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Abstract. In this paper, we obtain some sufficient conditions for the existence and uniqueness of point
of coincidence by using simulation functions in the context of metric spaces and prove some interesting
results. Our results generalize the corresponding results of [5, 8, 13, 14, 16] in several directions. Also, we
provide an example which shows that our main result is a proper generalization of the result of Jungck
[American Math. Monthly 83(1976) 261-263], L-de-Hierro et al. [J. Comput. Appl. Math 275(2015) 345-355]
and of Olgun et al. [Turk. J. Math. (2016) 40:832-837].

1. Introduction and Preliminaries

To begin with, we have the following definitions, notations and results which will be used in the sequel.

Definition 1.1. [3] A mapping G : [0,+∞)2
→ R is called a C-class function if it is continuous and satisfies the

following conditions:
(1) G (s, t) ≤ s;
(2) G (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,+∞).

For C-class functions see also [4, 7, 14].
In [14], the authors generalized the simulation function introduced by Khojasteh et al. ([13]) using the

function of C-class as follows:

Definition 1.2. A mapping G : [0,+∞)2
→ R has the property CG, if there exists an CG ≥ 0 such that

(3) G (s, t) > CG implies s > t;
(4) G (t, t) ≤ CG, for all t ∈ [0,+∞).

Some examples of C-class functions that have property CG are as follows:
a) G (s, t) = s − t, CG = r, r ∈ [0,+∞);
b) G (s, t) = s − (2+t)t

1+t , CG = 0;
c) G (s, t) = s

1+kt , k ≥ 1, CG = r
1+k , r ≥ 2.
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For more examples of C-class functions that have property CG see [5, 7, 14] .
Recently, Khojasteh et al. ([13]) (also see [2, 8, 15]) introduced a new approach in the fixed point theory

by using the following:

Definition 1.3. A simulation function is a mapping ζ : [0,∞)2
→ R satisfying the following:

(5) ζ (t, s) < s − t for all t, s > 0;
(6) if {tn} , {sn} are sequences in (0,+∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, and tn < sn, then lim sup

n→∞
ζ (tn, sn) < 0.

Definition 1.4. (see [14]) A CG-simulation function is a mapping ζ : [0,+∞)2
→ R satisfying the following:

(7) ζ (t, s) < G (s, t) for all t, s > 0, where G : [0,+∞)2
→ R is a C-class function;

(8) if {tn} , {sn} are sequences in (0,+∞) such that limn→∞ tn = limn→∞ sn > 0, and tn < sn, then lim sup
n→∞

ζ (tn, sn) <

CG.

Some examples of simulation functions and CG-simulation functions are:
d) ζ (t, s) = s

s+1 − t for all t, s ≥ 0.
e) ζ (t, s) = s − ϕ (s) − t for all t, s ≥ 0, where ϕ : [0,+∞) → [0,+∞) is a lower semi continuous function

and ϕ (t) = 0 if and only if t = 0.
For more examples of simulation functions and CG-simulation functions see [5, 8, 13–15, 18].
Let ZG be the family of all CG-simulation functions ζ : [0,+∞)2

→ R. Each simulation function as in
Definition 1.3 is also a CG-simulation function as in Definition 1.4, but the converse is not true.

For this claim see Example 3.3 of [8] using the C-class function G (s, t) = s − t.
Let f and 1 be self maps of a set X. Recall that if w = f x = 1x for some x ∈ X, then x is called a coincidence

point of f and 1, and w is called a point of coincidence of f and 1. The pair ( f , 1) is weakly compatible if f
and 1 commute at their coincidence points. A sequence {xn}n∈N∪{0} ⊆ X is a Picard-Jungck sequence of the
pair

(
f , 1

)
(based on x0) if yn = f xn = 1xn+1 for all n ∈N ∪ {0} (see also [8, Definition 4.4]).

Now, we recall the following result of Abbas and Jungck [1] to be used in the sequel.

Proposition 1.5. Let f and 1 be weakly compatible self maps of a set X. If f and 1 have a unique point of coincidence
w = f x = 1x, then w is a unique common fixed point of f and 1.

Assertions similar to the following result of Radenović et al. [17] were used (and proved) in the proofs
of several fixed point results in various papers. Here, we formulate and prove an improved version of this
result.

Lemma 1.6. Let (X, d) be a metric space and let {xn} be a sequence in X such that

lim
n→∞

d (xn, xn+1) = 0. (1.1)

If {xn} is not a Cauchy sequence in X, then there exist ε > 0 and two sequences {m (k)} and {n (k)} of positive integers
such that n (k) > m (k) > k and the following sequences tend to ε+ when k→ +∞:

d
(
xm(k), xn(k)

)
, d

(
xm(k), xn(k)+1

)
, d

(
xm(k)−1, xn(k)

)
, (1.2)

d
(
xm(k)−1, xn(k)+1

)
, d

(
xm(k)+1, xn(k)+1

)
.

Proof. If {xn} is not a Cauchy sequence, then there exist ε > 0 and sequences {nk} and {mk} of positive integers
such that

nk > mk > k, d
(
xmk , xnk−1

)
< ε, d

(
xmk , xnk

)
≥ ε

for all positive integers k. Then

ε ≤ d
(
xmk , xnk

)
≤ d

(
xmk , xnk−1

)
+ d

(
xnk−1, xnk

)
< ε + d

(
xnk−1, xnk

)
.
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Using (1.1), we conclude that

lim
k→∞

d
(
xm(k), xn(k)

)
= ε. (1.3)

Further,

d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
as well as

d
(
xm(k), xn(k)+1

)
≤ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)
.

Passing to the limit when k→∞ and using (1.1) and (1.3) we obtain that

lim
k→∞

d
(
xm(k), xn(k)+1

)
= ε.

Also,

d
(
xm(k)+1, xn(k)+1

)
≤ d

(
xm(k)+1, xm(k)

)
+ d

(
xm(k), xn(k)+1

)
(1.4)

and

d
(
xn(k), xm(k)

)
≤ d

(
xn(k), xn(k)+1

)
+ d

(
xn(k)+1, xm(k)+1

)
. (1.5)

Now, from (1.4) and (1.5) it follows that

lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
= ε.

That the remaining two sequences in (1.2) tend to ε can be proved similarly.

2. Main Results

In this section, we establish some results on the existence and uniqueness of coincidence point by using
simulation functions in the framework of metric spaces. We begin with the following definition.

Definition 2.1. (see [5, 8, 14]) Let (X, d) be a metric space and f , 1 : X→ X be self-mappings. A mapping f is called
a
(
ZG, 1

)
-contraction if there exists ζ ∈ ZG such that

ζ
(
d
(

f x, f y
)
, d

(
1x, 1y

))
≥ CG (2.1)

for all x, y ∈ X with 1x , 1y.

In the case, 1 = iX (identity mapping on X) and CG = 0 we getZ−contraction of [13, Definition 2.3].
Now, we state our first new result for the notion of

(
ZG, 1

)
-contraction. It generalizes the corresponding

results of [5, 8, 13, 16] in several directions.

Theorem 2.2. Let (X, d) be a metric space, f , 1 : X → X be self-mappings and f be a
(
ZG, 1

)
-contraction. Suppose

that there exists a Picard-Jungck sequence {xn}n∈N∪{0} of
(

f , 1
)
. Also assume that at least one of the following conditions

hold:
(i)

(
f (X) , d

)
or

(
1 (X) , d

)
is complete;

(ii) (X, d) is complete, 1 is continuous and ( f , 1) is compatible.
Then f and 1 have a unique point of coincidence.
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Proof. First of all we shall prove that the point of coincidence of f and 1 is unique (if it exists). Suppose that
z1 and z2 are distinct points of coincidence of f and 1. From this it follows that there exist two points v1 and
v2 (v1 , v2) such that f v1 = 1v1 = z1 and f v2 = 1v2 = z2. Then (2.1) implies that

CG ≤ ζ
(
d
(

f v1, f v2
)
, d

(
1v1, 1v2

))
= ζ (d (z1, z2) , d (z1, z2)) < G (d (z1, z2) , d (z1, z2)) ≤ CG,

which is a contradiction.
In order to prove that f and 1 have a point of coincidence, suppose that there is a Jungck sequence {yn}

such that yn = f xn = 1xn+1 where n ∈N ∪ {0}.
If yk = yk+1 for some k ∈N∪ {0}, then 1xk+1 = yk = yk+1 = f xk+1 and f and 1 have a point of coincidence.

Therefore, suppose that yn , yn+1 for all n ∈N ∪ {0}.
Substituting x = xn+1, y = xn+2 in (2.1) we obtain that

CG ≤ ζ
(
d
(

f xn+1, f xn+2
)
, d

(
1xn+1, 1xn+2

))
= ζ

(
d
(
yn+1, yn+2

)
, d

(
yn, yn+1

))
< G

(
d
(
yn, yn+1

)
, d

(
yn+1, yn+2

))
.

Using (3) of Definition 1.2, we have d
(
yn, yn+1

)
> d

(
yn+1, yn+2

)
. Hence, for all n ∈ N ∪ {0} we get that

d
(
yn+1, yn+2

)
< d

(
yn, yn+1

)
. Therefore there exists D ≥ 0 such that limn→∞ d

(
yn, yn+1

)
= D ≥ 0. Suppose

that D > 0. Since d
(
yn+1, yn+2

)
< d

(
yn, yn+1

)
and both d

(
yn+1, yn+2

)
and d

(
yn, yn+1

)
tend to D, using (8) of

Definition 1.4, we get

CG ≤ lim sup
n→∞

ζ
(
d
(
yn+1, yn+2

)
, d

(
yn, yn+1

))
< CG,

which is a contradiction. Hence limn→∞ d
(
yn, yn+1

)
= D = 0.

Further we have to prove that yn , ym for n , m. Indeed, suppose that yn = ym for some n > m. Then
we choose xn+1 = xm+1 (which is obviously possible by the definition of Jungck sequence yn) and hence also
yn+1 = ym+1. Then following the previous arguments, we have

d
(
yn, yn+1

)
< d

(
yn−1, yn

)
< · · · < d

(
ym, ym+1

)
= d

(
yn, yn+1

)
,

which is a contradiction.
Now, we have to show that

{
yn

}
is a Cauchy sequence. Suppose, to the contrary, that it is not. Putting

x = xm(k)+1, y = yn(k)+1 in (2.1), we obtain

CG ≤ ζ
(
d
(
ym(k)+1, yn(k)+1

)
, d

(
ym(k), yn(k)

))
< G

(
d
(
ym(k), yn(k)

)
, d

(
ym(k)+1, yn(k)+1

))
. (2.2)

Using (3) of Definition 1.2, it follows that d
(
ym(k), yn(k)

)
> d

(
ym(k)+1, yn(k)+1

)
.

Now, since the sequence
{
yn

}
is not a Cauchy sequence, then by Lemma 1.6, we have d

(
ym(k), yn(k)

)
and

d
(
ym(k)+1, yn(k)+1

)
tend to ε > 0, as k→∞. Therefore, using (2.2), we have

CG ≤ lim sup
n→∞

ζ
(
d
(
ym(k)+1, yn(k)+1

)
, d

(
ym(k), yn(k)

))
< CG,

which is a contradiction. Therefore, the Jungck sequence
{
yn

}
is a Cauchy sequence.

Suppose that (i) holds, i.e.,
(
1 (X) , d

)
is complete. Then there exists v ∈ X such that 1xn → 1v as n→ ∞.

We shall prove that f v = 1v. It is clear that we can suppose yn , f v, 1v for all n ∈ N ∪ {0}. Therefore, by
(2.1), we have

CG ≤ ζ
(
d
(

f xn, f v
)
, d

(
1xn, 1v

))
< G

(
d
(
1xn, 1v

)
, d

(
f xn, f v

))
.

Using (3) of Definition 1.2, we get d
(

f xn, f v
)
< d

(
1xn, 1v

)
. It implies that f xn → f v as n → ∞. Hence,

f v = 1v is a (unique) point of coincidence of f and 1.
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Similarly, we can prove that f v = 1v is a (unique) point of coincidence of f and 1, when
(

f (X) , d
)

is
complete.

Finally, suppose that (ii) holds. Since (X, d) is complete, then there exists v ∈ X such that f xn → v, when
n→∞. As 1 is continuous, 1( f xn)→ 1v when n→∞. Consider

CG ≤ ζ
(
d
(

f
(
1xn

)
, f v

)
, d

(
1
(

f xn
)
, 1v

))
< G

(
d
(
1
(

f xn
)
, 1v

)
, d

(
f
(
1xn

)
, f v

))
.

Using (3) of Definition 1.2 and continuity of 1, we have d
(

f
(
1xn

)
, f v

)
< d

(
1
(

f xn
)
, 1v

)
→ 0, as n → ∞. It

implies that d
(

f
(
1xn

)
, f v

)
→ 0, as n→∞. Further, as f and 1 are compatible, we have

d
(

f v, 1v
)
≤ d

(
f v, f

(
1xn

))
+ d

(
f
(
1xn

)
, 1

(
f xn

))
+ d

(
1
(

f xn
)
, 1v

)
→ 0 + 0 + 0 = 0.

Hence, the result is proved in both cases, i.e., the mappings f and 1 have a unique point of coinci-
dence.

Theorem 2.3. Let (X, d) be a metric space, f , 1 : X → X be self-mappings and f be a
(
ZG, 1

)
-contraction. Suppose

that there exists a Picard-Jungck sequence {xn}n∈N∪{0} of
(

f , 1
)
. Also assume that

(
f (X) , d

)
or

(
1 (X) , d

)
is complete

and f and 1 are weakly compatible. Then f and 1 have a unique common fixed point in X.

Proof. Using Theorem 2.2, f and 1 have a unique point of coincidence. Further, since f and 1 are weakly
compatible, then according to Proposition 1.5, they have a unique common fixed point.

Remark 2.4. It is obvious that inequality (2.1) implies that f is continuous if 1 is continuous. Indeed, since
d
(
1x, 1y

)
> 0 for all x, y ∈ X for which 1x , 1y, we have that d

(
f x, f y

)
< d

(
1x, 1y

)
. Hence, the assumptions in [5]

and [8] that f is continuous are superfluous.

In the sequel we introduce the following generalized
(
ZG, 1

)
-contraction.

Definition 2.5. Let (X, d) be a metric space and f , 1 : X→ X be self-mappings. A mapping f is called a generalized(
ZG, 1

)
-contraction if there exists ζ ∈ ZG such that

ζ

(
d
(

f x, f y
)
,max

{
d
(
1x, 1y

)
, d

(
1x, f x

)
, d

(
1y, f y

)
,

d
(
1x, f y

)
+ d

(
1y, f x

)
2

})
≥ CG

for all x, y ∈ X with 1x , 1y.

In the case that 1 = iX (identity mapping on X) and CG = 0 we get Z-contraction of [16] (Definition 2,
Theorem 2).

The next result also generalizes several ones in the existing literature. Since its proof is similar to the
proof of Theorem 2.2, we omit it.

Theorem 2.6. Let (X, d) be a metric space, f , 1 : X→ X be self-mappings and f be a generalized
(
ZG, 1

)
-contraction.

Suppose that there exists a Picard-Jungck sequence {xn}n∈N∪{0} of
(

f , 1
)
. Also assume that at leas, one of the following

conditions hold:
(i)

(
f (X) , d

)
or

(
1 (X) , d

)
is complete;

(ii) (X, d) is complete and f and 1 are continuous and compatible.
Then f and 1 have a unique point of coincidence. Moreover, if f and 1 are weakly compatible, then they have a

unique common fixed point in X.

Remark 2.7. Theorems 2.2 and 2.6 hold true if, in particular, (X, d) is complete, 1 is continuous and f and 1 are
commuting.

It is also worth noting that the two examples given in [8] are not suitable to support their main result. Neither of
these examples is a proper generalization of the corresponding result of Jungck [11]. In other words, there is a λ ∈ (0, 1)
such that d

(
f x, f y

)
≤ λd

(
1x, 1y

)
for all x, y ∈ X = [0,+∞), f x = x + 10, 1x = 10

9 x + ex + sin πx
2(1+x) + 1, d

(
x, y

)
=∣∣∣x − y

∣∣∣, ([8, Example 5.11]), resp. f x = arctan (x + 2) , 1x = log (x + 3) ([8, Example 5.12]). Also, [5, Example 20],
in the same metric space, where f x = x + 2, 1x = 4x + e2x is such.
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In the sequel, we describe how to use our Theorem 2.2 in order to guarantee existence and uniqueness
of a solution for a nonlinear equation.

Example 2.8. Let X = [0,+∞) be endowed with the usual metric d
(
x, y

)
=

∣∣∣x − y
∣∣∣ for all x, y ∈ [0,+∞), and

consider the mappings f , 1 : [0,+∞)→ [0,+∞) given, for all x ∈ [0,+∞), by

f x = x + 2, 1x = 4x + e2x.

In order to solve the nonlinear equation

x + 2 = 4x + e2x,

Theorem 2.2 can be applied using the simulation function ζ (t, s) = 9
10

(
s − (2+t)t

1+t

)
for s, t ∈ [0,+∞) and CF = 0,

F (s, t) = s − (2+t)t
1+t . Now, we have that

ζ
(
d
(

f x, f y
)
, d

(
1x, 1y

))
=

9
10

(
d
(
1x, 1y

)
−

(
2 + d

(
f x, f y

))
d
(

f x, f y
)

1 + d
(

f x, f y
) )

=
9

10

∣∣∣∣4 (
x − y

)
+

(
e2x
− e2y

)∣∣∣∣ −
(
2 +

∣∣∣x − y
∣∣∣) ∣∣∣x − y

∣∣∣
1 +

∣∣∣x − y
∣∣∣


≥ 0.

Since f (X) = [2,+∞), 1 (X) = [1,+∞), using Theorem 2.2(i) the result follows.

The following example shows that our Theorem 2.2 is a proper generalization of the corresponding
results of Jungck [11], L.-de-Hierro et al. [8] and of Olgun et al. [16].

Example 2.9. Let X = [0, 1] and d : X × X → [0,+∞) be defined by d
(
x, y

)
=

∣∣∣x − y
∣∣∣. Then (X, d) is a complete

metric space. Define f , 1 : X → X as f x = x
2+x , 1x = x

2 . Then, f is not Jungck’s contraction in the sense that there
is λ ∈ (0, 1) such that d

(
f x, f y

)
≤ λd

(
1x, 1y

)
for all x, y ∈ X. However, putting ζ (t, s) = s

s+1 − t, G (s, t) = s − t,
CG = 0, we have that f is a

(
Z, 1

)
-contraction with respect to ζ. Indeed, we obtain

ζ
(
d
(

f x, f y
)
, d

(
1x, 1y

))
≥ CG = 0⇔

d
(
1x, 1y

)
1 + d

(
1x, 1y

) − d
(

f x, f y
)
≥ 0

⇔

1
2

∣∣∣x − y
∣∣∣

1 + 1
2

∣∣∣x − y
∣∣∣ −

∣∣∣∣∣ x
x + 2

−
y

y + 2

∣∣∣∣∣
=

∣∣∣x − y
∣∣∣

2 +
∣∣∣x − y

∣∣∣ − 2
∣∣∣x − y

∣∣∣
(x + 2)

(
y + 2

) ≥ 0,

whenever x, y ∈ X. Further, since f (X) =
[
0, 1

3

]
⊆

[
0, 1

2

]
= 1 (X) there exists a Picard-Jungck sequence {xn}n∈N∪{0}

of
(

f , 1
)
. As both

(
f (X) , d

)
or

(
1 (X) , d

)
are complete, this means that all the conditions of Theorem 2.3 are satisfied,

i.e., the mappings f and 1 have a coincidence point x = 0. In other words, they have a unique common fixed point,
which is the only solution of equation x

x+2 = x
2 , x ∈ [0, 1].

Finally, we introduce the following:

Definition 2.10. Let (X, d) be a metric space and f , 1 : X → X be self-mappings. A mapping f is called a
(
ZG, 1

)
-

quasi-contraction of Ćirić-Das-Naik type if there exist ζ ∈ ZG, λ ∈ (0, 1) such that

ζ
(
d
(

f x, f y
)
, λmax

{
d
(
1x, 1y

)
, d

(
1x, f x

)
, d

(
1y, f y

)
, d

(
1x. f y

)
, d

(
1y, f x

)})
≥ CG

for all x, y ∈ X with 1x , 1y.



S. Radenović, S. Chandok / Filomat 32:1 (2018), 141–147 147

In the case that 1 = iX (identity mapping on X) and CG = 0 we get aZ-quasi-contraction of Ćirić type.
Finally, we have the following open question: Does the following claim hold?

Claim. Let f be a
(
ZG, 1

)
-quasi-contraction of of Ćirić-Das-Naik type in a metric space (X, d) and suppose that there

exists a Picard-Jungck sequence {xn}n∈N∪{0} of
(

f , 1
)
. Also assume that at least one of the following conditions hold:

(i)
(

f (X) , d
)

or
(
1 (X) , d

)
is complete;

(ii) (X, d) is complete and f and 1 are continuous and compatible.
Then f and 1 have unique point of coincidence. Moreover, if f and 1 are weakly compatible, then they have a

unique common fixed point in X.
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[5] A. H. Ansari, H. Isik, S. Radenović, Coupled fixed point theorems for contractive mappings involving new function classes and applications,
Filomat, 31:7 (2017), 1893–1907.

[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.
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