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Abstract: Based on independent progressive type-II censored samples from two-parameter Burr-type
XII distributions, various point and interval estimators of δ = P(Y < X) were proposed when the
strength variable was subjected to the step–stress partially accelerated life test. The point estimators
computed were maximum likelihood and Bayesian under various symmetric and asymmetric loss
functions. The interval estimations constructed were approximate, bootstrap-P, and bootstrap-T
confidence intervals, and a Bayesian credible interval. A Markov Chain Monte Carlo approach using
Gibbs sampling was designed to derive the Bayesian estimate of δ. Based on the mean square error,
bias, confidence interval length, and coverage probability, the results of the numerical analysis of
the performance of the maximum likelihood and Bayesian estimates using Monte Carlo simulations
were quite satisfactory. To support the theoretical component, an empirical investigation based on
two actual data sets was carried out.

Keywords: stress–strength reliability; step stress acceleration life test; Burr-type XII distribution;
progressive type-II censoring; Bayesian inference; Monte Carlo simulation

1. Introduction

Stress–strength models are used in critical tasks in many fields, including engineering,
mechanics, computer science, and quality control. Birnbaum [1] proposed the stress–
strength concept, which Birnbaum and McCarty [2] expanded on. The reliability of a
component or system δ with strength X subjected to random stress Y can be defined as the
probability of the strength exceeding the stress, i.e., X > Y. The estimation of a component’s
reliability characteristics is critical in this setup. This aids in evaluating the efficiency of
a product’s operation process and allows us to take precautions to avoid interruptions
in the production process. A lot of work has been carried out in recent years related to
the problem of estimating δ with different sampling schemes and distributions for (X, Y).
Krishna et al. [3] studied the maximum likelihood (ML) and Bayesian estimation of δ
under the assumption that the stress and strength variables followed a generalized inverted
exponential distribution. The estimation of δ, when the distribution was inverted gamma,
was considered by Iranmanesh [4]. Çetinkaya and Genç [5] studied the ML and Bayesian
estimation of δ under the assumption that the stress and strength variables followed a
standard two-sided power distribution. Considering an exponentiated Fréchet distribution,
the ML and Bayesian estimation for δ based on a type-II censoring scheme (CS) was studied
by Nadeb et al. [6]. The topic of estimating δ for various distributions has been the subject
of numerous publications in recent years; see, for instance, [7–11]. A comprehensive review
can be found in Kotz et al. [12].
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Modern technology has led to an increase in product reliability, which makes it difficult
to evaluate items under real-life conditions and increases the cost of collecting adequate
data about product lifetime. The most practical approach to solving this issue is to use
accelerated life tests (ALT), in which test units are put under various levels of stress,
rather than using stress to accelerate failures. The ALT is used to gather sufficient failure
data in a shorter amount of time and to discuss the impact of lifetime and external stress
variables. Either the acceleration factor is a known value in the case of ALT, or there is
a known mathematical model that explains the relationship between lifetime and stress
conditions. However, in some cases, such a life–stress relationship is unknown and cannot
be assumed. As a result, in such instances, partially accelerated life tests (PALTs) are
a suitable criterion for performing life tests to estimate the acceleration factor and life
distribution parameters. PALT experiments are carried out under various use and stress
settings, such as constant and step–stress partial ALTs. In a constant-stress PALT (CSPALT),
each unit is operated at constant stress, under either normal use conditions or accelerated
conditions (see [13–19]). On the other hand, in step–stress PALT (SSPALT), a product
or system is initially exposed to normal (use) conditions for a specified period of time,
and, if it survives, it is subsequently put into service at accelerated conditions until the
experiment ends. SSPALT was studied in the literature by several authors. Akgul et al. [20]
examined classical and Bayesian estimations of SSPALT for the inverse Weibull lifetime
distribution based on type-I censoring. Based on the generalized progressive hybrid
CS, Pandey et al. [21] discussed the estimation procedure for SSPALT. Pathak et al. [22]
considered the estimation problem in SSPALT of Maxwell–Boltzmann distribution in
the presence of progressive type-II censoring with binomial removals. In the presence of
competition, the reliability of high-reliability and long-lifetime product risks were proposed
by Zhang et al. [23].

Bhattacharyya and Soejoeti [24] were the first to investigate such an approach, called
a tampering failure rate model (TFR), in SSPALT, where the change in stress level has a
multiplicative effect on the subsequent hazard rate, i.e., H2(t) = λH1(t), t > 0, λ > 0,
where λ is the acceleration factor. This leads to

F(t) =

{
F1(t), t ≤ τ

F2(t) = 1− (1− F1(τ))
1−λ(1− F1(t))λ, t > τ

where F1(t) = 1− exp{−
∫ t

0 H1(x)dx}, t ≤ τ.
In many reliability and life-testing studies, the observed failure time data of items are

commonly not completely available. In statistical tests involving censored data, reducing
the cost and time involved is crucial. Progressive censoring is one of the censoring tech-
niques that has gained a lot of traction in studies on reliability and life testing. For more
information on this censoring scheme, see Balakrishnan and Aggarwala [25]. A brief
overview of this censoring scheme is given as follows. We assume the experimenters used
N units of each item in the life test. We remove r1 units from the remaining N− 1 surviving
units once the first failure time X1 is collected. When we collect the second failure time
X2, we remove r2 units from the remaining N − 2− r1 surviving units. We repeat this
procedure until the nth failure time Xn is collected and the experiment ends. The remaining
rn = N − r1 − . . .− rn−1 − n units are removed automatically. We then have collected a
progressive type-II censored sample given by X1 < X2 < . . . < Xn under the progressive
censoring scheme of (r1, . . . , rn).

The Burr-type XII distribution was initially described in the literature in 1942, and in
the last 20 years or so, it has drawn a lot of interest because of its numerous applications in
areas such as reliability, failure time modeling, acceptability sampling plans, and other areas.
For instance, see Wingo [26,27], Moore [28], Wu et al. [29], Al-Saiari et al. [30], Kumar [31],
and Ibrahim et al. [32]. Based on acceleration life testing applications, more papers have
discussed using Burr-type XII distribution; Abd-Elfattah et al. [33] used SSPALT with type-I
censoring, Rahman et al. [34] used SSPALT under type-I progressive hybrid censored data,
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Wang et al. [35] discussed CSPALT with competing risks under progressively type-I interval
censoring, and so on.

The novelty of this study is the application of the SSPALT to units with lifetime at
use condition stress assumed to follow a Burr-type XII distribution for estimating stress–
strength model on progressive type-II censored data. Some inferences, such as ML estimates
(MLEs), Bayesian estimates (BEs), and confidence intervals (CIs), are explored for the model
parameters under consideration.

The paper is drafted as follows: Section 2 presents a description of the lifetime model
and the explicit expression of δ. The MLE of δ under SSPALT is derived in Section 3.
In Section 4, we calculate the BEs of δ under the squared error (SE), linear exponential error
(LINEX), and general entropy (GE) loss functions using the Markov Chain Monte Carlo
(MCMC) approach. Various interval estimates of δ are presented in Section 5, including
approximate, bootstrap-P, and bootstrap-T confidence intervals (CIs), and Bayesian credible
interval. An intense simulation technique with various CSs to compare the performance of
estimation methods is employed in Section 6. In Section 7, we examine two real data sets,
to demonstrate the suggested techniques. Finally, we present conclusions and future scope
in Section 8.

2. Model Assumptions and Description

In this section, the reliability δ was derived, where the random variables X and Y
were the independent random variables, of which X denotes the total lifetime of a test
item, such as strength, under SSPALT. The details of the model are introduced, and the
parameters of independent Burr-type XII failure causes and acceleration factor in SSPALT
with progressive type-II censoring are also denoted.

(1) The failure data under normal stress S0 was modeled by Burr-type XII distribution,
which has the below hazard rate function (HRF) and reliability function (RF), respectively,
expressed as follows:

H1(x; α, β1) =
αβ1xα−1

(1 + xα)
, x > 0,

F̄1(x; α, β1) = (1 + xα)−β1 .

 (1)

(2) Based on the TFR model, the effect of switching the stress S0 to the stress S1
at τ is obtained by multiplying the H1(x; α, β1) by an acceleration factor λ ≥ 1. Then,
the H2(x; α, β1, λ) is given as shown:

H2(x; α, β1, λ) =
αβ1λxα−1

(1 + xα)
, x > 0 (2)

and the RF is as follows:

F̄2(x; α, β1, λ) = (1 + τα)−β1(1−λ)(1 + xα)−β1λ, x > 0 (3)

(3) We let strength X, under SSPALT with the probability density function (PDF)
f (.) and the cumulative distribution function (CDF) F(.), and primary stress Y, with PDF
g(.) and CDF G(.), be two independent random variables from Burr (α, β1) and Burr
(α, β2), respectively. Additionally, α was used as a known common shape parameter.
Çetinkaya [36] assumed that partially accelerated life test-implemented stress–strength
reliability estimation could be derived as follows:

δ = P(X > Y) =
∫ τ

0

∫ x

0
f1(x)dG(y)dx +

∫ ∞

τ

∫ x

0
f2(x)dG(y)dx. (4)
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According to Bhattacharyya and Soejoeti [24], the PDF of SSPALT implemented
strength variable X is given by the following:

f (x; α, β1, λ) =

{
f1(x) = αβ1xα−1(1 + xα)−(β1+1), x ≤ τ,
f2(x) = αβ1λxα−1(1 + xα)−(β1λ+1)(1 + τα)−β1(1−λ), x > τ.

(5)

The PDF and the CDF of primary stress Y are given as shown:

g(y; α, β2) = αβ2yα−1(1 + yα)−(β2+1), y > 0,

G(y; α, β2) = 1− (1 + yα)−β2 .

}
(6)

Thus, using (5) and (6), the conventional reliability model δ can be expressed:

δ =
β2

β1 + β2

[
1 +

1− λ

λ + β2/β1
(1 + τα)−(β1+β2)

]
. (7)

Note that the reliability δ depends on the parameters β1 and β2 (see Figure 1).
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Figure 1. The reliability δ.

Figure 1 shows the 3D plot of the reliability stress–strength model with different values
of β1 and β2. These figures indicate that the reliability stress–strength model increases.

We can see that for Burr-type XII distributed stress and strength components (without
any acceleration), (7) equals the reliability for a simple stress–strength system when λ = 1.

We notice that, in this reliability scheme, the system’s reliability increases when the
stress change time τ increases, even when the acceleration factor λ is greater than 1, as in
Figure 2. Moreover, increasing the acceleration factor λ quickly decreases reliability, as
shown in Figure 3.
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Figure 2. Actual δ values with increasing τ points for various λ values in the case of β1 = 0.5,
β2 = 2.5, α = 2.
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Figure 3. Actual δ values with increasing λ points for various τ values in the case of β1 = 0.5,
β2 = 2.5, α = 2.

3. Maximum Likelihood Estimation of δ

In this section, we suppose x1:n:N , . . . , xn:n:N to be a progressively censored sam-
ple of strength, and y1:m:M, . . . , ym:m:M to be a progressively censored sample of primary
stress, under the schemes (N, n, r1, r2, . . . , rn) and (M, m, s1, s2, . . . , sm), respectively. Then,
the likelihood function (LF) of the observed samples in this reliability scheme is given by
the following:

L(ϕ|x, y) = C
nu

∏
i=1

f1(xi|ϕ)(F̄1(xi|ϕ))ri
n

∏
i=nu+1

f2(xi|ϕ)(F̄2(xi|ϕ))ri
m

∏
i=1

g(yi|ϕ)(Ḡ(yi|ϕ))si ,

where

C = c1c2,

c1 = N(N − r1 − 1) . . . (N − r1 − . . .− rn−1 − n + 1),

c2 = M(M− s1 − 1) . . . (M− s1 − . . .− sm−1 −m + 1).

and ϕ = (α, β1, β2) is a set of parameters and xi = xi:n:N to simplify the notation. Based on
the observed data, the LF, according to Çetinkaya [36], is given as follows:

L(ϕ|x, y) = Cαn+mβn
1 βm

2 λn−nu
nu

∏
i=1

xα−1
i (1 + xα

i )
−(β1(ri+1)+1)

n

∏
i=nu+1

xα−1
i (1 + xα

i )
−(β1λ(ri+1)+1)

× (1 + τα)−β1(1−λ)(ri+1)
m

∏
i=1

yα−1
i (1 + yα

i )
−(β2(si+1)+1). (8)
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and xr
1 < . . . < xr

nu < τ < xr
nu+1 < . . . < xr

n. Then, the natural logarithm of the LF (8) is
reduced to the following:

l(ϕ|x, y) ∝ (n + m) ln α + n ln β1 + m ln β2 + (n− nu) ln λ + (α− 1)[
nu

∑
i=1

ln xi

+
n

∑
i=nu+1

ln xi +
m

∑
i=1

ln yi]−
nu

∑
i=1

ψ1(β1, ri) ln(1 + xα
i )−

n

∑
i=nu+1

ψ2(β1, λ, ri) ln(1 + xα
i )

−
n

∑
i=nu+1

(ψ1(β1, ri)− ψ2(β1, λ, ri)) ln(1 + τα)−
m

∑
i=1

ψ3(β2, si) ln(1 + yα
i ), (9)

where

ψ2(β1, λ, ri) = β1λ(ri + 1) + 1. (10)

and ψ1(β1, ri), ψ3(β2, si) are the same as in (10), with λ = 1 and β2, si replaced by β1, ri.
Moreover, α is a known common shape parameter. The log LF l(ϕ|x, y) can be maximized
directly for parameter vector ϕ(β1, β2, λ) to obtain MLEs of β1, β2, and λ. Differentiating
(9) with respect to β1, β2, and λ, respectively, and equating to zero leads to the following:

∂l(ϕ|x, y)
∂β1

=
n
β1
−

nu

∑
i=1

(ri + 1) ln(1 + xα
i )−

n

∑
i=nu+1

λ(ri + 1) ln(1 + xα
i )

−
n

∑
i=nu+1

(1− λ)(ri + 1) ln(1 + τα),

∂l(ϕ|x, y)
∂β2

=
m
β2
−

m

∑
i=1

(si + 1) ln(1 + yα
i ),

∂l(ϕ|x, y)
∂λ

=
n− nu

λ
−

n

∑
i=nu+1

β1(ri + 1) ln(1 + xα
i ) +

n

∑
i=nu+1

β1(ri + 1) ln(1 + τα).



(11)

Then, the derivatives with respect to β1, β2, and λ are reduced to the following:

β̂1 = n/

[
nu

∑
i=1

(ri + 1) ln(1 + xα
i ) +

n

∑
i=nu+1

λ(ri + 1) ln(1 + xα
i ) +

n

∑
i=nu+1

(1− λ)(ri + 1) ln(1 + τα)

]
,

β̂2 = m/

[
m

∑
i=1

(si + 1) ln(1 + yα
i )

]
,

λ̂ = (n− nu)/

[
n

∑
i=nu+1

β1(ri + 1) ln(1 + xα
i )−

n

∑
i=nu+1

β1(ri + 1) ln(1 + τα)

]
.

Replacing β1, β2, and λ with their estimates β̂1, β̂2, and λ̂, respectively, in (7), the MLE
of δ, denoted by δ̂ML, becomes the following:

δ̂ML =
β̂2

β̂1 + β̂2

[
1 +

1− λ̂

λ̂ + β̂2/β̂1
(1 + τα)−(β̂1+β̂2)

]
. (12)

4. Bayesian Analysis of δ

In this section, we focus on the Bayesian estimate of δ with a common and known shape
parameter α. We utilized the Bayesian estimation to estimate δ under various loss func-
tions. The point estimators ϕ̃ were derived from the sample data’s posterior distributions.
The estimator that could minimize the SE loss function for the given prior distribution was
(ϕ̃− ϕ)2, which was the posterior mean; in this case, δ̃SE = 1

A−B ∑A
i=B+1 δ(i) was computed.

The LINEX loss function with parameters ε was described by (eε(ϕ̃−ϕ) − ε(ϕ̃ − ϕ) − 1),



Symmetry 2023, 15, 1183 7 of 22

and it was minimized by δ̃LN = −1
ε [log 1

A−B ∑A
i=B+1 e−εδ(i) ], where the sign of the param-

eter ε represented the direction of asymmetry, whereas the value indicated the degree of
asymmetry. The GE loss function was defined as ( ϕ̃

ϕ )
γ − γ( ϕ̃

ϕ )− 1, and we minimized it

by δ̃GE = [ 1
A−B ∑A

i=B+1(δ
(i))−γ]

−1
γ . A was the number of iterations and B was the burn-

in. More papers discussed Bayesian estimation based on different loss functions, such
as [37,38], and so on.

We assumed, in the Bayesian framework, that the parameters β1, β2, and λ were
independently distributed according to a gamma distribution and a non-informative prior
(NIP) distribution. The joint prior distribution of (β1, β2, λ) was then given by the following:

P(β1, β2, λ) =
βa1−1

1 βa2−1
2 λ−1

Γ(a1)Γ(a2)b
a1
1 ba2

2
e−(

β1
b1

+
β2
b2

)
. (13)

Based on the observed sample (x, y), the joint posterior distribution of β1, β2, and λ
could be written as shown:

P∗(β1, β2, λ|x, y) ∝ αn+mβn+a1−1
1 βm+a2−1

2 λn−nu−1e−(
β1
b1

+
β2
b2

)

×
nu

∏
i=1

xα−1
i (1 + xα

i )
−(β1(ri+1)+1)

n

∏
i=nu+1

xα−1
i (1 + xα

i )
−(β1λ(ri+1)+1)

× (1 + τα)−β1(1−λ)(ri+1)
m

∏
i=1

yα−1
i (1 + yα

i )
−(β2(si+1)+1). (14)

Because the joint posterior distribution of β1, β2, and λ in (14) cannot be calculated
analytically, the Bayesian estimates were generated using the MCMC approach. Thus, we
investigated the MCMC technique, specifically the Gibbs sampler, which is best used on
problems where the marginal distributions of the parameters of interest are difficult to
compute but the conditional distributions of each parameter, given all the other parameters
and data, have good forms. The Gibbs sampler generated a series of samples from the
full conditional probability distribution. The full posterior conditional distributions of
parameters β1, β2, and λ were defined as follows:

P∗(β1|β2, λ) ∝ βn+a1−1
1 e−β1(

1
b1
+∑nu

i=1(ri+1) ln(1+xα
i )+∑n

i=nu+1 λ(ri+1) ln(1+xα
i )+∑n

i=nu+1(1−λ)(ri+1) ln(1+τα))

P∗(β2|β1, λ) ∝ βm+a2−1
2 e−β2(

1
b2
+∑m

i=1(si+1) ln(1+yα
i ))

P∗(λ|β1, β2) ∝ λn−nu−1e−λ(∑n
i=nu+1 β1(ri+1)(ln(1+xα

i )−ln(1+τα)))

The Gibbs algorithm consists of the steps listed below:

• Begin with an initial guess β
(0)
1 , β

(0)
2 , λ(0).

• Set u = 1.

• Generate β
(u)
1 from Γ(n + a1, 1/( 1

b1
+ ∑nu

i=1(ri + 1) ln(1 + xα
i ) + ∑n

i=nu+1 λ(u−1)(ri +

1) ln(1 + xα
i ) + ∑n

i=nu+1(1− λ(u−1))(ri + 1) ln(1 + τα))).

• Generate β
(u)
2 from Γ(m + a2, 1/( 1

b2
+ ∑m

i=1(si + 1) ln(1 + yα
i ))).

• Generate λ(u) from Γ(n− nu, 1/(∑n
i=nu+1 β

(u)
1 (ri + 1)(ln(1 + xα

i )− ln(1 + τα)))).

• compute δ(u) at β
(u)
1 , β

(u)
2 , λ(u).

• Set u = u + 1.
• Repeat steps 2 to 7 K times.

We can calculate an approximation of δSE, δNL, and δGE for a sufficiently large value of K.



Symmetry 2023, 15, 1183 8 of 22

5. Confidence Intervals of δ

In this section, we present an asymptotic confidence interval (ACI) of δ based on the
asymptotic distribution of δ̂. For comparison, another two CIs based on bootstrap methods
and credible interval for the Bayesian estimation method are proposed in this section.

5.1. Approximate Confidence Interval

The Fisher information matrix of ϕ(β1, β2, λ) is D(ϕ) = E(I(ϕ)), where
I(ϕ) = [Iij]i,j=1,2,3 is the observed information matrix, that is,

I(ϕ) = −
(

∂2l(ϕ|x, y)
∂θη∂θζ

)
|
(β̂1,β̂2,λ̂)

, η, ζ = 1, 2, 3, θ1 = β1, θ2 = β2, θ3 = λ.

It is easy to see that

J11 =
−n
β2

1
,

J22 =
−m
β2

2
,

J33 =
−(n− nu)

λ2 ,

J13 = −
n

∑
nu+1

(ri + 1) ln(1 + xα
i )+

n

∑
nu+1

(ri + 1) ln(1 + τα),

J12 = J21 = J23 = J32 = 0.

By applying the delta method, δ̂ = q(β̂1, β̂2, λ̂) is asymptotic and normally distributed,
with mean δ and variance:

D2 =

(
∂δ

∂β1

)2
J−1
11 +

(
∂δ

∂β2

)2
J−1
22 +

(
∂δ

∂λ

)2
J−1
33 + 2

(
∂δ

∂β1

∂δ

∂λ

)
J−1
13 , (15)

where

∂δ

∂β1
= − β2

(β1 + β2)2 +
β2(1− λ)(1 + τα)−(β1+β2)

(β1 + β2)(λβ1 + β2)

(
β2

2 − λβ2
1

(β1 + β2)(λβ1 + β2)
− β1 ln(1 + τα)

)
,

∂δ

∂β2
=

β1
(β1 + β2)2 +

β1(1− λ)(1 + τα)−(β1+β2)

(β1 + β2)(λβ1 + β2)

(
λβ2

1 − β2
2

(β1 + β2)(λβ1 + β2)
− β2 ln(1 + τα)

)
,

∂δ

∂λ
= − β1β2

(λβ1 + β2)2 (1 + τα)−(β1+β2),

and J−1
11 , J−1

22 , J−1
33 and J−1

13 are the (ij)th elements of the inverse of the information matrix I(ϕ).
As a result, a 100% ACI of δ can be created:(

δ̂− z ξ
2

D̂, δ̂ + z ξ
2

D̂
)

, (16)

where z ξ
2

is the upper ξ
2 percentile of the standard normal distribution.

5.2. Bootstrap Confidence Intervals

When the sample observations are insufficiently large, the assumption of asymptotic
normality of MLE may be invalid. ACIs of parameters outlined in the previous subsection
may not be a good choice in such instances. Instead, we considered bootstrap CI for δ
based on Efron’s [39] bootstrapping approach and gave a procedure to achieve percentile
bootstrap (boot-P) CI as well as bootstrap CI based on the t statistic (boot-T).
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Boot-P
The main steps to be followed under this technique are as follows:
Step 1. From the data (x, y), compute β̂1, β̂2 and λ̂, respectively.
Step 2. Generate the progressively censored sample x∗1 , x∗2 , . . . , x∗n from f (x; α, β̂1, λ̂)
and similarly, generate the progressively censored sample y∗1 , y∗2 , . . . , y∗m from g(y; α, β̂2).
Step 3. Examine the bootstrap estimate δ̂∗ of δ.
Step 4. Repeat steps 2–3, Q boot times, to get order values δ̂∗1 , δ̂∗2 , . . . , δ̂∗Q.
Step 5. Let U(x) = P(δ̂∗ ≤ x) be the cumulative distribution function of δ̂∗. Define
δ̂BP(x) = U−1(x) for a given x. The approximate 100(1− ξ)% CI of δ is given by
the following: (

δ̂BP(
ξ

2
), δ̂BP(1−

ξ

2
)

)
. (17)

Boot-T
The boot-P procedure described above is the same for steps 1 through 4.

Step 5. Calculate T̂∗ = (δ̂∗ − δ̂)/
√

Var(δ̂∗), to get order values T̂∗1 ≤ T̂∗2 ≤ . . . ≤ T̂∗Q.
Step 6. The cumulative distribution function of T∗ is defined as V(x) = P(T∗ ≤ x).
For a specific x, the following is defined:

δ̂BT(x) = δ̂ + n−
1
2 V−1(x)

√
V(δ̂). (18)

Then, 100(1− ξ)% boot-T CI is as shown:(
δ̂BT(

ξ

2
), δ̂BT(1−

ξ

2
)

)
. (19)

5.3. Bayesian Credible Confidence Interval

The highest posterior density (HPD) CIs were employed to construct credible CIs of
parameters of this model for the outcomes of the MCMC. According to Chen and Shao [40],
the Bayesian CI (BCI) of the Burr-type XII distribution parameters can be derived by
performing the following steps:

Step 1. Once the posterior sample is generated for δ(i), i = 1, 1, . . . , (A− B), order δ(i) as
δ(1) ≤ δ(2)≤...≤δ(A−B)

, where ε denotes the size of the generated MCMC results.

Step 2. The 100(1− ξ)% BCI of δ is obtained as follows:(
δ̃BC( ξ

2 )
, δ̃BC(1− ξ

2 )

)
. (20)

6. Simulation Study

In order to assess the effectiveness of the various methods mentioned in the preced-
ing sections, we provide some results based on Monte Carlo simulations in this section.
Extensive computations were performed using the statistical software MATHEMATICA
program (9).

Using the Monte Carlo technique, a random sample was created as the initial step in
simulation; these samples were based on progressive type-II CSs from Burr-type XII distri-
bution. Results were obtained from 1000 replications using two different hyperparameters
and various sampling schemes. We acquired the four different CSs that were employed as
shown in Table 1.



Symmetry 2023, 15, 1183 10 of 22

Table 1. Different censoring schemes.

(N, n) CS (N, n) CS

(30, 24)

I (1 ∗ 6, 0 ∗ 18)

(40, 32)

I (1 ∗ 8, 0 ∗ 24)

II (0 ∗ 18, 1 ∗ 6) II (0 ∗ 24, 1 ∗ 8)

III (0 ∗ 23, 6) III (0 ∗ 31, 8)

IV (0 ∗ 30) IV (0 ∗ 40)

(45, 36)

I (1 ∗ 9, 0 ∗ 27)

(60, 48)

I (1 ∗ 12, 0 ∗ 36)

II (0 ∗ 27, 1 ∗ 9) II (0 ∗ 36, 1 ∗ 12)

III (0 ∗ 35, 9) III (0 ∗ 47, 12)

IV (0 ∗ 45) IV (0 ∗ 60)

In Table 1, for convenience notation in progressive censoring, we have used, for exam-
ple, (1 ∗ 3, 0 ∗ 5) to denote the progressive censoring scheme (1, 1, 1, 0, 0, 0, 0, 0). The pro-
gressively censored samples were generated by Balakrishnan and Sandhu [41].

We investigated two sets of parameters (β1, β2) = (0.5, 2.5) (for the first four cases)
and (β1, β2) = (2.5, 1.5) (for the remaining two cases) with different values of λ = (1.5, 4)
and τ = (0.5, 1) to estimate stress–strength reliability. The MLEs and Bayesian estimates
under the SE, LINEX, and GE loss functions (ε = γ = −0.5, 0.5, 1.5) were evaluated in
terms of MSEs and bias, as presented in Tables 2–7. The symbols δ̃LN1, δ̃LN2, δ̃LN3 denote
the specific estimates of δ under LINEX loss function at ε = −0.5, 0.5, 1.5, and according
to the same way for estimates under GE loss functions. Also, we computed 95% ACI,
boot-P, boot-T CIs, and HPD credible intervals, and the results are given in Tables 8 and 9.
There were 1000 bootstrap samples utilized for each replication. The MLE and Bayesian
estimates for (β1, β2, λ) are also obtained when the shape parameter α is known (α = 2).
For Bayesian estimation, we used informative priors with hyperparameters calculated by
equating the mean and variance of gamma priors:

ai =

[
1
E ∑E

j=1 β̂i
j

]2

1
E−1 ∑E

j=1

[
β̂i

j −
1
E ∑E

i=1 β̂i
j

]2 ; i = 1, 2,

bi =

1
E ∑E

j=1 β̂i
j

1
E−1 ∑E

j=1

[
β̂i

j −
1
E ∑E

i=1 β̂i
j

]2 ; i = 1, 2,

where E was the number of simulation iterations. For MCMC techniques, we replicated the
process of the Gibbs algorithm 11,000 times and discarded the first 1000 values as burn-in.

The following final remarks are observed from the simulation results of point estima-
tion, which are shown in Tables 2–7:

(i) When the acceleration factor λ is fixed, the system’s reliability increases with increas-
ing stress change time τ. Furthermore, increasing the acceleration factor quickly
reduces reliability;

(ii) The MSEs for fixed values of n and m decrease as τ increases, which is also quite
obvious, given that increasing the stress change time may result in more failures under
normal operating conditions, because the results are more accurate for large samples;

(iii) The MSEs increase for fixed values of n, m, τ in all cases for the progressive type-II
censoring schemes;

(iv) In all cases, the MSEs associated with stress–strength reliability δ estimates decrease
as the sample sizes increase for all methods of estimation;

(v) The biases and MSEs produced by Bayesian estimates are the lowest;
(vi) Based on our choice of ε = −0.5, the bias of the δ̃LN1 is smallest in all cases;
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(vii) Comparing different CSs, we notice that, in all cases, scheme I provides the smallest biases.

Table 2. AvE (first rows), MSE (second rows), and biases (third rows) of the estimates in the case of
β1 = 0.5, β2 = 2.5, λ = 1.5, τ = 0.5, with actual δ = 0.800513.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.80365 0.76768 0.70743 0.78187 0.79884 0.78024 0.80418 0.82707
0.00314 0.0025 0.01551 0.00182 0.00147 0.00189 0.00162 0.00247
0.00313 −0.03283 −0.09308 −0.01864 −0.00167 −0.02028 0.00366 0.02655

II
0.8031 0.77988 0.71114 0.79357 0.80826 0.79209 0.81531 0.83751

0.00288 0.00148 0.01665 0.00106 0.00107 0.00111 0.00128 0.00252
0.00259 −0.02064 −0.08937 −0.00694 0.00775 −0.00843 0.0148 0.037

III
0.80442 0.78199 0.72558 0.79393 0.80746 0.79314 0.81448 0.83496
0.00284 0.00137 0.01252 0.00102 0.001 0.00106 0.00121 0.00226
0.00391 −0.01852 −0.07493 −0.00659 0.00695 −0.00737 0.01397 0.03445

IV
0.80236 0.78201 0.72363 0.79459 0.80902 0.79353 0.81548 0.83647
0.00256 0.00125 0.01256 0.00095 0.001 0.00096 0.0012 0.00238
0.00184 −0.0185 −0.07688 −0.00592 0.00851 −0.00698 0.01497 0.03595

40, 45 32, 36

I
0.8023 0.77689 0.74561 0.78623 0.79843 0.78593 0.80344 0.82041

0.00213 0.00167 0.00654 0.00134 0.00115 0.00135 0.00121 0.00168
0.00178 −0.02363 −0.05491 −0.01429 −0.00209 −0.01459 0.00292 0.0199

II
0.80514 0.785 0.75997 0.79327 0.80421 0.79317 0.80903 0.82442
0.00216 0.001 0.00436 0.0008 0.00075 0.00081 0.00084 0.00137
0.00463 −0.01551 −0.04054 −0.00724 0.0037 −0.00734 0.00852 0.02391

III
0.80273 0.78481 0.7614 0.79292 0.80385 0.79297 0.80882 0.82421
0.00206 0.00101 0.00389 0.00081 0.00076 0.00082 0.00086 0.00138
0.00222 −0.0157 −0.03912 −0.00759 0.00334 −0.00754 0.0083 0.02369

IV
0.80365 0.78621 0.76234 0.79469 0.80609 0.79454 0.81068 0.82628
0.00183 0.00079 0.00356 0.00064 0.00067 0.00063 0.00075 0.00138
0.00314 −0.0143 −0.03817 −0.00582 0.00558 −0.00597 0.01016 0.02577

60, 60 48, 48

I
0.8048 0.78446 0.77629 0.7897 0.79774 0.7902 0.80148 0.81253

0.00146 0.0009 0.00132 0.00077 0.00068 0.00076 0.00068 0.00085
0.00429 −0.01605 −0.02422 −0.01082 −0.00278 −0.01031 0.00097 0.01202

II
0.80644 0.79261 0.78613 0.79707 0.804 0.79764 0.80754 0.81726
0.00143 0.00056 0.00078 0.00051 0.0005 0.00051 0.00055 0.00079
0.00593 −0.00791 −0.01438 −0.00345 0.00348 −0.00287 0.00703 0.01675

III
0.80503 0.79297 0.78633 0.79756 0.80467 0.79812 0.80823 0.81815
0.00148 0.00055 0.00075 0.0005 0.0005 0.0005 0.00056 0.00082
0.00452 −0.00754 −0.01418 −0.00295 0.00416 −0.0024 0.00772 0.01764

IV
0.80454 0.79052 0.78302 0.79555 0.80332 0.79593 0.80656 0.81696
0.00136 0.00058 0.00082 0.00052 0.00052 0.00051 0.00055 0.00081
0.00403 −0.00999 −0.0175 −0.00496 0.0028 −0.00458 0.00604 0.01644
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Table 3. AvE (first rows), MSE (second rows), and biases (third rows) of the estimates in the case of
β1 = 0.5, β2 = 2.5, λ = 4, τ = 0.5, with actual δ = 0.691111.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.72545 0.68881 0.57907 0.71504 0.73994 0.70313 0.73158 0.76023
0.00541 0.00164 0.01895 0.00231 0.00421 0.0018 0.0034 0.00674
0.03433 −0.0023 −0.11204 0.02393 0.04883 0.01202 0.04047 0.06912

II
0.7293 0.70064 0.59155 0.72577 0.74965 0.71448 0.74185 0.76922
0.00522 0.00134 0.01727 0.00245 0.00474 0.00177 0.00385 0.00753
0.03819 0.00953 −0.09956 0.03466 0.05854 0.02336 0.05074 0.07811

III
0.72978 0.70278 0.60446 0.72515 0.74724 0.71528 0.74013 0.76507
0.00539 0.00159 0.01457 0.00247 0.00442 0.00199 0.00377 0.00686
0.03867 0.01167 −0.08665 0.03404 0.05613 0.02417 0.04902 0.07396

IV
0.72064 0.69252 0.587 0.71818 0.74278 0.70627 0.73354 0.76088
0.00415 0.00122 0.01713 0.00202 0.00405 0.00145 0.0031 0.00637
0.02953 0.00141 −0.10411 0.02707 0.05167 0.01516 0.04243 0.06977

40, 45 32, 36

I
0.72586 0.69447 0.62991 0.71252 0.73299 0.70484 0.7255 0.74624
0.00391 0.00118 0.00808 0.00171 0.00309 0.00138 0.00244 0.0044
0.03475 0.00336 −0.0612 0.02141 0.04188 0.01373 0.03439 0.05512

II
0.72719 0.70672 0.64342 0.72399 0.7436 0.71654 0.73607 0.75558
0.00397 0.00116 0.00674 0.002 0.00372 0.00156 0.00296 0.00515
0.03608 0.01561 −0.04769 0.03288 0.05249 0.02543 0.04496 0.06447

III
0.73081 0.70925 0.64656 0.7263 0.74574 0.71906 0.73855 0.75802
0.00419 0.0012 0.00649 0.00211 0.00391 0.00165 0.00315 0.00544
0.0397 0.01813 −0.04455 0.03519 0.05463 0.02794 0.04744 0.06691

IV
0.72168 0.69975 0.63462 0.71798 0.73857 0.70976 0.72969 0.74965
0.00318 0.00084 0.00733 0.00154 0.00316 0.00113 0.00232 0.00436
0.03057 0.00863 −0.05649 0.02687 0.04746 0.01865 0.03858 0.05854

60, 60 48, 48

I
0.72438 0.70022 0.67471 0.71136 0.72618 0.70683 0.72006 0.73332
0.00315 0.00092 0.00185 0.00127 0.00214 0.00109 0.0017 0.00268
0.03327 0.00911 −0.0164 0.02025 0.03507 0.01572 0.02895 0.04221

II
0.72859 0.71423 0.69064 0.72479 0.7389 0.72041 0.73274 0.74507
0.00338 0.00118 0.0014 0.00178 0.00294 0.0015 0.00238 0.00357
0.03747 0.02312 −0.00047 0.03368 0.04779 0.0293 0.04163 0.05396

III
0.73119 0.71557 0.6892 0.72648 0.74082 0.72197 0.73475 0.74752
0.00353 0.00123 0.00158 0.00187 0.0031 0.00158 0.00253 0.00382
0.04008 0.02446 −0.00192 0.03537 0.04971 0.03086 0.04364 0.05641

IV
0.72237 0.70642 0.68236 0.71731 0.732 0.71262 0.725 0.73739
0.00275 0.00078 0.0014 0.00124 0.00226 0.00101 0.00171 0.00273
0.03126 0.0153 −0.00875 0.0262 0.04089 0.0215 0.03389 0.04627
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Table 4. AvE (first rows), MSE (second rows), and Biases (third rows) of the estimates in the case of
β1 = 0.5, β2 = 2.5, λ = 1.5, τ = 1 with actual δ = 0.825321.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.83577 0.77497 0.77394 0.77557 0.77645 0.77731 0.78213 0.78714
0.01045 0.00506 0.00516 0.00498 0.00483 0.00483 0.00439 0.00399
0.01044 −0.05035 −0.05138 −0.04975 −0.04887 −0.04801 −0.04319 −0.03818

II
0.83516 0.79537 0.79452 0.79568 0.79594 0.79739 0.80154 0.80584
0.00315 0.00247 0.00251 0.00245 0.00241 0.00235 0.00214 0.00195
0.00983 −0.02995 −0.0308 −0.02964 −0.02938 −0.02793 −0.02378 −0.01948

III
0.83327 0.79476 0.79397 0.79506 0.7953 0.79676 0.80088 0.80514
0.00318 0.00277 0.00281 0.00274 0.00269 0.00265 0.00243 0.00224
0.00795 −0.03056 −0.03135 −0.03026 −0.03002 −0.02856 −0.02444 −0.02018

IV
0.83719 0.79439 0.79377 0.79478 0.79532 0.79639 0.80049 0.80472
0.01187 0.00265 0.00268 0.00262 0.00257 0.00253 0.00232 0.00213
0.01186 −0.03094 −0.03155 −0.03054 −0.03 −0.02893 −0.02483 −0.0206

40, 45 32, 36

I
0.83156 0.77897 0.77827 0.77955 0.78051 0.78085 0.78468 0.78861
0.00624 0.00383 0.0039 0.00376 0.00364 0.00366 0.00333 0.00303
0.00623 −0.04635 −0.04705 −0.04577 −0.04481 −0.04447 −0.04064 −0.03671

II
0.83446 0.80034 0.79995 0.80058 0.80088 0.80184 0.8049 0.80803
0.00914 0.00167 0.00168 0.00165 0.00163 0.00159 0.00146 0.00134

0.009139 −0.02498 −0.02537 −0.02474 −0.02444 −0.02348 −0.02042 −0.01729

III
0.83475 0.7999 0.79949 0.80017 0.80053 0.80141 0.80449 0.80764
0.00943 0.00176 0.00178 0.00174 0.00172 0.00168 0.00155 0.00142
0.00942 −0.02542 −0.02583 −0.02515 −0.02479 −0.02391 −0.02083 −0.01768

IV
0.83273 0.79584 0.7953 0.79629 0.79703 0.79745 0.80072 0.80406
0.00741 0.00206 0.00209 0.00203 0.00198 0.00197 0.0018 0.00165
0.0074 −0.02948 −0.03002 −0.02903 −0.02829 −0.02787 −0.0246 −0.02126

60, 60 48, 48

I
0.83085 0.78292 0.78268 0.78311 0.78346 0.78413 0.78659 0.7891
0.00553 0.00276 0.00278 0.00273 0.0027 0.00265 0.00246 0.00227
0.00552 −0.04241 −0.04264 −0.04221 −0.04187 −0.04119 −0.03873 −0.03622

II
0.8305 0.80155 0.80147 0.80161 0.80165 0.80254 0.80453 0.80655
0.00518 0.00122 0.00122 0.00121 0.00121 0.00117 0.00108 0.001
0.00517 −0.02377 −0.02385 −0.02371 −0.02367 −0.02278 −0.02079 −0.01877

III
0.83198 0.79789 0.79778 0.79797 0.79807 0.79893 0.80102 0.80315
0.00666 0.00154 0.00155 0.00154 0.00153 0.00149 0.00138 0.00128
0.00665 −0.02743 −0.02754 −0.02735 −0.02725 −0.02639 −0.0243 −0.02217

IV
0.83397 0.7994 0.79918 0.79961 0.79996 0.80045 0.80257 0.80471
0.00865 0.00142 0.00143 0.00141 0.00139 0.00137 0.00127 0.00117
0.00864 −0.02592 −0.02614 −0.02571 −0.02536 −0.02487 −0.02275 −0.02061
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Table 5. AvE (first rows), MSE (second rows), and biases (third rows) of the estimates in the case of
β1 = 0.5, β2 = 2.5, λ = 4, τ = 1, with actual δ = 0.798611.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.80304 0.7564 0.75143 0.75832 0.76036 0.75858 0.76312 0.76793
0.00443 0.0037 0.00402 0.00356 0.00339 0.00352 0.00317 0.00284
0.00442 −0.04221 −0.04718 −0.04029 −0.03825 −0.04003 −0.03549 −0.03068

II
0.80656 0.77679 0.77177 0.77845 0.77984 0.77849 0.78205 0.78581
0.00795 0.00197 0.00215 0.00191 0.00184 0.00189 0.00175 0.00163
0.00794 −0.02182 −0.02684 −0.02016 −0.01877 −0.02012 −0.01657 −0.0128

III
0.80741 0.77083 0.76609 0.77238 0.77365 0.77259 0.77627 0.78018
0.0088 0.00253 0.00276 0.00245 0.00236 0.00243 0.00224 0.00207
0.00879 −0.02778 −0.03253 −0.02623 −0.02496 −0.02602 −0.02234 −0.01843

IV
0.80911 0.77154 0.76632 0.77357 0.7759 0.77362 0.77792 0.78243
0.0105 0.00242 0.00258 0.00235 0.00224 0.00232 0.00212 0.00196
0.01049 −0.02708 −0.03229 −0.02504 −0.02272 −0.02499 −0.02069 −0.01618

40, 45 32, 36

I
0.80478 0.75956 0.75679 0.76113 0.76322 0.76133 0.76498 0.76877
0.00616 0.00289 0.00307 0.00278 0.00262 0.00275 0.00249 0.00225
0.00616 −0.03905 −0.04182 −0.03748 −0.03539 −0.03728 −0.03363 −0.02984

II
0.80421 0.77203 0.76877 0.77369 0.77573 0.77362 0.7769 0.78032
0.0056 0.00185 0.00198 0.00178 0.00169 0.00176 0.00161 0.00147
0.00559 −0.02659 −0.02984 −0.02492 −0.02289 −0.02499 −0.02171 −0.01829

III
0.80422 0.77258 0.76944 0.7742 0.77618 0.7741 0.77724 0.78051
0.00561 0.00171 0.00185 0.00164 0.00154 0.00163 0.00148 0.00135
0.0056 −0.02604 −0.02917 −0.02441 −0.02243 −0.02451 −0.02137 −0.0181

IV
0.80383 0.7735 0.7707 0.77513 0.77738 0.77512 0.77846 0.7819
0.00522 0.00171 0.00181 0.00165 0.00156 0.00163 0.00149 0.00136
0.00521 −0.02512 −0.02791 −0.02348 −0.02123 −0.02349 −0.02015 −0.01671

60, 60 48, 48

I
0.80487 0.75805 0.75668 0.75904 0.76052 0.75929 0.76181 0.76441
0.00626 0.00263 0.00272 0.00255 0.00244 0.00253 0.00234 0.00215
0.00625 −0.04056 −0.04193 −0.03957 −0.03809 −0.03933 −0.0368 −0.03421

II
0.80127 0.7747 0.77333 0.77559 0.77678 0.77569 0.77772 0.77981
0.00266 0.00127 0.00133 0.00124 0.00119 0.00123 0.00114 0.00105
0.00265 −0.02391 −0.02528 −0.02302 −0.02183 −0.02292 −0.02089 −0.0188

III
0.80532 0.77473 0.77358 0.77549 0.77652 0.77562 0.77746 0.77934
0.00671 0.00125 0.0013 0.00122 0.00117 0.00121 0.00113 0.00105
0.0067 −0.02388 −0.02503 −0.02312 −0.0221 −0.02299 −0.02115 −0.01927

IV
0.80193 0.77454 0.77335 0.77543 0.77678 0.77552 0.77752 0.77956
0.00332 0.00122 0.00127 0.00119 0.00113 0.00117 0.00109 0.001
0.00331 −0.02408 −0.02526 −0.02318 −0.02183 −0.02309 −0.02109 −0.01905
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Table 6. AvE (first rows), MSE (second rows), and biases (third rows) of the estimates in the case of
β1 = 2.5, β2 = 1.5, λ = 1.5, τ = 0.5, with actual δ = 0.338429.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.35857 0.28596 0.27559 0.29569 0.31368 0.28912 0.29584 0.30311
0.02014 0.00565 0.00697 0.00461 0.00318 0.00539 0.0049 0.00447
0.02014 −0.05247 −0.06284 −0.04274 −0.02475 −0.04931 −0.04259 −0.03531

II
0.36856 0.3051 0.29623 0.31341 0.32887 0.30829 0.3151 0.32254
0.03013 0.00337 0.00412 0.00282 0.00217 0.00321 0.00293 0.00271
0.03013 −0.03333 −0.0422 −0.02502 −0.00956 −0.03014 −0.02332 −0.01589

III
0.36739 0.30851 0.29996 0.31657 0.33162 0.31176 0.31867 0.32621
0.02896 0.00291 0.00355 0.00243 0.0019 0.00275 0.00249 0.0023
0.02896 −0.02991 −0.03847 −0.02186 −0.00681 −0.02667 −0.01976 −0.01222

IV
0.36428 0.30133 0.29273 0.3095 0.32478 0.30427 0.31043 0.31698
0.02585 0.00357 0.00436 0.00296 0.00218 0.0034 0.0031 0.00286
0.02585 −0.0371 −0.0457 −0.02893 −0.01365 −0.03416 −0.028 −0.02145

40, 45 32, 36

I
0.3603 0.29052 0.28275 0.29796 0.312 0.29308 0.29844 0.30411
0.02187 0.00403 0.00489 0.00331 0.00228 0.00381 0.00341 0.00305
0.02187 −0.04791 −0.05568 −0.04047 −0.02643 −0.04535 −0.03999 −0.03432

II
0.36745 0.31058 0.30418 0.31672 0.32843 0.31313 0.31847 0.32416
0.02902 0.00218 0.00261 0.00185 0.00142 0.00206 0.00185 0.00169

0.029021 −0.02785 −0.03424 −0.0217 −0.01 −0.0253 −0.01996 −0.01427

III
0.37124 0.30712 0.30034 0.31365 0.32605 0.30973 0.3152 0.32101
0.03281 0.00266 0.00318 0.00224 0.0017 0.00252 0.00228 0.00208
0.03281 −0.0313 −0.03809 −0.02478 −0.01238 −0.02869 −0.02323 −0.01741

IV
0.35744 0.30607 0.30008 0.31186 0.32293 0.30829 0.31288 0.31769
0.01901 0.00235 0.00281 0.00198 0.00146 0.00223 0.00201 0.00183
0.01901 −0.03236 −0.03835 −0.02657 −0.0155 −0.03014 −0.02555 −0.02074

60, 60 48, 48

I
0.3572 0.29522 0.2901 0.3002 0.30978 0.29698 0.3006 0.30436
0.01877 0.003 0.0035 0.00257 0.00189 0.00287 0.00261 0.00236
0.01877 −0.04321 −0.04833 −0.03823 −0.02865 −0.04145 −0.03783 −0.03407

II
0.3674 0.31564 0.31162 0.31957 0.32719 0.31732 0.32079 0.3244
0.02898 0.00138 0.00159 0.00121 0.00095 0.00131 0.00119 0.00108
0.02897 −0.02278 −0.02681 −0.01885 −0.01124 −0.0211 −0.01764 −0.01403

III
0.36755 0.31752 0.31366 0.32129 0.3286 0.31915 0.32251 0.32601
0.02912 0.00122 0.00141 0.00107 0.00085 0.00116 0.00105 0.00096
0.02912 −0.02091 −0.02477 −0.01714 −0.00983 −0.01928 −0.01592 −0.01242

IV
0.35849 0.30975 0.30579 0.31362 0.32112 0.31124 0.3143 0.31745
0.02006 0.00176 0.00202 0.00154 0.0012 0.00169 0.00155 0.00142
0.02006 −0.02868 −0.03264 −0.02481 −0.01731 −0.02719 −0.02413 −0.02098
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Table 7. AvE (first rows), MSE (second rows), and biases (third rows) of the estimates in the case of
β1 = 2.5, β2 = 1.5, λ = 4, τ = 0.5, with actual δ = 0.274826.

MLE Bayes

N, M n, m Scheme δ̂ML δ̃SE δ̃LN1 δ̃LN2 δ̃LN3 δ̃GE1 δ̃GE2 δ̃GE3

30, 30 24, 24

I
0.33544 0.26336 0.25365 0.27239 0.28912 0.26597 0.27157 0.27769
0.06061 0.0025 0.00291 0.00228 0.00232 0.00249 0.00251 0.0026
0.06061 −0.01147 −0.02118 −0.00243 0.01429 −0.00885 −0.00326 0.00286

II
0.35682 0.29601 0.28759 0.30394 0.31872 0.29898 0.30534 0.31233
0.08199 0.00231 0.00209 0.00265 0.00362 0.00247 0.00286 0.00338
0.08199 0.02119 0.01276 0.02911 0.04389 0.02416 0.03052 0.0375

III
0.35933 0.29995 0.29201 0.30745 0.32148 0.30284 0.30904 0.31585
0.08451 0.0024 0.00213 0.00277 0.00376 0.00257 0.00298 0.00351
0.0845 0.02513 0.01718 0.03262 0.04665 0.02802 0.03421 0.04102

IV
0.33192 0.27643 0.26836 0.284 0.29814 0.27878 0.28374 0.28907
0.0571 0.00199 0.00209 0.00201 0.00236 0.00203 0.00216 0.00235

0.05709 0.0016 −0.00646 0.00918 0.02331 0.00395 0.00891 0.01424

40, 45 32, 36

I
0.33328 0.26688 0.25931 0.27409 0.28772 0.26909 0.27375 0.27873
0.05846 0.00195 0.00218 0.00183 0.00188 0.00194 0.00197 0.00205
0.05845 −0.00795 −0.01552 −0.00073 0.0129 −0.00573 −0.00108 0.0039

II
0.35429 0.29266 0.2859 0.29916 0.31149 0.29513 0.30031 0.30585
0.07947 0.00205 0.0019 0.00227 0.00294 0.00216 0.00244 0.00279
0.07946 0.01784 0.01108 0.02433 0.03667 0.0203 0.02549 0.03103

III
0.35432 0.29819 0.29167 0.30446 0.31642 0.30064 0.3058 0.31131
0.07949 0.00181 0.00159 0.00211 0.00289 0.00194 0.00225 0.00264
0.07949 0.02336 0.01684 0.02964 0.04159 0.02582 0.03098 0.03649

IV
0.32977 0.28007 0.27429 0.28562 0.29621 0.28191 0.28575 0.28979
0.05495 0.00133 0.00133 0.0014 0.00169 0.00137 0.00147 0.00161
0.05494 0.00524 −0.00054 0.0108 0.02138 0.00709 0.01093 0.01497

60, 60 48, 48

I
0.33035 0.26995 0.26518 0.27458 0.2835 0.27139 0.27436 0.27747
0.05553 0.00115 0.00125 0.0011 0.00113 0.00115 0.00116 0.00118
0.05552 −0.00488 −0.00965 −0.00024 0.00867 −0.00344 −0.00046 0.00265

II
0.35478 0.30163 0.29759 0.30557 0.31322 0.30321 0.30648 0.30989
0.07995 0.00156 0.00138 0.00177 0.00227 0.00165 0.00186 0.00209
0.07995 0.0268 0.02277 0.03075 0.03839 0.02838 0.03165 0.03507

III
0.35547 0.30028 0.29608 0.30438 0.31231 0.3019 0.30525 0.30875
0.08064 0.00158 0.00141 0.00179 0.00228 0.00167 0.00187 0.00211
0.08064 0.02545 0.02126 0.02955 0.03748 0.02707 0.03042 0.03392

IV
0.33159 0.28493 0.28122 0.28855 0.29558 0.28616 0.2887 0.29133
0.05677 0.00084 0.00079 0.00092 0.00114 0.00087 0.00095 0.00104
0.05676 0.0101 0.00639 0.01372 0.02075 0.01134 0.01387 0.0165
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Table 8. Average length and coverage probability between practice of δ based on 95% ACI, boot-P,
boot-T, and HPD confidence intervals in the case of β1 = 0.5, β2 = 2.5, with different values of λ, τ.

ACI Boot CI Credible CI

τ λ N, M n, m Scheme ACI Boot-P Boot-T HPD

0.5

1.5

30, 30 24, 24

I 0.62876(100) 0.14303(91.7) 0.19203(99.4) 0.15883(96.3)

II 0.62596(100) 0.15865(93) 0.22154(99.6) 0.16522(98.7)

III 0.61451(99.9) 0.1588(93) 0.21752(99.8) 0.16329(99.2)

IV 0.6086(100) 0.15017(92.9) 0.20528(99.7) 0.15148(98.8)

40, 45 32, 36

I 0.52575(100) 0.14578(95.2) 0.17757(100) 0.14744(97.1)

II 0.52725(100) 0.13618(92.8) 0.17589(99.8) 0.13976(99.1)

III 0.52392(100) 0.13644(92.8) 0.17445(99.9) 0.13928(99)

IV 0.51233(100) 0.13095(94.1) 0.16432(100) 0.13022(99.2)

60, 60 48, 48

I 0.42447(100) 0.1256(96.4) 0.14473(100) 0.12105(97.6)

II 0.41055(100) 0.12046(96.9) 0.13898(100) 0.11528(99.2)

III 0.41068(99.9) 0.12016(96.1) 0.13906(99.8) 0.11496(99)

IV 0.41425(100) 0.11412(95.4) 0.1344(99.9) 0.10944(98.5)

4

30, 30 24, 24

I 0.85167(100) 0.22311(100) 0.2898(99.5) 0.20027(97.5)

II 0.85072(100) 0.2046(95.6) 0.28534(98.4) 0.19325(97.4)

III 0.85551(100) 0.20413(94) 0.28725(99.7) 0.19716(97.6)

IV 0.82013(99.9) 0.19284(94.6) 0.25698(99.8) 0.18314(97.2)

40, 45 32, 36

I 0.72032(99.9) 0.18518(99.6) 0.22925(99.7) 0.17094(97.3)

II 0.68678(100) 0.17134(93.7) 0.21582(99.2) 0.16394(95.7)

III 0.70597(100) 0.17013(92.4) 0.22107(99.5) 0.16322(95.3)

IV 0.68907(100) 0.16181(94.5) 0.2028(99.9) 0.15342(96.5)

60, 60 48, 48

I 0.56275(100) 0.15905(99.9) 0.18184(99.4) 0.14438(96.3)

II 0.54705(100) 0.15013(95.5) 0.17507(98) 0.13821(92.4)

III 0.54484(100) 0.15006(95.6) 0.17388(99) 0.14001(91.7)

IV 0.55732(100) 0.14081(95.3) 0.16733(99.6) 0.12749(95)

1 1.5

30, 30 24, 24

I 0.30378(97.2) 0.18596(89.9) 0.23844(99.1) 0.17734(81.3)

II 0.29038(96.9) 0.17622(89.6) 0.22647(99.2) 0.16213(91.4)

III 0.28429(96.6) 0.1782(90.6) 0.22317(99.2) 0.16215(91.2)

IV 0.27861(98.6) 0.16946(89.1) 0.21365(99.7) 0.15571(89.7)

40, 45 32, 36

I 0.25313(97.1) 0.16179(92.5) 0.1935(99.8) 0.15152(80.9)

II 0.25181(97.9) 0.15153(89.9) 0.18908(99.1) 0.13525(91.8)

III 0.24732(97) 0.15391(91.9) 0.18622(98.6) 0.13474(91)

IV 0.23648(97.8) 0.1482(91.2) 0.17839(99.8) 0.13322(88.1)

60, 60 48, 48

I 0.21473(97.7) 0.13446(91.7) 0.16286(97.6) 0.12629(76.9)

II 0.20143(97.9) 0.12994(92.8) 0.15393(98.7) 0.1118(90.4)

III 0.20445(97.5) 0.12899(92.5) 0.15547(98.1) 0.11485(87.4)

IV 0.19157(97.8) 0.1244(92.4) 0.14424(99) 0.10912(86.6)
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Table 8. Cont.

ACI Boot CI Credible CI

τ λ N, M n, m Scheme ACI Boot-P Boot-T HPD

4

30, 30 24, 24

I 0.36266(98.4) 0.20674(91.9) 0.26575(99.6) 0.18585(88.3)

II 0.35083(98.4) 0.1982(92.4) 0.25439(99.5) 0.17245(95)

III 0.34698(97.9) 0.19936(93.3) 0.25153(99.8) 0.17788(93.8)

IV 0.32504(98.2) 0.18731(90.5) 0.22954(99.4) 0.16626(93.4)

40, 45 32, 36

I 0.28357(99) 0.17888(95.3) 0.19888(100) 0.15628(88.7)

II 0.28444(98.4) 0.16945(93.4) 0.19829(99.7) 0.14911(92.7)

III 0.28528(99) 0.16907(92.6) 0.19956(100) 0.1472(93)

IV 0.25981(98.7) 0.16404(95.6) 0.17922(99.9) 0.13877(91.4)

60, 60 48, 48

I 0.24685(98.7) 0.1491(92.2) 0.17277(100) 0.13266(81.7)

II 0.22962(98.7) 0.14687(96) 0.16149(100) 0.1252(92.2)

III 0.23619(98.2) 0.14522(93.9) 0.16471(99.7) 0.12176(93.1)

IV 0.21462(97.5) 0.13968(97.2) 0.14941(99.8) 0.11376(90.4)

Table 9. Average length and coverage probability between practice of δ based on 95% ACI, boot-P,
boot-T, and HPD confidence intervals in the case of β1 = 2.5, β2 = 1.5, with different values of λ, τ.

ACI Boot CI Credible CI

τ λ N, M n, m Scheme ACI Boot-P Boot-T HPD

0.5

1.5

30, 30 24, 24

I 0.42491(99.5) 0.21747(100) 0.2288(99.5) 0.1847(83.3)

II 0.41217(99.4) 0.20464(99.8) 0.2106(99.8) 0.18862(93.1)

III 0.41156(99.8) 0.20357(99.6) 0.20821(99.8) 0.18748(94.1)

IV 0.39254(99.8) 0.19592(100) 0.20748(99.8) 0.16894(86.3)

40, 45 32, 36

I 0.3673(99.7) 0.18044(100) 0.18835(99.6) 0.15753(84.6)

II 0.35178(99.9) 0.16727(98.7) 0.17088(99.7) 0.15926(94.2)

III 0.35531(99.7) 0.16728(98.9) 0.17188(99.9) 0.15985(90.2)

IV 0.33314(100) 0.16162(99.9) 0.16678(100) 0.14242(90.6)

60, 60 48, 48

I 0.30092(99.9) 0.15276(100) 0.15648(99.9) 0.13319(81.5)

II 0.29131(99.8) 0.14322(99.1) 0.14583(99.8) 0.13335(94)

III 0.29132(99.6) 0.14343(99.5) 0.14568(99.7) 0.13446(96.3)

IV 0.27465(99.7) 0.13736(100) 0.14064(99.9) 0.12084(87.7)

4

30, 30 24, 24

I 0.39444(99.4) 0.22164(99.9) 0.23749(100) 0.16768(92.3)

II 0.40071(98.9) 0.2121(89.4) 0.21785(98.3) 0.18183(94.8)

III 0.40213(99) 0.21089(87.1) 0.21765(98.9) 0.18174(94)

IV 0.35706(99.4) 0.19898(99.9) 0.2094(100) 0.15736(93.4)

40, 45 32, 36

I 0.33459(99.3) 0.18275(100) 0.19217(100) 0.14476(92.4)

II 0.34108(98.5) 0.17394(51.6) 0.17786(90.3) 0.15308(91.5)

III 0.34028(98.8) 0.17363(47.7) 0.17584(86.1) 0.15506(93.3)

IV 0.30222(99.8) 0.16432(99.6) 0.16938(99.8) 0.13306(94.7)

60, 60 48, 48

I 0.27599(99.3) 0.15545(98.7) 0.1598(100) 0.12247(93.3)

II 0.28222(95.7) 0.14848(8.4) 0.15125(48.8) 0.12922(89.6)

III 0.28283(96.3) 0.14847(9.5) 0.15143(50.7) 0.13015(89.5)

IV 0.24995(98.9) 0.13938(92.5) 0.14319(99.6) 0.11203(95.4)



Symmetry 2023, 15, 1183 19 of 22

The following final remarks are observed from the simulation results of interval
estimation, which are shown in Tables 8 and 9:

(i) In all cases, the length of the CI of stress–strength reliability δ estimates reduces as
sample size increases, for all estimating methods;

(ii) In all cases, the MLE has a bigger ALCI, whereas the Bayes estimators have an, on
average, smaller size of the confidence interval;

(iii) The HPD and bootstrap intervals have the shortest average lengths, and the asymptotic
intervals are the second best;

(iv) WBoot-P intervals outperform Boot-T intervals.

7. Data Analysis

In this section, we examine two real-world data sets and show how the proposed
methods can be applied in practice.

7.1. Data I

Zimmer et al. [42] and Lio et al. [43] tested both datasets for the Burr-type XII reliability
analysis. Lio et al. [43] investigated the model’s validity for both datasets and observed
that the Burr-type XII distribution fits both datasets quite well. These datasets are listed in
Tables 10 and 11.

Table 10. Times (in minutes) to breakdown of an insulating fluid at voltage of 34 kV (Strength Data—X).

0.19 0.78 0.96 0.31 2.78 3.16 4.15 4.67 4.85 6.50
7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Table 11. Lifetime (in months) to first failure of 20 electric carts (Stress Data—Y).

0.9 1.5 2.3 3.2 3.9 5.0 6.2 7.5 8.3 10.4
11.1 12.6 15.0 16.3 19.3 22.6 24.8 31.5 38.1 53.0

We notice that MLE of δ and its corresponding ACI are computed as δ̂ML = 0.46866 and
(0.30675, 0.63057), respectively, with length 0.32383. Moreover, the Bayes estimation of δ un-
der different various loss functions are computed suitably as δ̃SE = 0.48508, δ̃LN1 = 0.48048,
δ̃LN2 = 0.48781, δ̃LN3 = 0.49123, δ̃GE1 = 0.48591, δ̃GE2 = 0.48858, and δ̃GE3 = 0.49435.
The corresponding 95% HPD credible interval is obtained as (0.33828, 0.64192), with length
0.30364. Figure 4 shows δ’s histogram and 11,000 MCMC values.
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Figure 4. MCMC output and histogram of δ for Data I.

7.2. Data II

For example purposes, the analysis of two real datasets is described in this section.
The breaking strengths of jute fiber at two different gauge lengths are displayed in Tables 12
and 13. Xia et al. [44] employed these two datasets. Also, more papers used this data to
estimate stress–strength reliability by using different models, such as [45,46]. First, it was
determined whether or not these datasets could be analysed using the exponential distribution.
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Table 12. Breaking strength of jute fiber of gauge length 20 mm (Stress Data—Y).

71.46 419.02 284.64 585.57 456.6 113.85 187.85 688.16 662.66 45.58
578.62 756.7 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.7
547.44 116.99 375.81 581.6 119.86 48.01 200.16 36.75 244.53 83.55

Table 13. Breaking strength of jute fiber of gauge length 10 mm (Strength Data—X).

693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16
671.49 183.16 257.44 727.23 291.27 101.15 376.42 163.4 141.38 700.74
262.9 353.24 422.11 43.93 590.48 212.13 303.9 506.6 530.55 177.25

We notice that MLE of δ and its corresponding ACI are computed as δ̂ML = 0.0.58164 and
(0.47396, 0.77853), respectively, with length 0.30457. Moreover, the Bayes estimation of δ un-
der different various loss functions are computed suitably as δ̃SE = 0.63702, δ̃LN1 = 0.63669,
δ̃LN2 = 0.70024, δ̃LN3 = 0.70512, δ̃GE1 = 0.63811, δ̃GE2 = 0.64747, and δ̃GE3 = 0.67762.
The corresponding 95% HPD credible interval is obtained as (0.53927,0.94122), with length
0.40195. Figure 5 shows δ’s histogram and 11,000 MCMC values.
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Figure 5. MCMC output and histogram of δ for Data II.

8. Conclusions

The estimation of the stress–strength parameter, when the strength variable is sub-
jected to the SSPALT for Burr-type XII under progressive type-II censoring, is discussed in
this study. It can be seen that the MLE of δ is derived in its closed form. We also obtained the
observed Fisher information matrix in order to calculate the asymptotic confidence interval.
Furthermore, two bootstrap confidence intervals were provided, and their performance
was found to be rather excellent. The Gibbs sampling technique can be used to obtain the
Bayesian estimate of δ and the associated credible interval. In terms of biases and MSEs,
the MLE performs very well in comparison to the Bayesian estimator. We find that Bayesian
estimates have the lowest biases and MSEs. Monte Carlo simulations and data analysis are
used to evaluate the performance of the various estimates. The real example demonstrates
how the proposed approach may be utilized to evaluate the reliability of stress–strength
using the Burr-type XII distribution.

This research has the potential to be used for reliability theory and censored data
analysis. More research in this area can be performed by expanding the progressive
censored model to the progressive hybrid and adaptive progressive hybrid censored models,
employing alternative accelerated life test models.
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