs in the system
DEFINE %MAXSUBORD 9 // no. of maximum active suborders
DEFINE %NBATCH 4 // batch size at miniload

///////////////////////////////////////////////// DATA TYPES

// identified by variables: p,q,r
type line = ( sku: nat // ordered product type

, qty: nat // ordered quantity
)

, subord = ( id: nat // belonging to order identity
, seq: nat // sequence number
, list: [line] // order line
)

// identified by variables: x,y,z
, item = ( sku: nat // product type

, qty: nat // quantity
)

, ptote = ( id: nat // tote identifier
, timeIn: real // starttime of tote
, sku: nat // type of items
, qty: nat // number of items in tote
)

, ttote = ( tote: ptote // product tote information
, ord: nat // belonging to order (99 = no info)
, seq: nat // belonging to suborder (99 = no info)
, src: nat // Source (99 = no info)
, des: nat // Destination (99 = no info)
, req: nat // Items to pick (99 = no info)
)

, field = 3 * [nat] // buffer lane fill

///////////////////////////////////////////////// MODEL DECLARATION

model S( val maxTotes: nat ) =
|[ chan pm2gm, gm2pm: subord

, gm2gw: (subord, nat)
, ws2ex, TMIn2ml, ml2TMOut, ml2ws: ttote
, c2TMIn: 2 # ttote
, lm2gmIn: %NML # (real,nat,nat)
, lm2gmRes: %NML # (real,nat)
, lm2gmOut: %NML # nat
, gm2lm: %NML # (nat,nat,nat,nat)
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, gw2gm: void
, TWIn2ws, ws2TWOut: (ttote,nat,bool)
, gw2lw: %NWS # (subord,nat)
, TWout2ex: (nat, real)
, gm2pm2: void
, gm2pm3: void

:: env ( pm2gm, c2TMIn.0, ws2ex, gm2pm, TWout2ex, gm2pm2, gm2pm3 )
|| MLEnv ( gm2pm, pm2gm, c2TMIn, TMIn2ml, ml2TMOut, ml2ws

, lm2gmIn, lm2gmRes, lm2gmOut, gm2lm, gm2gw, gw2gm
, gm2pm2, gm2pm3
)

|| MLClus ( TMIn2ml, ml2TMOut, lm2gmIn, lm2gmRes, lm2gmOut, gm2lm )
|| WSEnv ( ml2ws, TWIn2ws, ws2TWOut, c2TMIn.1, ws2ex, gw2lw

, gw2gm, gm2gw, TWout2ex, maxTotes
)

|| WSClus ( TWIn2ws, ws2TWOut, gw2lw )
]|

///////////////////////////////////////////////// ENVIRONMENT

proc GO(chan a?: void, b!, c?: (nat, real), d!: subord, e?: void
, f!: void) =

|[ var dm:-> real = uniform(0.0,1.0)
, j,k,n: nat, p: [line], x: (nat,nat,real), xs: [(nat,nat,real)]
, dr:-> real = uniform(0.0,1.0), r: real
, dq:-> nat = poisson(0.22), q: nat
, i: nat = 0, t: real
, skuvec: [(nat,nat,real)]

:: e?; f!
; *( a?

; skuvec:= initskus()
; p:= []
; j:= numLines(sample dm)
; j > 0

*> ( r:= sample dr
; k:= searchSKU(r,skuvec)
; q:= 1 + sample(dq)
; n:= numreq(q,k,skuvec) min 5
; p:= p ++ [(k,n)]
; skuvec:= updatesku(k,n,skuvec)
; j:= j - 1

)
; d!(i,i,p); i:= i + 1

)
|| *( c?(n, t); b!(n, t) )
]|

proc PM( chan a?, b!, c?, d!: subord, e!: (nat, real), f?, g!: void
, h?, i!: void ) =

|[ var p, q: subord, ps: [subord] = [], qs: [nat] = []
:: *( a?p; ps:= ps ++ [p]

| len(ps) > 0 -> b!hd(ps); ps:= tl(ps)
| c?q; d!q; qs:= qs ++ [q.seq]
| len(qs) > 0 -> e!(hd(qs),time); qs:= tl(qs)
| f?; g!
| h?; i!
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)
]|

proc PR( chan a?: subord, b!: line ) =
|[ var p: subord

, IPs: [nat], IP: %NSKU * nat
, mns: [nat], mn: %NSKU * nat
, mxs: [nat], mx: %NSKU * nat
, s : line, Qty, skunr: nat

:: IP:= list2vec(IPs); IPs:= initIP()
; mns:= initMin(); mn:= list2vec(mns)
; mxs:= initMax(); mx:= list2vec(mxs)
; *( a?p

; len(p.list) > 0

*> ( s:= hd(p.list); p.list:= tl(p.list); skunr:= s.sku
; IP.(skunr):= IP.(skunr) - s.qty
; ( IP.(skunr) <= mn.(skunr)

-> Qty:= mx.(skunr) - IP.(skunr)
; b!(skunr,Qty)
; IP.(skunr):= IP.(skunr) + Qty

| IP.(skunr) > mn.(skunr)
-> skip

)
)

)
]|

proc GR( chan a?: line, b!: ttote, v!: void ) =
|[ var q, r: line, qs: [line] = []

, tcs: [nat], tc: %NSKU * nat
, i,k: nat = (0,0)
, Qty: nat
, IPs: [nat], IP: %NSKU * nat

:: IPs:= initIP()
; tcs:= inittote()
; IP:= list2vec(IPs)
; tc:= list2vec(tcs)
; k < %NSKU

*> ( IP.k > 0

*> ( Qty:= IP.k min tc.k
; b!((i,time,k,Qty),99,99,99,99,99)
; i:= i + 1; IP.k:= IP.k - Qty
; delay 10.0

)
; k:= k + 1

)
; *( a?q; qs:= qs ++ [q] )

|| *( len(qs) > 0 -> r:= hd(qs); qs:= tl(qs)
; r.qty > 0

*> ( Qty:= r.qty min tc.(r.sku)
; b!((i,time,r.sku,Qty),99,99,99,99,99)
; v!
; i:= i + 1; r.qty:= r.qty - Qty
; delay 10.0

)
)
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]|

proc EX( chan a?: ttote, b?: (nat, real), c?: (nat,real), d?: void
, u!, v!: (nat, real), w!: real ) =

|[ var x: ttote
, i: nat, j, k: nat = (0,0), t, f: real, fs: [real] = []
, ps: [(nat, real)] = []
, mf: real = 0.0, tstart: real
, s2phi: real = 0.0, th: real

:: *( a?x; k:= k + 1
; u!(k,(time-tstart)/3600)

| b?(i, t); ps:= ps ++ [(i, t)]
| c?(i, t); j:= j + 1; (f,ps):= detFlowTime(ps, i)
; f:= t - f; fs:= fs ++ [f]
; v!(j,(time-tstart)/3600)
; ( j > 1 -> s2phi:= s2phi * (j - 2) / (j - 1) + (1 / j) * (f - mf)^2
| j <= 1 -> s2phi:= 0.0
)

; mf:= mf * ( (j - 1) / j ) + f / j
; th:= j/(time-tstart)
; ( j mod 100 = 0 -> !!mf, "\t", th, "\t", s2phi, "\n"
| j mod 100 > 0 -> skip
)

; w!mf
| d?; tstart:= time
| j >= 10000 -> skip; delay -1.0
)

]|

proc viz2( chan a?, b?: (nat, real), c?: real, d?: void ) =
|[ var x, y: nat, z, t: real, i: nat = 0
:: !!"time:",time,"\t","dest:plot1\tline-type:1\tgraph-title:ML_1\n"
; !!"time:",time,"\t","dest:plot1\tline-type:2\tgraph-title:ML_2\n"
; !!"time:",time,"\t","dest:plot1\tline-type:3\tgraph-title:ML_3\n"
; !!"time:",time,"\t","dest:plot1\tline-type:4\tgraph-title:ML_4\n"
; !!"time:",time,"\t","dest:plot1\tline-type:5\tgraph-title:ML_5\n"
; !!"time:",time,"\t","dest:plot4\tline-type:1\tgraph-title:WS_1\n"
; !!"time:",time,"\t","dest:plot4\tline-type:2\tgraph-title:WS_2\n"
; !!"time:",time,"\t","dest:plot4\tline-type:3\tgraph-title:WS_3\n"
; *( a?(x, t); !!"time:",time,"\tdest:text4\tdata:",x,"\n"

; !!"time:",time,"\tdest:text7\tdata:",round(100*x/t)/100,"\n"
| b?(y, t); !!"time:",time,"\tdest:text3\tdata:",y,"\n"

; !!"time:",time,"\tdest:text6\tdata:",round(100*y/t)/100,"\n"
| c?z; !!"time:",time,"\tdest:plot3\tline-type:1\tpoints:[(",time,",", z, ")]\n"
| d?; i:= i + 1; !!"time:",time,"\tdest:text9\tdata:",i,"\n"
)

]|

proc env( chan a!: subord, b!, c?: ttote, d?: subord
, e?: (nat,real), f?: void, g?: void ) =

|[ chan go2pm, pm2pr : subord
, pm2go: (nat, real)
, go2ex: (nat, real)
, pr2gr: line
, ex2viz0, ex2viz1: (nat, real), ex2viz2: real
, pm2go2: void, pm2go3: void, go2ex2, gr2viz: void
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:: GO ( pm2go2, go2ex, pm2go, go2pm, pm2go3, go2ex2 )
|| PM ( go2pm, a, d, pm2pr, pm2go, f, pm2go2, g, pm2go3 )
|| PR ( pm2pr, pr2gr )
|| GR ( pr2gr, b, gr2viz )
|| EX ( c, go2ex, e, go2ex2, ex2viz0, ex2viz1, ex2viz2 )
|| viz2 ( ex2viz0, ex2viz1, ex2viz2, gr2viz )
]|

///////////////////////////////////////////////// MINILOAD ENVIRONMENT

proc GM( chan a!: subord // to PM
, b?: subord // from PM
, c!: (nat,nat) // (qNo,mlNo)
, d?: (line,bool) // ((skuId,qty),prior)
, e!: %NML # (nat,nat,nat,nat)// (skuId,qtyReq,subordId,subordSeq)
, fIn?: %NML # (real,nat,nat) // (timeIn,skuId,toteQty)
, fRes?: %NML # (real,nat) // (newTimeIn,toteQty)
, fOut?: %NML # nat // retTotes
, g?: void // leaving tote
, h!: (subord, nat) // (suborder, #totes)
, i?: void // request
, l!: void // add suborder
, m!: void // start flowtime calculation
, u!: nat // visualization
, v!: %NML * nat // visualization
, w!: void // visualization
, w2!: nat // visualization
, w3!: (nat, nat) // visualization
, w4!: (real, real) // visualization

) =
|[ var k: nat

, p, pTemp: subord, ps: [subord] = []
, r: nat = 0
, totetimeIn: real, toteSkuId, toteQty, toteId: nat
, calc: bool = false
, zs: [(real,nat,nat)]
, z: (real,nat,nat), z1,z2: nat
, zsa: %NSKU * [(real,nat,nat)]
, x: line, xs: [line] = [], xsP: [line] = []
, ya: %NML * nat = yaInit()
, yat: nat = yatInit()
, yatin: nat = 0
, wa: %NSKU * (%NML * nat)
, MLno, retTotes, n: nat
, prior: bool
, pline: line
, timeIn: real
, MLdstr:-> nat = uniform(0,5*4*3*2*1)
, send: bool = false, Ntote, np: nat = = (0,0)
, start: bool = false
, sublen: nat = 0, msublen: real = 0.0, varsublen: real = 0.0

:: zsa:= zsaInit()
; wa:= waInit()
; *( calc:= calc

; ( b?p; ps:= ps ++ [p]; send:= false; calc:= true
| ( |, j <- 0..%NML-1, fIn.j?(totetimeIn,toteSkuId,toteQty)
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; w3!(5, j)
; zsa.toteSkuId:= zsUpdate(zsa.toteSkuId,j,totetimeIn,toteQty)
; yatin:= yatin + 1
; w2!yatin
; calc:= true
; ( Ntote < %NTOTE

-> Ntote:= Ntote + 1
; ( Ntote = %NTOTE -> start:= true; m!; w!

| Ntote /= %NTOTE -> skip
)

| Ntote >= %NTOTE -> skip
)

)
| i?; r:= r + 1; calc:= true

; w3!(9,0)
| d?(x,prior)

; w3!(2,0)
; ( prior -> xsP:= xsP ++ [x]

| not prior -> xs:= xs ++ [x]
)

| len(xsP) > 0
-> x:= hd(xsP); xsP:= tl(xsP); k:= x.sku
; MLno:= MLassign(ya,wa.k,sample MLdstr)
; c!(1,MLno); ya.MLno:= ya.MLno + 1
; wa.k.MLno:= wa.k.MLno + x.qty
; v!ya
; w3!(1,MLno)

| len(xsP) = 0 and len(xs) > 0 and yat < %NML * %NCELL
-> x:= hd(xs); xs:= tl(xs)
; k:= x.sku
; MLno:= MLassign(ya,wa.k,sample MLdstr)
; c!(0,MLno); ya.MLno:= ya.MLno + 1
; wa.k.MLno:= wa.k.MLno + x.qty
; v!ya
; w3!(1,MLno)
; yat:= yat + 1; u!yat

| ( |, j <- 0..%NML-1, fOut.j?retTotes; ya.j:= ya.j - retTotes
; yatin:= yatin - retTotes; w2!yatin; w3!(4,j)

)
; v!ya

| g?; yat := yat - 1; u!yat
; w3!(7,0)

| start and not send and len(ps) < %NWIP -> l!; send:= true
)

; ( not calc -> skip
| calc -> (calc,p):= detSubOrder(take(ps,%NWIP),r,zsa)

; ( not calc -> skip
| calc -> ps:= ps -- [p]; r:= r - 1
; n:= 0
; pTemp:= p
; len(pTemp.list) > 0

*> ( pline:= hd(pTemp.list); pTemp.list:= tl(pTemp.list)
; zs:= zsa.(pline.sku)
; pline.qty > 0

*> ( z:= hd(zs); zs:= tl(zs); z1:= z.1; z2:= z.2
; e.z1!(pline.sku,pline.qty,p.id,p.seq)
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; w3!(3,z1)
; fRes.z1?(timeIn,toteQty)
; w3!(6,z1)
; pline.qty:= pline.qty - ( pline.qty min toteQty )
; wa.(pline.sku).z1:= wa.(pline.sku).z1 - toteQty
; ( z2 > toteQty -> z:= ( timeIn,z.1,z2-toteQty )

; zs:= insert(zs,z,incAge)
| z2 = toteQty -> skip
)

; n:= n + 1
)

; zsa.(pline.sku):= zs
)

; h!(p, n)
; w3!(8,0)
; a!p
; np:= np + 1
; sublen:= len(p.list)
; ( np > 1 -> varsublen:= varsublen * (np - 2)/(np - 1)

+ (1 / np) * (sublen - msublen)^2
| np <= 1 -> varsublen:= 0.0
)

; msublen:= msublen * (np - 1) / np + sublen / np
; msublen:= round(100*msublen)/100
; varsublen:= round(100*varsublen)/100
; w4!(msublen, varsublen)

)
)

)
]|

proc TMIn( chan a?: 2 # ttote, b!: ttote, c!: (line,bool)
, d?: (nat,nat) ) =

|[ var x: ttote, xs: 2 * [ttote] = <[],[]>
, qNo, mlNo: nat
, toteToSend: ttote

:: *( ( |, j <- 0..1, a.j?x; xs.j:= xs.j ++ [x]
; c!((x.tote.sku,x.tote.qty), j = 1) )

| d?(qNo,mlNo); toteToSend:= hd(xs.qNo); xs.qNo:= tl(xs.qNo)
; toteToSend.des:= mlNo; b!toteToSend

)
]|

proc TMOut( chan a?, b!: ttote, c!: void ) =
|[ var x: ttote
:: *( a?x; b!x; ( x.tote.qty = x.req -> c!

| x.tote.qty > x.req -> skip
)

)
]|

proc viz( chan a?: nat, b?: 5*nat, c?: void, d?: nat
, e?:(real, real) ) =

|[ var ya: 5*nat, yatin: nat, yat: nat = 0
, av, t, t0, tstart: real
, calc: bool = false
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, varsublen, msublen: real
:: *( a?yat

; !!"time:",time,"\tdest:plot2\tline-type:1\tpoints:
[(",time,",", yat, ")]\n"

| b?ya
; !!"time:",time,"\tdest:text1\tdata:"

,ya.0+ya.1+ya.2+ya.3+ya.4,"\n"
| c?; calc:= true

; tstart:= time
| d?yatin; !!"time:",time,"\tdest:text8\tdata:",yatin,"\n"
| e?(msublen, varsublen)
; !!"time:",time,"\tdest:text10\tdata:",msublen,"\n"
; !!"time:",time,"\tdest:text11\tdata:",varsublen,"\n"

)
|| *( !!"time:",time,"\tdest:plot2\tline-type:1\tpoints:

[(",time,",", yat, ")]\n"
; delay 100.0

)
]|

proc vizMSC( chan a?: (nat, nat) ) =
|[ var x, y: nat

, i2: nat = 0, i7: nat = 0, i8: nat = 0, i9: nat = 0
:: !!"time:",time,"\tdest:msc1\tdata:START GM\n"
; !!"time:",time,"\tdest:msc1\tdata:START GW\n"
; !!"time:",time,"\tdest:msc1\tdata:START TMin\n"
; !!"time:",time,"\tdest:msc1\tdata:START TMout\n"
; !!"time:",time,"\tdest:msc1\tdata:START LM\n"
; *( a?(x, y)

; ( x = 1 -> !!"time:",time,"\tdest:msc1\tsend:GM\trecv:
TMin\tlabel:tote_to_ML_",y,"\n"

| x = 2 -> i2:= (i2 + 1) mod 1000
; !!"time:",time,"\tdest:msc1\tsend:TMin\trecv:

GM\tlabel:arr_tote_",i2,"\n"
| x = 3 -> !!"time:",time,"\tdest:msc1\tsend:GM\trecv:

LM\tlabel:retr_tote_ML_",y,"\n"
| x = 4 -> !!"time:",time,"\tdest:msc1\tsend:LM\trecv:

GM\tlabel:4_totes_out_ML_",y,"\n"
| x = 5 -> !!"time:",time,"\tdest:msc1\tsend:LM\trecv:

GM\tlabel:tote_in_ML_",y,"\n"
| x = 6 -> !!"time:",time,"\tdest:msc1\tsend:LM\trecv:

GM\tlabel:tote_ass_ML_",y,"\n"
| x = 7 -> i7:= (i7 + 1) mod 1000

; !!"time:",time,"\tdest:msc1\tsend:TMout\trecv:
GM\tlabel:tote_",i7,"_to_WS\n"

| x = 8 -> i8:= (i8 + 1) mod 1000
; !!"time:",time,"\tdest:msc1\tsend:GM\trecv:

GW\tlabel:subord_",i8,"\n"
| x = 9 -> i9:= (i9 + 1) mod 1000

; !!"time:",time,"\tdest:msc1\tsend:GW\trecv:
GM\tlabel:request_",i9,"\n"

)
)

]|

proc MLEnv( chan a0!, a1?: subord
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, b?: 2 # ttote
, c!: ttote
, d?: ttote
, e!: ttote
, fIn?: %NML # (real,nat,nat)
, fRes?: %NML # (real,nat)
, fOut?: %NML # nat
, g!: %NML # (nat,nat,nat,nat)
, h!: (subord, nat)
, i?: void
, j!: void
, k!: void

) =
|[ chan gm2TMIn: (nat,nat)

, gm2viz0, gm2viz3: nat
, gm2viz1: %NML*nat
, gm2viz4: (nat, nat)
, TMIn2gm: (line,bool)
, TMOut2gm, gm2viz2: void
, gm2viz5: (real, real)

:: GM ( a0, a1 , gm2TMIn, TMIn2gm, g, fIn, fRes, fOut, TMOut2gm
, h, i, j, k, gm2viz0, gm2viz1, gm2viz2, gm2viz3, gm2viz4
, gm2viz5

)
|| TMIn ( b, c, TMIn2gm, gm2TMIn )
|| TMOut ( d, e, TMOut2gm )
|| viz ( gm2viz0, gm2viz1, gm2viz2, gm2viz3, gm2viz5 )
|| vizMSC( gm2viz4 )
]|

///////////////////////////////////////////////// WORKSTATION ENVIRONMENT

proc GW( chan a!: void
, b?: (subord, nat)
, c!: (nat, nat, bool)
, d?: ttote
, e!: %NWS # (subord, nat)
, f?: (nat, bool)
, v!: nat
, val maxTotes: nat

) =
|[ var x: ttote

, p: subord
, ps: [(subord, nat)]
, k: nat, n: nat = 0, m: nat = 0, wip: nat = 0, i: nat = 0
, ns: %NWS * nat = initNWS()
, maxSubord: nat = 9
, request: bool = true
, wsId, des, sortId, j: nat
, flag, new: bool
, occ: %NWS * nat = initNWS()
, ts: %NWS * [(subord, nat)] = inittsNWS()

:: *( wip < maxSubord and n < maxTotes and request
-> a!; wip:= wip + 1; request:= false

| b?(p, k); ps:= ps ++ [(p, k)]; n:= n + k; request:= true
| d?x; m:= m + 1; v!m
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; (new, k, p, ps):= newSubOrder(x, ps)
; ( new -> i:= i + 1

; wsId:= detWSid(ns,occ)
; ns.wsId:= ns.wsId + k
; occ.wsId:= occ.wsId + 1
; e.wsId!(p, i)
; ts.wsId:= ts.wsId ++ [(p, i)]

| not new -> skip
)

; (ts, des, sortId, flag):= arrtote(ts, x)
; ( flag -> occ.des:= occ.des - 1

| not flag -> skip
)

; c!(des, sortId, flag)
| f?(j, flag); n:= n - 1; m:= m - 1; v!m; ns.j:= ns.j - 1
; ( flag -> wip:= wip - 1

| not flag -> skip
)

)
]|

proc TWIn( chan a?: ttote
, c!: (ttote,nat,bool)
, d!: ttote
, e?: (nat,nat,bool)
, var dt: real

) =
|[ var ys: [((ttote, nat, bool), real)] = []

, x: ttote
, flag: bool
, wsid, sortId: nat

:: *( a?x; d!x; e?(wsid, sortId, flag); x.des:= wsid
; ys:= ys ++ [((x, sortId, flag),time+dt)]

)
|| *( len(ys) > 0

-> skip; delay ( hd(ys).1 - time ) max 0.0; c!hd(ys).0; ys:= tl(ys)
)

]|

proc TWOut( chan a?: (ttote, nat, bool), b!, c!: ttote, d!: (nat, bool)
, e!: (nat,real) ) =

|[ var x: ttote, sortId: nat, flag: bool
:: *( a?(x, sortId, flag)

; ( x.tote.qty > 0 -> b!x
| x.tote.qty = 0 -> c!x
)

; d!(x.src, flag)
; ( flag -> e!( x.seq, time-(2-x.src)*2.0 )

| not flag -> skip
)

)
]|

proc viz1( chan a?: nat ) =
|[ var n: nat
:: *( a?n
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; !!"time:",time,"\tdest:text2\tdata:",n,"\n"
)

]|

proc WSEnv( chan a?: ttote, c!, d?: (ttote,nat,bool), e!, f!: ttote
, g!: %NWS # (subord,nat), h!: void
, i?: (subord, nat), j!: (nat, real)
, val maxTotes: nat

) =
|[ chan gw2TWIn: (nat,nat,bool)

, TWIn2gw: ttote
, TWout2gw: (nat, bool)
, gw2viz: nat

:: GW ( h, i, gw2TWIn, TWIn2gw, g, TWout2gw, gw2viz, maxTotes )
|| TWIn ( a, c, TWIn2gw, gw2TWIn, 5.0 )
|| TWOut ( d, e, f, TWout2gw, j )
|| viz1 ( gw2viz )
]|

/////////////////////////////////////////////// DETAILED MINILOAD SYSTEM

proc LM (chan a!: (bool,[ttote]) // send job assignment to ML
, b?: [ttote] // stored totes from ML
, cIn!: (real,nat,nat) // update stored totes to GM
, cRes!: (real,nat) // update unreserved totes to GM
, cOut!: nat // update retrieved totes to GM
, d?: (nat,nat,nat,nat) // retrieve job assignment from GM
, e?: ttote // update totes in BI
, f?: bool // update crane position
, g?: nat // update no. of totes in ML
, h?: void // update no. of totes in BO
, i?: void // receive trigger for time out at ML
, v!: 3*[ttote] // visualization
, val k: nat) = // miniload index

|[ var skuV: %NSKU * [ptote]
, x: ptote, ys: [ttote] = [], zs: [ttote] = [], z: ttote
, sVec: %NSKU * nat, ms: [bool], m: nat, rs: [ttote], r: ttote
, go: bool = false, calc: bool, crIn: bool = false
, inputlist: [(real,nat,nat)] = [], outputlist: nat = 0
, nBO: nat = 0, B: nat, ytake: nat, o: nat, os: [nat] = []
, ya: 3*[ttote] = <[],[],[]>, y: ttote
, row: nat = 0, skuNo, pId, pSeq, qtyReq: nat

:: skuV:= initskuV()
; sVec:= initNatVec()
; *( calc:= true

; ( d?(skuNo,qtyReq,pId,pSeq)
; x:= hd(skuV.skuNo); skuV.skuNo:= tl(skuV.skuNo)
; y:= (x, pId, pSeq, k, 99, x.qty min qtyReq)
; ya:= arrangeSubOrd(ya, y)
; v!ya
; sVec.skuNo:= sVec.skuNo - x.qty
; ( len(skuV.skuNo) > 0 -> cRes!(hd(skuV.skuNo).timeIn, x.qty)

| len(skuV.skuNo) = 0 -> cRes!(0.0, x.qty)
)

| e?z; zs:= zs ++ [z]
| g?m
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; outputlist:= outputlist + m
; calc:= false

| outputlist > 0
-> cOut!outputlist
; outputlist:= 0
; calc:= false

| b?rs
; len(rs) > 0

*> ( r:= hd(rs); rs:= tl(rs)
; skuV.(r.tote.sku)
:= insert(skuV.(r.tote.sku), (r.tote), pred)

; sVec.(r.tote.sku):= sVec.(r.tote.sku) + r.tote.qty
; inputlist:= inputlist
++ [(hd(skuV.(r.tote.sku)).timeIn, r.tote.sku

, r.tote.qty)]
)

; calc:= false
| len(inputlist) > 0

-> cIn!hd(inputlist); inputlist:= tl(inputlist); calc:= false
| f?crIn
| h?; nBO:= nBO - 1
| i?

; ( crIn
-> a!(crIn, sendlist(ya, (B - nBO), row))
; (ya, ytake, row):= updateYA(ya, (B - nBO), row)
; v!ya
; nBO:= nBO + ytake
; go:= false

| not crIn
-> a!(crIn,take(zs,%NBATCH)); zs:= drop(zs,%NBATCH); go:= false

)
| go and crIn

-> a!(crIn, sendlist(ya, (B - nBO), row))
; (ya, ytake, row):= updateYA(ya, (B - nBO), row)
; v!ya
; nBO:= nBO + ytake
; go:= false

| go and not crIn
-> a!(crIn,take(zs,%NBATCH)); zs:= drop(zs,%NBATCH); go:= false

)
; ( calc -> go:= inOut(len(zs),(len(ya.0)+len(ya.1)+len(ya.2)))

| not calc -> skip
)

)
]|

proc TI (chan a?: ttote, b!: ttote, c!: ttote, val k: nat) =
|[ var x: ttote, xs: [(ttote,real)] = [], t: real
:: *( a?x

; t:= time + 1.0; xs:= xs ++ [(x,t)]
; len(xs) > 0

*> ( a?x
; t:= time + 1.0; xs:= xs ++ [(x,t)]

| delay ((hd(xs).1 - time) max 0.0)
; ( hd(xs).0.des = k -> b!hd(xs).0

| hd(xs).0.des /= k -> c!hd(xs).0
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)
; xs:= tl(xs)

)
)

]|

proc BI (chan a?: ttote, b!: [ttote], c!: ttote, val k: nat) =
|[ var xs: [ttote], x: ttote
:: *( a?x; xs:= xs ++ [x]; c!x

| b!take(xs,%NBATCH) ; xs:= drop(xs,%NBATCH)
)

]|

proc ML (chan a?: (bool,[ttote]), b?: [ttote], c!: [ttote], d!: bool
, e!: nat, f!: [ttote], g!: void, v!: bool
, val k: nat) =

|[ var ps: [ttote], p: ttote, xs: [ttote]
, crIn: bool = false, t:-> real = constant(120.0)
, retrieve: bool, timeout: real = 120.0

:: *( a?(retrieve,ps)
; v!false
; ( retrieve

-> skip
; ( len(ps) = 0 -> skip; delay 23.6

| len(ps) > 0 -> skip; delay ( 16.5 + ((len(ps) - 1) * 7.0 ) )
)

; crIn:= false; d!crIn
; c!ps
; e!len(ps)
; timeout:= time + sample t

| not retrieve
-> b?xs
; ( len(xs) = 0 -> skip; delay 23.6

| len(xs) = 1 or len(xs) = 2 -> skip; delay 30.6
| len(xs) = 3 or len(xs) = 4 -> skip; delay 37.5
)

; crIn:= true; d!crIn
; f!xs
; timeout:= time + sample t

)
; v!true

| delay ((timeout - time) max 0.0)
; g!
; a?(retrieve,ps)
; v!false
; ( retrieve

-> skip
; ( len(ps) = 0 -> skip; delay 23.6

| len(ps) > 0 -> skip; delay ( 16.5 + ((len(ps) - 1) * 7 ) )
)

; crIn:= false; d!crIn
; c!ps
; e!len(ps)
; timeout:= time + sample t

| not retrieve
-> b?xs
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; ( len(xs) = 0 -> skip; delay 23.6
| len(xs) = 1 or len(xs) = 2 -> skip; delay 30.6
| len(xs) = 3 or len(xs) = 4 -> skip; delay 37.5
)

; crIn:= true; d!crIn
; f!xs
; timeout:= time + sample t

)
; v!true

)
]|

proc BO (chan a?: [ttote], b!: ttote, c!: void, val k: nat) =
|[ var ys: [ttote], xs: [ttote] = []
:: *( a?ys; xs:= xs ++ ys

| len(xs) > 0
-> b!hd(xs); xs:= tl(xs)
; c!

)
]|

proc TO (chan a?: ttote, b!: ttote, c?: ttote, val k: nat) =
|[ var x: ttote, n,i: nat, ws: bool, priority: bool = false

, j: nat = 0, xs: [(ttote,real)] = [], t: real
:: *( a?x; t:= time + 1.0; xs:= xs ++ [(x,t)]

; len(xs) > 0

*> ( a?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| c?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| delay ((hd(xs).1 - time) max 0.0)
; b!hd(xs).0; xs:= tl(xs)

)
| c?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
; len(xs) > 0

*> ( a?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| c?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| delay ((hd(xs).1 - time) max 0.0)
; b!hd(xs).0; xs:= tl(xs)

)
)

]|

proc viz3( chan a?: bool, b?: 3*[ttote], val k: nat )=
|[ var t: real = 0.0, s: bool, u: real = 0.0, cur: real

, ya: 3*[ttote], tstart, tcur, av: real, first: bool = true, num: nat
, yam: (real,real,nat) = (0.0,0.0,0)

:: *( a?s; cur:= time
; ( cur = 0.0 -> skip

| cur > 0.0 -> skip
; ( not s -> u:= t / cur * u
| s -> u:= t / cur * u + (cur - t) / cur
)

; t:= cur
)

; !!"time:",time,"\tdest:plot1\tline-type:",k+1,"\tpoints:[(",cur,",", u, ")]\n"
| b?ya; num:= len(ya.0) + len(ya.1) + len(ya.2)
; !!"time:",time,"\tdest:bar1\tcur_",k,":",num,"\n"
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; tcur:= time
; ( first -> tstart:= tcur; first:= false

| not first -> av:= ( yam.0 * (yam.1 - tstart) + yam.2 * (tcur - yam.1) )
/ (tcur - tstart)

; !!"time:",time,"\tdest:bar1\tavg_",k,":",av,"\n"
)

; yam:= (av, time, num)
)

]|

proc MLS (chan a?, b!: ttote, cIn!: (real,nat,nat), cRes!: (real,nat)
, cOut!: nat, d?: (nat,nat,nat,nat), e!: [ttote]
, f!: [ttote], val k: nat, te: real, tr: real) =

|[ chan lm2ml: (bool,[ttote]), ml2lm: [ttote], bi2lm: ttote
, ti2bi: ttote, bi2ml: [ttote], ml2bo: [ttote]
, ml2lm2: bool, ml2lm3: nat, bo2to: ttote, ti2to: ttote, ml2util: bool
, bo2lm: void, ml2lm4: void
, lm2viz: 3*[ttote]

:: LM(lm2ml,ml2lm,cIn,cRes,cOut,d,bi2lm,ml2lm2,ml2lm3,bo2lm,ml2lm4,lm2viz,k)
|| BI(ti2bi,bi2ml,bi2lm,k)
|| ML(lm2ml,bi2ml,ml2bo,ml2lm2,ml2lm3,ml2lm,ml2lm4,ml2util,k)
|| BO(ml2bo,bo2to,bo2lm,k)
|| TO(bo2to,b,ti2to,k)
|| TI(a,ti2bi,ti2to,k)
|| viz3(ml2util,lm2viz,k)
]|

proc MLClus( chan a?, b!: ttote, cIn!: %NML # (real,nat,nat)
, cRes!: %NML # (real,nat), cOut!: %NML # nat
, d?: %NML # (nat,nat,nat,nat) ) =

|[ chan mm: %NML-1 # ttote, ti2vis: %NML # [ttote], to2vis: %NML # [ttote]
:: MLS ( a, mm.0, cIn.0, cRes.0, cOut.0, d.0, ti2vis.0, to2vis.0, 0, 3.0, 1.0 )
|| ( || , j <- 0..%NML-3, MLS(mm.j, mm.(j+1), cIn.(j+1), cRes.(j+1), cOut.(j+1)

, d.(j+1), ti2vis.(j+1), to2vis.(j+1), j+1, 3.0, 1.0))
|| MLS ( mm.(%NML-2), b, cIn.(%NML-1), cRes.(%NML-1), cOut.(%NML-1)

, d.(%NML-1), ti2vis.(%NML-1), to2vis.(%NML-1), (%NML-1), 3.0, 1.0 )
]|

//////////////////////////////////////// DETAILED WORKSTATION SYSTEM

proc LW(chan a?: (subord, nat), b!: nat, d?: (nat, nat), c?: (nat, bool)
, v!: (field, nat, [nat]), val WSID: nat) =

|[ var ps: [(subord, nat)] = [], p: (subord, nat)
, fld: field = <[], [], []>, xs: [nat] = [], x: nat
, top: 3 * nat = <0, 0, 0>
, bottom: 3 * nat = <0, 0, 0>
, length: 3 * nat = <0, 0, 0>
, arriving: [nat] = []
, curP: subord = (0, 0, [])
, currId, skuId, n, lane: nat
, nTotes: nat = 0
, flag: bool

:: *( a?p; ps:= ps ++ [p]; arriving:= arriving ++ [p.1]
| len(curP.list) = 0 and len(ps) > 0 -> (curP, currId):= hd(ps); ps:= tl(ps)
| len(curP.list) > 0 and nTotes < 1 and (or, j <- 0..2, bottom.j = currId )
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-> lane:= detOutLane(bottom, length, currId)
; xs:= xs ++ [hd(fld.lane)]; fld.lane:= tl(fld.lane)
; length.lane:= length.lane - 1
; ( length.lane = 0 -> top.lane:= 0

| length.lane /= 0 -> skip
)

; bottom:= updBottom(bottom, fld); nTotes:= nTotes + 1
; v!(fld, lane, arriving)

| len(xs) > 0 -> b!hd(xs); xs:= tl(xs)
| c?(x, flag); lane:= detInLane(top, length, arriving, x)
; fld.lane:= fld.lane ++ [x]; length.lane:= length.lane + 1
; top.lane:= x
; ( not flag -> skip

| flag -> arriving:= updArriving(arriving, x)
)

; bottom:= updBottom(bottom, fld)
; v!(fld, lane, arriving)

| d?(skuId, n); nTotes:= nTotes - 1; curP:= updActiveorder(curP, skuId, n)
)

]|

proc BW(chan a?: (ttote, nat, bool), b!: (ttote, nat, bool)
, c!: (nat, bool), d?: nat) =

|[ var xs: [(ttote, nat, bool)] = [], x: (ttote, nat, bool)
, sortId: nat

:: *( a?x; xs:= xs ++ [x]; c!(x.1, x.2)
| d?sortId; (xs, x):= findTTote(xs, sortId); b!x
)

]|

proc MW(chan a?, b!: (ttote, nat, bool), c!: (nat, nat), v!: bool
, val id: nat) =

|[ var t: -> real = triangle (9.5, 12.5, 15.5 )
, x: (ttote, nat, bool)
, s: real

:: *( a?x; v!false; s:= sample t; delay s
; x.0.tote.qty:= x.0.tote.qty - x.0.req
; x.0.src:= id
; b!x
; c!(x.0.tote.sku, x.0.req)
; v!true

)
]|

proc BWOut(chan a?, b!: (ttote, nat, bool) ) =
|[ var xs: [(ttote, nat, bool)] = [], x: (ttote, nat, bool)
:: *( a?x; xs:= xs ++ [x]

| len(xs) > 0 -> b!hd(xs); xs:= tl(xs)
)

]|

proc Tdiv(chan a?, b!, c!: (ttote, nat, bool), val id: nat) =
|[ var xs: [((ttote, nat, bool), real)] = []

, x: (ttote, nat, bool)
, t: real

:: *( a?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
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; len(xs) > 0

*> ( a?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| delay (hd(xs).1 - time) max 0.0

; ( hd(xs).0.0.des = id -> c!hd(xs).0
| hd(xs).0.0.des /= id -> b!hd(xs).0
)

; xs:= tl(xs)
)

)
]|

proc Tmer(chan a?, b?, c!: (ttote, nat, bool), val id: nat) =
|[ var xs: [((ttote, nat, bool), real)]

, x: (ttote, nat, bool)
, t: real

:: *( a?x; x.0.src:= id; x.0.des:= 99; t:= time + 1.0; xs:= xs ++ [(x, t)]
; len(xs) > 0

*> ( a?x; x.0.src:= id; x.0.des:= 99; t:= time + 1.0; xs:= xs ++ [(x, t)]
| b?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| delay (hd(xs).1-time) max 0.0; c!hd(xs).0; xs:= tl(xs)
)

| b?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
; len(xs) > 0

*> ( a?x; x.0.src:= id; x.0.des:= 99; t:= time + 1.0; xs:= xs ++ [(x, t)]
| b?x; t:= time + 1.0; xs:= xs ++ [(x,t)]
| delay (hd(xs).1-time) max 0.0; c!hd(xs).0; xs:= tl(xs)
)

)
]|

proc viz4( chan a?: bool, b?: (field, nat, [nat]), val k: nat )=
|[ var t: real = 0.0, av, cur, tstarta: real, s: bool, u: real = 0.0

, lane: nat, fld: field, arriving: [nat]
, ava: 3 * (real, real, nat)
, calc: 3*bool = <true, true, true>, first: bool = true
, t0, tstartb: 3*real

:: *( a?s; cur:= time
; ( first -> tstarta:= cur; first:= false

| not first -> skip
; ( not s -> u:= u * (t - tstarta) / (cur - tstarta)

| s -> u:= (u * (t - tstarta) + (cur - t)) / (cur - tstarta)
)

; !!"time:",time,"\tdest:plot4\tline-type:",k+1
,"\tpoints:[(",cur,",", u, ")]\n"

)
; t:= cur

| b?(fld, lane, arriving)
; t0.lane:= time
; !!"time:",time,"\tdest:buf",k,"\t",writeColumn(0, fld.0, arriving),"\n"
; !!"time:",time,"\tdest:buf",k,"\t",writeColumn(1, fld.1, arriving),"\n"
; !!"time:",time,"\tdest:buf",k,"\t",writeColumn(2, fld.2, arriving),"\n"
; !!"time:",time,"\tdest:bar",k+2,"\tcur_",lane,":",len(fld.lane),"\n"
; ( calc.lane -> tstartb.lane:= t0.lane; calc.lane:= false

| not calc.lane
-> av:= ( ava.lane.0 * (ava.lane.1 - tstartb.lane)

+ ava.lane.2 * (t0.lane-ava.lane.1) )
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/ (t0.lane - tstartb.lane)
; !!"time:",time,"\tdest:bar",k+2,"\tavg_",lane,":",av,"\n"

)
; ava.lane:= (av, t0.lane, len(fld.lane))

)
]|

proc WS(chan a?: (subord, nat), b?, c!: (ttote, nat, bool), val Id: nat) =
|[ chan BW2MW, MW2BWOut, BWOut2Tmer, Tdiv2Tmer, Tdiv2BW: (ttote, nat, bool)

, BW2LW: (nat, bool)
, LW2BW: nat
, MW2LW: (nat, nat)
, mw2viz: bool
, lw2viz: (field, nat, [nat])

:: Tdiv(b, Tdiv2Tmer, Tdiv2BW, Id)
|| BW(Tdiv2BW, BW2MW, BW2LW, LW2BW)
|| LW(a, LW2BW, MW2LW, BW2LW, lw2viz, Id)
|| MW(BW2MW, MW2BWOut, MW2LW, mw2viz, Id)
|| BWOut(MW2BWOut, BWOut2Tmer)
|| Tmer(BWOut2Tmer, Tdiv2Tmer, c, Id)
|| viz4(mw2viz, lw2viz, Id)
]|

proc WSClus( chan a?, b!: (ttote, nat, bool), c?: %NWS # (subord,nat) ) =
|[ chan WS02WS1, WS12WS2: (ttote, nat, bool)
:: WS(c.0, a, WS02WS1, 0)
|| WS(c.1, WS02WS1, WS12WS2, 1)
|| WS(c.2, WS12WS2, b , 2)
]|

χ functions

///////////////////////////////////////////////// ENVIRONMENT FUNCTIONS

func initls() -> [(nat,real)] = { search.py } :: initls

func initskus() -> [(nat,nat,real)] = { search.py } :: initskus

func searchSKU(val r: real, y: [(nat,nat,real)])
-> nat = { search.py } :: searchSKU

func numreq(val q: nat, k: nat, skuvec: [(nat,nat,real)])
-> nat = { search.py } :: numreq

func updatesku(val k,n: nat, y: [(nat,nat,real)])
-> [(nat,nat,real)] = { search.py } :: updatesku

func totalN(val skus: [(nat,nat,real)])
-> nat = { search.py } :: totalN

func refreshsku(val skuvec: [(nat,nat,real)], xs:[(nat,nat,real)])
-> ([(nat,nat,real)],nat) = { search.py } :: refreshsku
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func incrSKU( val a, b: (nat,nat,real) ) -> bool = |[ ret a.0 <= b.0 ]|

func numLines(val m: real) -> nat =
|[ var p: nat, q: real, ls: [(nat,real)] = initls(), i: nat = 0
:: i <= len(ls)

*> ( (p,q):= hd(ls)
; ( m > q -> skip

| m <= q -> ret p
)

; ls:= tl(ls)
)

]|

func list2vec(val xs: [nat]) -> %NSKU * nat =
|[ var vec: %NSKU * nat, i: nat = 0
:: len(xs) > 0

*> ( vec.i:= hd(xs); xs:= tl(xs); i:= i + 1 )
; ret vec

]|

func initIP() -> [nat] = { search.py } :: initIP

func initMin() -> [nat] = { search.py } :: initMin

func initMax() -> [nat] = { search.py } :: initMax

func inittote() -> [nat] = { search.py } :: inittote

func detFlowTime( val ps: [(nat, real)], i: nat )
-> ( real, [(nat,real)] ) =
|[ var pst: [(nat,real)] = ps, p: (nat,real)

, qs: [(nat,real)] = []
, j: real

:: len(pst) > 0

*> ( p := hd(pst); pst:= tl(pst)
; ( p.0 = i -> j:= p.1
| p.0 /= i -> qs:= qs ++ [p]
)

)
; ret (j, qs)
]|

////////////////////////////// MINILOAD ENVIRONMENT FUNCTIONS

func zsaSum( val zsa: %NSKU * [(real,nat,nat)] ) -> %NSKU * nat =
|[ var zsasum: %NSKU * nat

, i: nat = 0
:: i < %NSKU

*> ( zsasum.i:= subLineSum(zsa.i); i:= i + 1 )
; ret zsasum

]|

func detSubOrder( val ps: [subord], r: nat, zsa: %NSKU * [(real,nat,nat)] )
-> (bool,subord) =
|[ var p: subord
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, pst: [subord] = ps
, found: bool = false
, available: bool

:: len(pst) > 0 and r > 0

*> ( p:= hd(pst); pst:= tl(pst)
; available:= detSubOrderAvailable(p,zsa)
; ( available -> ret(true,p) | not available -> skip )

)
; ret(false,(0,0,[(0,0)]))

]|

func detSubOrderAvailable( val p: subord, zsa: %NSKU * [(real,nat,nat)] )
-> bool =
|[ var available: bool = true

, plist: [line] = p.list
, pline: line
, itemNo: nat

:: len(plist) > 0

*> ( pline:= hd(plist); plist:= tl(plist)
; itemNo:= subLineSum(zsa.(pline.sku))
; ( itemNo >= pline.qty -> skip

| itemNo < pline.qty -> ret false
)

)
; ret true

]|

func subLineSum( val subLine: [(real,nat,nat)] ) -> nat =
|[ var subLineTemp: [(real,nat,nat)] = subLine

, sum: nat = 0
:: len(subLineTemp) > 0

*> ( sum:= sum + hd(subLineTemp).2; subLineTemp:= tl(subLineTemp) )
; ret sum

]|

func zsUpdate( val zs: [(real,nat,nat)], j: nat, timeIn: real, qty: nat )
-> [(real,nat,nat)] =
|[ var ps, qs: [(real,nat,nat)]

, newtimeIn: real, newQty: nat
:: (ps,qs):= extract(zs,j)
; ( len(ps) = 0 -> qs:= insert(qs,(timeIn,j,qty),incAge)

| len(ps) = 1 -> newtimeIn:= timeIn min hd(ps).0
; newQty:= hd(ps).2 + qty
; qs:= insert(qs,(newtimeIn,j,newQty),incAge)

)
; ret qs
]|

func extract(val zs: [(real,nat,nat)], j: nat )
-> ([(real,nat,nat)],[(real,nat,nat)]) =
|[ var ps: [(real,nat,nat)] = zs

, p: (real,nat,nat)
:: len(ps) > 0

*> ( p:= hd(ps); ps:= tl(ps)
; ( p.1 = j -> ret([p],zs -- [p]) | p.1 /= j -> skip ) )
; ret([],zs)
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]|

func incAge( val a, b: (real,nat,nat) ) -> bool = |[ ret a.0 <= b.0 ]|

func MLassign( val ya: %NML * nat, wa: %NML * nat, x: nat ) -> nat =
|[ var j: nat = 0

, xs: [(nat,nat)] = []
:: j < %NML

*> ( ( ya.j < %NCELL -> xs:= MLList(j,wa.j,xs)
| ya.j >= %NCELL -> skip
)
; j:= j + 1

)
; ret hd(drop(xs,x mod len(xs))).0

]|

func MLList( val j: nat, w : nat, xs: [(nat,nat)] ) -> [(nat,nat)] =
|[ var ys : [(nat,nat)]
:: ( len(xs) = 0 -> ys := [(j,w)]

| len(xs) > 0 -> skip
; ( w < hd(xs).1 -> ys := [(j,w)]

| w = hd(xs).1 -> ys := xs ++ [(j,w)]
| w > hd(xs).1 -> ys := xs
)

)
; ret ys

]|

func zsaInit() -> %NSKU * [(real,nat,nat)] =
|[ var vec: %NSKU * [(real,nat,nat)], i: nat = 0
:: i < %NSKU

*> ( vec.i:= []; i:= i + 1 )
; ret vec

]|

func yaInit() -> %NML * nat =
|[ var i: nat = 0, vec: %NML * nat
:: i < %NML

*> ( vec.i:= 0; i:= i + 1 )
; ret vec

]|

func yatInit() -> nat =
|[ ret 0 ]|

func waInit() -> %NSKU * (%NML * nat) =
|[ var wa: %NSKU * (%NML * nat)

, i: nat = 0, j: nat = 0
:: i < %NSKU

*> ( j < %NML *> ( wa.i.j:= 0; j:= j + 1 ); i:= i + 1; j:= 0 )
; ret wa
]|

///////////////////////////////////////////////// WORKSTATION ENVIRONMENT FUNCTIONS

func detNtot (val nw: 3 * nat ) -> nat =
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|[ var i: nat = 0, Ntot: nat = 0
:: i < 3

*> ( Ntot:= Ntot + nw.i; i:= i + 1 )
; ret Ntot

]|

func wslistInit( val maxwip: nat ) -> [nat] =
|[ var i: nat = 0, wslist: [nat] = []
:: i < maxwip *> ( wslist:= wslist ++ [i mod 3]; i:= i + 1 )
; ret wslist

]|

func arrtote(val ts: 3 * [(subord, nat)], x: ttote)
-> (3 * [(subord, nat)], nat, nat, bool) =

|[ var ps: 3 * [(subord, nat)] = ts
, qs: [(subord, nat)] = []
, p: subord
, flag: bool = false
, found: bool = false
, i: nat = 0
, sortId: nat

:: i < 3

*> ( len(ps.i) > 0

*> ( p:= hd(ps.i).0; sortId:= hd(ps.i).1; ps.i:= tl(ps.i)
; ( x.ord /= p.id or x.seq /= p.seq -> qs:= qs ++ [(p, sortId)]

| x.ord = p.id and x.seq = p.seq -> skip
; p:= updActiveorder(p, x.tote.sku, x.req)
; found:= true
; ( len(p.list) = 0 -> flag:= true
| len(p.list) > 0 -> qs:= qs ++ [(p, sortId)]
)

; qs:= qs ++ ps.i; ps.i:= []
)

)
; ps.i:= qs; qs:= []
; ( not found -> i:= i + 1

| found -> ret(ps, i, sortId, flag)
)

)
; !!"Error in ArrTote, did not find tote in order\t",x,"\n"
]|

func updActiveorder(val s: subord, skuid, n: nat) -> subord =
|[ var p: subord = s

, q: subord = (s.id, s.seq, [])
, r: line

:: len(p.list) > 0

*> ( r:= hd(p.list); p.list:= tl(p.list)
; ( r.sku /= skuid -> q.list:= q.list ++ [r]

| r.sku = skuid -> skip
; ( n < r.qty -> r.qty:= r.qty - n; q.list:= q.list ++ [r]

| n >= r.qty -> skip
)

; q.list:= q.list ++ p.list; ret q
)

)
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]|

func newSubOrder( val x: ttote, ps: [(subord, nat)] )
-> (bool, nat, subord, [(subord, nat)]) =
|[ var psT: [(subord, nat)] = ps, p: (subord, nat)

, qs: [(subord, nat)] = [], q: (subord, nat)
, new: bool = false

:: len(psT) > 0

*> ( p:= hd(psT); psT:= tl(psT)
; ( x.seq = p.0.seq -> q:= p; new:= true
| x.seq /= p.0.seq -> qs:= qs ++ [p]
)

)
; ret (new, q.1, q.0, qs)

]|

func detWSid( val ns, occ: 3*nat ) -> nat =
|[ var ids: [(nat, nat)] = [], i: nat = 0
:: i < 3

*> ( ( occ.i < 3 -> ids:= ids ++ [(i,ns.i)]
| occ.i >= 3 -> skip
)
; i:= i + 1

)
; ids:= sort(ids,inc1)
; ret(hd(ids).0)

]|

///////////////////////////////////////////////// MINILOAD SYSTEM FUNCTIONS

func pToteIncAge( val a, b: ptote ) -> bool = |[ ret a.timeIn <= b.timeIn ]|

func initskuV() -> %NSKU * [ptote] =
|[ var vec: %NSKU * [ptote], i: nat = 0
:: i < %NSKU

*> ( vec.i:= []; i:= i + 1 )
; ret vec

]|

func initNatVec() -> %NSKU * nat =
|[ var vec: %NSKU * nat, i: nat = 0
:: i < %NSKU *> ( vec.i:= 0; i:= i + 1 )
; ret vec

]|

func pred(val x,y: ptote) -> bool = |[ ret x.timeIn <= y.timeIn ]|

func inOut(val x: nat, y: nat) -> bool =
|[ ( ret x >= %NBATCH or y >= %NBATCH ) ]|

func inct(val x, y: (ttote, real)) -> bool = |[ ret x.1 < y.1 ]|

func arrangeSubOrd(val arr: 3*[ttote], y: ttote) -> 3*[ttote] =
|[ var i: nat = 0

, ya: 3 * [ttote] = arr, x: ttote
, ls: [(nat, nat)] = []
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, k: nat
:: i < 3

*> ( len(ya.i) > 0
-> x:= hr(ya.i); ls:= ls ++ [(i, len(ya.i))]
; ( y.ord = x.ord and y.seq = x.seq -> ya.i:= ya.i ++ [y]; ret ya

| y.ord /= x.ord and y.seq /= x.seq -> i:= i +1
)

| len(ya.i) = 0 -> ls:= ls ++ [(i, len(ya.i))]; i:= i + 1
)

; ls:= sort(ls, inc1); k:= hd(ls).0
; ya.k:= ya.k ++ [y]; ret ya

]|

func sendlist(val arr: 3*[ttote], nfree: nat, row: nat ) -> [ttote] =
|[ var ya: 3 * [ttote] = arr

, ys: [ttote] = []
, r: nat = row
, ytake: nat

:: ytake:= (%NBATCH min nfree) min (len(ya.0)+len(ya.1)+len(ya.2))
; len(ys) < ytake

*> ( ( len(ya.r) > 0 -> ys:= ys ++ [hd(ya.r)]; ya.r:= tl(ya.r)
| len(ya.r) = 0 -> skip
)

; r:= (r + 1) mod 3
)

; ret ys
]|

func updateYA(val arr: 3*[ttote], nfree: nat, row: nat )
-> (3*[ttote], nat, nat) =

|[ var ya: 3 * [ttote] = arr
, ys: [ttote] = []
, r: nat = row
, ytake: nat

:: ytake:= (%NBATCH min nfree) min (len(ya.0)+len(ya.1)+len(ya.2))
; len(ys) < ytake

*> ( ( len(ya.r) > 0 -> ys:= ys ++ [hd(ya.r)]; ya.r:= tl(ya.r)
| len(ya.r) = 0 -> skip
)

; r:= (r + 1) mod 3
)

; ret (ya, ytake, r)
]|

///////////////////////////////////////////////// WORKSTATION SYSTEM FUNCTIONS

func incSortId( val a, b: (ttote,nat,bool) ) -> bool = |[ ret a.1 <= b.1 ]|

func inc( val a, b: nat ) -> bool = |[ ret a <= b ]|

func qPsUpdatePlus( val q: (nat,nat,bool), ps: [(nat,nat,bool)], i: nat, j: bool )
-> ((nat,nat,bool), [(nat,nat,bool)]) =

|[ var pst: [(nat,nat,bool)] = ps
, qs: [(nat,nat,bool)] = []
, p: (nat,nat,bool)

:: ( i = q.0 -> ret ((i, q.1 + 1, j), ps)
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| i /= q.0 -> skip
; len(pst) > 0

*> ( p:= hd(pst); pst:= tl(pst)
; ( i = p.0 -> qs:= qs ++ [(i, p.1 + 1, j)]

| i /= p.0 -> qs:= qs ++ [p]
)

)
; (q, qs):= qPsUpdate(q, qs)
; ret (q, qs)

)
]|

func qPsUpdate( val q: (nat,nat,bool), ps: [(nat,nat,bool)] )
-> ((nat,nat,bool), [(nat,nat,bool)] ) =

|[ ( q.1 > 0 or not q.2 -> ret (q, ps)
| q.1 = 0 and q.2 -> skip
; ( len(ps) > 0 -> ret (hd(ps), tl(ps))

| len(ps) = 0 -> ret (q, ps)
)

)
]|

func detOutLane(val bottom, length: 3 * nat, currid: nat) -> nat =
|[ var b: 3 * nat = bottom, i: nat = 0

, rs: [(nat, nat)] = []
:: i < 3

*> ( ( b.i = currid -> rs:= rs ++ [(i, length.i)]
| b.i /= currid -> skip
)
; i:= i + 1

)
; ret hd(sort(rs,dec1)).0

]|

func updBottom(val bottom: 3 * nat, f: 3 * [nat]) -> 3 * nat =
|[ var b: 3 * nat = bottom, i: nat = 0
:: i < 3

*> ( ( len(f.i) > 0 -> b.i:= hd(f.i)
| len(f.i) = 0 -> b.i:= 0
)
; i:= i + 1

)
; ret b

]|

func writeColumn(val lane: nat, col, arriving: [nat]) -> string =
|[ var s: string = ""

, as: [nat] = arriving
, cs: [nat] = col
, c: nat
, i: nat = 0
, n: 3*nat = <0, 0, 0>

:: i < 3

*> ( ( len(as) > 0 -> n.i:= hd(as); as:= tl(as)
| len(as) = 0 -> skip
)
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; i:= i + 1
)

; s:= "col_" ++ n2s(lane) ++ ":["
; len(cs) > 0

*> ( c:= hd(cs); cs:= tl(cs)
; s:= s ++ "(’" ++ n2s(c)
; ( c = n.0 -> s:= s ++ "’,0)"

| c = n.1 -> s:= s ++ "’,1)"
| c = n.2 -> s:= s ++ "’,2)"
| c /= n.0 and c /= n.1 and c /= n.2 -> s:= s ++ "’,3)"
)

; ( len(cs) > 0 -> s:= s ++ ","
| len(cs) = 0 -> skip
)

)
; ret s ++ "]"

]|

func detInLane(val top, length: 3 * nat, arriving: [nat], x: nat) -> nat =
|[ var i: nat = 0

, n: nat = 0
, NLane: nat = 3
, arr: [nat] = arriving
, se: [(nat, nat)] = []
, sg: [(nat, nat, nat)] = []

:: len(arr) > 0

*> ( x = hd(arr) -> arr:= []
| x /= hd(arr) -> n:= n + 1; arr:= tl(arr)
)

; i < NLane

*> ( ( x < top.i -> skip
| x = top.i -> se:= se ++ [(i, length.i)]
| x > top.i -> sg:= sg ++ [(i, x - top.i, length.i)]
)
; i:= i + 1

)
; ( len(sg) <= n -> skip

| len(sg) > n -> i:= hd(sort(sg, inc12)).0
; se:= se ++ [(i, length.i)]

)
; ret hd(sort(se, inc1)).0

]|

func dec1(val x, y: (nat, nat)) -> bool =
|[ ( x.1 /= y.1 -> ret x.1 > y.1

| x.1 = y.1 -> ret x.0 < y.0
)

]|

func inc12(val x, y: (nat, nat, nat)) -> bool =
|[ ( x.1 /= y.1 -> ret x.1 < y.1

| x.1 = y.1 -> skip
; ( x.2 /= y.2 -> ret x.2 < y.2
| x.2 = y.2 -> ret x.0 < y.0
)

)
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]|

func inc1(val x, y: (nat, nat)) -> bool =
|[ ( x.1 /= y.1 -> ret x.1 < y.1

| x.1 = y.1 -> ret x.0 < y.0
)

]|

func updArriving(val arriving: [nat], x: nat) -> [nat] =
|[ var as: [nat] = arriving

, bs: [nat] = []
, ar: nat

:: len(as) > 0

*> ( ar:= hd(as); as:= tl(as)
; ( x = ar -> ret bs ++ as
| x /= ar -> bs:= bs ++ [ar]
)

)
]|

func findTTote(val xs: [(ttote, nat, bool)], n: nat)
-> ([(ttote, nat, bool)], (ttote, nat, bool)) =
|[ var ys: [(ttote, nat, bool)] = xs, y: (ttote, nat, bool)

, zs: [(ttote, nat, bool)] = []
:: len(ys) > 0

*> ( y:= hd(ys); ys:= tl(ys)
; ( y.1 /= n -> zs:= zs ++ [y]
| y.1 = n -> ret(zs ++ ys, y)
)

)
]|

func initNWS() -> %NWS * nat =
|[ var i: nat = 0, vec: %NWS * nat
:: i < %NWS

*> ( vec.i:= 0; i:= i + 1 )
; ret vec

]|

func inittsNWS() -> %NWS * [(subord,nat)] =
|[ var i: nat = 0, vec: %NWS * [(subord,nat)]
:: i < %NWS

*> ( vec.i:= []; i:= i + 1 )
; ret vec

]|

101


