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1. INTRODUCTION

1.1 Background. The Department of Defense Explosives Safety Board

(DDESB) has as a part of its mission the characterization of airblast

hazards for determining quantity-distance (Q-D) standards (airblast
effects) for ordnance. The research effort reported here deals with the

approximate Q-D standards to be applied when there are explosions of

munitions stored underground. A survey of a large number of model

experiments reported in the literature indicates a rather large error band

in the data. This is reflected in Q-D standards that may be overly
conservative.

1.2 Objectives. The general objective of the research sponsored by

DDESB here is to develop a comprehensive database and analytical models for

airblast effects from ordnance. In particular, immediate objectives are:

a) to conduct, analyze, and report shock tube tests simulating explosions
of munitions in underground chamber/tunnel storage facilities and compare

the results with empirical models for external airblast effects; b) modify
the Internal Blast Damage Mechanisms Computer Program (INBLAST) computer

code 2 to simulate blast wave propagation down tunnels; c) conduct scale
model tunnel tests to improve the empirical model for external airblast
effects; anid d) to propose improved Q-D standards (airblast effects) for

underground storage of munitions.

2. TEST PROCEDURES

Two types of tests were designed to meet the desired objectives. A

smooth-walled steel pipe chamber/tunnel model of 1:50 scale was constructed

and operated as a converging shock tube with a helium driver to simulate a

TNT explosive. The second test was with a similar chamber/tunnel 3
configuration but was operated with primarily PRIMACORD (PETN) explosive.

The tests are described in delail in the sections below.

2.1 Shock Tube Model. The 1:50 scale shock tube model is shown

sketched in Figure 1. A straight configuration with a single area change
was chosen for simplicity. Construction was of thick smooth-walled steel

pipes and, since it was to be operated indoors, was terminated with a dump

tank. Pertinent dimensions and ratios are listed on Figure 1. Quartz

pressure transducers4 were mounted along the tunnel section to monitor the
airblast wave traveling in the tunnel. Transducers were placed at

locations of 20 to 45 tunnel diameters. Helium gas was used in the driver

for two reasons: a) to enhance the airblast wave in the tunnel for a given

driver pressure; and b) to obtain a higher sound velocity ratio in the

driver chamber to more nearly simulate the chamber mixture from the real

case of an explosion of munitions. The comparison is to TNT in this case.

1
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Diaphragms were installed at the converging area from the driver
chamber to the tunnel. Mylar, aluminum, and copper diaphragms were used to
contain the driver chamber pressure until self-rupture occurred. One set 0

of pressure-time records was obtained without tunnel baffles and a second
set with installed baffles, as indicated on Figure 1.

The objective of the baffle study was to determine the feasibility of

using baffles in tunnels to attenuate the blast.

2.2 Field Model. The model used for the shock tube tests was modified

slightly and moved to one of the U.S. Army Ballistic Research Laboratory's
(BRL's) outdoor ranges. The dump tank had been removed so the blast would
now exit from the open tunnel. Pressure transducers were mounted in ground

baffles on blast radials located at 00, h50 , 900, and 1350 from the tunnel

exit - 0 being defined as the long axis of the tunnel. Other transducers
were placed in the chamber and the tunnel.

Ground distances for transducer stations were chosen so as to record
equal predicted pressures on all blast lines at corresponding stations.
The field layout is shown in Figure 2. Photographs of the test site and
charge centering device are given in the Results section. The PRIMACORD
was cut in lengths, bundled, and centered in a tube within the driver
chamber to give the desired loading density. This corresponds to a
distributed storage of munitions in the chamber of an underground storage I
facility. Detonation was from the closed-chamber end by means of a Type
2023 detonator. A single charge of C-h was placed and detonated near the •
center of the chamber. in Tests 1, 2, 3, and 4 the charges were 0.03320
kg, 0.06337 kg, 0.13585 kg, and 0.31697 kg of PETN, respectively. On Test .

5, the charge was 0.3670 kg of C-4 explosive.

Results of both sets of experiments are given in the Results section
below. •

2.3 Instrumentation. Standard recording instrumentation was used in
both sets of experiments. The shock tube tests needed only a few channels,

so they were recorded with a digitizing oscilloscope. The field tests
required more channels of data, so those shots were recorded with two
analog tape recorders. Data reduction procedures were very similar. 0
Figure 3 shows a schematic of the two systems used in the tests.

3. RESULTS

The results are listed separately for the two sets of firings according

to location.

N"
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3.1 Shock Tube Tests. Diaphragms, and therefore the driver chamber 4

pressures, were selected to correspond to gas pressures generated from the
munitions stored at low to medium charge density. The chamber loading S

density (Q/V c ) for the field test ranged from 0.36 to 3.4 kg/m
3. From the

INBLAST code, this would give a quasi-static chamber pressure for TNT of

1300 to 4600 kPa. Helium gas was used in the shock tube driver because it

could very nearly match initial sound-ratio conditions of a TNT explosion.

The chamber pressure ranged from 814 kPa to 5454 kPa. The objectives of

these tests are to determine the feasibility of using the shock tube to

determine the exit pressure that might be expected in a field test, as well
as to check the accuracy of using INBLAST and shock tube equations to
predict the measured exit pressure. The results of Tests 4 through 7 are

listed in Table 1.

The test series was repeated with sets of baffles placed at locations

of 27 and 36 tunnel diameters. Table 1 summarizes the results from the two
sets of shots fired in the shock tube model. Tunnel overpressures are

listed as a function of the given driver chamber pressure, with and without

baffles.

The smooth wall attenuation (no baffles) is 0.5 to 3.5%, and also

includes transducer calibration error. With two baffles, each blocked
26.2%, the attenuation between 25 and 45 tunnel diameters was 7.5-10.3%.

These values include the unobstructed smooth wall attenuation also,. With

two baffles, each blocked 50%, the attenuation was between 39.7 and 43.1%,
including the smooth wall unobstructed values. A more complete baffle/

attenuation program will be needed to determine baffle location dependence

to maximize baffle efficiency.

Figures 4-7 show portions of the pressure-time records from the shots
where there were no baffles in the tunnel section of the model. The second

peak is caused by the blast wave reflecting from the entranoe throat to the 0

dump tank. Figures 8-11 show records obtained when baffles were used in

the test tunnel. Figures 12 and 13 compare the waveforms obtained at 45

tunnel diameters from the unobstructed tests with those taken when the

baffles were on either side of the test stations. The larger blockage of
50% each for the two baffles indicates a substantial reduction in the blast
wave. This much blockage may not be practical for a full-size tunnel to an
underground storage facility. This would be particularly the case where

the tunnel may not be overly large in the first place.

The attenuation values are in agreement with those established in

Reference 5. For a 50% blockage, there should be a 22% attenuation going
through each plate. In Table 1, Shot 8, the value through the first plate..
measures 331 kPa versus a predicted 335 kPa, and through the second plate,

the measured value is 245 kPa versus 261 kPa. On Shot 9, the value after

the second plate is 566 kPa versus a predicted value of 570 kPa.

7 '
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TABLE 1. Shock Tube Test Results

Shot Chamber Side-On Wall Percent P1 ,kPa Tip 0 C
No. Station Baffles PressurekPa PressurekPa Change ____ i_

5 20 None 813.6 435.3 103.0 22.0

25 438.9
33 429.045 423.1 - 3.5 (St25-45)

4 20 None 1447.9 639.1 103.0 22.6
25 659.8

33 643.1
45 639.1 - 3.1 (St25-45)

6 20 None 2695.8 997.5 102.9 22.8

25 1006.2

33 987.2

45 972.6 - 3.3 (St25-45)

7 20 None 5453.8 1463.3 102.8 23.3
25 1559.5

33 1559.7
45 1551.8 - 0.4 (St25-45)

8 20 2-50% 792.9 409.5 102.7 23.0
25 Blocked. 430.3
33 @ 27 dia. 331.2
45 @ 36 dia. 244.8 -43.1 (St25-45)

9 20 Same as 8 2682.1 931.0 102.3 23.2
25 939.1*
30 741.4

33 785.7

45 566.1 -39.7 (St25-45)

10 20 2-26% 834.3 421.3 103.3 21.5

25 Blocked. 424.8*
30 @ 27 dia. 429.8 k

33 @ 36 dia. 412.8 0
45 380.8 -10.3 (St25-45)

12 20 Same as 2626.9 902.2 102.7 23.4

25 10 910.1*

30 999.2

33 942.1
45 841.7 - 7.5 (St25-45)

*Extrapolated p

P1 - Local ambient pressure.

T- Local ambient temperature. 0

8
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3.2 Field Tests. Figures 14 and 15 are photographs of the field

model. A small crane was used to remove the end plate for loading the

explosives into the driver chamber. Figure 15 shows three of the blast

lines with the transducers placed in ground baffles along these lines. The 0

1350 line is hidden from view behind the exit cover.

Figure 16 shows the centering device for the bundled strands of

PRIMACORD. The charge was loaded into the long cardboard tube, then into

the driver chamber. Firing lines to the detonator and lines for a

time-zero closure were brought out through a hole in the bolted end plate.

Figures 17 and 18 show post-shot photographs of the damage to the sand

test bed surface. There was some cratering near the exit and enough soot

from the explosion to mark a path along the 00 line. The 900 line was

relatively free from the soot. S

Figure 19 displays pressure-time records from the driver chamber,

records from the tunnel, and records from each station of the blast lines.

Notice at Station C-2, in the chamber, the records show that large blast

reflections occur from the detonating charge. Then the pressure builds up

to some average quasi-steady pressure and decays by exhausting into the

tunnel and out the exit. Some transducers were broken due to the very

harsh environment of the detonation. A comparison of records from Stations
T-1 and T-2 in the tunnel each follows the blast wave profile seen in the

chamber, although at a reduced initial peak pressure.

The blast wave propagation can be seen by comparing the records from

each of. the stations on each of the blast lines. Large double peaked

G
waveforms are seen along the 0 line, but are not present in the other

records from the other three blast lines. Whether or not the peaks catch

up determines the maximum pressure at a given station. Multiple values of

pressure are listed in Table 2 to show the extra peaks.

Table 2 lists pertinent data for each shot at the different explosive

loading densities. PRIMACORD (PETN) was used for all shots except Shot 5,
which used C-h. In this shot, all the explosive was placed in about the

center of the storage chamber, approximately a cylinder 5 cm in diameter x

20 cm long.

The test model configuration was not varied during the shots. However,

to maintain the predicted pressure levels of 68.95 kPa at Station 1, 24.13
kPa at Station 2, 11.72 kPa at Station 3, and 5.00 kPa at Station 4, the

transducers were moved for each shot. For location of chamber and tunnel

transducers, see Figure 2.

The results are discussed and compared with predictions in the Analysis

section below.

.
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TABLE 2. Field Test Results

Shot

No. Station AP,kPa Rm R/DT** AP/P Remarks

1 C-1 --.

C-2 807/1551 .. .... Q=0.03320 kg, PETN***
(827*)

T-1 538/676 .. .... Q/V,=0.3562 kg/m3

T-2 (Pw )475/ .. .... Q/Vt=0.2912 kg/m3

627

0-1 90/175 o.465 4.58 0.190

0-2 35.2/50.3 1.011 9.95 0.074 P1=102.2 kPa

0-3 31.0 1.725 16.98 0.065

0-4 9.9 3.240 31.89 0.021 I=20.0 0 C

-1-- 0.321 3.16 --

45-2 44.1/49.o 0.699 6.88 0.093

45-3 21.7/24.5 1.193 11.74 o.o46
45-4 11.4 2.241 22.06 0.024

90-1 -- 0.181 1.78 --

90-2 33.2 0.393 3.87 0.070

90-3 15.9 0.671 6.60 0.033

90-4 7.2 1.260 12.40 0.015

135-1 -- 0.112 1.10 --

135-2 -- 0.244 2.40 --

135-3 -- 0.417 4.10 --

135-4 3.38 0.783 7.71 0.0071

*INBLAST Calculation, 827 kPa

**Tunnel Diameter, DT = 0.1016 m

***Explosive in this shot was centered at the rear half of the driver

chamber.
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TABLE 2. Field Test Results (Cont)

Shot

No. Station PkPa Rm R/DT  P/P Remarks

2 C-I 1379 ... ....

C-2 2500/1127 .. .... Q=0.6337 kg, PETN

(1380*)

T-1 821 .. .... 3-

T-2 (Pw)765 .. .... Q/Ve:0.681 kg/m
3

0-1 123 0.702 6.91 0.16

0-2 33.1/35.9 1.529 15.05 0.043 Q/Vt = 556 kg/m 3

0-3 15.4/17.6 2.614 25.73 0.020

0-4 4.90/6.86 4.893 48.16 0.0064 P1=101.8 kPa

45-1 145 0.486 4.78 0.19 T1=32.2
0 C

45-2 43.1 1.057 10.40 0.056
45-3 20.9 1.808 17.80 0.027

45-4 3.14 3.384 33.31 0.0080

90-1 -- 0.273 2.69 --

90-2 31.4 0.594 5.85 0.041,

90-3 16.8 1.022 10.06 0.022

90-4 6.89 1.903 18.73 0.0090

135-1 -- 0.170 1.67 --

135-2 -- 0.370 3.64 --

135-3 5.03 0.730 7.19 0.0066

135-4 2.76 1.183 11.64 0.0036

*INBLAST value of quasi-static chamber pressure, 1380 kPa.
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TABLE 2. Field Test Results (Cont)

Shot

No. Station AP,kPa R,m R/D P/P Remarks

3 C-I .... ..

C-2 (2896*) .. .... Q=0.13585 kg PETN

T-1 1358 .. ... 3
T-2 (Pw)1

103 .. .... Q/V =1.459 kg/m

0-1 98 1.118 11.00 0.089 Q/Vt=l.192 kg/m
3

0-2 20.3/31.0 2.430 23.92 0.018

0-3 11.7/12.1 4.167 41.01 0.011 P1=102.2 kPa

0-4 3.79 7.792 76.69 0.0034

45-1 -- 0.774 7.62 -- Ti=20.6
0 C

45-2 28.8 1.680 16.54 0.026

45-3 11.7 2.882 28.37 0.011

45-4 4.27 5.389 53.04 0.0039

90-1 0.441 4.34 --

90-2 18.5 0.945 9.30 0.017

90-3 10.1 1.621 15.95 0.0092

90-4 4.96 3.030 29.82 0.0045

135-1 -- 0.270 2.66 --

135-2 -- 0.587 5.78 --

135-3 4.69 1.007 9.91 0.0043

135-4 2.21 1.884 18.54 0.0020

*INBLAST calculated value of chamber pressure, 2896 kPa.

I
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TABLE 2. Field Test Results (Cant)

Shot

No. Station aP,kPa R,m R/DT AP/P Remarks

4 C-1 --- -

C-2 (5654) -- - - Q=0.31697 kg PETN

T-1 1551/1758 3----
T-2 (P W)1551/ -- - - Q/V =3.405 kg/ma

1606C

0-1 47.6/88.9 1.861 18.30 0.031 Q/Vt=2.780 kg/rn

0-2 15.2/25.2 4.044 39.80 0.0098

0-3 13.9 6.960 68.50 0.0090 P 1 101.7 kPa

0-4 4.96 13.014 128.09 0.0032

45-1 -- 1.286 12.66 - T -26. 7C
45-2 23.7 2.797 27.53 0.015 .

45-3- 10.6 4.814 47.38 0.0068
45-4 3.65 9.000 88.58 0.0024

90-1 -- 0.723 7.12 --

90-2 21.0 1.573 15.48. 0.014

90-3 11.9 2.707 26.64 0.0077
90-4 4.76 4.890- 48.13 0.0031

135-1 -- 0.450 4.43 -

135-2 7.31 0.978 9.63 0.0047

135-3.- 5.03 1.683 16.56 0.0032

135-4 2.28 3.146 30.97 0.0015

*INBLAST calculation of chamber pressure, 5 654 kPa.

331



TABLE 2. Field Test Results (Cont)
I.

Shot

No.. Station AP,kPa R,m R/DT AP/PW Remarks

5 c-i1--- - --

C-2 (6540*) .. .... Q=0.3670 kg, C-4

T-1 4137 -3 ....

T-2 (PW)4137 .. .... Q/V =3.942 kg/m

0-1 150 1.861 18.30 0.036 Q/Vt=3.219 kg/m
3

0-2 18.9/24.7 4.044 39.80 0.0046
0-3 8.89/11.7 6.960 68.50 0.0022 P =102.1 kPa

0-4 -- 13.014 128.09 --

45-i 136.2 1.286 12.66 0.033 T =23.30C

45-2 27.6 2.797 27.53 0.0067

45-3 11.7 4.814 47.38 0.0028

45-4 4.41 9.000 88.58 0.0011

90-1 -- 0.723 7.12 --

90-2 37.9 1.573 15.48 0.0092

90-3 17.9 2.707 26.64 0.0043

90-4 7.17 4.890 48.13 0.0017

135-1 -- 0.450 4.43 --

135-2 18.6 0.978 9.63 0.0045
135-3 11.8 1.683 16.56 0.0029

135-4 3.59/4.34 3.146 30.97 0.0087

A-

*INBLAST calculation of chamber pressure, 6540 kPa.
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4. ANALYSIS 
a-

Modifications are shown for INBLAST where predictions are compared to

shock tube experiments and model chamber/tunnel PETN and C-4 explosive
field data.

4.1 Modification of INBLAST. INBLAST was developed at the Naval

Ordnance Laboratory (NOL) to describe the shock and blast loading
characteristics of detonation of a high explosive internal to a structure.
Documentation of the code can be found in Reference 2.

In the application to underground explosions of stored munitions,
INBLAST was used to. predict the confined-explosion gas pressure in the
storage chamber. One modification included an addition of shock tube

equations with area change.6 A second modification used the BRL-QlD

hydrocode. 7  If the exit tunnel of the underground storage facility is
short (<35 tunnel diameters), is relatively smooth, and the tunnel length

of about the same magnitude as the storage chamber length, then the
relatively simple algebraic expressions from the shock tube theory can be
used. This modification works in the following way.

The INBLAST program computes the maximum internal gas pressure in the
storage chamber for detonation of the given stored munitions. The computed
chamber pressure is assumed to be the same as a shock tube driver gas of
the magnitude computed. The shock tube equations are then solved by
iteration procedures. It is assumed that the internal gas pressure would
force the chamber doors open analagous to the shock tube diaphragm
breaking. The equations needed are listed below from Reference 6:

gP4 1  (4 1) e  (1

212+1

24  + (4 -1)M5 2 + (YV4 - ) . (2)

2 + (Y 4 -1) 1

V4+1

S 2+ Y )T (3)
M 4 5
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U21

4-
4 4 *-1 (4)

A4 1 (g) " U u21

212 1 -1 
1

2 [(- 1L-1: P21 + )3 1A

Given parameters from the INBLAST calculations are the chamber pressure

ratio P411 chamber sound speed ratio A41, ratio of specific heats for

chamber, Y4 , and ambient air, Y1 . Given also is S4 /S1 , the chamber cross-

section area to tunnel cross-section area ratio. For the case of most

interest for strong shocks, the mach number Me=l, at the chamber/tunnel

area change and the factor g.depends only on S4/S 1 and Y4.

Equation 3 is solved for M by an iterative procedure on both sides of

the equation. Equation 2 is then solved for g after substituting the value

of M found in Equation 3 along with V4. Substitute U2 1, the shock

pressure ratio P2 1, and the shock overpressure Pw, where:

PW = P1(P 21 -1). (6)

This is the pressure at the tunnel exit when the blast wave attenuation

along the tunnel canbe ignored.

If a decaying blast wave should occur because of short chamber/long
tunnel configuration or attenuation, by baffles for example, then a

hydrocode may be coupled to the INBLAST program to take into account the

additional effects. This may be done, for example, with the BRL-Q1D
7 

code.

Predictions from the modified INBLAST/shock tube method and a method

obtained from fitting published field data
8 

will be compared with data from

the present work. Table 3 and Figure 20 show the comparisons of three

prediction methods for predicting PW' along with the measured values

obtained in the shock tube experiment.
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It is seen that at three lower loading densities, the INBLAST/shock

tube method overpredicts the tunnel exit pressure, P W. At the three larger

loading densities, the shock tube experimental value compares well with the

BRL equation. The Norwegian values
8 are lower than the shock tube

experimental results.

The next section shows how these methods may be used to predict the

blast at the exit tunnel when the dtiver pressure is obtained from high

explosive..

4.2 Predictions of Blast at Tunnel Exit. Large amounts of data from

underground storage model experiments have been used by Norwegian

researchers8 to develop Equation 7 to predict the pressure at the end of

the exit tunnel. 0 60 A0 ,19
P 12.1 (V-) A)(7)

Here P W is the blast pressure in bars predicted to arrive at the end of an

access tunnel to an underground storage magazine in which an explosion has
occurred. The loading density, Q/Vt, is the stored charge, Q, in kilograms

3for the total volume Vt, m ; storage chamber plus access tunnel volumes.

The tunnel junction cross-section area to chamber cross-section ratio is

given as Aj/A
1j C

Kingery has developed an equation of the form of Equation 7 to account

for different explosives which are not accounted for in Equation 7. The
term for charge density has been replaced by the pressure, PV generated

by the explosion throughout the total volume, Vt . Equation 8 shows this
expression: 1(

where PW and PVt are both in bars. Tables or graphs generated by the

INBLAST code are used to find PVt for a given kind of charge and storage

configuration modeled. Figure 21 shows three such curves plotted from
Reference 9. PETN is plotted to be used in predicting the PRIMACORD

11
pressure and RDX for the C-4 explosive, which is made to 91% RDX. The

remaining material in the C-4 is plastic binder. It is assumed that the
binder does not contribute to the chamber pressure.

The TNT values are plotted to show the difference in chamber pressure

versus loading density between TNT and PETN. This also is the rationale

for using the pressure (P ) associated with the total volume in Equation 8
Vt 

C

rather than the loading density (Q/V t) within the total volume in Equation
7.
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A

The experimental environment inside the chamber was quite harsh for the

transducers; several were broken during the test series. Few data were
obtained there except for Shots 1 and 2. The two values listed in Table 2

are shown as the two experimental points plotted in Figure 21.

Figure 21 provides the total volume storage chamber pressure (P vt) for S

Equation 8 to calculate PW" Results from the two methods for predicting P W

(Equations 7 and 8) are listed in Table 4 along with the measured values
from Table 2. The values from Table 4 are plotted in Figure 22 to show
this comparison. The scatter in the measured data and the predicted data

is reasonable with the exception of the C-h test (Shot 5). If the record
in Appendix A from the tunnel transducer at Station T-2 is examined, it can
be seen that the latter portion of the record is in question but the
initial portion of the record has a faster decay from the peak value than .4
the record from Station T-2 on Shot 4. It is surmised that a large
reflection of the blast wave from the centered C-h explosive may have S
propagated to the tunnel exit as measured at Station T-2. Whereas in the
earlier tests, the PRIMACORD explosive was stretched along the center line

of the storage chamber giving a slower decaying wave at the exit. The
first station (0-1) along the outside blast line also recorded a higher

than expected peak overpressure, but it also had a very rapid decay in

pressure versus time from the peak value.

The next section will discuss the free-field records and compare them

with predictions.

4.3 Predictions of Blast Outside Tunnel. After the exit pressure, PWI

is calculated for the end of the tunnel, the free-field blast pressure may
be calculated from Equation 9. This is a variation of the equation given

in Reference i0.

AP/Pw= 1.24 (RD t) 135 /(l + (0/56)2) (9)

where AP/P W is the free-field blast pressure to exit pressure ratio found P

at a radial distance to tunnel diameter ratio R/D and angle 6 in degrees

from the tunnel exit. The field experiments were designed to find

distances at which certain key free-field blast overpressure would be
predicted. Equation 9 may be rearranged to give the distances for the
required pressure levels. Equations 10 and 11 show two such useful forms.
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I

R 0 1.173 Dt (AP/P w)-074 (10) 1 N

and R R , where AF (11)

is the angle correction factor (1 + (/56) 2 -0 .7 4 applied to the zero

radial from the tunnel exit.

For example, the present field tests were designed to give predictions

of distances to obtain overpressures of 68.94 kPa (10psi), 24.13 kPa

(3.5psi), 11.72 kPa (1.7psi), and 5.00 kPa (0.725psi). Radial lines at 00,

450, 900, and 1350 were used to predict each of the distances of interest.

The predictions are compared to the free-field data from the experiments as

listed in Table 5. Graphically, the comparison may be seen in the

normalized plots of Figures 23-26. It should be noted that for the loading

densities and explosives used for these experiments, References 1 and 10

predict almost the same values of pressure for the free field. No

distinction has been made in the predictions here (see Equation 10).

The data are generally higher than predicted for the 00, 450, and 900
0

lines. The exception is the 135 line where all the data fall below the

predictions. Two reasons may be given for the higher values on the first

three radials. If the experimental PW is lower than predicted, then the

pressure ratio is too large. Or, if the value of AP is too large because a

double pressure peak has caught up at a particular station, then the

pressure ratio will again be too large. This appears to be a functi, of

the interior charge distributions and/or the detonation within the storage

chamber for the model used. A variation in free-field pressure of a factor

of two may, therefore, be expected.

The low data values for the 1350 line occur probably because of the

particular configuration of sand bags used for topography at the tunnel

exit. Other, less restricted tunnel exits might give higher values of

pressure along the 1350 line, more nearly the values predicted.

Predictions for the pressure-time and impulse-time records at each of

the four stations along the 00 line from our simulation model are shown in

Appendix B. A comparison of these impulse curves, over the chamber charge

loading density range of 0.36 - 3.9 kg/m 3 does not show enough change in

total impulse to justify establishing free-field prediction equations for

this range to account for larger loading densities.
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"A

TABLE 5. Comparison of Free-Field Overpressures

Pressure, kPa

Station Shot 1 Shot 2 Shot 3 Shot 4 Shot 5

0-1 123 98 47.6/88.9* 150 %

0-2 35.2/50.3 33.1/35.9 20.3/31.0 15.2/25.2 18.9/24.7

0-3 31.0 15.4/17.6 11.7/12.1 13.9 8.9/11.7

0-4 9.9 4.9/6.9 3.79 4.96 --

45-1 -- 145 .... 136 -

45-2 44.1/49.0 43.1 28.8 23.7 27.6

45-3 21.7/24.5 20.9 11.7 10.6 11.7

45-4 11.4 6.1 4.27 3.65 4.41

90-1

90-2 33.2 31.4 18.5 21.0 37.9 0

90-3 15.9 16.8 10.1 11.9 17.9

90-4 7.2 6.9 4.96 4.76 7.2

135-1 --......... --

135-2 ...... 7.31 18.6

135-3 -- 5.03 4.69 5.03 11.8

135-4 3.38 2.76 2.21 2.28 3.59/4.34

.

*Second value is given for second peak, if present.
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5. SUMMARY AND CONCLUSIONS

Results have been presented from a series of shock tube and field tests

which were used to model the blast effects expected from explosions within

underground munitions storage facilities. Pressure-time records were

obtainedand presented for the explosively produced driver pressures within

the model storage chamber or driver, within the access tunnel, and over the

area outside the tunnel exit. Measurements were obtained on test radials

of 00, 45 , 90 , and 135 - as measured from the long axis of the tunnel -

which was taken as 00.

The shock tube results compared favorably to predictions from a

modified INBLAST computer code which included standard shock tube equations
with area change. Predictions of the explosive chamber pressures from

INBLAST were used to predict access tunnel exit pressures from the methods

18
given by Kingery and Skjeltorp et al. 8

Generally, the prediction methods used were satisfactory. It should be

noted that charge location and charge shape within a given storage chamber

hamper accurate predictions of the blast pressure at the exit tunnel.
This, in turn, of course, will cause inaccurate predictions for the
free-field region outside the tunnel. An uncertainty factor of about two
was present in the free-field blast measurements.

A preliminary effort was also made to determine the effect of baffles
on attenuation of the blast waves within the access tunnel for the shock

tube experiments. It was necessary to add two 50% blocked baffles within
the tunnel to attenuate the blast wave approximately 40% over a 20-tunnel

diameter's travel. It was felt that probably in many access tunnels it

might not be practical to use this amount of baffling due to size

limitation. However, if the facility access tunnel is large enough,

depending on traffic requirements, then baffling would be useful in

attenuating the blast wave within the tunnel. No baffling or rough walls
were tried in the tunnel during the field tests due to a time constraint.

See References 12-16 for discussion of wall roughness effects on blast
waves. This kind of attenuation should be included for rough wall tunnels.

Also, no attempt was made to define the danger zone created by the high

speed jet flow following behind the free-field blast wave. It is

recommended that further experiments be designed to study this phenomenon.

In conclusion, the INBLAST or similar code may be used to predict the
storage chamber pressure from the munitions' explosion. Equations from

either Kingery or Skjeltorp et al8 may be used to predict the tunnel exit
blast pressure. The free-field blast pressure outside the exit tunnel may

be predicted along desired radials at various distances from equations

10,
given by Skjeltorp et al.1 0

50



It is suggested that for a study of blast attenuation devices or

topography, a shock tube model be used first to narrow the choices to those

considered to be most useful. The selected attenuation or topography

choices might then be built into models of certain specific storage

facilities for field testing. Results from the model field tests might

then be applied to the full-size storage facilities selected for appraisal.
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FS1

SYMBOLS

g Convergent tube parameter.

AI  Ambient air sound speed, m/s.

A4  Shock tube chamber sound speed, m/s.

A41 Ratio chamber sound speed to ambient sound speed.

Ac  Chamber cross-section area at 
exit end, m2 .

A. Tunnel cross-section area, 
m 2.

J

Dt Diameter of tunnel, m.

M Mach number at convergent section.e

M3  Mach number behind the contact surface.

M5  Mach number in chamber gas near area convergence.

P1  Ambient pressure, kPa.

P Shock wave pressure, kPa.
2

P21 Ratio of shock wave pressure to ambient pressure.

P4 Shock tube chamber pressure, kPa. 5

P4 1  Ratio of shock tube chamber pressure to ambient pressure.

PVT Quasi-static overpressure in total volume, kPa.

PW Side-on overpressure at tunnel exit, kPa.

Q Explosive charge mass, kg.

R Distance outside of tunnel, m.

S Tube cross-section area, m 2 (A

1 Tube cross-section area, m (A)

S4  Chamber cross-section area, m 2 (A )

T Ambient temperature, °C.

U2  Particle velocity behind shock front, m/s.

U Ratio of particle velocity to ambient sound speed. V
21

87
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SYMBOLS
(Cont)

33

V cStorage chamber volume, m .

c3

V. Tunnel volume, m

3
Vt  Total volume, Vc + V, m

AP Side-on overpressure outride of tunnel, kPa.

'y Ratio of specific heats in ambient air.

74 Ratio of specific heats in chamber.

0 Degrees off the tunnel aris.

88
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