
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SIMULATION WEB SERVICES WITH .NET TECHNOLOGIES

Richard A. Kilgore

OpenSml and ThreadTec, Inc.
P. O. Box 7

Chesterfield, MO 63006, U.S.A.

ABSTRACT

The concept of web services represent the next generation
of architectures for interoperability between software ap-
plications based on software industry standards. Presented
here is an overview of web services, a discussion of the use
of web services in the context of simulation and a demon-
stration of the use of web services for simulation as im-
plemented in the Microsoft .Net software development and
execution framework. The paper focuses on the vital role
of industry standards in the definition and implementation
of web services and relates this to the opportunities and
challenges for similar standards and benefits for interop-
erability in simulation software.

1 INTRODUCTION

This is one of three papers presented at this conference that
discuss related aspects of emerging general software stan-
dards that further the reusability and interoperability of
commercial software (Kilgore 2002). The unifying theme
in these presentations is the emergence of various stan-
dards in software development and the opportunity these
standards have for similar standards for simulation soft-
ware development. The first topic examines the role of
standards in the establishment of platform-neutral and lan-
guage-neutral design patterns for object-oriented simula-
tion libraries. The challenge here is to balance competing
desires for encapsulation of the structural representation of
simulation objects and convenient, flexible and efficient
control of the objects. The second topic examines the po-
tential for interoperability through a common open-source
simulation software specification possibly implemented in
.Net languages. This third paper examines the role that
web services could play in the evolution of standards for
interoperable software applications and the opportunities
this creates for standards for interoperable simulation ap-
plications and components. As shown in Figure 1, the
OpenSML initiative is intended as a proving ground where
these topics turn from discussions to implementation.

Web
 Services

Common
Language
Runtime

Open
Source

Design
Patterns

Reusability

Interoperability

Figure 1: Simulation Interoperability and Reusability

What are web services? What is .Net? The long an-

swer begins with statements like “web services can be de-
fined as loosely coupled, reusable software components that
semantically encapsulate discrete functionality and are dis-
tributed and programmatically accessible over standard
Internet protocols” (Sleeper 2002). More simply, web ser-
vices are a “stack” or “layers” of standards that enable one
software application to interoperate with another application.
The actual standard which enables the concept of web ser-
vices is called the Simple Object Access Protocol (SOAP)
(World Wide Web Consortium 2002) which is supported by
most major software development organizations including
Microsoft and Sun Microsystems which is significant since
these companies rarely agree on anything.

While web services can be implemented with .Net, but
web services are an industry standard and not proprietary
to .Net or Microsoft. .Net is simply the designation for a
product strategy by Microsoft to promote products around
the concept of supporting web services. This is done
throughout their language products (VB.Net, C#,
C++.Net), development environment (VisualStudio.Net),
server software (.Net Server), operating systems (Windows
XP) and application software (Office, VBA.Net). The ex-

Kilgore

amples in this paper use .Net tools, but it is important to
note that web services can be created and used regardless
of hardware and software platforms.

What should make web services immediately of inter-
est to the simulation community is the congruence between
the objectives of web services and the objectives of dis-
tributed simulation. Distributed simulation is concerned
with the execution of simulations on loosely coupled sys-
tems on geographically distributed computers intercon-
nected via a wide area network such as the Internet (Fuji-
moto 2001). The benefits of distributed simulation
include:

• Faster execution times of a simulation experiment

through distribution of runs and alternatives to
banks of available processors

• Geographic distribution of the simulation to allow
more convenient collaboration

• Integration of simulations on different hardware
devices and operating systems, particularly in
training applications

• Integration of actual systems and simulated sys-
tems for test and evaluation or control

Since distributed simulations involve communication be-
tween the loosely coupled systems, some standards must
be agreed to regarding the rules for communication. One
such specification exists for Distributed Interactive Simula-
tion (DIS) (IEEE 1995). Similarly, the High Level Archi-
tecture (HLA) initiative managed by the Defense Modeling
and Simulation Office of the Department of Defense is a
specification for obtaining reusability and interoperability
in military simulation models (IEEE 2000). Web services
is a promising enabling technology for implementation of
the interface specifications sought in these standards initia-
tives in simulation software.

Section 2 continues with a general overview of web
services and web services terminology. Section 3 dis-
cusses web services in simulation and Section 4 concludes
with a discussion of non-technical issues in deployment
and business relationships. Source code and updated simu-
lation web services implementation information are posted
at http://www.sourcforge.net/opensml.

2 WEB SERVICES

Web services are not one specific technology, but rather a
group of established and emerging communication and in-
teroperability protocols as shown in Figure 2. The core
layers are properly stacked because each is implemented
using standards specified in the underlying layer. But the
emerging layers are misleading in many citations because
they are not really essential elements of web service defini-
tion or implementation. The first lesson learned in the
study of web services is that a great deal of effort is ex-

Emerging
Layers

Core
Layers

Common Internet Protocols (TCP/IP, HTTP)
Extensible Markup Language (XML)

Simple Object Access Protocol (SOAP)

Web Services Description Language (WDSL)

Universal Description, Discovery and
Integration (UDDI)

Other Emerging Standards
for Security, Business Logic . . .

Figure 2: The Web Services Stack of Core and Emerging
Layers of Standards

pended on keeping the core standard simple, but a great
deal of effort is also spent by others on extending the stan-
dard beyond simple.

Despite intimidating acronyms, consortiums and com-
plex specifications, the simple goal of web services is to
enable a software application to embed references to other
software applications. And the simple benefit is to extend
the available libraries of functions and data to software on
other computers in other locations on the intranet or inter-
net. In existing software, it is a common task to reference
an existing function, subroutine or class in a library located
on a local hard drive. Web services extend this capability
with protocols to allow the location of that function, sub-
routine or class to be anywhere on the network. Web ser-
vices enable interoperability by developers to produce
functions for reuse and to consume functions created by
others anywhere on a network.

2.1 HTTP+XML+SOAP=WEB SERVICE

At a minimum, a web service entails a connection between
two applications, a remote procedure call (RPC), in which
requests and responses are exchanged in Extensible
Markup Language (XML) over Hypertext Transport Proto-
col (HTTP). The fact that the underlying HTTP is re-
stricted to text is critical to enable web services to pass
through firewalls that would prevent binary exchanges.
But instead of using HTTP to simply transport HTML con-
tent, a web service uses HTTP to transport XML-based re-
quests and responses within an executing program. In a
sense, this capability is available using CGI, CORBA and
other technologies. But previous attempts at distributed
computing (CORBA, Distributed Smalltalk, Java RMI)
have yielded systems where the coupling between various
components in a system is too tight to be effective. These
approaches require too much agreement and shared context
among systems. But standardized, XML-based web ser-
vices remove much of the custom programming chores
necessary in prior solutions and enable a much more pow-
erful programming solution within traditional program-
ming languages.

XML is used to encode all communications to and
from a web service. For example, a client invokes a web
service by sending an XML message, then waits for a cor-
responding XML response. Because all communication is

http://sourceforge.net/projects/opensml/

Kilgore

in XML, web services are not tied to any one operating
system or programming language--Java can talk with C#
and Windows applications can talk with Unix applications.
If data is delivered as XML, web services can process that
data in a variety of useful ways. For web services, XML's
separation of content and presentation is ideal.

The Simple Object Access Protocol is the final layer
of the core web service stack. SOAP uses XML messages
to invoke remote methods. A web service could interact
with remote machines through simpler HTTP methods
(post and get), but SOAP is much more robust and flexible.
In addition to being a protocol specification that defines a
uniform way of passing XML-encoded data, SOAP also
defines a way to perform remote procedure calls using
HTTP as the underlying communication protocol. Most
importantly, SOAP is a standard governed by the World
Wide Web Consortium’s XML Protocols Working Group
so evolution and refinement of the standards will continue.

2.2 WSDL AND UDDI

There are three roles you can play in the development of
web services

• Service providers who create, expose and main-

tain a registry that makes those services available.
• Service brokers who act as liaisons between ser-

vice providers and service requestors.
• Service requestors who implement service brokers

to discover web services, then invoke those ser-
vices to create all or part of their applications.

The interaction between a web service provider and a

web service requester is designed to be completely plat-
form and language independent. Service requesters and
providers concern themselves with the interfaces necessary
to interact with each other. As a result, a service requester
has no idea how a service provider implements its service,
and a service provider has no idea how a service requester
uses its service. Those details are encapsulated inside the
requesters and providers.

That encapsulation is crucial for reducing complexity.
In fact the client requesting a web service thinks it’s calling
methods on a local object. In fact, those method calls are
translated to XML and sent over the network, processed on
the other end, and the response message is carefully dis-
guised as the return value from the method call.

But in such a distributed computing environment, it
may be helpful to have a common standard for communi-
cation between providers, brokers and requestors. The first
extended layer of the web service stack is a common XML
format called the Web Service Description Language
(WSDL). An example WSDL file appears in Figure 3 with
"…" used to indicate some missing detail. Fortunately, the
creation of the WSDL file is done by the software devel-
opment environment like Microsoft’s VisualStudio.Net
(Microsoft 2002).

<binding name="EntityBinding"
 type="EntityType">
 <soap:binding style="rpc" transport=
 <operation name="getEntity">
 <soap:operation soapAction…/>
 <input>
 <soap:body type="int"
 namespace="urn:"…"
 encoding="…"/>
 </input>
 <output>
 <soap:body type="Entity"
 encoding="…"/>
 </output>
 </operation>
</binding>

Figure 3: A WSDL File Describes The Web Service

Universal Discovery Description and Integration

(UDDI) is an optional final component of the web service
infrastructure. You can think of the UDDI registry as both
a white pages business directory and a technical specifica-
tions library. UDDI represents a standard for exposing a
WSDL. There are currently two public UDDI registries,
hosted by IBM and Microsoft with another to be hosted by
Hewlett-Packard in the future. These repositories synchro-
nize their contents regularly so that information entered
into one repository is quickly replicated to the others. To
assist developers in understanding UDDI, each company
also hosts a test repository that is intended for educational
purposes (see http://demo.alphaworks.ibm.com/browser/).
Remember that WSDL and UDDI registries are an optional
layer of the web services stack and not required for web
service development. They represent a potential for expos-
ing software services the same way a business directory
exposes general services.

2.3 WEB SERVICES DEVELOPMENT TOOLS

While standards enable the opportunity for web services
deployment, the ultimate success of web services may be
dependent on the ability of programming environments to
encourage developers to conveniently and productively
create, debug and consume web services. While the major
software vendors offer competing development environ-
ments for web services support for different languages and
platforms, the ultimate product of these development envi-
ronments are still interoperable web services.

The IBM WebSphere SDK for Web Services is based
on open specifications for Web services such as SOAP,
WSDL, and UDDI and runs on both Linux and Windows
operating systems. Collecting a number of technologies in a
single package enables skilled early adopters to develop and
test Java-based Web services. For development and deploy-
ment of Web services in a production environment, IBM of-

http://demo.alphaworks.ibm.com/browser/

Kilgore

fers Web services-enabled environments such as IBM Web-
Sphere Application Server and IBM WebSphere Studio as
described at http://www-106.ibm.com/developerworks/
webservices/wsdk/.

SunOpen Net Environment (Sun ONE) is Sun's stan-
dards-based software vision, architecture, platform, and
expertise for building and deploying what Sun calls Ser-
vices on Demand. It provides a highly scalable and robust
foundation for traditional software applications as well as
current web-based applications based on Java and Java-
related technologies, while laying the foundation for the
next-generation distributed computing models such as web
services. The development environment is further de-
scribed at http://www.sun.com/software/sunone.

The Mono Project not specifically related to web ser-
vices at this point, but is a relevant product as it is an open
development initiative that is working to develop a Unix
version of the Microsoft .NET development platform. Its ob-
jective is to enable Unix developers to build and deploy
cross-platform .NET Applications. The project will imple-
ment various technologies developed by Microsoft that have
now been submitted to the ECMA for standardization. The
current status is described at http://www.go-mono.net
/index.html.

3 SIMULATION WEB SERVICES WITH .NET

The objective of this section is to demonstrate the creation
of a web services in simulation model development using
VS.Net. In the example, our simulation “model” will be a
client application that desires to create and use information
about an ”entity” object. The vendor who supports the en-
tity object is exposing a web services to allow us to create
this object and obtain data about the objects properties
(e.g., mean service time).

The first step in the process of providing a web service
is to launch a new solution in VS.Net and add an ASP.Net
Web Service project to the solution. The web service you
will create in this section, EntityDefinition, exposes meth-
ods for creating an Entity and returning the service time of
the Entity. At the top of the “.asmx” file that is created is
the reference to the file containing the XML web service
and the language for the service (C#, in this case).

@WebServiceLanguage="C#"Class="EntityDefinition"

 Another file is created in the project called “EntityDe-
finition.asmx.cs”. This file contains the actual class that
encapsulates the functionality of the service. This class
should be public and can optionally inherit from the Web-
Service base class. Each web service class contains a
[WebService] attribute with an optional description. Each
method that will be exposed from the web service is
flagged with a [WebMethod] attribute in front of it. With-
out this attribute, the method will not be exposed from the
service. This is sometimes useful for hiding implementa-
tion details called by public web service methods.

using System;

 [WebSevice(
 Namespace =
 "http://localhost/SimulationWebService/",
 Description =
 "The EntityDefinition web service provides an
 example of how a web service could return an
 Entity reference or Entity information if
 given that reference")
]

public class EntityDefinition
{
 [WebMethod]
 public Entity getEntity()
 {
 return new Entity();
 }

 [WebMethod]
 public double getMeanServiceTime(Entity ent)
 {
 return ent.getMeanServiceTime();
 }
}

 The second step is to build the Entity class referenced
by the web service methods:

public class Entity
{
 public static double meanServiceTime = 10.0;

public double getMeanServiceTime()
{
 return meanServiceTime;
}

}

The result of these two simple steps is a web service.

Behind the scenes, the necessary SOAP infrastructure will
allow our second project, the client WebServiceModel
class, that uses the web service. After creating the second
project, we add a “Web Reference” by navigating to the
page where the web service resides. There we are pre-
sented with the page you see in Figure 4 describing the

Figure 4: Adding a Web Service Reference

http://www-106.ibm.com/developerworks/ webservices/wsdk/
http://www-106.ibm.com/developerworks/ webservices/wsdk/
http://www.sun.com/software/sunone
http://www.go-mono.net /index.html
http://www.go-mono.net /index.html

Kilgore

web services available. If needed, we can view the WSDL
file to verify the input and output parameters of the meth-
ods made available to us. The Description field of the
[WebService] attribute is presented as a short description
of the service. After selecting this Web Reference, our cli-
ent project code can use the EntityDefinition class and its
methods as if the class were residing in the class path on
the local machine.

public class WebServiceModel
{
 .
 .
 EntityDefinition myED=new EntityDefinition();
 Entity myEnt = myED.getEntity();
 .
 myEnt.delay(myED.getMeanServiceTime(myEnt));
 .
 .
 .
}

As shown in the VisualStudio.Net project window in

Figure 5, the VS.Net project now contains local References
to System class libraries and Web References to external
web service classes supported elsewhere.

Figure 5: VS.Net Project with Web Reference

In this trivial example, a web service was created to

access static information during the execution of the simu-
lation. But that is just one of the many opportunities avail-
able to the simulation programmer using web services. In
the HLA context mentioned in the introduction, the data
exchange could be some dynamically changing property
such as location, speed or time. In a distributed execution
context, the exchange might be related to the output sum-
mary statistics from one node of the experimental design
being distributed on available processors (an inexpensive
approach to grid computing). Obviously, there are per-
formance penalties, security considerations and availability
risks that are not present if all of the code were locally
compiled. But the benefits of the distributed design oppor-
tunities may outweigh these costs, particularly on an intra-
net architecture where data security is more easily and effi-
ciently managed.

4 SUMMARY

Web services present a technical opportunity for integra-
tion of simulation software using software industry stan-
dards. But the largest risk to web service implementation
is less technical in nature as it involves the establishment
of a long term relationship between one or more software
developers or vendors. The service provider must deliver
and assist in the remote debugging process to help the ser-
vice requestor insure that the posted interface is valid and
available. Unless the service provider exposes source
code, there is no certain validation of what is hidden and is
the reason that open-source models may be the only way of
establishing sufficient trust. Finally, a financial relation-
ship must be established to pay for the use of the service.
This business model of software as a service is not a famil-
iar business relationship and fair pricing models may be
difficult to negotiate.

REFERENCES

Fujimoto, R. M. 2001. Parallel and Distributed Simulation
Systems. In Proceedings of the 2001 Winter Simula-
tion Conference, ed B. A. Peters, J. S. Smith, D. J.
Medeiros, and M. W. Rohrer, eds., 147-157. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers.

IEEE. 2000. IEEE 1516-2000 IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules. Piscataway, NJ: The
Institute of Electrical and Electronics Engineers, Inc.

IEEE. 1995. IEEE Std 1278.1-1995 IEEE Standard for
Distributed Interactive Simulation -- Application Pro-
tocols. New York, NY, Institute of Electrical and Elec-
tronics Engineers, Inc.

Kilgore, R. A. 2002. Multi-Language, Open-source Mod-
eling Using the Microsoft .Net Architecture. In Pro-
ceedings of the 2002 Winter Simulation Conference,
ed., E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Kilgore, R. A. 2002. Object-Oriented Simulation with
Java, Silk and OpenSML .Net Languages. In Proceed-
ings of the 2002 Winter Simulation Conference, ed., E.

Kilgore

Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Char-
nes. Piscataway, NJ: Institute of Electrical and Elec-
tronics Engineers.

Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B. 1998.
The future of Java-based simulation. Proceedings of
the 1998 Winter Simulation Conference Proceedings,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, M. S.
Manivannan. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Microsoft 2002. Developer Tolls and .Net. Available
online via <www.microsoft.com/net/prod
ucts/tools.asp> [accessed April 16, 2002].

Sleeper, Brent. 2001. Defining Web Services. The Stencil
Group. Available online via <www.stencilgroup
.com/ideas_scope_200106wsdefined.htm
l> [accessed May 23, 2002].

Tidwell, D. 2000. Web services -- the Web's next revolution.
Available online via <www-105.ibm.com/devel
operworks/education.nsf> [accessed April 16,
2002].

Tidwell D., J.Snell and P. Kulchenko. 2001. Programming
Web Services with SOAP. O’Reilly.

World Wide Web Consortium. 2002. Simple Object Ac-
cess Protocol (SOAP) 1.1.. Available online via
<www.w3.org/TR/SOAP/> [accessed July 12,
2002].

AUTHOR BIOGRAPHIES

RICHARD A. KILGORE is a consultant in the develop-
ment of industrial simulation and scheduling solutions and
President of ThreadTec, Inc., the distributor of the Java-
based Silk simulation language. Dr. Kilgore has over 20
years of experience as a modeling consultant to Fortune
500 firms in a variety of industries with a variety of simu-
lation and scheduling tools. He received his B.B.A. and
M.B.A degrees from Ohio University and Ph.D. in Man-
agement Science from the Pennsylvania State University.
Formerly, he was a capacity-planning analyst with Ford
Motor Co. and Vice-President of Products for Systems
Modeling Corp. His e-mail address is <kilgore
@threadtec.com>.

http://www.microsoft.com/net/prod ucts/tools.asp
http://www.microsoft.com/net/prod ucts/tools.asp
http://www.stencilgroup .com/ideas_scope_200106wsdefined.html
http://www.stencilgroup .com/ideas_scope_200106wsdefined.html
http://www.stencilgroup .com/ideas_scope_200106wsdefined.html
http://www-105.ibm.com/developerworks/education.nsf
http://www-105.ibm.com/developerworks/education.nsf
http://www.w3.org/TR/SOAP/
mailto:kilgore@threadtec.com
mailto:kilgore@threadtec.com

