
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

2000

Simulations and Algorithms on Reconfigurable Meshes With Simulations and Algorithms on Reconfigurable Meshes With

Pipelined Optical Buses. Pipelined Optical Buses.

Anu Goel Bourgeois
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation

Bourgeois, Anu Goel, "Simulations and Algorithms on Reconfigurable Meshes With Pipelined Optical

Buses." (2000). LSU Historical Dissertations and Theses. 7183.

https://digitalcommons.lsu.edu/gradschool_disstheses/7183

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/7183?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print Weedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 8" x 9" black and vtfiite
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SIMULATIONS AND ALGORITHMS ON
RECONFIGURABLE MESHES WITH

PIPELINED OPTICAL BUSES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Anu Goel Bourgeois

B.S., Louisiana State University, 1991
M.S., Louisiana State University, 1997

May 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9979247

UMI
UMI Microform 9979247

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

”IYue research is like fumbling in the dark for the right switches.
Once you’ve turned the light on everyone can see ”

— author unknown

There are many people that have assisted me in some way and enabled me to

complete this research. If it were not for the people mentioned below, I would still

be “fumbling in the dark.”

I would like to express my sincere appreciation to my major professor, Dr. Jerry

Trahan, for his dedication, guidance, patience, and encouragement throughout this

research. Working with such a remarkable person has been an enjoyable experience

for me. He has been an amazing role model and I am truly grateful.

I would like to thank my committee members for their insightful suggestions and

their time and effort. A special thanks to Dr. Vaidyanathan for his wisdom and

collaboration during the course of this research.

Support for this research was partially funded by the Louisiana Board of Regents

and Louisiana Engineering Society. The Department of Electrical and Computer En­

gineering and the College of Engineering also provided support enabling me to attend

conferences and present this research to others in the field. Within the department, I

am thankful for the support I received from the staff and faculty. Their concern and

assistance provided constant encouragement and motivation. I am especially grateful

for the time, advice, and motivation that Dr. Aravena has generously given me.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, I want to extend my sincere gratitude to my friends and family for their

unfailing confidence and reinforcement during the past few years. During my time as

a graduate student I have made what I hope to be life-long friends and am grateful

for their patience, advice, and support. In particular, I would like to thank Alberto

Fern&ndez for his friendship and collaboration. I would like to thank my friends

outside of school and my family for their understanding and encouragement. A special

thanks to my parents for their support and unconditional love. I am thankful that

my brother made me realize that it is most important to enjoy what you do and

follow your heart. Lastly, I am indebted to my husband for being so supportive while

I followed my heart and allowing me to be myself. He has been a constant source of

encouragement and support, mentally, physically, and intellectually.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A c k n o w l e d g m e n t s .. ii

List of F i g u r e s .. vi

A b s t r a c t ... viii

C h a p t e r

1 I n t r o d u c t i o n .. 1
1.1 Reconfiguration and P ip e lin in g ... 3
1.2 Scope and Contributions of the D isserta tion 8
1.3 Organization of the Dissertation... 11

2 M o d e l D e s c r i p t i o n .. 13
2.1 LARPBS S tructu re .. 14
2.2 Addressing Techniques.. 17
2.3 Fundamental Algorithms... 19

2.3.1 Binary Prefix S um s... 20
2.3.2 Compression... 22

2.4 PR-Mesh Description... 23

3 L it e r a t u r e R e v i e w ... 28
3.1 Other Optical Models... 28
3.2 Algorithm Overview ... 31

3.2.1 Sorting and Selection A lgorithm s.. 32
3.2.2 Image Analysis Algorithms... 35
3.2.3 PRAM Simulations... 38

4 R e l a t in g O n e - D im e n s io n a l O p t ic a l M o d e l s .. 41
4.1 Model Descriptions... 42
4.2 Equivalence of the LARPBS, LPB, and P O B .. 43

4.2.1 Computing Prefix Sums without Segmenting............................ 44
4.2.2 Equivalence of Optical M odels... 47

5 R e l a t in g T w o - D im e n s io n a l O p t ic a l M o d e l s ... 52
5.1 Complexity of the PR -M esh.. 54

5.1.1 Relating the LR-Mesh and CF-LR-M esh.................................. 54
5.1.2 Relating the CF-LR-Mesh and P R -M esh 58

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Complexity of the A P P B S ... 61
5.2.1 Structure of the A P P B S ... 61
5.2.2 Relating the APPBS and PR -M esh ... 63

5.3 Complexity of the AROB... 68
5.3.1 Structure of the AROB.. 68
5.3.2 Relating the AROB and PR-Mesh... 68

6 A lgorithm De v e l o p m e n t ... 74
6.1 Algorithm Im provem ent... 74

6.1.1 Computational Geometry Algorithms.. 75
6.1.2 Arithmetic A lgorithm s... 78
6.1.3 Image Analysis Algorithms... 79

6.2 Algorithms with Physical Constraints... 84
6.2.1 Prefix Sums with Restricted Communication Length 84
6.2.2 Compression with Restricted Communication L e n g th 85

7 Fault T olerant Alg o r ith m s ... 87
7.1 Fault M odel.. 88
7.2 Preprocessing Phase ... 89

7.2.1 Determine Number of Stuck Delay S w itches 90
7.2.2 Determine Mapping... 95

7.3 Fault Tolerant A lgorithm s.. 97
7.3.1 Fundamental Algorithms.. 97
7.3.2 Extended Algorithms.. 102

7.4 Constant Number of Faults ... 103

8 C onclusions... 105

B ib lio g ra ph y ... 109

V it a ... 115

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Computing the OR function on an LR-M esh.. 5

1.2 Summation of eight bits on an R -M esh ... 6

1.3 Permutation routing on an R -M esh.. 7

2.1 Structure of an LARPBS... 15

2.2 Conditional delay sw itch ... 16

2.3 Segment sw itc h .. 16

2.4 A six processor LARPBS model with two subarrays................................. 17

2.5 Select and reference frames ... 18

2.6 Binary prefix sums exam ple ... 21

2.7 PR-Mesh processor connections... 23

2.8 PR-Mesh switch connections... 25

2.9 Example of PR-Mesh switch settings for {EW, N, S } 26

2.10 Example of PR-Mesh switch settings for {N, S, E, W} 27

2.11 Non-linear R-Mesh port connections .. 27

3.1 Multicasting patterns.. 29

3.2 Linear Array of Processors with Pipelined Buses (A P P B)......................... 29

3.3 Array structure with Synchronous Optical Switches (A S O S)................... 30

4.1 Structure of a P O B ... 42

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Binary prefix sums example without segmenting....................................... 45

5.1 Block of 4 x 4 processors for sim ulations... 57

5.2 CF-LR-Mesh block configurations... 59

5.3 APPBS processor with sw itches.. 62

5.4 Preorder numbering of nodes in a tree .. 66

5.5 Configuration of APPBS processors to simulate a CF-LR-Mesh 67

5.6 Complexity class re la tions... 73

6.1 Three different representations of number 3 ... 80

6.2 Image representations .. 82

7.1 Example of a faulty L A R PB S.. 93

7.2 Communication steps to perform prefix sum s... 95

7.3 Communication phases for prefix sums on a faulty L A R PB S................... 99

7.4 Communication phases for compression on a faulty LARPBS.................. 101

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Recently, many models using reconfigurable optically pipelined buses have been pro­

posed in the literature. A system with an optically pipelined bus uses optical waveg­

uides, with unidirectional propagation and predictable delays, instead of electrical

buses to transfer information among processors. These two properties enable syn­

chronized concurrent access to an optical bus in a pipelined fashion. Combined with

the abilities of the bus structure to broadcast and multicast, this architecture suits

many communication-intensive applications.

We establish the equivalence of three such one-dimensional optical models, namely

the LARPBS, LPB, and POB. This implies an automatic translation of algorithms

(without loss of speed or efficiency) among these models. In particular, since the LPB

is the same as an LARPBS without the ability to segment its buses, their equivalence

establishes reconfigurable delays (rather than segmenting ability) as the key to the

power of optically pipelined models.

We also present simulations for a number of two-dimensional optical models and

establish that they possess the same complexity, so that any of these models can sim­

ulate a step of one of the other models in constant time with a polynomial increase in

size. Specifically, we determine the complexity of three two-dimensional optical mod­

els (the PR-Mesh, APPBS, and AROB) to be the same as the well known LR-Mesh

and the cycle-free LR-Mesh.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We develop algorithms for the LARPBS and PR-Mesh that are more efficient than

existing algorithms in part by exploiting the pipelining, segmenting, and multicasting

characteristics of these models. We also consider the implications of certain physical

constraints placed on the system by restricting the distance over which two processors

are able to communicate.

All algorithms developed for these models assume that a healthy system is avail­

able. We present some fundamental algorithms that are able to tolerate up to N/2

faults on an N-processor LARPBS. We then extend these results to apply to other

algorithms in the areas of image processing and matrix operations.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Advances in optoelectronic technologies have catapulted optical interconnects and

optical computing to the forefront; this has opened up possibilities previously not

considered in conventional electrical and electronic interconnection environments. An

optically pipelined bus is one such example. It differs from an electronic bus in that it

employs optical waveguides to transmit information. In such a model, many messages

can be in transit simultaneously, pipelined in sequence on an optical bus, while the

time delay between the furthest processors is only the end-to-end propagation delay

of light over a waveguided bus. Currently, optical fiber is the preferred medium for

telecommunication networks of long distances, due in part to its high bandwidth,

reliability, low distortion, and low attenuation [38]. In parallel processing systems,

communication efficiency determines the effectiveness of processor utili2ation, which,

in turn, determines performance.

As a result, researchers have proposed several models based on pipelined optical

buses as practical parallel computing platforms including the Linear Array with a

Reconfigurable Pipelined Bus System (LARPBS) [38, 56, 73], the Linear Pipelined

Bus (LPB) [54], the Pipelined Optical Bus (POB) [42, 79], the Linear Array with

Pipelined Optical Buses (LAPOB) [18], the Pipelined Reconfigurable Mesh (PR-Mesh)

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

[72], the Array with Reconfigurable Optical Buses (AROB) [62, 63], the Array Pro­

cessors with Pipelined Buses (APPB) [47], the Array Processors with Pipelined Buses

using Switches (APPBS) [24], the Array with Synchronous Optical Switches (ASOS)

[66], and the Reconfigurable Array with Spanning Optical Buses (RASOB) [65].

Many parallel algorithms, such as sorting [23], selection [54], matrix operations [38,

39,62], Hough transform [53], singular value decomposition [55], nearest neighbor [57],

and some numerical algorithms [26], exist for arrays with pipelined buses, indicating

that such systems are very efficient for parallel computation due to the high bandwidth

available by pipelining messages.

This dissertation focuses on two of the proposed optical models, specifically, the

one-dimensional LARPBS and the multi-dimensional PR-Mesh. We present simula­

tions for these models relating them to other similar optical models. We first relate the

LARPBS to two other one-dimensional optical models, proving that the three models

are equivalent. Next, we relate the PR-Mesh to other two-dimensional models, two

with optical buses and two with electrical buses. We relate these two-dimensional

models in the context of their computational power and prove that they belong to

the same complexity class. These relations allow us to unify existing research on

optical models and also to relate them to other well-established traditional models.

This is the first work to determine relations between varying optical models.

We develop algorithms that are more efficient on these models than on other re­

configurable models that do not use optical buses. This is achieved by exploiting key

features of optical models, such as pipelining and constant propagation delays. All

existing algorithms for optical models assume that a healthy system is available, that

is, all processors and switches are in working condition. This is not a reasonable as­

sumption, therefore, we develop fault tolerant algorithms that are able to tolerate up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

to N /2 faults for an JV-processor LARPBS. This provides the latitude of being able

to develop algorithms without being concerned with the status of the available sys­

tem. Fault-tolerant algorithms have been developed for other parallel architectures,

however, this is the first work to address the issue for reconfigurable optical models.

The remainder of this chapter is organized as follows. Section 1.1 describes the

main features of reconfigurable models with and without pipelined buses. Section 1.2

details the scope of the dissertation and the contributions of this work. Finally,

Section 1.3 presents the organization of the dissertation.

1.1 Reconfiguration and Pipelining

Recently, researchers have proposed many reconfigurable models such as the Re­

configurable Mesh (R-Mesh) [5, 7, 45], Linear Reconfigurable Mesh (LR-Mesh) [5],

Fusing Reconfigurable Mesh (FR-Mesh) [20, 22], Processor Array with Reconfigurable

Bus System (PARBS) [77], Reconfigurable Multiple Bus Machine (RMBM) [74], and

Reconfigurable Buses with Shift Switching (RESBIS) [44]. Nakano presented a bib­

liography of published research on reconfigurable models [48]. Chapter 2 describes

some of these models in more detail.

Processors can fuse together the edges of a reconfigurable model to form buses

(either electrical or optical buses) [6]. The main characteristics of these models are

as follows.

• Each processor can locally determine its internal port connections and/or switch

settings at each step to create or segment buses.

• The model assumes constant propagation delays on the buses.

• The model uses the bus as a computational tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

The following examples demonstrate how reconfigurable models utilize these char­

acteristics. Consider the OR operation on N bits, where each processor of an N-

processor array holds an input. It is possible to perform this operation in constant

time on an JV-processor LR-Mesh. Assume N = 8 and that each processor holds one

input bit and fuses its ports to form a single bus as shown in Figure 1.1(a).

Each processor that holds a value of T internally disconnects the bus and writes

on the bus through its left port. The leftmost processor, Ho, reads the value on the

bus; this value corresponds to the result of the OR operation (Figure 1.1(b)). If one

or more processors hold a ‘1’, then Rq reads a ‘1* from the leftmost processor (fl2 in

Figure 1.1(b)) holding a ‘1’. The processors between J2o and R? all hold a 'O’, so they

keep the bus intact and allow the value written by R2 to reach Rq. If all processors

hold a ‘O’, then no value is written on the bus and the result is ‘O’. All processors

then fuse their ports to connect the bus and processor Ro broadcasts the result to all

processors as in Figure 1.1(c).

The time required to perform this computation on a Parallel Random Access

Machine (PRAM) with exclusive writes is O(logJV) steps for N input bits. The

demonstrated example performs the computation in a constant number of steps using

only exclusive writes on a one-dimensional R-Mesh. In the second step, although both

Ri and R* are writing simultaneously, the two processors are writing on separate

buses, maintaining an exclusive write.

The example demonstrates some of the key features of reconfigurable models.

First, processors determine their internal port configurations based only upon the

local variable held; those with a ‘1’ disconnect their ports and those with a ‘0’ connect

their ports. Second, broadcasting a value on a bus takes a single step due to the

assumption of constant propagation delay on a bus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Inputs: 0 0 1 0 0 1 0 0

(a)

Broadcast (______Broadcast_______ t

*0 R2 (b) r 5

. Broadcast

(c)

Figure 1.1: Computing the OR function on an LR-Mesh: (a) initial configuration;
(b) disconnect bus and broadcast toward Ro! (c) broadcast result.

Next consider computing a binary sum on an R-Mesh. This is a two-dimensional

model in which each processor has four ports (North, South, East, and West). The

processors on the bottom row hold the input bit values.

First, all processors form vertical buses by fusing their North and South ports.

Each processor on the bottom row broadcasts its input value to all processors on its

vertical bus. A processor that reads a (0* on its vertical bus fuses its East and West

ports together. A processor that reads a ‘1’ on its vertical bus fuses its North and

West ports together and its South and East ports. (Refer to Figure 1.2. The figure

only shows the first four rows of the R-Mesh.)

The processor at the bottom left corner writes a signal at its West port. The

internal port connections form staircase buses allowing a signal to step up a row

for each *1’ in the input. Figure 1.2 shows in bold the bus on which the signal

propagates. The processors in the rightmost column read their East port. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Row

: 0 0 0 1 0 0 1 0

Figure 1.2: Summation of eight bits on an R-Mesh

processor that detects a signal determines the sum to be the same as its row value.

This technique uses an (N + 1) x N R-Mesh to sum N bits in constant time. This

example demonstrates the method of using the bus as a computational tool. In

Section 4.2.1 we develop a binary prefix sums algorithm that runs on an iV-processor

LARPBS in constant time for N input bits.

The examples that we have considered thus far all can be executed on systems

with either optical or electrical buses. Using optical waveguides provides us with the

advantage of being able to pipeline messages on a bus. This is the ability of having

multiple messages on a single bus concurrently. Chapter 2 provides more detail on

how it is possible to pipeline messages on an optical bus.

We will use a general permutation routing example to illustrate the benefit pipelin­

ing provides. Let A f = { 0 ,1 ,..., N - 1} and let n : M — ► Af be a bijection. Permu­

tation routing of N elements on an JV-processor system refers to sending information

from processor i to processor 7r(i), for each t € N . We will first describe how to

implement this on an R-Mesh and then contrast this with how the LARPBS can

perform a general permutation routing step more efficiently by using pipelining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Consider a 4 x 4 R-Mesh in which each processor in column i on the bottom row

holds 7r(i) as shown in Figure 1.3. Assume each processor is to send value to 7r(i)

on the bottom row.

Destination (i): 1 3 0 2

Value (i): 1 9 8 4

[| Writing processor

I •

i Reading processor
I I

Figure 1.3: Permutation routing on an R-Mesh

First, each processor fuses its North and South ports forming vertical buses. Each

processor on the bottom row broadcasts ir(») and along the vertical buses to all

processors on the column. Next, all processors fuse their East and West ports forming

horizontal buses. The processor with column index t and row index n(i) writes on

the row bus as shown in Figure 1.3. Each processor with column index j and row

index j reads from the bus with row index j . The processors then fuse their North

and South ports forming vertical buses again. Each processor that read a value in

the previous step writes on the bus so that the processors in the bottom row can read

the value from the permutation.

If there are N inputs, then an JV x N R-Mesh is required to execute a permutation

routing in 0(1) steps. If an JV-processor, one-dimensional R-Mesh is all that is avail­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

able, then, by a simple bisection width argument, it would require N communication

steps to route the permutation.

Pipelining enables an JV-processor one-dimensional LARPBS to perform this gen­

eral permutation routing in a single step. The properties of an optical waveguide

support the propagation of multiple messages on a single bus during one communica­

tion step. (We discuss the details of pipelining messages in Chapter 2.) All processors

of an LARPBS can concurrently select distinct destinations and each sends a message

to its chosen destination in one bus cycle. To perform the permutation routing, each

processor i selects ir(i) as its destination and sends its value v< on the data waveguide.

This ability of optical buses provides a savings in size and/or time.

1.2 Scope and Contributions of the Dissertation

The aim of this dissertation is to further demonstrate the claim that pipelined optical

models are powerful parallel architectures and to show how these models fit into the

well established hierarchy of complexity classes. We accomplish this by proceeding

in two directions:

• Development of simulations relating models to one another, and

• Algorithm development.

We first develop a cycle of simulations between three one-dimensional optically

pipelined models. This establishes the equivalence of these models in the sense that

any step of one model can be simulated by either of the other two in a constant

number of steps using the same number of processors. This result implies that any of

these models can efficiently execute any algorithm designed for any of these models

regardless of their structure differences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Expanding these results to relate two-dimensional models is not straightforward:

two-dimensional models have many different bus configurations that can be formed

at any given step and the models that are considered have considerable differences

in their features and capabilities. For instance, two of the models are able to change

their switch configurations multiple times within a bus cycle. Another has additional

hardware such as a relative delay counter and a rotate shift register and is also

able to insert multiple delays at each processor within a bus cycle. As a result, we

relate these models in a different context. Rather than focusing on equivalence as

defined above, we relate models to within a constant factor of time while allowing

a polynomial increase in the number of processors. The motivation for associating

models in this way is that this relates time and processor-bounded complexity classes

for these models. (Such a complexity class is the class of problems that can be solved

by the model with the given time and processor resources.) Furthermore, this setting

permits relating complexity classes based on these models to established complexity

classes, firmly locating the abilities of these models relative to more widely studied,

traditional models. Other reconfigurable models have been placed within established

complexity classes, however, no effort had been given to place reconfigurable optical

models within these classes.

We establish that the PR-Mesh has the same complexity as the cycle-free Linear

Reconfigurable Network (LR-Mesh). In other words, any step of the PR-Mesh can

be simulated by the cycle-free LR-Mesh or vice versa within constant time allowing

a polynomial increase in processors. We also prove that in constant time using a

polynomial number of processors the cycle-free LR-Mesh can solve the same class of

problems as the LR-Mesh. This result implies that the PR-Mesh can solve the same

class of problems within the same order of steps using polynomial processors. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

extend this complexity class to include two other optical models, namely the Array

with Reconfigurable Optical Buses (AROB) [62, 63] and the Amoy of Processors with

Pipelined Buses using Switches (APPBS) [24].

Once the relations between different models are established, algorithms can be

designed for one model and translated to the others appropriately. We therefore

focus our attention to the LARPBS and PR-Mesh and develop algorithms for these

two models.

We have developed algorithms in the areas of computational geometry, arithmetic

operations, and image analysis. These algorithms modify existing algorithms to ex­

ploit pipelining and reconfiguration abilities, thereby providing savings in time and/or

size, and improving efficiency.

Most algorithm development for reconfigurable models assumes availability of a

healthy system with an unrestricted number of processors. Some of these assump­

tions are unrealistic and unfeasible for implementation. To accommodate this, we

first considered limiting the communication distance between processors. With this

approach, the length of the bus is unrestricted, however, the distance that a message

is able to travel in a single step is limited. We present algorithms to compute binary

prefix sums and perform compression on an N-processor LARPBS with the commu­

nication length restricted to L, where L < N. This Tesults in a slowdown factor of

N /L , which is optimal.

It is impractical to design an algorithm for a healthy system, only to have it be

unusable due to a single faulty processor. Therefore, the next assumption that we

tighten is allowing some processors to fail. We present several basic fault tolerant

algorithms for the LARPBS. Specifically, we have developed algorithms to calculate

binary prefix sums, perform compression, sort, and perform a general permutation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

routing step on an iV-processor array that can have up to N /2 static faults. We then

extend these results to other fault tolerant algorithms in the areas of image processing

and matrix operations.

The relational results obtained (for both the one-dimensional models and the two-

dimensional models) are some of the first to unify reconfigurable optical models to

each other and relate them to other more widely known models. This is also the

first work to consider physical restrictions and develop fault-tolerant algorithms for

optically pipelined models.

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 describes the structure and ad­

dressing techniques of the LARPBS and PR-Mesh. The chapter also presents some

fundamental algorithms that highlight the features of these models. This sets the

framework for the remaining chapters of the dissertation.

Chapter 3 is a literature review that surveys other similar models and describes

their differences from the LARPBS and PR-Mesh. The chapter provides an overview

of algorithms that have been developed for optically pipelined models. The overview

illustrates the key techniques utilized and the wide range of applications.

Chapter 4 presents a new algorithm to perform a binary prefix sums operation

without using the segmenting ability of the LARPBS. This algorithm was presented at

the International Conference on Parallel and Distributed Computing Systems, in New

Orleans, Louisiana, in 1997 [73]. This algorithm provides the tool necessary to estab­

lish the equivalence of three one-dimensional optical models, namely the LARPBS,

LPB, and POB. The work of this chapter was presented at the International Paral­

lel Processing Symposium and Symposium on Parallel and Distributed Processing, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

San Juan, Puerto Rico, in 1999 [70]. The work was also submitted to the Journal of

Parallel and Distributed Computing [71].

Chapter 5 relates the PR-Mesh to other reconfigurable models with and without

optical buses and establishes its complexity. Portions of this work appeared in Parallel

Processing Letters, in 1998 [72]. This work will be presented at the International

Parallel and Distributed Processing Symposium, in Cancun, Mexico [10]. It will also

be published in the International Journal on the Foundations of Computer Science

[»]•

Chapter 6 develops algorithms for the LARPBS and PR-Mesh that are more

efficient than existing algorithms. These algorithms are in the areas of computational

geometry, arithmetic operations, and image analysis. The chapter also considers the

implications of certain physical constraints and details the method to overcome these

restrictions for performing binary prefix sums and compression.

Chapter 7 presents algorithms that can tolerate up to JV faults for an JV-processor

LARPBS. We first present four fundamental fault-tolerant algorithms that can be

used as building blocks for more extensive algorithms. We also describe how to use

these building blocks to develop fault-tolerant algorithms for some matrix operations

and image analysis. This work will be presented at the Workshop on Optics and

Computer Science, in Cancun, Mexico [8].

Finally, Chapter 8 provides a summary of the dissertation and possible future

work and extensions of the results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Model Description

A system with an optically pipelined bus uses optical waveguides instead of elec­

trical buses to transfer information among processors. Signal (pulse) transmission

on an optical bus possesses two advantageous properties: unidirectional propagation

and predictable propagation delay per unit length. These two properties enable syn­

chronized concurrent access to an optical bus in a pipelined fashion [25, 46, 66, 67].

Combined with the abilities of a bus structure to broadcast and multicast, this archi­

tecture suits many communication-intensive applications.

We adapt the following framework from Qiao and Melhem [66]. Organize data

into fixed-length data frames, each comprising a train of optical pulses. The presence

of an optical pulse represents a binary bit with value 1. The absence of an optical

pulse represents a binary bit with value 0. Let u denote the pulse duration. Define a

unit pulse length A to be the spatial length of a single pulse; this is equivalent to the

distance traveled by a pulse in w units of time. The bus has the same length of fiber

between consecutive processors, so propagation delays between consecutive processors

are the same. Let r denote the time for a signal to traverse the optical distance on

the bus between two consecutive processors with spatial distance D0; time r is also

referred to as a petit cycle.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

As mentioned, the properties of an optical bus allow multiple processors to con­

currently write on the bus by pipelining messages. This is possible provided that the

following condition to assure no collisions is satisfied:

D0 > bucg,

where b is the number of bits in each message and ct is the velocity of light in the

waveguide [25]. The assurance that all processors start writing their messages on the

bus at the same time is another condition that must be satisfied to guarantee that

no two messages will collide. Let a bus cycle be the end-to-end propagation delay on

the bus. We specify time complexity in terms of a step comprising one bus cycle and

one local computation.

The next section describes the structure of the Linear Army with a Reconfigumble

Pipelined Bus System (LARPBS). This model will serve as a representative for linear

arrays with optical buses in this work. Section 2.2 explains the addressing techniques

of this model. Section 2.3 briefly describes two fundamental algorithms utilized by

the LARPBS, namely binary prefix sums and compression. These algorithms high­

light the key techniques of the LARPBS. Section 2.4 extends the one-dimensional

model to a multi-dimensional optical model, called the Pipelined Reconfigumble Mesh

(PR-Mesh). This model will serve as a representative for two-dimensional optical

models in this work.

2.1 LARPBS Structure

In the LARPBS, as described by Pan and Li [56], the optical bus is composed of

three waveguides, one for carrying data (the data waveguide) and the other two (the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

reference and select waveguides) for carrying address information (see Figure 2.1).

(For simplicity, the figure omits the data waveguide, as it resembles the reference

waveguide.) Each processor connects to the bus through two directional couplers,

one for transmitting and the other for receiving [25, 66]. Note that optical signals

propagate unidirectionally from left to right on the upper segment (transmitting

segment) and from right to left on the lower segment (receiving segment), with a

U-turn connecting the two segments. Referring to Figure 2.1, the processor furthest

from the U-turn, J2o, is the tail of the bus, and the processor at the U-turn, fi*, is

the head.

Reference
But

Select
Bus

R4J

Figure 2.1: Structure of an LARPBS

The receiving segments of the reference and data waveguides contain an extra

segment of fiber of one unit pulse-length, A, between each pair of consecutive pro­

cessors (shown as a delay loop in Figure 2.1). The transmitting segment of the select

waveguide has a switch-controlled conditional delay loop of length A between proces­

sors Ri and Ri+i, for each 0 < i < N - 2 (Figure 2.1). Processor i + 1 controls the

switch between processors t and «+1. A processor can set a switch to the straight or

cross states, as shown in Figure 2.2. The length of a bus cycle for a system with N

processors is 2N r + (JV - l)w.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

n
(a) (b)

Figure 2.2: Conditional delay switch: (a) straight state; (b) cross state

z Transmuting / segment

Receiving
segment

Segment
switch

Figure 2.3: Segment switch

To allow segmenting, the LARPBS has optical switches on the transmitting and

receiving segments of each bus for each processor. Let trans{i) and recv(i) denote

these sets of switches on the transmitting and receiving segments, respectively, on the

three buses between processors Ri and Ri+i- Switches on the transmitting segment

are 1 x 2 optical switches, and on the receiving segment are 2 x 1 optical switches as

shown in Figure 2.3. With all switches set to straight, the bus system operates as

a regular pipelined bus system. Setting trans(i) and recv(t) to cross segments the

whole bus system into two separate pipelined bus systems, one consisting of processors

R c ,R i , '" ,R i and the other consisting of A,+i, Ri+i, • • • ,R n- i - Figure 2.4 shows an

LARPBS with six processors, in which switches in trans(3) and recv(3) are set to

cross, splitting the array into two subarrays with the first having four processors and

the second having two processors. (For clarity, the figures show only one waveguide

and omit conditional delay switches.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

tnni(O) trani(l) trantQ) umn«(3) tnni(4)

RO R2 R3 R4

recv(O) recv(l) recv(2) recv(3) recv(4)

Figure 2.4: A six processor LARPBS model with two subarrays

2.2 Addressing Techniques

The LARPBS uses the coincident pulse technique [66] to route messages by manipu­

lating the relative time delay of select and reference pulses on separate buses so that

they will coincide only at the desired receiver. Bach processor has a select frame

of N bits (slots), of which it can inject a pulse into a subset of the N slots. For

example, let all switches on the transmitting segment of the select waveguide be set

straight to introduce no delay. Let source processor Ri send a reference pulse on the

reference waveguide at time tref (the beginning of a bus cycle) and a select pulse on

the select waveguide at time t,ei = t^ j + (N - 1 - j)w. Processor Ri also sends a

data frame, on the data waveguide, that propagates synchronously with the reference

pulse. After the reference pulse goes through N - 1 - j fixed delay switches, the

select pulse catches up to the reference pulse. As a result, processor A, detects the

double-height coincidence of reference and select pulses, then reads the data frame.

Figure 2.5 shows a select frame relative to a reference pulse for addressing processor

j . The coincident pulse technique admits broadcasting and multicasting of a single

message by appropriately introducing multiple select pulses within a select frame.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Time e----------

Sel

0 i j

.............. ■

N-l

Ref

■

Figure 2.5: Select and reference frames

The conditional delay switches on the transmitting segment introduce delays to

the select pulses and can alter the location at which the select and reference pulses

will coincide. These switches are useful as a computing tool to calculate binary

prefix sums and perform compression, for example (Section 2.3). The length of the

bus between two processors provides enough space for two frames of N slots to fit,

although there is only one such frame on each waveguide for each processor. This

prevents a pulse in the select frame of processor Ri from being shifted to overlap the

reference frame of fZj-i.

When multiple messages arrive at the same processor in the same bus cycle, it

receives only the first message and disregards subsequent messages that have coin­

ciding pulses at the processor. This corresponds to the p r i o r i t y concurrent write

rule. The PRIORITY write rule has the processor with the highest priority (in this

case, the processor with the highest index or nearest the U-turn) win a write conflict

when multiple processors are attempting to write to the same destination.

We will refer to the processor that has a select pulse injected in its slot in a select

frame for a particular message as the selected destination. The actual destination will

denote the processor that detects the coinciding reference and select pulses (the two

may be different due to conditional delay loops and segmenting). The normal stale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

of operation is when the actual destinations of messages are the selected destinations.

For the LARPBS, the normal state of operation is when all conditional delay switches

and segment switches are set to straight.

Consider the LARPBS shown in Figure 2.1. Suppose processor Ri injects a select

pulse so that /2a is its selected destination, and R q attempts to broadcast. The

message sent by Ri encounters one conditional delay switch set to cross, and the

message sent by R q encounters two. As a result, the actual destination of Ri is R2

instead of R q . The actual destinations of the message broadcast by R q are R2, R\,

and R q , rather than all five processors. Even though R q is the actual destination of

the message sent by R q , processor R2 will receive only the message sent by Ri because

this message arrives prior to the one sent by R q .

2.3 Fundamental Algorithms

There are a few fundamental algorithms that find use as building blocks for other

more extensive algorithms. Two that appear frequently are binary prefix sums and

compression [56]. To demonstrate LARPBS operations, we will describe these in this

section. The following chapters will use various forms of these algorithms. For in­

stance, in Section 4.2.1, we describe a binary prefix sums algorithm that does not

utilize the segmenting ability. Section 6.2 describes methods to perform binary pre­

fix sums and compression on an array that has a restricted communication length.

Section 7.3.1 provides fault tolerant algorithms to perform binary prefix sums and

compression. These algorithms also play a role in relating different optical models to

one another (Chapters 4 and 5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

2.3.1 Binary Prefix Sums

Consider an LARPBS with N processors such that each one holds a binary value, vit

for 0 < i < N. The Ith binary prefix sum, psumi, is Vq + t>i + . . . + Vj.

Lem m a 2.1 [56] Binary prefix sums of N elements can be computed on an N pro­

cessor LARPBS in 0(1) steps.

Proof: First, each processor Ri, 0 < i < N, sets its conditional delay switch to

straight if v* = 0 and cross if = 1. Referring to Figure 2.6(c), Ri and R+ both

hold a value of ‘1’. Each processor sends a message containing its index addressed

to processor R n- i , that is, R n- i is the selected destination for all messages. The

conditional delay switches, however, will shift the pulses so that if N - 1 - j is the

number of switches set to cross after Ri, then the actual destination for processor Ri

will be R j. Processor Rj may receive multiple messages, however, it accepts only the

first message to arrive in the bus cycle. Figure 2.6(c) shows the binary values held by

processors that would induce switch settings as shown in Figure 2.1. Based on these

values, R i receives a message from R ly R?, and R i, but accepts only the message from

Ri, as shown in Figure 2.6(a).

Next, processor Rj that received an index i then replies to R, with a message

containing its index. From the example, R i sends a message to itself, R i to itself,

and R i to Rq (Figure 2.6(b)). Since some messages may have been disregarded in the

previous step, not all processors will receive a message in this step. To account for

this, if Ri received a message from Rj during the second step, then it now segments

the bus and broadcasts the index of j to its segment. The reason for this is that all

processors within the same segment have the same prefix sums value. In our example,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Ao> As* and R* segment the bus and broadcast the values 2, 3, and 4, respectively

(Figure 2.6(c)). Each processor stores the value it receives as x<.

R 4 — - R4
R3 — R3 4 — R4

R2 — ► R3 (ignored) 3 — ►
Rl — - R3 (ignored)
Rq ---- R2

-— 2----------------------------- 3 -— 4 - Xj
0 1 1 1 2 - psun)|

(C)

Figure 2.6: Binary prefix sums example: (a) actual destinations of first set of mes­
sages; (b) response to first message; (c) segmenting, broadcasting within segments,
and computation steps.

Once JZo receives the value z0, it calculates the sum of all values in the array as

t = Vo + (/V — 1 — x0) = 0 + (5 — 1 — 2) = 2. Processor Rq then broadcasts t to all

processors, so that processor Ri can locally determine psum* = vq+ vi + . . . + =

t - (N - 1 - x<). ■

The conditional delay switches are used to introduce unit delays, one unit delay

for each input value of T . The effect of this is that select and reference pulses

of all processors with the same prefix sum value coincide at the same processor,

however, only one message from this group of processors is received. The segment

switches enable the highest indexed processor of such a group to segment the bus and

broadcast data relaying information necessary for each processor to locally compute

its prefix sum. The ability to pipeline messages allows each processor to compute its

prefix sum simultaneously on a single bus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

2.3.2 Compression

Consider an LARPBS with N processors, such that each processor holds one element

and some of the elements are marked. Let there be x such marked elements. The

compression algorithm compacts all marked elements to the lower end of the array,

namely processors Ao through A ,_v, maintaining their relative order. The algorithm

also compacts all unmarked elements to the upper end of the array, namely processors

A* through R n- i , maintaining their relative order.

Lem m a 2.2 [56] Compression of x elements, where x < N , can be performed on an

N processor LARPBS in 0(1) steps.

Proof: Consider processor Ri, where 0 < i < N , holding a marked element

Processor Ri sets its conditional delay switch to cross and sends a message with its

index t addressed to processor R n - i - All processors holding unmarked elements set

their conditional delay switches to straight. If Ri holds the marked element with the

k01 largest index, then the actual destination for the message is A*_*. Because of the

conditional delays, each message written at this step arrives at a different destination

processor.

Processor Rn-ic that received an index i then replies to Ri with its index. Pro­

cessor Ri stores k (that is, N minus this index N - k) as counW, this will contribute

towards determining the final position for the marked element Uj. Next, each pro­

cessor holding a marked element multicasts its index to all processors above it. The

lowest indexed processor A, holding a marked element will not receive a message,

and will thus determine that it has the lowest index. Processor At then broadcasts

count9 to all processors so that each processor R, with a marked element can then

locally determine the final position for its element as compressi = countg — count,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Repeat the process for the unmarked elements, however, the position received in

the second step is its final position. Once all processors have determined the final

positions, route all elements to their proper destinations. ■

2.4 PR-Mesh Description

North

Directional
Couplers

f Top \
Left Right
\Bouomy

EastWest

— [T j-

Fusing Connection

South

T -• Transmitting segment C -• Conditional delay loop

R -• Receiving segment F - Fixed delay loop

Figure 2.7: PR-Mesh processor connections

We define a new model that is a ^-dimensional extension of the LARPBS called the

Pipelined Reconfigumble Mesh (PR-Mesh). It is a mesh of processors in which each

processor has 2k ports. Each processor can locally configure its ports by internally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

fusing pairs of ports or leaving ports as singletons, so all buses are linear. A two-

dimensional PR-Mesh is an R x C mesh of processors in which each processor has

four ports. The ports connect to eight segments of buses using directional couplers

as shown in Figure 2.7. There are receiving and transmitting waveguides for the two

dimensions and within each dimension there are waveguides for both directions. Each

processor locally controls a set of switches at each of the bus intersections that allow

it to fuse bus segments together. The dashed boxes around each bus intersection

contain these sets of switches. (The intersection for the lower right corner of the

processor is shown larger to distinguish the connections.) Each fusing connection

can be in one of ten possible settings. The dashed segments within the box are

auxiliary segments that enable the processor to create U-turns. Figure 2.8 depicts

the ten possible port partitions for each processor of a two-dimensional PR-Mesh. To

implement these partitions, the switches can configure from within the same set of

configurations at the switch level. Local fusing creates buses that run through fused

switches to adjacent processors, then through their fused switches, and so on. Each

such linear bus corresponds to an LARPBS. The switches may not be set, however,

so that a cycle is formed. By allowing cycles, there would be no clear head or tail of

a bus, therefore, it would be impossible to determine priority among the processors

for concurrent write operations.

Each processor locally controls conditional delay loops on each of the transmitting

segments. There are also fixed delay loops on each of the receiving segments. The

switches at each bus intersection act as the segment switches. Refer to Figure 2.7 for

the placement of these switches. A pair of receiving and transmitting buses that are

traversed in opposite directions corresponds to an LARPBS bus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

/ \
\

(NS. E.W) IEW.N.S) (NW.S.E) (NE£,W| (SW.N.E)

/
/ y v \/ \

1SEKW) (NW.SE) (NE.SW) (NSJSW) (N.S.E.WI

Figure 2.8: PR-Mesh switch connections

The following examples help to illustrate the processor and switch connections for

different bus configurations. Consider a processor, Ri, that is connected to a segment

of a horizontal bus, that is, it sets its configuration so that the East and West ports

are fused. Also, assume that the North and South ports are tails of separate buses,

or open rather than fused. Figure 2.9(a) pictorially shows a possible set of bus

formations at processor Ri. Processor Ri configures its switch settings so that the

East and West ports are fused and the North and South ports are left open. Refer to

Figure 2.9(b) to see the connections of each bus intersection. With this example, the

left reading and writing connections do not necessarily correspond to the West port

because of bus routing internal to the processors. For example, a read from the West

port would be performed by either the Top or Bottom read connections. Read and

write operations for the North port are performed by the Left connections and read

and write operations for the South port are performed by Right connections. The

corresponding ports and connections are fixed for each bus configuration. Since there

are only ten configurations, each processor can keep a table holding this information.

Throughout this dissertation we will describe a read from the West port without

reference to internal connections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Once the bus is created, the orientation of the bus must be determined. To do

this, the head of the bus broadcasts a message on the bus that corresponds to the

correct direction and each processor connected waits for a message. For this example,

if a message is sent on the upper horizontal segment, then A, sends and receives

messages using its Top port. If a message is sent on the lower horizontal segment,

then Ri sends and receives messages using its Bottom port.

(b)(»)

Figure 2.9: Example of PR-Mesh switch settings for {EW, N, S}

The next example illustrates the switch and port connections for creating U-turns.

Consider a processor, R j , that has each of its four ports at a U-turn of a bus, so that

the processor is the head of four separate buses. Figure 2.10(a) pictorially shows

a possible set of bus formations at processor R j. Processor Rj configures its switch

settings to create U-turns, utilizing the auxiliary segments, as shown in Figure 2.10(b).

For this example, the Right connections handle communications for the North port.

Left connections handle communications for the South port, Top connections for the

East port, and Bottom connections for the West port.

The PR-Mesh is similar to the Linear Reconfigumble Mesh (LR-Mesh) [5] in that

both allow processors to dynamically change switch settings to construct different

buses. The LR-Mesh, however, uses electrical buses rather than optical buses. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

(a)

Figure 2.10: Example of PR-Mesh switch settings for {N, S, E, W}

available internal port configurations are the same as those available to the PR-Mesh

(Figure 2.8), thus forming only linear buses. The buses, however, can form cycles,

unlike the PR-Mesh buses.

A more general version of the LR-Mesh is the Reconfigumble Mesh (R-Mesh)

[5, 7, 45]. This model is able to form non-linear buses, unlike the PR-Mesh, by

allowing its processors to fuse its ports as shown in Figure 2.11 in addition to the ten

partitions available to the PR-Mesh.

1
(NSEW) (NEW.S) (N.EWS) (NES.W) (NSW.G)

Figure 2.11: Non-linear R-Mesh port connections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Literature Review

Most models based on optical buses similar to the LARPBS and PR-Mesh differ

only by slight variations. For instance, they are all able to pipeline their messages.

The differences among these models involve the switches used, the placement of the

switches, and some other hardware features and capabilities.

The previous chapter described the structure and addressing techniques of the

LARPBS and PR-Mesh in detail. This chapter considers other optical models and

samples from the range of optical algorithms. In particular, Section 3.1 briefly

describes other optically pipelined models that are similar to the LARPBS and

PR-Mesh. Section 3.2 presents an overview of the types of algorithms that have

been designed for these models.

3.1 Other Optical Models

The model most similar to the LARPBS is the Linear Pipelined Bus (LPB) [53].

This model is identical to the LARPBS with the exception that it does not have

any segment switches. The Pipelined Optical Bus (POB) [42, 79] is similar to the

LARPBS and LPB as it also contains three waveguides. Conditional delay switches

are on the receiving segment of the reference and data waveguides rather than the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

transmitting segment of the select waveguide, and like the LPB, the POB does not

have segment switches. We discuss these two models in more detail in Section 4.1 and

show that in spite of these differences, the LARPBS, LPB, and POB are equivalent.

Interval Multicasting

□ □ ■ □ □ ■ □ □ ■ □ □ I
Regular Multicasting

| Target Processor Q Other Processor

Figure 3.1: [18] Multicasting patterns

The Linear Array with a Pipelined Optical Bus (LAPOB) [18] is another model

that uses directional couplers to connect to an optical bus. The model, however,

does not possess either conditional delay or segment switches. Another restriction

of the model is the methods available to multicast. The LAPOB is able to address

messages using either a contiguous interval or regularly spaced addressing pattern.

(Refer to Figure 3.1.) Although a processor of the LARPBS is able to arbitrarily set

its select pulses, each of the algorithms presented in this work uses only the interval

multicasting pattern.

Figure 3.2: Linear Array of Processors with Pipelined Buses (APPB)

A simpler optical model is the linear Array of Processors with Pipelined Buses

(APPB) [24]. Each processor connects to two buses by two couplers, one for trans-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

mitting and the other for receiving (Figure 3.2). Unlike the LARPBS, processors

transmit messages to and receive messages from the same bus segment. Extending

this model to two-dimensions, each processor connects to four buses. The Array of

Processors with Pipelined Buses using Switches (APPBS) is a further extension. The

APPBS uses switches to connect row and column buses and allow messages to pass

directly between buses. The switches also provide the model with the ability to re­

configure itself, similar to the PR-Mesh. Section 5.2 discusses the APPBS in more

detail and presents simulations that relate it more closely to the PR-Mesh.

Column Bus 1 Column Bus i Column Bus N

Row Bus 1

Row Bus i

Row Bus N

Figure 3.3: [66] Array structure with Synchronous Optical Switches (ASOS)

The Array structure with Synchronous Optical Switches (ASOS) [66] is another

two-dimensional model that uses switches to connect row and column buses. Each

processor is able to transmit on the upper segment of a row bus and receive from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

lower segment of a row bus and the right segment of a column bus (Figure 3.3). The

switches control the route a message takes. A switch set in the cross state causes

messages to transfer from a row bus to a column bus.

The Linear Array with Reconfigumble Optical Buses (LAROB) [61, 62, 63] is sim­

ilar to the LARPBS with extra hardware features. Each processor has switches that

allow it to introduce up to N unit delays, unlike the one conditional delay of the

LARPBS. Each processor also has a relative delay counter and an internal timing

circuit to output a message during any petit cycle. An optical rotate-shift register

and a counter are also present at each processor to assist in performing a bit polling

operation. Pavel and Akl presented an extended version of the LAROB that is able

to change switch settings within a bus cycle. They also presented a two-dimensional

version of the LAROB called the Army with Reconfigumble Optical Buses (AROB).

These extra features not possessed by the other optical models seem to suggest

that the LAROB (AROB) has more “power.” Section 5.3 proves that the AROB

has the same complexity as the PR-Mesh, that is, both are able to solve the same

problems in the same number of steps with a polynomial increase in the number of

processors.

3.2 Algorithm Overview

Often, algorithms designed for pipelined optical models follow the approach of R-Mesh

algorithms, but additionally exploit the ability to pipeline messages, multicast, and

broadcast during a single step. This results in more efficient algorithms since multiple

buses are not needed to transfer multiple messages concurrently. To demonstrate this,

we present existing algorithms in this section for optical models in the areas of sorting

and selection, image analysis, and PRAM simulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

3.2.1 Sorting and Selection Algorithms

Sorting and selection are basic operations finding use in many applications and have

therefore been studied extensively. In this section, we sketch a variety of algorithms

for sorting and selection.

ElGindy presented an 0(logArlog log N) step algorithm to sort N values on an

JV-processor LAPOB [18]. The algorithm uses a two-way merge sort in which there

are O (log N) iterations of merges. Each successive merge is between larger pairs of

sorted subsequences achieved by a multi-way divide-and-conquer strategy. The merge

procedure executes in log log N recursive steps of partitioning the input sequences into

subsequences that will then be merged in parallel on disjoint sets of processors. This

algorithm can also be implemented on the LARPBS as well as some of the other

one-dimensional optical arrays discussed.

The algorithm takes advantage of the pipelining ability of the LAPOB. This en­

ables multiple merge operations to be executed in parallel on a single bus.

Theorem 3.1 An N-processor LARPBS can sort N values in O (log N log log N)

steps.

Rajasekaran and Sahni designed an optimal algorithm to sort N elements in 0(1)

steps using an JV* x JV AROB, where e is any constant greater than zero [68]. This

algorithm is optimal due to the lower bound of fl(JV1+‘) processors for a comparison

sort [3]. Rajasekaran and Sahni followed the column sorting algorithm of Leighton

[37], which assumes the elements are stored as a matrix of size JV̂ /3 x JV1/3. The

algorithm consists of a constant number of column sorts and matrix transpositions.

The transposition operations are basically permutation operations that the AROB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

can route in a single step by pipelining messages. The AROB performs column sort

as follows.

First assume that an JV2/3 x JV AROB is available, then we will extend it for any

€ > 0. This provides an JV2/3 x JV2/3 subarray to sort each column of JV2/3 elements.

Sort the elements of each subarray in 0(1) steps using the R-Mesh algorithm to sort

JV elements on an JV x JV R-Mesh in 0(1) steps [49]. This is possible due to the

ability to broadcast along a bus in a single step. In order to reduce the size of the

AROB for any t > 0, recursively apply the sorting method for sorting columns for a

total of 0(1) steps. This algorithm also runs on an JV* x JV PR-Mesh.

T heorem 3.2 An iV'xJV AROB can sort JV values in 0(1) steps, for constant e > 0.

Integer sorting is a special case of sorting, and is usually performed by a series

of radix sorts and compressions. This approach for sorting JV fc-bit integers takes

0(k) steps on an JV-processor LARPBS [56]. Pavel and Akl presented an algorithm

that runs in 0 (l—l̂ gJV) steps on an JV-processor LAROB [62]. It takes advantage of

the LAROB’s bit polling operation and its ability to inject multiple delays onto the

select waveguide. We will first describe the method for k = O(loglogJV) bits and

then extend it for k = O(logJV) bits.

Each processor holds a value Vi, where 0 < i < logJV. First, each processor Pi

determines the number of processors with Vi = Vj and t < j by using the bit

polling operation. It then determines the total number of processors with the same

value. The LAROB then uses the integer prefix sums algorithm to rank the elements

and determine the final destinations [62]. The prefix sums algorithm is similar to

the binary prefix sums algorithm of the LARPBS, however, a processor is able to

introduce multiple delays to correspond to value V{. Lastly, route each element to its

sorted position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

This algorithm stably sorts N integers with value 0 < v* < log N in 0(1) steps on

an JV-processor LAROB. To extend the range of values, divide the k bits in

groups, each of log log JV bits. The LAROB performs the sorting algorithm in t— A-—

stages. During stage », stably sort the values with respect to the ith least significant

group of bits in 0(1) steps as above.

T heorem 3.3 An N-processor LAROB can sort JV k-bit values in O^ ^ / y) steps.

The problem of selection is to select the k** smallest element out of JV given

elements. Li and Zheng designed a selection algorithm that runs in O(logJV) time

on an JV-processor POB [43]. The algorithm exploits the multicasting ability of the

POB. It is recursive and proceeds as follows.

Let P denote the set of active processors; initially |P | = JV. (The base case is when

|P | < 5.) Partition P into groups of five contiguous processors each. In 0(1) steps, the

tail of each group determines the median of its group. The POB compresses the [^" |

determined medians to the [^] leftmost processors. Recursively find the median of

these values. Denote this value as m. The leftmost processor broadcasts m and

the POB computes prefix sums to count the number s of elements that are less than

or equal to m. If s = k, then return m. If s > k (s < k), then compress the elements

less than or equal to (greater than) m and recursively call the select procedure on the

s (|P | - s) elements. This algorithm also runs on an LARPBS.

T heorem 3.4 The kP smallest element can be selected from JV elements by an JV-

processor LARPBS in O(logJV) steps.

Rajasekaran and Sahni designed a randomized algorithm to perform selection on a

y/N x y/N AROB in 0(1) steps with high probability (w.h.p.) [68]. (High probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

is a probability > (1 — n~°) for any constant a > 1.) The algorithm takes advantage

of the constant time compression operation and sorting on an AROB. The algorithm

first picks a random sample S of size q = o(N). The AROB compresses the sample

elements in the first row of the AROB and then sorts the sample. Next, choose two

elements li and I2 from the sample whose ranks in S are kft — 8 and kft + S for some

8, where 8 = f{N). These two elements bound the element to be selected w.h.p.

Eliminate all elements outside of the range [/i,/a]. Repeat the process again for the

remaining elements. The number of iterations required is less than four w.h.p.

T heorem 3.5 The kth smallest element can be selected from N elements by a y/N x

y/N AROB in 0(1) steps w.h.p.

3.2.2 Image Analysis Algorithms

A few different image analysis algorithms have been designed for the optical models

discussed. In particular we will consider algorithms to compute the Hough transform

of an image and the nearest neighbor. Section 6.1.3 focuses on improving the efficiency

of other image processing algorithms that have been developed for the R-Mesh.

The Hough transform is a method to detect the shape of object boundaries in a

binary image by obtaining a set of projections of the image from different angles. The

image is integrated along line contours defined by the set of points (x, y) satisfying

the equation

zcos(0) + ysin(0) = p,

where 0 is the angle of the line with respect to the positive y-axis and p is the distance

of the line from the origin.

Pan and Li [56] developed an algorithm to perform the Hough transform on a

y/N x y/N binary image in 0 (N log N) steps on an iV-processor LARPBS. The algo­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

rithm takes advantage of the segmenting ability of the LARPBS to perform multiple

prefix sums in parallel. Each processor holds the indices of a pixel of an image and

the pixel value. There are JV projections that are calculated, or JV angle values Qi,

0 < i < N. The Hough transform maps collinear edge pixels into the same point

in the parameter space. The parameter space is grouped into JV 6 values and JV p

values, where a (0, p) pair corresponds to a linear band of edge pixels, approximating

a line. As a result, it suffices to detect a point in the parameter space to which a

large number of edge pixels are mapped.

Processors that hold an edge pixel perform the following steps for each angle

value. First, each processor calculates the value of p using the above equation,

0 < i < JV. The LARPBS then sorts the JV p values in O(logJV) steps [56]. Segment

the LARPBS so that each subarray holds the same p values and perform a binary

sum operation over each subarray in 0(1) steps to determine the number of pixels

that are mapped to the same point. The LARPBS then applies a threshold function

to the summed values. Since there are JV iterations (one for each angle value), the

algorithm runs in 0 (JV log JV) steps.

Theorem 3.6 The Hough transform of a y/N x y/N binary image can be computed

in 0 (N log JV) steps on an N-processor LARPBS.

Pavel and Akl [64] also developed an algorithm to compute the Hough transform

of an JV x JV image in 0(1) steps on an JV x JV x JV AROB. Their algorithm exploits

the AROB’s ability to reconfigure its buses at each step.

The nearest neighbor problem considers an JV x JV binary image A = (a^), 0 <

*, j < JV, where each element is either a black (a ,j = 1) or white (a*j = 0) pixel. Let

B C A b e the subset of black pixels. The Euclidean distance dist(alj , a,^-) between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

two pixels Oij and Oi>j> is given by

dist(ai j ,ai ' j ') = ((* - *T + (j - i')2)l/2-

A black pixel is a nearest neighbor of Oij if the distance between the two pixels

is minimum with respect to Oij and B - {a^}.

Pan et ai. [57] presented an algorithm to compute the nearest neighbor in 0(log log JV)

steps using an JV34<-processor LARPBS in which the image is stored in row major

order. They proceeded by partitioning the image A into two regions for each black

pixel Oij. The left region of contains the pixels in all columns j ' such that j ' < j .

They defined the right region similarly. The algorithm then finds the nearest neighbor

in each region and selects the closer of the two.

Find the nearest left neighbor as follows. First find the nearest black pixel in

the same column and row in a constant number of steps by performing segmented

broadcasts and row transformations. Then each processor performs a series of local

computations using the information found. Next, by pipelining messages, all proces­

sors holding a black pixel send their distance from Oij to the right within its row.

One can view each row as a series of segments separated by black pixels, each of

which acts as the head of its segment. Find the minimum distance value within each

segment in 0(log log JV) steps [56]. Determine the minimum of the minimums and

this is the nearest neighbor.

T heorem 3.7 The nearest neighbor problem of an JV x JV image can be performed

in O(loglogJV) steps on an N 2 -processor LARPBS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

3.2.3 PRAM Simulations

An (JV, A/)-PRAM is a shared memory model that consists of JV processors and M

memory locations. The processors are able to read from and write to any of the

shared memory locations. The read and write operations to a single memory location

can either be concurrent or restricted to be exclusive to one processor at a time.

Simulations of both Exclusive Read Exclusive Write (EREW) and Concurrent Read

Concurrent Write (CRCW) PRAMs have been developed for some optical models. In

this section we present two of these simulations of the more powerful CRCW PRAM.

The first result is a simulation of an JV-processor CRCW PRAM with O(N)

memory locations by an JV-processor LARPBS in 0(log JV) steps [41], The simulation

takes advantage of an JV-processor EREW PRAM with 0 (N + M) memory locations

being able to simulate an JV-processor p r i o r i t y CRCW PRAM computation with

M memory locations in O(logJV) steps [28]. Using this result, the LARPBS proceeds

in simulating an JV-processor EREW PRAM in 0(1) steps as follows.

First assume that the EREW has M = JV shared memory locations. Let processor

Ri of the LARPBS simulate PRAM processor Pi and hold memory location JW<. The

LARPBS simulates a read step of the PRAM, where Pj reads from Af*, in two steps.

In the first step, Rj sends its index to A*, then in the second step, A* sends the

value of Mk to Rj- The LARPBS simulates a write step of the PRAM, where Pj

writes value Vj into Mk, in a single step. Processor Rj sends Vj to A* and A* stores

this value. Since each step is an exclusive read or write step, the indices sent are

all distinct and there are no conflicts. For the case when M = O(JV), there exists a

constant c such that M = cJV. In order to accommodate this, each processor of the

LARPBS holds c memory locations and then simulates the read and write steps in c

iterations. Combining the results provides the following theorem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

T heorem 3.8 Each step of an N-processor p r i o r i t y CRCW PRAM with O(N)

shared memory locations can be simulated by an N-processor LARPBS in 0(log N)

steps.

The simulation presented by Pavel and Akl [63] is a randomized algorithm for

the two-dimensional APPB model. They proceeded by first showing that a two-

dimensional APPB with N processors can simulate any iV-processor network, G ,

with constant degree in 0(1) steps. Map the processors of G to the APPB, however,

the neighbors of a processor of G may not be neighbors in the APPB. To perform

neighboring communications, construct a bipartite graph of G with k edges represent­

ing neighbor edges. FYom this, using k permutation routings, the APPB can simulate

any communication step. This result implies that an Af-processor APPB is able to

simulate an JV-processor butterfly network in 0(1) steps. Using Ranade’s result [69]

that an JV-processor butterfly network with 0 (M) memory can simulate a step of a

CRCW (JV, A/)-PRAM in 0(log N) steps w.h.p. provides the following result.

T heorem 3.9 Each step of an N-processor CRCW PRAM can be simulated by a

y/N x y/N APPB in 0(log N) steps w.h.p.

The algorithms presented in this chapter are a small sample of the algorithms

that have been developed for optically pipelined models. They demonstrate the key

techniques used by most of these models. It is not always clear, however, which

algorithms can run on which models, besides the one for which the algorithm was

developed. For this reason, we unify three of the one-dimensional models in the next

chapter. The differences between the two-dimensional models make it unclear how

they relate to each other. We relate three of these models to each other and to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

LR-Mesh and establish that they possess the same computational complexity. This

provides a better understanding of the power of these models.

The range of algorithms that have been developed is limited, in the sense that

only healthy systems are considered. The information provided is useful, however, the

algorithms are of no use if one or more processors are faulty. We, therefore, consider

faulty systems and algorithms that are able to accommodate faults in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Relating One-Dimensional Optical
Models

The introduction listed several similar models with “optically pipelined buses.” Many

of these models have different features, making it difficult to relate results from one

model to another. It is a useful endeavor, therefore, to unify these models in order

to increase understanding of which features are essential and to be able to translate

algorithms from one model to another. In this chapter we establish the equivalence

of three one-dimensional optical models, namely the LARPBS, Linear Pipelined Bus

(LPB) [54], and Pipelined Optical Bus (POB) [42, 79]. This implies an automatic

translation of algorithms (without loss of speed or efficiency) among these models. In

other words, any algorithm proposed for one of these models can be implemented on

any of the others with the same number of processors and to within a constant factor

of the same time (Theorem 4.5 in Section 4.2.2).

The only difference between the LARPBS and LPB is the segmenting ability of

the former. The segmenting ability of the LARPBS simplifies algorithm design, yet,

due to the equivalence of these models, it is not necessary to include the segment

switches. Moreover, this equivalence establishes dynamically selectable delay loops

(that are a part of each of the models considered in this chapter) as the key to the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

power of these models. This separation of the powers of segmentation and delays is

similar to that established in the context of the RMBM [74].

Section 4.1 describes the structure of the LPB and POB models. Section 4.2

establishes the equivalence of the three optical models by constructing a cycle of

simulations among these models.

4.1 Model Descriptions

The Linear Pipelined Bus (LPB) [54] is identical to the LARPBS with the exception

that it does not have any segment switches. Therefore, the LPB is not able to segment

its bus.

Reference Bus

x
Switch controlled
delay loop

Figure 4.1: Structure of a POB

The Pipelined Optical Bus (POB), proposed by Li and Zheng [42, 79], is a similar

model. Like the LARPBS and LPB, the POB has three waveguides. Conditional

delay switches, however, are positioned on the receiving side of the reference and data

waveguides, rather than on the transmitting side of the select line (see Figure 4.1).

The POB contains no fixed delay loops, so the length of the bus cycle is actually

shorter than that of the LARPBS and the LPB. As the POB contains no segment

switches, segmenting is not possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The POB also uses the coincident pulse technique to route messages. The effect of

conditional delay switches on the POB is to delay the reference pulse relative to the

select frame, so the POB is also able to perform one-to-one addressing, multicasting,

and broadcasting. The location of the conditional delay switches on the receiving

end enables the POB to multicast and broadcast without having to set multiple

select pulses in a select frame, although multiple select pulses could be set as in the

LARPBS and LPB. Consider the case when processor £< is the selected destination,

the delay switch between £ j and £j_i is straight, and all remaining delay switches

are set to cross. The select and reference pulses will coincide at Bi and again at

B i-1, therefore both processors receive the message although only one select pulse

was injected.

We now demonstrate the addressing of the POB by referring to the switch settings

as shown in Figure 4.1. Suppose processor B\ injects a select pulse so that £3 is its

selected destination, and Bo injects a pulse so that £2 is its selected destination. The

settings of the straight switches will result in a multicast operation by £ 0 to actual

destinations Bj, £ 1 , and £ 0 . The actual destination of the message sent by B\ is £ 3 .

The normal state of operation for the POB is when all conditional delay switches are

set to cross.

Throughout this chapter Ri, Li, and £< refer to the itA processor of an LARPBS,

LPB, and POB, respectively.

4.2 Equivalence of the LARPBS, LPB, and POB

In this section, we prove that the LARPBS, LPB, and POB are equivalent. That is,

each model can simulate a step of either of the two other models in constant time,

using the same number of processors. In our simulation of a model with segmenting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

by a model without segmenting, computing the prefix sums of N bits will play a key

role. To this end, we now present a new algorithm to compute the prefix sums of N

bits in a constant number of steps that uses the multicasting ability of the models,

rather than the segmenting ability of the LARPBS. We will use the example provided

in Figure 4.2 to assist with the explanation.

4.2.1 Computing Prefix Sums without Segmenting

Lem m a 4.1 The prefix sums of N bits can be computed by an N processor LPB in

0 (1) steps.

Proof: Consider an LPB with N processors, such that each one holds a binary value

tij, for 0 < * < N. The t** prefix sum, psum*, is v0 + t>i + . . . + v<. Let the i**

“reverse prefix sum” be rpsumi = t/j+i + Vj+3 + . . . + t>Ar-i, for 0 < * < Af - 1, and

rpsum /f-i = 0 .

First, each processor Li sets its conditional delay switch to straight if Vi = 0 and

to cross if Vi = 1. Referring to Figure 4.2(a), L it L&, and L7 each hold a value of T

and set their conditional delays to cross. Next, each processor injects a reference and

a select pulse at the same time, selecting destination Ljv_i, and sends its own ID as

data. The switch settings introduce delays on the select line corresponding to the 1

bits. Consider processor Li. If the resulting rpsumi is m, then m switches to the right

of Li are set to cross, and the two pulses from Li will coincide at Lk = L n - i -m. Some

processor receives the message originating from Li iff either v,+i = 1 or i = N - 1.

Note that if a processor’s message is disregarded, then all processors between it and

the closest processor to its right, Lj, whose message is accepted pass through the same

number of conditional delays and arrive at the same destination because they contain

a value of 0. Also, rpsumi — rpsumj because adding the zeros from the processors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Conditional delays

L7 — L 7

(a)

k

l 5

- l 6

■ Lg (ignored)
7 — k rpsum7 = 0

l 4 - k
6 — L6 rpsum 6 = 1

L3 • L5 (ignored) 5 - U rpsum 4 = 2

k

Li

k

■ L5 (ignored)

* L5 (ignored)

- u

4 - L o rpsum o = 3

(b) (c) (d)

3 —
2 ►

1 -
0 - —

© © © © © © © ©)
 ^

(c)

Figure 4.2: Binary prefix sums example without segmenting: (a) input values and
switch settings; (b) actual destinations of first set of messages; (c) response to first
set of messages; (d) rpsumi values; (e) multicasting step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

between Li and L, to the summation does not alter the result. (Figure 4.2(b) shows

which messages are accepted and disregarded for the example.) Next, each processor

that received a message sends its own address to the original sender, Li, which stores

rpsumi. If this address is N - 1 - fc, then the message was delayed by k slots, so

rpsumi = fc- (Figure 4.2(c) shows the response messages and Figure 4.2(d) shows the

rpsumi values for these processors.)

Set all conditional delay switches to straight (the normal state of operation) for

the remainder of the algorithm. Since not all messages in the first step may have been

accepted, some processors may not have received an rpsum message in the previous

step. The LPB next sends rpsum values to these processors. Let Sr denote the set of

processors that received an rpsum message. For each € Sr, we want to send rpsumi

to L/,, Lj,+1, . . . , such that v*+i = v*+2 = . . . = = 0, as rpsumi Is equal to their

rpsum values. To accomplish this, we exploit the feature that a processor receives the

first of multiple messages sent to it. Processor L s - i- i substitutes for Li, reversing the

order of the processors. For each Li € Sr, Ln- i now multicasts rpsumi to processors

L s - i- i , L fi- i , . . . , L n- i • Each Lk, where 0 < k < N , will accept exactly one message

and store it as rpsum N -i-k• If Lfc € Sr, then the message accepted by L s - i-k will

be from itself, otherwise the message originated from the closest processor L n- i- 9 to

its left such that Lt € ST. (Refer to Figure 4.2(e) to see which processors multicast

the rpsumi values and the values sent.) Now processor L s - i- i sends rpsumi to Li

which stores the data as rpsumi to reverse the order of the values back to the original

order. Each processor Li now has rpsumi = Vj+i + Vj+a + . . . + vy-i. The total sum

is vo + rpsumo, which L0 broadcasts to all processors, enabling each processor Li to

calculate the correct prefix sum psumt = (totalsum) — (rpsumi) = vo + Vi + . . . + Vj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Each phase of the algorithm runs in a constant number of steps. Based on this

algorithm, computing the binary prefix sums of N bits on an LPB can be performed

in 0 (1) steps. ■

4.2.2 Equivalence of Optical Models

We will make use of the binary prefix sums algorithm presented above to show the

equivalence of the LARPBS, LPB, and POB. For a more detailed discussion on the

equivalence of models, see TY&han et al. [72]. We prove the equivalence of the three

optical models by & cycle of simulations. Each simulation consists of the following

three phases: (i) determine parameters for the actual destinations of all messages, (ii)

create the select frames, and (iii) send the messages.

L em m a 4.2 Each step of an N processor LARPBS can be simulated by an N pro­

cessor LPB in 0(1) steps.

Proof: Find param eters for actual destinations: First, each processor Lj of the

LPB identifies the nearest segment switch that is set in the LARPBS to the left of

its position. If Li simulates a processor with a set segment switch, then Li multicasts

i + 1 to Lj+|, L<+a ,. . . , Ljv-i, and Lj stores this as le ftj . More than one message may

coincide at a single processor, however, the first one received identifies the lowest

indexed processor that is in the same subarray as Lj. If a processor did not receive a

message, it will assume the lowest indexed processor within its subarray to be L0. To

identify the nearest set segment switch to the right, reverse the order of the processors,

letting processor L s - i - j substitute for Lj, and then proceed the same as before. If

a processor did not receive a message, it assumes the highest indexed processor in

its subarray to be Ljv-i* Each Lj stores the index of the rightmost processor in its

subarray as rightj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Next, each processor Lj determines the number of set conditional delay switches to

the right of processor it, of the LARPBS in its subarray (that is, between processors

indexed j to rightj). To do so, the LPB computes the binary prefix sums of the

number of set switches (Lemma 4.1). Each processor Lj then refines its prefix sum

based upon the prefix sum of processor rightj and stores it as psumj.

C rea te select fram es: Given the location of the select pulses within the se­

lect frame (selected destinations), the information on set segment switches, and the

number of set conditional delay switches, Lj locally determines the actual destinar

tion processors for its message as follows. Processor Lj shifts its select pulse(s) by

(rightj - N + 1 - psumj) to match the actual destinations. If some of the resulting

select pulses correspond to processors that are not within its subarray, then Lj uses

le ft j to mask off the bits for those select pulses.

Send messages: At this point, processors set all delay switches to straight and

transmit their messages. If a message was to be received by Rj in the LARPBS,

then Li successfully receives it in the LPB. A message sent by a processor of the

LARPBS to multiple destinations would be sent to the corresponding processors of

the LPB. Also, if multiple messages arrive at one processor in the LARPBS, then

the simulating LPB maintains their order of arrival so that the processor receives the

proper message. Therefore, the simulation also properly handles any concurrent-read

or concurrent-write step of the LARPBS. ■

Though neither the LPB nor the POB can segment its buses, the simulation of

an LPB on a POB is not automatic due to differences in the location of conditional

delay switches, normal state of operation, and methods of multicasting. For instance,

if processor Lj of the LPB sets its conditional delay switch to cross to introduce a

delay, then messages originating from L„ 0 < i < j , will be shifted. If processor Bj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

of the POB sets its delay switch to straight, however, then messages destined for £<,

0 < t < j , will be shifted. The proof of the lemma below addresses these issues.

L em m a 4.3 Each step of an N processor LPB can be simulated by an N processor

POB in 0(1) steps.

Proof: F ind param eters for ac tual destinations: The POB first determines the

number of conditional delay switches set to cross to the right of each processor on

the LPB (using binary prefix sums [42]). Each processor £ , stores the prefix sum it

calculated as psum,. If Lj is a selected destination for the message sent by L,, then

the message will arrive at actual destination with index (j — psumi) on the LPB.

C rea te select frames: Based on the prefix sum values, each processor can shift

and mask its select frame, as in the proof of Lemma 4.2, placing select pulses according

to the actual destinations.

Send messages: After adjusting the select pulses, set all delay switches to cross

on the POB and send the messages. This is the normal state of operation for the

POB, so no messages will be shifted in this step. If a message was to be received

by Li in the LPB, then B, successfully receives it in the POB. As in the proof of

Lemma 4.2, this simulation properly handles any concurrent-read or concurrent-write

step. ■

For an LARPBS to simulate a POB, the differences mentioned before the previous

lemma pose a problem, even though the LARPBS can segment its buses and the POB

cannot. In particular, one select pulse in the LARPBS can address only one proces­

sor, while the POB can address multiple processors with one select pulse by setting

successive conditional delay switches to straight. To overcome these differences, the

LARPBS sends messages to intermediate destinations as described in the following

proof.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Lem m a 4.4 Each step of an N processor POB can be simulated by an N processor

LARPBS in 0(1) steps.

Proof: F ind param eters for actual destinations: To simulate the POB on the

LARPBS, we first determine the number of conditional delay switches on the receiving

side that are set to straight before each of the processors. Recall that a delay switch

set to straight shifts messages on the POB (and may cause multiple processors to

receive the same message), so this will provide information for the actual destinations

of the messages. Each processor A< of the LARPBS calculates the binary prefix sum,

pswni, based on the number of straight switches.

The number of straight switches preceding the processor simulated by A* on the

receiving side is d* = p su m s-i — psum^. If a message was to be sent to selected

destination Bi on the POB, then it would actually arrive at A*, such that k + dt = i-

Also, if the computed value k + dk is the same for multiple processors, then these

processors would receive the same message, corresponding to a concurrent-read step

of the POB. Note that a select and a reference pulse in a frame may not coincide at

any processor in the POB if enough conditional delay switches are set to straight. In

this case, there will be no nonnegative k to satisfy the previous equation.

C reate (partia l) select fram es and send messages: Send messages in the

normal state (all conditional delay switches set straight) on the LARPBS without

altering the select frames. Next, A, sends a message containing its ID to the processor

indexed (j + dj) requesting the data that processor (j + dj) received. This is because

the message A, would have received after being shifted by dj in the POB was actually

received by processor (j + dj) in the LARPBS without being shifted. Processor

(j + dj) might be the destination of multiple such requests, corresponding to multiple

contiguous processors that should receive copies of the message processor {j + dj)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

holds. This occurs when the multiple processors should receive the same message

on the POB due to straight conditional delay switches. Processor (j + dj) then

sends the data it originally received to the processor whose request it received in the

previous step. Each processor R+ of the LARPBS then sets its segment switch if

processor Bj+l has its delay switch set to cross in the simulated model. A crossed

delay switch represents the boundary for which contiguous processors would receive

the same message due to straight delay switches. The head of each subarray now

broadcasts the data it received in the last step. Each processor Ri in the LARPBS

now has the same message as Bi would in the POB. Also, the LARPBS properly

handles any concurrent-read or concurrent-write step of the POB. ■

The cycle of simulations described by the preceding lemmas establishes the equiv­

alence of these models.

T heorem 4.5 The LARPBS, LPB, and POB are equivalent models. Each one can

simulate any step of one of the other models in 0 (1) steps with the same number of

processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Relating Two-Dimensional Optical
Models

We have listed a number of models that utilize “optically pipelined buses” in Chap­

ter 1. In this chapter we will concentrate on the two-dimensional version of the

LARPBS, the Pipelined Reconfigurable Mesh (PR-Mesh) [72]. Other proposed, sim­

ilar two-dimensional optical models are the Array with Reconfigurable Optical Buses

(AROB) [62, 63], the Array Processors with Pipelined Buses (APPB) [47], the Array

Processors with Pipelined Buses using Switches (APPBS) [24], the Array with Syn­

chronous Optical Switches (ASOS) [66], and the Reconfigurable Array with Spanning

Optical Buses (RASOB) [65].

Many of the optically pipelined models have different features, making it difficult

to relate results across models. It is a useful endeavor, therefore, to unify these models

in order to increase understanding of which features are essential and to be able to

translate algorithms from one model to another. In Chapter 4, we determined the

equivalence of three one-dimensional reconfigurable optical models: the LARPBS,

LPB, and POB. This result implies an automatic translation of algorithms (without

loss of speed or efficiency) among these models. In this chapter we consider two-

dimensional models. This presents obstacles not present when analyzing linear arrays,

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

such as the larger number of configurations possible due to the multiple dimensions.

To account for this, we establish their equivalence in a slightly different context; here

we consider their complexity by relating their time to within a constant factor and

the number of processors to within a polynomial factor. Two models have the same

complexity if either model can simulate any step of the other model in a constant

number of steps, with up to a polynomial increase in the number of processors.

Given the number of algorithms developed on reconfigurable models and the grow­

ing body of research on them, it is important to relate these models to each other

and to other, more widely known models. In this chapter we prove that the PR-Mesh

has the same complexity as the cycle-free Linear Reconfigurable Network (LR-Mesh),

that is, in constant time using a polynomial number of processors, the PR-Mesh and

the cycle-free LR-Mesh can solve the same class of problems. We also show that these

models have the same complexity as the LR-Mesh that allows cycles (Section 5.1). We

extend this complexity class to include two other optical models, namely the AROB

and APPBS. Section 5.2 relates the APPBS and the PR-Mesh, then Section 5.3 re­

lates the AROB and the PR-Mesh. Our results obtained in this chapter are some of

the first to unify reconfigurable optical models to each other and relate them to other

more widely known models.

We will first define some terminology prior to presenting the results. We draw

on the complexity class definitions in this section from Johnson [30] and Karp and

Ramachandran [31]. Let N denote the input size.

For model Z, let Z (T , poly (A)) denote the class of languages accepted by model Z

in 0 (T) steps with polynomial in N processors. The class L is the class of languages

accepted by deterministic Turing machines with work space bounded by log N. This

class is contained inside P and the corresponding algorithms use less workspace than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

the size of their input [30]. For example, a problem in L is one that can be solved in

a reasonable amount of time by a polynomial number of computers.

5.1 Complexity of the PR-Mesh

The Linear Reconfigurable Network (LR-Mesh) [5] has the same structure as the

PR-Mesh and each processor can locally configure its port connections as in a PR-Mesh

(Figure 2.8). The difference is that it uses electronic buses instead of optical buses.

Thus, it is not able to pipeline messages. A value written on a port reaches all ports

connected to the same bus in one time step, however.

Due to the U-turn structure of the PR-Mesh buses, cycles are not allowed; it is nec­

essary to separate the transmitting segment from the receiving segment. Therefore,

the LR-Mesh model that we will first relate to the PR-Mesh is one that is cycle-free,

that is, all buses are linear and without cycles. Refer to this model as the cycle-free

LR-Mesh (CF-LR-Mesh). We will first establish that L = CF-LR-Mesh(l, poly(Ar)),

thereby indirectly relating the complexity of the CF-LR-Mesh to that of the LR-Mesh.

We will then establish in Section 5.1.2 that the PR-Mesh has the same complexity

as the CF-LR-Mesh and can thus solve any problem in L in constant time using a

polynomial number of processors.

5.1.1 Relating the LR-Mesh and CF-LRrMesh

Ben-Asher et aI. [5] established L = LR-Mesh{l,po\y(N)) using an LR-Mesh that

allows cycles. They used the decision problem C y c l e , which is complete for L with

respect to JVC1 reductions. The class JVC1 consists of all languages recognizable

by log-space uniform classes of Boolean circuits having polynomial size and depth

O(logJV). A reduction of a problem is a mapping of problem A to an instance of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

another problem Y, such that the solution to Y provides a solution to the instance

of X [14]. An N C l reduction from problem X to problem Y is a log-space uniform

family of Boolean circuits that

• solves X given Y,

• contains at most a polynomial number of gates, and

• has O(logJV) depth.

This implies that any problem that the LR-Mesh can solve in constant time using a

polynomial number of processors can be mapped to the problem C y c l e .

D efinition 1 [5] C y c l e is the following decision problem. The input is a permuta­

tion on N vertices, that is, a directed graph of out-degree 1 and in-degree 1 (given by

its adjacency matrix), with two special vertices u and v. The answer is ‘1’ if u and v

are on the same cycle.

To solve the C y c l e problem, Ben-Asher et al. devised the following algorithm.

Let each processor o f e a x N x N LR-Mesh hold one bit of the input adjacency matrix.

Assume that vertex i maps to j and j maps to vertex k. After a series of communi­

cation steps, all processors in column j hold the IDs of predecessor * and successor k.

Processors then create a linear bus between adjacent vertices. For instance, processors

in column j and row k fuse their ports to create a bus from processor p{j,j) (rep­

resenting vertex j) along column j to p{k,j), then along row k to processor p(k, k).

In this manner, each cycle in the input permutation induces a cycle in the LR-Mesh.

Processor u writes a message on its cycle, and v receives the message if the two are

on the same cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

This gives the following LR-Mesh solution to any problem n in L: simulate the

N C l circuit transforming the instance of II to an instance of C y c l e , then solve the

resulting instance of C y c l e . Ben-Asher et al. also developed a simulation of the N C l

circuit (without the use of cycles), establishing L C LR-Mesh(l, po\y(N)). They fur­

ther proved that LR-Mesh(l,poly(N)) C L, thereby obtaining L = LR-Mesh(l,po\y(N)).

We aim to prove that CF-LR-Mesh(l,po\y(N)) = L. We use an O(N) x O(N) x

O(N) CF-LR-Mesh to solve C y c l e , and thus establish the same complexity. The

approach we take is similar to that of Ben-Asher et al., mapping the given adjacency

matrix to the bottom layer 0 (N) x O (N) LR-Mesh and after a series of communication

steps, all processors in the j 01 column hold the IDs of the vertices immediately before

and after vertex j in the permutation. Ben-Asher et al. actually embed the graph

in an O(N) x O(N) LR-Mesh with the cycles. The CF-LR-Mesh, however, does not

allow cycles. For this reason, we embed the permutation graph edges using the third

dimension of the CF-LR-Mesh, as described below.

The LR-Mesh has N layers of O(N) x O(N) processors, where each layer can be

broken down into 4 x 4 blocks of processors, as shown in Figure 5.1. Label eight

of the processors within each block as “in” or Mout” to represent the direction of

the permutation mapping, although the CF-LR-Mesh is undirected. We will refer to

these as ports or port processors for the block. (This labeling represents the direction

of buses for the simulations involving optical buses in the sections to follow.) Let

block(i, j) denote the block in the Ith row and j th column of blocks, where 0 < », j < N.

The blocks on the diagonal represent the vertices, for instance, block(i, i) represents

vertex *'.

We create linear buses, one bus corresponding to each vertex, such that the buses

extend up the layers of the mesh. Bus connections are identical in each layer and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

(•) <b)

Figure 5.1: Block of 4 x 4 processors for simulations: (a) labeling of processors within
blocks; (b) arrangement of blocks and connections.

depend on the permutation. For each vertex j with successor vertex k, in each layer,

a bus connects block(j,j) via block(k,j) to block(k,k) within the layer, then steps

up to block(k,k) in the next layer. This bus exits block(j,j) from or Sout and

enters block(k,k) from £<„ or Wi„, depending on the relative values of j and k. The

“in” port also routes this connection up to block(k, k) in the layer above. The bus

coming from the layer below also enters at the same “in” port processor, and is

configured to connect to the vertical bus leaving block(kt k). Figure 5.1(b) shows the

connections for a block whose predecessor reaches it via a block from its left, and

successor corresponds to some row above. (Connections shown as dashed lines are all

within the same layer. Connections shown as solid lines run either to the layer above

or from the layer below.)

Consider a vertex u. The linear bus that starts at block(u, u) in the bottom layer

passes a block for each vertex reachable from u. Since a bus only moves up in layers

of the CF-LR-Mesh, the bus from block(u, u) may reach another copy of block(u, u)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

in a later layer (because of a cycle in the permutation graph), but no cycle exists in

the mesh.

To determine if vertices u and v are on the same cycle, let block (u, u) in layer 0

write on its bus. If u is on a cycle with u, then block(v, v) in some layer will receive

the message from block(u,u). Multiple blocks simulating v on different layers may

receive the message. Each block simulating v sets its configuration to connect in a bus

crossing all layers, but if it received the message from block(u, u), then it disconnects

from the layer above it and sends a message down the bus connecting it to the bottom

layer. (Disconnecting the bus prevents concurrent writes.) If block(v, v) receives this

message on the bottom layer, then u and v are both on the same cycle, indicating a

‘1’ answer to the C y c l e decision problem.

Therefore, we have the following result.

T heorem 5.1 CF-LR-Mesh(l,poly(N)) = L.

5.1.2 Relating the CF-LR-Mesh and PR-Mesh

We will use the result of the following lemma to show that the CF-LR-Mesh can

simulate each step of a PR-Mesh in a constant number of steps with a polynomial

increase in the number of processors.

Lem m a 5.2 Each step of an N processor LARPBS can be simulated in 0(1) steps

by an N x N CF-LR-Mesh.

Proof: Let nitj where 0 < *, j < N, denote a processor of the CF-LR-Mesh

(LARPBS). The CF-LR-Mesh computes prefix sums in constant time [52] on the set

conditional delay switches to determine actual destinations. A similar computation

determines the segment switch locations and the CF-LR-Mesh adjusts the actual des­

tinations accordingly. Each processor ttqj sends its prefix sum, psumj, and the select

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

frame for pj down column j . Each processor tt^ performs a bitwise AND between the

select frame for p, and 2,+pn,m>. A nonzero result corresponds to coincident reference

and select pulses at processor p* of the LARPBS. To determine priority, a processor

that detected coinciding pulses disconnects its ports and writes the message on its

east port, while the remaining processors configure their ports as {N, S, EW}. Thus,

the processors in the rightmost column receive the message that originated from the

highest priority processor in 0 (1) steps. ■

North

West East

South

Sub-block layout (NS.EW) (NE.SW) (NW.se)

Figure 5.2: CF-LR-Mesh block configurations

T heorem 5.3 PR-Mesh(log* N, poly(jV)) = CF-LR-Mesh^ log* N , poly (A)).

Proof: A PR-Mesh can simulate each step of a CF-LR-Mesh in a constant number

of steps, as it can configure its buses in the same manner and simply broadcast all mes­

sages [21,63]. Therefore, CF-LR-Mesh(\og* N, poly(N)) C PR-Mesh(\og> N,po\y{N)).

Let V be an N x N PR-Mesh and let p,; denote a processor of V. We construct an

0 (N 3) x 0 (N 3) CF-LR-Mesh £ that simulates each step of V in a constant number of

steps. Partition £ into 0(AT2) x 0{N*) size blocks, each with nine sub-blocks of size

0 (N a) x 0 (N a) as shown in Figure 5.2. Number each block, B y, so that simulates

Pij of V . Four of the sub-blocks correspond to the ports of Pi and the center sub-block

is reserved for routing. All sub-blocks labeled "North” and "South” configure their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

ports as {NS,E,W} and those labeled “East” and “West” as {N,S,EW}. The center

sub-block of Bij sets processor connections according to the partition set by pij as

shown in Figure 5.2. This forms the same linear buses as in the PR-Mesh.

The head of each bus sends its processor and port number as a bus id to la­

bel all ports on the bus. Rank the list of blocks along each bus starting at the

head in constant time [52]. Next, transfer simulated processor to the rightmost

column of the sub-block that matches its bus id and in the row that corresponds

to its list ranking within the bus in 0(1) steps. Now each linear bus is in the

rightmost column of its own O(N^) x 0 (N 2) sub-block. Simulate one step of each

such bus in 0(1) steps (Lemma 5.2) and then route simulated processors back to

the proper blocks. Therefore, a CF-LR-Mesh of 0 { N 3) x 0 (N 3) size can simulate

each step of an N x N PR-Mesh in 0(1) steps, so PR-Mesh(\ogi N, poly(Ar)) C

CF-LR-Mesh(log' N, poly(N)).

Thus, PR-Mesh{\otf N, poly{N)) = CF-LR-Mesh{log* N, poly(N)). ■

It is possible to reduce the number of processors required for this .simulation to

a 4N x 4N x N 2 CF-LR-Mesh. The approach is similar, however, we use a 4 x 4

block of processors to simulate each processor of the PR-Mesh. Replace each undi­

rected CF-LR-Mesh bus by two “directed” buses, although the buses are not actually

directed. This is similar to the block shown in Figure 5.1, such that the inner four

processors are used for routing and the center two processors along the perimeter

of the block contain the buses. Rank the processors along each bus in 0(1) time

using prefix sums. During this step, the active processors are on the bottom layer

of the CF-LR-Mesh. The CF-LR-Mesh configures each of its layers the same as the

PR-Mesh configurations and then processors with rank j write on layer j . In this way,

processors with higher priority on a bus write on lower layers than other processors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

within the same bus. Then, buses are formed between layers, and processors that

received a message disconnect from upper layers and write its message on the bus.

This allows it to properly handle any concurrent writes.

Vaidyanathan and Trahan [75] established that it is possible to translate a three-

dimensional R-Mesh to a two-dimensional R-Mesh by increasing the number of pro­

cessors by a factor of the smallest dimension. If we were to translate this three-

dimensional CF-LR-Mesh to two-dimensions, this would result in an 0 (N 3) x 0(JV7)

CF-LR-Mesh, which is smaller by a factor of N than the model used in the previous

simulation.

Combining the previous results, we obtain the following result.

Corollary 5.4 PR-Mesh (log1 AT, poly (N)) = CF-LR-Mesh (log* N, poly (AT))

= LR-Mesh (log* JV, poly (Af)), for each j > 0.

Corollary 5.5 PR-Mesh(l, poly(AT)) = L.

5.2 Complexity of the APPBS

The Array of Processors with Pipelined Bases using Switches (APPBS) [24] is another

reconfigurable model that uses pipelined optical buses. We will first describe the

structure of the APPBS and then relate the complexity of the APPBS to the PR-Mesh

in Section 5.2.2.

5.2.1 Structure of the APPBS

Unlike the structure of the PR-Mesh, the APPBS uses four switches at each processor

to connect to each of the adjacent buses (Figure 5.3(a)). Four configurations are

available to each switch. Figure 5.3(b) shows the configurations available to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

top right switch at a processor. Each processor locally controls its switches, and

can change its configuration once or twice at any petit cycle(s) within a bus cycle.

(Recall from Chapter 2 that a petit cycle is the node-to-node propagation delay.)

The available switch configurations form non-linear buses that are not allowed in the

PR-Mesh, though the model is restricted so that only one of two possible converging

paths can carry a message in any given petit cycle, so messages do not collide. This

does allow messages to be interleaved from different buses. To overcome the obstacle

of non-linear buses or the “merged” switch configurations, we create copies of the

buses for each message sent. We describe this in more detail later in this section.

~ ^ L .

(b)

L

Figure 5.3: APPBS processor with switches: a) switch connections at each APPBS
processor; b) switch configurations of top right switch at each APPBS processor.

Another difference between the PR-Mesh and the APPBS is that the APPBS

cannot end a bus in the middle of the mesh, so each bus must extend to the outer

processors in the mesh. The APPBS can use either the coincident pulse technique

or the control functions send(m) and wait(n) to send a message from processor m

to processor n. These functions define the number of petit cycles processor m has to

wait before sending a message and processor n must wait before reading a message.

The ability of different switches to change their settings during different petit

cycles could result in many different model configurations within a single bus cycle.

Note that (i) the path any given message traverses is linear, despite all the switch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

changes, and (ii) a message may follow a different path than the one that initially

precedes (or succeeds) it in the pipeline. If we do not allow an increase of processors

on an ^-processor PR-Mesh, then simulating an APPBS appears to require one

step to simulate each petit cycle, leading to 0(JV2) steps to simulate each step of an

iV2-processor APPBS. To overcome the obstacle of changing switch settings, we use

a block of processors to simulate each APPBS processor, as in the simulation of an

LR-Mesh by a CF-LR-Mesh. By allowing the number of processors to increase by a

polynomial factor, the PR-Mesh can simulate each step of an APPBS in a constant

number of steps.

In the other direction, the obstacles to simulating a PR-Mesh by an APPBS are

that the APPBS does not have delay loops and is not able to segment its buses.

To simplify the description of how we overcome these problems, we simulate an

CF-LR-Mesh by an APPBS, rather than a PR-Mesh by an APPBS. This, along

with the result of Corollary 5.4, implies that the APPBS can simulate any step of a

PR-Mesh in constant steps using polynomial processors.

5.2.2 Relating the APPBS and PR-Mesh

T heorem 5.6 PR-Mesh (log* N, poly (A)j = APPBS (log7 N, poly (A)).

Proof: S im ulation of A PPB S by PR-M esh: Let S denote an N x N APPBS

and let sXJ denote a processor of S. We construct an O(N) x O(N) x 0 (N 2) PR-Mesh

V that simulates each step of 5 in 0(1) steps. Let layer rp of V represent the APPBS

configuration at petit cycle t/>, where 0 < tp < N2. V creates a vertical bus repre­

senting the path each message would follow over the APPBS, such that the message

passes switches in layer ip corresponding to the APPBS switches it would pass in petit

cycle ip. This way, time travels up by layers within a single step of the PR-Mesh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

We first present an APPBS simulation by a PR-Mesh that does not allow non-linear

connections and then extend the simulation to include non-linear connections.

Within each layer of the PR-Mesh, we use a 4 x 4 block of processors to simulate

each processor of the APPBS, as in Section 5.1.1. Let blockij simulate Sij. Refer to

Figure 5.1 to see the arrangement of processors and blocks in each layer. The eight

port processors of blockij represent the four ports of as well as the direction of

the port connections. Each block in layer tj> sets its configuration to simulate the

corresponding APPBS processor during petit cycle \j}. Blocks connect within the

same layer to the preceding block on the bus and then route the bus up to the next

layer. Referring to Figure 5.1(b), the block shown represents a processor in which a

bus enters from the west port and leaves by the north port.

Consider blockij, such that has the function aend(i,j). The block should send

its message during petit cycle aend(i,j), however, all writing processors send their

message in petit cycle 0 from layer 0. Blockij first broadcasts the value it holds for

aend(i,j) along its bus. The block on the bus with value wait(g, h) in layer k, such

that k = wait(g, h) - aend(i,j)t determines that it should receive the message. Next,

blockij broadcasts its message, and each block on the bus in every layer either accepts

or ignores the message it receives depending on the above considerations.

The simulation described above properly handles messages sent by an APPBS,

however, certain switch configurations are not addressed in this simulation. To ac­

commodate the non-linear, “merged” switch configurations of an APPBS switch we

duplicate the simulation described for each message sent. Since non-linear connec­

tions are not allowed by the PR-Mesh and the path that each individual message

follows is linear, we identify the path for a particular message within its own copy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

In this way, we use N* copies of an 0{N) x 0 (N) x O(A^) PR-Mesh to handle all

switch settings of an APPBS and all possible messages.

First, each processor in layer rj) of the PR-Mesh sets its configuration as the

corresponding APPBS processor during petit cycle ip as in the previous simulation,

if it is a linear connection. Processors simulating merging switches will act as nodes

in a tree and communicate with its neighbors to determine if it has a parent in order

to identify the root of the tree and the leaves. Processors with linear connections

act as edges in the tree. We create a linear acyclic bus that traverses the path of

an Euler tour of the tree. The root of the tree segments this bus ensuring that the

bus is acyclic. With the merging processors acting as nodes in the tree, we perform

a prefix sums operation on the Euler tour, such that each node holds a value of *1’.

This ranks the nodes of the tree and provides a preorder numbering of the nodes in

the tree. An example of a tree with preorder numbering is shown in Figure 5.4.

We will consider one such copy for one particular message that passes through

the leaf with preorder number j . The leaf broadcasts the value j within this message

copy. All processors within the copy for this message can determine which merged

setting to assume based upon its own preorder number and the number for this copy.

For instance, a node with preorder number i < j , determines that if it is to route the

message further up the tree, then the message will be received from the right. A node

with preorder number k > j , determines that if it is to route the message further up

the tree, then the message will be received from the left. Once all switches are set,

the messages are sent as in the earlier simulation in a constant number of steps. Since

the APPBS guarantees no message conflicts, only one block of processors simulating

a particular APPBS processor will receive a message in a given layer of the PR-Mesh.

Recall that each layer of the PR-Mesh represents a given petit cycle. Therefore, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

two processors within the same layer that are simulating the same APPBS processor

receive a message, then there was a conflict, however, this will not occur. As a

result, we first merge the messages to one block by forming horizontal buses and then

broadcast the received messages in each layer to the leftmost block. Next, we form

buses across layers and send received messages down to the lowest layer as before.

1 3 5 7 11 13

Figure 5.4: Preorder numbering of nodes in a tree

Therefore, a polynomial size PR-Mesh can simulate each step of an N x N APPBS

in 0(1) steps, and APPBS (log* N, poly (A)) C PR-Mesh (log1 N , poly (AT)).

S im ulation o f PR -M esh (via CF-LR-M esh) by A PPB S: We now present a

simulation of a CF-LR-Mesh that can in turn simulate a PR-Mesh. Now let £ denote

an N x N CF-LR-Mesh and let i* denote a processor of £ numbered in row major

order. We construct an 0(N) x 0 (N) APPBS S that simulates each step of £ in a

constant number of steps.

We use a 3 x 3 block of processors in S to simulate each processor of £ , as shown

in Figure 5.5(a). The center processor of the block, sq, sets its switches corresponding

to the port configuration of /«, and the remaining processors simulate the instances of

buses that are segmented in £. All of these processors set their switches to straight.

If a bus ends at one of the ports of /<, then the corresponding “port processor” (that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

o0 O©0 0
o 0 o

(a)

~7ts& i

vgll)

♦ ♦

(b)

Figure 5.5: Configuration of APPBS processors to simulate a CF-LR-Mesh: a) 3 x 3
block of APPBS processors for each CF-LR-Mesh processor; b) configuration of port
processors for a bus ending at a port of /<.

is, either sn^ssj, se<, or swi) sets its switches as shown in Figure 5.5(b). This will

form alleyways to shunt messages if a bus is supposed to end. All processors on the

alleyway disregard messages sent along alleyways, except for the port processor at

which the bus was to end. To simulate a communication step, first set all switches as

described above and send the messages along the buses. Next, all processors set their

switches to straight, and any port processor that handled a bus termination sends

the message to sc*, so that sq can get the last message sent on its bus.

Thus, an APPBS of O(N) x O(N) size can simulate each step of an N x N

CF-LR-Mesh in 0(1) steps. Combining this with the fact that a CF-LR-Mesh of

0 (N 3) x 0(JV3) size can simulate each step of an N x N PR-Mesh in 0(1) steps

(Theorem 5.3), we have PR-Mesh (log* N, poly (JV)) C APPBS (log* N, poly (A T)).

Therefore, APPBS (log' N, poly (N)) = PR-Mesh (log' N, poly (N)). ■

It is possible to simulate a CF-LR-Mesh by an APPBS without using merging

switches. This can be accomplished by increasing the number of rows and columns

by a factor of N to give individual alleyways for each port.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

5.3 Complexity of the AROB

The Linear Array with Reconfigumble Optical Buses (LAROB) and AROB [63, 68],

are similar to the LARPBS and PR-Mesh, respectively, with some extra hardware

features. They are able to segment buses into separate subarrays as are the LARPBS

and PR-Mesh. We will first describe the structure of the AROB and then relate the

complexity of the AROB to the PR-Mesh in Section 5.3.2.

5.3.1 Structure of the AROB

Each processor of the AROB can add an arbitrary number of unit delays to shift

the select pulse with respect to the reference pulse. There is also a relative delay

counter and an optical rotate-shift register at each processor enabling it to perform

a bit polling operation within one step. This is the ability to select the It** bit of

each of N messages and determine the number of these bits that are set to 1. Pavel

and Aid [61] also presented an extended version of the LAROB. The extended model

allows on-line switch settings during a bus cycle and the transmission of up to N

messages with arbitrary word size. The AROB is also able to address processors

using the control functions send(m) and wait(n) as the APPBS. The PR-Mesh is

able to simulate these functions as in the simulation of an APPBS.

These features suggest that the AROB does not have the same complexity as the

PR-Mesh. By allowing the number of processors to increase polynomially, however,

we establish the same complexity despite these obstacles.

5.3.2 Relating the AROB and PR-Mesh

Theorem 5.7 PR-Mesh (log* N, poly (AT)) = AROB (log* N, poly (A)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Proof: An N x N AROB can simulate each step of an N x N PR-Mesh in a constant

number of steps, as it can configure its buses in the same manner and has the same

capabilities. Therefore, PR-Mesh (log* N, poly (N)) C AROB (log* N , poly (N)) .

Let B denote an N x N AROB and let hi denote a processor of B in row major

order. We construct an O(N) x O(N) x 0(N*) PR-Mesh V that simulates each step

of B in 0(1) steps. The approach we take to describe the simulation is to individually

present simulations of each of the extra features not possessed by the PR-Mesh.

The first feature we simulate is the bit polling operation. We use a similar ap­

proach as in the APPBS simulation without <(merging” switches (Section 5.2) and

consider 2N* layers of a PR-Mesh to simulate an AROB. Again, we use a 4 x 4 block

of processors, as shown in Figure 5.1, to simulate each processor of the AROB on each

layer. Each block sets its configuration to form buses up through the layers of the

PR-Mesh. As in the proof for Theorem 5.6, all incoming connections are routed up to

the next layer, and all connections coming in from the layer below are routed on the

same layer to the next block on the bus. The block that corresponds to an end of a

bus in the AROB sets its connections so that it ends the bus in the PR-Mesh as well.

This, once again, forms a bus for each message. In contrast to previous simulations,

the base layer here is layer N 2, the center layer.

Consider one of the original buses of the AROB, where the head of the bus is

processor by. All processors on the bus now determine their distances from the head

of the bus by computing prefix sums [63] on the upper N 2 layers of the bus. Call this

distance d ^ for processor 6f*. Do this for all buses of the AROB.

Each block on the center layer has its own personal copy of its bus. The bus

corresponding to begins in layer N2 - d ^ . This way the bit that is to be polled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

will be polled in the corresponding layer. Bach block on the center layer broadcasts

its corresponding message. If processor bafl was to perform a bit-polling operation

on the »** bit, then each block p,/, on each layer that received a message extracts

the *** bit from the message it read and uses this value in the next step. Next, all

blocks connect in vertical buses and sum these bits to get the bit polling result within

a constant number of steps. The sum obtained by pth represents the number of i**

pulses that are *1’.

The second feature we consider is the ability to set an arbitrary number of delays.

We will use the result of the following lemmas to show that the PR-Mesh can simulate

setting an arbitrary number of delays in 0(1) steps with a polynomial increase in the

number of processors.

Lem m a 5.8 An N2 -processor LARPBS can simulate in 0(1) steps any step of an

N-processor LAROB that allows an arbitrary number of delays.

Proof: Let processor fNi of the LARPBS simulate processor bi of the LAROB, so

that each pm has a segment of N processors corresponding to it. Processor pNi sends

a message to each of the N processors in its segment with the value of its delay. For

a delay of Xi corresponding to psu each of the first processors of psi s segment sets

its value to ‘1’. Perform a prefix sums operation over all N 2 processors. Processor

PNi then adjusts its prefix sum by i*. Based on the adjusted prefix sum value, pn\

adjusts its select frame. Processor pNi sends this information to pt. Now p, simulates

bi and sends the messages in a normal state of operation, such that all conditional

delay loops are set to straight. Only the first N processors are active in this last step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Lem m a 5.9 An 0 (N) x 0(N) x 0 (N a) PR-Mesh can simulate in 0(1) steps any

step of an N x N AROB that allows an arbitrary number of delays.

Proof: We first present this for an 0 (N) x 0{N) x 0 (N 4) PR-Mesh, and then reduce

it down to the desired size. Configure all processors to form the buses of the AROB in

the bottom layer of the PR-Mesh. Perform prefix sums on each bus so each processor

can get its ranking within its bus. The head of each bus sends its ID along the bus

to provide a bus ID to all processors on that bus. Due to the third dimension, each

of the processors on the bottom layer has an JV4-processor LARPBS associated with

it. For the bus with ID {j, k), map the Ith processor on bus (j, *) to processor p/w of

the JV4-processor LARPBS beginning at processor {j, k) on the bottom layer. From

Lemma 5.8, each processor can determine the number of delays that will affect it,

and can adjust its select frame accordingly. (The longest bus length possible for the

AROB is N7 processors and each processor is able to insert up to N 2 delays, hence

the PR-Mesh uses a bus of length N 4 to simulate each bus of the AROB.) Repeat

this four times, once for each port, in case a processor was the head of more than one

bus. Once all select frames have been adjusted, all processors along the bottom layer

can send their messages through the bottom layer.

To reduce the PR-Mesh to N 2 layers, first rank processors along each bus as before.

Next the tail of each bus sends the count to the head of its bus, so the head holds the

total number of processors on its bus. To get the bus IDs, perform a prefix sum of the

bus lengths using the heads of buses. (In the case above, the bus ID was simply the

index of the processor at the head of the bus. In this case, the bus ID is determined

from an ordering of the buses.) By connecting the three-dimensional mesh in a snake­

like pattern, the entire mesh is just a one-dimensional LARPBS. Now, place each bus

in contiguous segments of the mesh, with the starting location depending on the bus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

ID. This problem then reduces to the one presented in Lemma 5.8. Therefore, we can

simulate any step of the AROB using arbitrary delays on a PR-Mesh in 0(1) steps.

■

The third feature considered is the on-line switching ability of the AROB. This

simulation follows the simulation of this feature of the APPBS without “merging”

switches by the PR-Mesh in Section 5.2.

The fourth feature considered is the relative delay counter. This counter of each

AROB processor is able to detect the relative time delay between select and reference

pulses that pass each processor. We proceed as before configuring layer t of the

PR-Mesh as the AROB configuration at petit cycle ». The message is sent with the

corresponding select pulses injected and a single reference pulse in the highest slot.

Next, configure buses that connect each layer together and any processor that received

a message broadcasts its layer value on the bus. This provides information regarding

the time slot of a select pulse. Each processor can then use this information along

with its layer value to determine the relative delay between the select and reference

pulses. Combining these results, we can simulate any step of an AROB on a PR-Mesh

by performing the following steps:

• Perform bit polling if required.

• Calculate the number of delays for each message.

• Adjust select frames.

• Send messages.

This proves that AROB (log* A, poly (A)) C PR-Mesh (log* A, poly (N)), thus

establishing that the two models have the same complexity. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

ACj+l

/^CF-LR-Mesh j J PR-Mesh j

\ AROBj

lv_APPBSj

Figure 5.6: Complexity class relations

We have established that the LR-Mesh, CF-LR-Mesh, PR-Mesh, APPBS, and the

AROB have equivalent complexity and can solve any problem of size N within class L

in constant time using polynomial in N processors. Figure 5.6 places these models in

relation to other models and their established complexity classes. For model Z, let Zi

denote the class of languages accepted by model Z in 0(log* N) time with number of

processors polynomial in N . Class ACj is the class of languages accepted by logspace-

uniform, unbounded fan-in circuits of size polynomial in N and depth 0(log* N). The

dashed lines represent previously known results [72]. The solid line represents results

obtained in this work and places the models within their corresponding complexity

class.

The results obtained prove that pipelining messages using optical buses provide

us with better efficiency than electrical buses. The PR-Mesh requires fewer buses

than the CF-LR-Mesh, however, the PR-Mesh possesses the same limitations as the

CF-LR-Mesh in solving graph problems since non-linear connections are not allowed.

*

R-Mcsh J

LR-Mesh

ACj

J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Algorithm Development

It is always desirable to improve the efficiency of existing algorithms, either by re­

ducing the time required to execute a specific algorithm or by reducing the number

of processors required. In this chapter we improve existing algorithms in the areas

of computational geometry, image analysis, and arithmetic algorithms by adapting

them to the PR-Mesh (Section 6.1). We also briefly discuss a few algorithms that are

likely candidates to be improved.

When developing algorithms, many assumptions are made that are not always

realistic during implementation. Thus far, all of our work has assumed that N pro­

cessors are connected to an optical bus, with no restriction on the size of N. There

are many practical constraints that could have impact on the length of the bus con­

sidered, which would, in turn, limit the number of processors that could be connected

to the bus. Section 6.2 discusses some of these restrictions and an approach to work

within these limitations.

6.1 Algorithm Improvement

Certain features of the LARPBS and PR-Mesh may be exploited to develop faster

and more efficient algorithms. These models are able to compact data, perform

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Table 6.1: Improved Algorithms for the LARPBS and PR-Mesh
Algorithm Size Reduction Factor

dominance counting \ fN
prefix modular k N
number conversion N
conversion to quadtree N

binary prefix sums, and route any permutation in a constant number of steps with

N processors for a problem size of N. Binary prefix sums takes O(logN) steps on

an JV-processor LR-Mesh. Compaction and permutation routing take O(N) steps on

an JV-processor LR-Mesh. Alternatively, at greater size cost, each of these operations

takes 0(1) steps on an N x N LR-Mesh. The ability to pipeline messages enables the

use of smaller sized models, as extra buses are not required to send multiple messages

simultaneously.

A second advantage of being able to pipeline messages is a savings in steps, because

many messages can be in transit during one step, and space, because extra buses are

not required to transmit messages simultaneously. Another feature that is not possible

is the ability to send a message on an electrical bus past a processor connected to the

bus without the processor receiving it. We will identify problems and algorithms in

which we take advantage of these features. The specific problems we consider and the

size improvements for each problem are given in Table 6.1. The size improvements

are relative to the best known R-Mesh algorithms for the problems.

6.1.1 Computational Geometry Algorithms

Computational geometry has a wide range of applications. Computer graphics utilizes

computational geometry because the scenes displayed consist of geometric objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Geographic information systems are concerned with points and regions on the surface

of the earth, generating many geometric problems. Robotics is another area utilizing

computational geometry because robots are basically geometric objects that operate

in 3-dimensional space.

Many computational geometry algorithms exist on reconfigurable models with

electrical buses, such as convex hull [16, 27], triangulation [51], Voronoi diagram

[19], and point visibility [32]. Few such algorithms, however, exist on reconfigurable

optical models. We are interested in identifying algorithms that are adaptable to the

LARPBS or PR-Mesh such that the time and/or size can be improved.

We have improved an existing algorithm to perform dominance counting. Domi­

nance counting is to determine for each point, p, in a set S of N distinct planar points,

\{q : q € S,px > qx and pv > qy}\. Nigam and Sahni [50] presented an algorithm to

solve this problem on an N x N R-Mesh in a constant number of steps. We follow

their procedure, however, we are able to reduce the number of processors, obtaining

the following result.

Lem m a 6.1 Dominance counting for each point p € S, where |5 | = N, can be

computed on an TV1/ 2 x N PR-Mesh in a constant number of steps.

Proof: S tep 1: Sort S by the y-coordinate in 0(1) time (Theorem 3.2). Store the

results, one element per processor, in the top row of the PR-Mesh. Partition S into

N l/2 sets Yi, 1 < i < N l/2, such that |Vj| = N lf2 and no point in VJ has a larger

y-coordinate than any of the points in Fl+l. Within each partition, Yit sort by the

x-coordinate. Let the processor with the highest index in Yt be the border processor

for Yi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Step 2: Sort S by the x-coordinate in 0(1) time (Theorem 3.2). Partition these

elements into N l 2̂ sets X i , 1 < i < N 1^2 , such that |Xi| = N 1^2 . Store the results,

one element per processor, in the top row of the PR-Mesh.

S tep 3: Each processor sets its configuration to fuse its North and South ports

to form vertical buses. Each processor on the top row broadcasts the two values it

holds (one element of A'< and one element of Vi) on its column bus.

S tep 4: Each processor sets its configuration to fuse its East and West ports to

form horizontal buses. Broadcast the border element for Yi on row t, for 0 < t < N l/2.

S tep 5: On row t, compress elements that have a larger y-coordinate than the

border element for Yx. Let SX] = X x fl Yj. For each p € Sy, DY(p) = (number of

points dominated by p in (Yj - Sy)), DX(p) = (number of points dominated by p in

X & and Dip, S) = DY[p) + DXip) + E „< > \SW\.

Perform the summations on each row in constant time obtaining the final result.

■

The ability to identify the maximum/minimum of N elements on an N processor

LARPBS in 0(log log N) steps [56] provides a savings in steps in parts of two existing

algorithms. The first is an algorithm to determine the point visibility of a simple

polygon using an R-Mesh. This problem is to find for a given point z in the interior

of an N vertex polygon P, all the points of P that are visible from z. The existing

R-Mesh algorithm [32] runs in (^(log2 N) steps; we conjecture, however, that it is

possible to run in 0(log N log log N) steps on an LARPBS using the same number

of processors. The second algorithm is one to compute the Voronoi diagram for N

points. The Voronoi diagram takes a set S of N points and decomposes the space

in regions around each point, such that all points in the region around p, are closer

to pi than to any other point in S. The existing R-Mesh algorithm [19] runs in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

0(log N log log N) steps, however, we have been able to reduce the steps required for

some phases of the Voronoi diagram algorithm.

6.1.2 Arithmetic Algorithms

Arithmetic algorithms include a wide range of problems that may have room for

improvement. Examples of such algorithms include matrix multiplication [17, 62],

Discrete Fourier Transform (DFT) [60], multiple addition [47, 60], and singular value

decomposition [55]. These algorithms depend heavily on multiple additions as well as

compaction of data, both of which are more efficient on the LARPBS and PR-Mesh

than on the LR-Mesh and R-Mesh.

We now present extensions of some arithmetic algorithms concerning matrix mul­

tiplication. Pavel and Akl [62] presented results leading to the multiplication of dense

N x N matrices on the AROB, in which the word size is assumed to be 0(\ogN) bits.

(Refer to Sections 3.1 and 5.3.1 for a description of the AROB.) We are interested in

generalizing their results to account for an arbitrary word size. This can be done by

either increasing the time required or the number of processors required as a factor

of the word size. By allowing the time to increase, we achieve the following results

for arbitrary word size of tu-bits.

Lem m a 6.2 Addition of N w-bit numbers can be performed in 0(fn*jvl) steps on

on OQogN x N) AROB.

Proof: Assume the top row holds the N values Vj, 0 < j < N. Broadcast v, in

column j . Processor p,, stores the k * *'** bit of Vj, for 0 < i < log A, 0 < j < N,

and 0 < k < f * iterations, where I = f is^jvl, each row determines the sum

of the bits within its row using binary prefix sums. This results in (/ log N) log TV-bit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

binary values. Locally adjust the weights of the values depending upon the row in

which the values are stored. Sum these values in log(f j^ jv l) steps. ■

Lem m a 6.3 For a w-bit word size, the multiplication of an N x N matrix A with an

N x 1 vector b can be performed in stePs on an N x N x \ogN AROB.

Proof: Assume the elemeuts of matrix A are stored iu the base array of the AROB.

Assume the elements of vector b are stored in the top row of the base array of the

AROB. Broadcast bj down column j of the base array. Processor PiJ locally computes

Oij*bj = Cjj. The next step is to compute the elements of the vector c by c< = Cij-

This results in the addition of N w—bit numbers on each of the N rows. Using the

third dimension and Lemma 6.2, the multiplication can be completed. ■

Lem m a 6.4 Given two N x N matrices A and B, w-bit word size, the matrix mul­

tiplication AB = C can be performed in steps on an N x N x N x \ogN

AROB.

Proof: Route the elements of A and B such that pij,* holds a*,* and 6*j. Locally

compute the factor Cij(k) = a** * The next step is to compute the elements of

the matrix C by Cij = £*Cij(fc). This results in the addition of N w -b it numbers

on each column p ijj. This summation can be computed in CKTtajf/vl) steps. ■

It would also be beneficial to extend these results to use floating point inputs

instead of restricting them to integers.

6.1.3 Image Analysis Algorithms

Many algorithms exist in the area of image processing, such as quadtree building

[33], histogram finding [29], Hough transform [53], and nearest neighbor [57], to name

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIN(3) 1UN(3) 2UN(3)

Figure 6.1: [29] Three different representations of number 3

a few. By taking advantage of the key features of the LARPBS and PR-Mesh, we

improve some of these algorithms.

A basic operation in image processing is to compute a histogram of an N x N

image. The problem is to determine the number of occurrences of each of h grey level

values within the image. The R-Mesh histogram algorithm proposed by Jang et al.

[29] consists of a few subroutines. The two subroutines we consider here both run in

a constant number of steps on an LARPBS.

Lem m a 6.5 Prefix modular k computation of a 0/1 sequence of length N can be

performed in 0(1) steps on an N-processor LARPBS.

Proof: First compute the prefix sums of the N numbers in a constant number of

steps. Next, perform a local modulo k operation. ■

A group of N processors can represent a number with value less than N in different

formats. In the 2UN representation of integer i, a subset of t processors hold a ‘1’

and the remaining processors hold ‘O’. In the 1UN representation of integer i, each

processor k, 0 < k < i, holds a ‘1* and the remaining processors hold ‘O’. In the BIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

representation of integer t, each processor k holds a ‘1’ if the kth bit position of i is

a ‘1’ and the remaining processors hold ‘O’. Refer to Figure 6.1 for an example of

different representations.

Lem m a 6.6 Conversion of a number from 2UN or 1 UN representation to either 1 UN

or BIN representation can be performed in 0(1) steps on an N-processor LARPBS.

Proof;

• 2UN — ► 1UN: Sum the bits of the 2UN representation in one step. Processor

P o stores the sum, j , and then broadcasts the value to all processors. Each

processor with index i such that i < j sets its bit to high, thus obtaining the

1UN representation.

• 2UN — ► BIN: Sum the bits of the 2UN representation. Processor po stores

the sum, j, and then broadcasts the value to all processors. Processor p, sets

its bit to high if bit i of the binary representation of j is a ‘1’, thus obtaining

the BIN representation.

• 1UN — ► BIN: Each processor with a ‘1’ broadcasts its index to the head of the

array. The bead of the array receives the integer value due to the priority write

property and then broadcasts the value. Processor p, sets its bit to high if bit i

of the binary representation of j is a ‘1’, thus obtaining the BIN representation.

■

Both of these subroutines provide a savings in the number of processors used. The

first subroutine as presented by Jang et al. uses a (k + 1) x 2N R-Mesh as opposed

to a 1 x N PR-Mesh. The second uses a log2 N x N R-Mesh. This may carry over to

a savings of size to find the histogram of an image, as these subroutines are utilized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

in the algorithm. The obstacle arises from trying to reduce the number of processors

to sort the pixels of the image.

A quadtree is a data structure often used to represent binary images and finds

use in many operations on binary images and spatial information systems. It breaks

an N x N image into quadrants, such that the root represents the entire image, and

each node can have up to four children. It then continues to break the image down

until each pixel represented by a node is of the same color. For example, if the image

consists of all pixels being the same color, then the quadtree would contain only the

root node, else, the root would have four children representing the NW, NE, SW, and

SE quadrants of the image.

1 1 0 0 0 0 0 0
1 1 0 0 0 0 1 0
0 0 0 i 1 I 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 1

1 0 I I 1 I 1 1
1 1 0 1 1 1 1 1
I 1 1 0 1 1 1 1

A
°l

B
Ec

F
H

L
G

1
i

K

(a) (b)

17 20

B C F 0D J K

(d)

Figure 6.2: [33] Image representations (a) 8 x 8 binary image, (b) block decomposition
of the binary image, (c) shuffled row-major order, (d) quadtree representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

The specific algorithm in which we are interested is converting between a quadtree

and a binary image, which takes a constant time number of steps on an N x N x N

R-Mesh [33]. Refer to Figure 6.2 for the different representations.

There are different methods to store the quadtree representation. An obvious

method would be to use a tree structure. This, however, requires excessive space due

to the pointers needed. An alternative method is a linear quadtree, in which only

the black leaf nodes are stored. The data necessary for each black leaf node is the

shufiled-row major number (see Figure 6.2(c)) of the top leftmost pixel of its block t

(shown as a shaded block in the figure), and the level on which the node is located in

the tree I (see Figure 6.2(d)). Represent each black node leaf by (t, /). Referring to

the binary image in Figure 6.2(a), the linear quadtree representation is: (0,2), (13,3),

(14,3), (22,3), (24,2), (33,3), (34,3), (36,2), (40,2), (45,3), (46,3), (48,1).

The algorithm presented by Kim and Jang [33] uses a three-dimensional R-Mesh.

The algorithm uses the third dimension to perform permutation routing, compression,

and basic data movement of N 2 elements. An N x N PR-Mesh can perform these

operations in 0(1) steps, providing us with the following result.

Theorem 6.7 Conversion from an N x N binary image to a quadtree can be per­

formed in 0(1) steps using an N x N PR-Mesh.

Quadtree representations find use in computing certain distance transforms, spa­

tial information systems, and geometric applications, including data clustering and

shape representation [36]. Therefore, improving the efficiency of the quadtree conver­

sion could carry through to other image analysis algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

6.2 Algorithms with Physical Constraints

In this section we consider some physical constraints that can impact algorithm per­

formance. For instance, when considering optical models in practice, a pulse traveling

from one processor to the next may not take exactly the same time. Errors of this

type may accumulate when the number of processors is large, resulting in synchro­

nization error [13]. Degradation of light intensity is another problem that grows with

an increase in distance, or processors, and may prevent detectors on the receiving end

from properly interpreting data. Repeaters or optical amplifiers could be placed at

regular intervals to overcome these problems. This, however, would introduce addi­

tional delays along the bus, and the pulse timing for receiving messages would have

to be adjusted.

One approach we can take to accommodate the problem is to place a restriction

on the communication length between two processors. For instance, on an LARPBS

with N processors, permit a processor to send a message to another processor only

with distance at most L.

In the following sections we provide algorithms to compute prefix sums and per­

form compression for an AT-processor LARPBS that has the restricted communication

length described above. The base of the algorithms on an unrestricted PR-Mesh fol­

lows the approach of Pan and Li [56]. The results obtained for these two algorithms

are time optimal for this communication length.

6.2.1 Prefix Sums with Restricted Communication Length

Assume each processor holds one data element. The LARPBS sets its segment

switches so that there are 2N /L subarrays of length L/2. Number each segment

from 0 to 2N /L - 1. Each processor knows the value of N and L and can thus de­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

termine if it is in an even or odd segment. Denote hi as the head of subarray t, for

0 < t < 2N /L . Perform prefix sums within each subarray. Let hi hold the prefix sum

for subarray t, ps<.

Consider segment head hi. If t is even, then segment head hi+\ segments the bus

and hi sends to Next, tn+\ sets it segment switch to straight and hx segments

the bus. Segment head hi now receives psj_t from hi-X. If i is odd, the steps are in

reverse order. Each segment head now segments the bus to form the 2N /L subarrays

as before. Processor hi now broadcasts psj_i within its subarray and forwards ps<_i

to hi+i after setting its segment switch as in the previous step. This is repeated for

2N /L phases, providing us with the following result.

Lem m a 6.8 Prefix sums of N elements can be computed in 0 (N /L) steps on an

N-processor LARPBS with communication length restricted to L.

6.2.2 Compression with Restricted Communication Length

Assume that each processor of an IV-processor LARPBS holds an element that is

either marked or unmarked. Recall from Section 2.3.2 that the compression algorithm

shifts all marked elements to the lower end of the array, namely processors po through

p*_ i, and unmarked elements to the upper end of the array. The algorithm also

maintains the order within the marked elements and within the unmarked elements.

Let x denote the number of marked elements.

First the LARPBS computes the prefix sums of the marked processors in 0 (N / L)

steps as in the previous lemma. The prefix sum computed provides the index of the

processor to which the marked element should be routed. The processor with index

N - 1 broadcasts the total number of marked processors by passing the value from

one segment head to the next in 0 (N/L) steps. Next, compute the prefix sums of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

unmarked processors. By adding this value to the sum of the ranked processors, the

index of the processor to which the unmarked element should be routed is determined.

Route the messages to the proper processors in 2N /L phases, comprised of the

following steps.

1. Even indexed segment heads segment the bus.

2. Processor pi with rank A: in an even numbered segment sends the element it

holds and its destination to the A:** ranked processor of the segment ahead of it

if the destination has index greater than t.

3. Processor pj with rank A: in an odd numbered segment sends the element it

holds and its destination to the k01 ranked processor of the segment below it if

the destination has index less than j .

4. Odd indexed segment heads segment the bus.

5. Repeat the previous steps.

6. If a processor received an element that has a final destination within its segment,

then it sends the element to its final destination.

After 2N /L phases, the messages reach the desired locations.

Lem m a 6.9 Compression of x elements, where x < N , can be performed on an

N-processor LARPBS with communication length restricted to L in 0(N/L) steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Fault Tolerant Algorithms

As mentioned in the introduction, architectures using optically pipelined buses suit

many communication-intensive applications. As the sizes of the applications and

problems grow, so does the number of processors. The number of processors involved

in the systems considered raises the probability of a fault occurring. The occurrence

of even a single fault can have dramatic impact upon the performance of various

parallel platforms. It is not practical to allow an entire system to fail due to the

failure of a few components. For this reason, researchers have proposed fault tolerant

algorithms for many parallel architectures, such as the hypercube, mesh, and torus

[11, 12, 58, 59]. They have not, however, addressed the issue of fault tolerance for

reconfigurable models, and more specifically, for any of the optically pipelined models.

In this chapter we present several basic fault tolerant algorithms for the LARPBS.

Specifically, we have developed algorithms to calculate binary prefix sums, perform

compression, sort, and perform a general permutation routing step on an A-processor

array that can have up to N/2 static faults. We then extend these results to other

fault tolerant algorithms in the areas of image processing and matrix operations.

Section 7.1 describes the fault model used. Section 7.2 explains the preprocessing

phase for fault tolerant algorithms. We present the basic fault tolerant algorithms

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

in detail and extend the results to other more complex algorithms in Section 7.3.

Section 7.4 explains the faster methods used to design fault tolerant algorithms for

an LARPBS that has a constant number of faults.

7.1 Fault Model

Let a processing element consist of a single processor, its conditional delay switches,

and its directional couplers. We consider a processing element to be faulty if any one

of its components is faulty, and refer to it as a faulty processor for short. Faults on

any of the three optical waveguides are not considered.

Assume that all faults are static and occur prior to the execution of any algorithm.

Therefore, faults occurring during execution of an algorithm are not considered. The

algorithms presented in Section 7.3 can tolerate up to N/2 faults on an JV-processor

LARPBS. These assumptions are consistent with those described by Parhami and

Yeh [59] and Kim and Park [34].

If a conditional delay switch is faulty, that is, if it is stuck in either the cross or

straight position, then it remains that way for the remainder of the algorithm. Faulty

segment switches are not considered, since this would result in a shorter available

working array, and thus, would be a scaling problem rather than a fault tolerance

problem. (For work on scalable algorithms for the LARPBS, refer to TYahan et al.

[70, 73].)

Many fault models previously described for other architectures allow a healthy

processor to detect if its neighbors are faulty [1, 59]. In the LARPBS, a fault-free

processor is able to determine if either of its neighbors is faulty in two phases, with

each phase consisting of a constant number of steps. During the first phase, each even

numbered processor segments the bus. Next, each odd numbered processor broadcasts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

its index. If an even numbered processor did not receive the index of the preceding

processor, then it determines that its left neighbor is faulty. Each even numbered

processor now broadcasts its index. If an odd numbered processor did not receive

the index of the succeeding processor, then it determines that its right neighbor is

faulty. The second phase is similar, except the odd numbered processors segment

the bus instead of the even numbered processors. Due to the priority write rule of

the LARPBS, a healthy processor will not receive incorrect information from another

healthy processor if a faulty processor is unable to segment the bus.

Many fault tolerance schemes require extra hardware. The schemes of Baneijee

et al. [4], for instance, depend upon the existence of spare processors and links. In

contrast, the method presented by Varvarigou et al. [76] reconfigures a faulty mesh to

a smaller sized system. This results in many healthy processors being unused. There

are also others that ignore data held by faulty processors and handle only one datum

per healthy processor [2, 78], while some methods determine alternative paths for

sending messages in order to avoid faulty processors. The method presented in this

paper, however, does not require any extra hardware, utilizes all healthy processors,

and does not attempt to find alternative paths. Actually, since the LARPBS is a

one-dimensional array of processors, it is not possible to use a path bypassing the

faults.

7.2 Preprocessing Phase

Prior to running any algorithm on a faulty LARPBS, we perform some initial process­

ing to ensure proper execution. Each working processor, pi, determines the number of

faulty processors to its right (p; , where i < j < N) that have their conditional delay

switches stuck at cross. Call the value of this suffix sum fa. This value is important

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

because any stuck delays through which a select pulse travels will alter the destina­

tion of the message sent by a working processor. By determining the total number of

stuck delayB ahead of it on the bus, each working processor can adjust its reference

pulse to avoid miscommunication. Processor shifts its reference pulse to the left by

fi slots. With this adjustment, provided each working processor has its conditional

delay switch set to straight, the message sent by p< reaches the intended destination.

Once the information concerning the number of stuck delay switches has been

determined, the LARPBS must determine a mapping scheme. The fault model that

we consider does not ignore data held by faulty processors, therefore, all processors

need to be mapped to the remaining working processors. Section 7.2.2 discusses this

mapping.

7.2.1 Determine Number of Stuck Delay Switches

To determine the number of delay switches to the right stuck at cross, first, each

working processor segments the bus if it detects a faulty processor to its left. This

working processor will be at the head of its segment. Each such segment will contain

exactly one interval of faulty processors ending just to the left of the head processor.

Two cases arise for the remainder of the segment: 1) one or more good processors are

present to the left of an interval of faulty processors, or 2) no other good processors

are present.

The LARPBS proceeds in two phases to determine the number of stuck delay

switches ahead of each processor. The first phase calculates the number of stuck

delays within each of the segments that are formed as described above. Determining

the number of stuck delays within each segment, that is, within an interval of faulty

processors, is not a trivial task. Each healthy processor needs to first determine the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

number of faulty processors within its segment. Since the number of stuck delay

switches is undetermined, a processor cannot readily address a specific processor.

Therefore, healthy processors must observe the effects of stuck delay switches that

shift sent messages.

The second phase uses information collected within segments to determine the

number of stuck delay switches to the right of each working processor over the entire

array of the LARPBS. A prefix sums operation is utilized, however, due to the faulty

processors, adjustments must be made to overcome the stuck delay switches.

Delays Within Each Segment

We will first determine the number of stuck delay switches within each segment.

Recall that each processor that detects a faulty left neighbor sets its segment switch

to cross, thus segmenting the bus. The two possibilities are that the tail of a segment

is healthy or it is faulty. The head of the segment, pn, broadcasts its index to the

segment. Any other fault-free processor, pi, with a fault to its right, broadcasts its

index to the head. (There is only one such processor in a segment that fits the first

case.) If the head does not receive a message, then it determines that its segment fits

the second case. We repeatedly use the head of each segment during the process of

this section since the messages it sends are not affected by stuck delay switches. We

now describe the method to determine the delays within a single segment, although

all segments execute the appropriate case simultaneously.

Consider a segment that fits the first case, in which the tail of the segment is

a healthy processor. The number of faults in the segment is (h — I — 1), call this

value k. The head of the segment now determines the number of stuck delays by a

binary search technique. Processor pi injects select pulses into its highest k/2 slots

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

and sends its index. Processor p* then broadcasts a message indicating whether or

not it received the message. (The segment head would receive the message if there

were at most k/2 stuck delay switches.) If it did, then pi repeats this by injecting

select pulses into its highest k/A slots. If not, then jn injects select pulses into slots

(N — 1) — Zk/A through (N - 1) - k/2. Repeat this binary search process a total

of log k times to determine the number of conditional delay switches that have failed

in the cross position. Worst case time complexity is when k = N/2, resulting in

0(\ogN) steps.

Now consider a segment that fits the second case, in which the tail of the segment

is a faulty processor. The head of the segment needs the index of the head of the

previous segment to determine the number of faults within its own segment. There

could, however, be a string of such segments, each needing the index of the head of

the preceding segment. We proceed in log AT phases to relay information between

these heads of segments, with each phase corresponding to one bit position of the

processor indices. During phase *, where 1 < i < log A/’, each segment head with a

‘O’ in bit position i — 1 of its index segments the bus and listens while each segment

head with a *1* broadcasts its index within the newly formed segment. This step

is then repeated with the writers now reading, and the readers now writing. Once

the preceding index is known, each segment head determines the number of stuck

delays within its segment, as in the first case, in 0 (logJV) steps. Eventually, in some

phase, each segment head will receive the proper index since the two must differ in

at least one bit position. In addition, the first index the segment head receives is the

proper index, since the previous segment head would be segmenting the bus for each

of the phases until the two communicate. With logJV phases, and each phase taking

0(\ogN) steps, the total time to determine the number of stuck delay switches in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

each segment takes (^(log2 N) steps. This is done in log N phases rather than a simple

odd/even phase, because the two processors communicating could possibly both have

odd or even indices.

Consider the example shown in Figure 7.1. The LARPBS in this example has

three faulty processors, namely R2, iZa, and R&, each of which has its conditional delay

switch stuck in the crossed position. (The delay switches of the healthy processors

are shown as dashed lines, as they are able to change their settings, unlike the faulty

processors.) Processor R+ is a segment head that fits case one, and determines that

two switches have failed in the cross position within its segment. Processor R* is

a segment head that fits case two, that first determines that R* is the head of the

previous segment, then it determines that one switch has failed in the cross position

within its segment.
 -»

Reference
Bus

Select
Bus

R4 RT

< •

Figure 7.1: Example of a faulty LARPBS

Delays Over the L A R PB S

At this point, the LARPBS has calculated the number of stuck delay switches for

each segment. With this information, it is possible to determine the number of stuck

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

delays ahead of each working processor in the array by the prefix sums of the stuck

delays in each segment, as follows.

Perform a prefix sums operation as on a tree-like structure. We will refer to this

procedure as the A ll P r o c e sso r s P r e f ix S u m s . The head of each segment holds

the data for its segment, and each other working processor holds a value of ‘O’. In

phase j of the prefix sums, processor pairs with indices differing in bit position j com­

municate with each other. Each processor of a communicating pair must determine

whether its partner is faulty, so that the working processor can take the place of the

faulty processor in the following phases. For each communicating pair, the higher

indexed processor segments the bus, in order for the two to exchange information by

broadcasting within their segment (since the exact identity of the partner is unknown

because another working processor may be substituting for a faulty expected partner).

When communicating, the writing processor first sends its index and then its data so

that a reading processor can determine if it is paired with a faulty processor. If the

lower indexed processor is faulty, then the higher indexed processor will not receive

a message. If the higher indexed processor is faulty, then it will not have segmented

the bus, so the lower indexed processor may receive a message from a processor in

another segment. Using the index of the writer, the lower indexed processor can de­

termine that the writer was not in the expected range, so its partner is faulty. Once

a working processor determines that it is paired with a faulty processor, the working

processor continues on to the next phase. After log N phases, the head of the array

broadcasts the total, so that each processor can then locally determine the number

of stuck delay switches ahead of it on the bus. The prefix sums can be computed in

0(log N) steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Example: Figure 7.2 shows which processors communicate during the execution of

A l l P r o c esso rs P r e f ix S um s for the example given in Figure 7.1. For instance,

since R* is faulty, R* takes its place in the following phases as shown in the figure.

Also, in the first phase, when R& is supposed to segment the bus and write, R4 will

actually receive the message from R7. Then, when R+ writes, its message will reach

R 7t but will be ignored.

7.2.2 Determine Mapping

The next item to consider is the mapping of all processors to working processors, since

each good processor will need to simulate up to two processors. Two different methods

exist. The first is a ranked mapping and the second is a compaction mapping. The

algorithms presented in this paper all use compaction mapping. The algorithms for

a constant number of faults (Section 7.4), however, can use either mapping.

A ranked mapping is one in which the 1th working processor simulates the *** faulty

processor. In this method, each working processor always simulates itself as well as

possibly one faulty processor.

Compaction mapping differs such that the i** working processor simulates proces­

sors with indices 2t and 2i + 1, for < < / , where / is the total number of faults. The

Figure 7.2: Communication steps to perform prefix sums

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

remaining working processors simulate the processor with index t + / . In this method,

each working processor simulates up to two processors; it is possible, however, that

neither of the two simulated is itself.

To perform the compaction mapping, the LARPBS ranks all fault-free processors.

Set the data value to ‘1’ for each good processor and perform A ll P r o c e sso r s

P r efix S u m s in O(logW) steps. With this ranking, each working processor can

determine which processor(s) it simulates.

Referring to the example in Figure 7.1, the resulting mapping would be as follows:

• i2o simulates Ao and Ai

• Ri simulates Aa and As

• Ri simulates R* and Ag

• A« simulates A#

• A7 simulates Rj

Combining the time to determine information on the number of stuck delay

switches and to determine the mapping results provides us with the following result.

Theorem 7.1 An N-processor LARPBS with up to N /2 faults is able to compute the

number of stuck delay switches succeeding each working processor and determine the

mapping of all processors to working processors in a total of 0(log2 N) preprocessing

steps.

It is important to note that the preprocessing stage is not necessary before execu­

tion of each algorithm. If the LARPBS is to execute a sequence of algorithms, it need

only perform preprocessing once. Once the mapping and information on the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

of stuck delays has been established, it will apply to all algorithms run thereafter on

the LARPBS.

7.3 Fault Tolerant Algorithms

In this section we describe some basic algorithms for an ^-processor LARPBS that

can tolerate up to N /2 faults. The basic algorithms considered are prefix sums,

compression, sorting, and permutation routing. Using these fundamental algorithms,

we can then extend the results to develop other more complex fault tolerant algorithms

for the LARPBS, such as median row, image area and perimeter, histogram, and

matrix transposition and multiplication.

After the preprocessing is complete, each healthy processor has determined the

number of stuck delay switches ahead of it on the array, its ranking among healthy

processors, and the indicies of the processors it is simulating. In spite of having this

information available, it is still necessary to develop algorithms designed specifically

for instances when faults are present. Algorithms for a fault-free LARPBS depend on

the ability to set conditional delay switches. If a healthy processor sets its conditional

delay switch to cross, then a message sent by a healthy processor could possibly land

at a faulty processor. The index of this faulty processor could not be identified in

constant time, therefore, alternate algorithms are necessary.

7.3.1 Fundamental Algorithms

The first algorithm we consider is the prefix sums of N elements on an N -processor

LARPBS. We are not able to use the standard LARPBS prefix sums algorithm as

described in Section 2.3.1, because messages may arrive at faulty processors. In this

case, the ranking of the healthy processors determines which processors communicate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

with each other; this results in only working processors attempting to communicate.

In contrast, A l l P r o c e sso r s P r e f ix S u m s used the indices of the processors

for determining which processors participate in a specific step. This results in all

processors attempting to communicate, rather than just the working processors. With

the ranking of the working processors known, as well as the number of stuck delays

ahead of each processor, it is possible perform the operation in 0(log N) steps.

T heorem 7.2 Prefix sums of N elements can be computed on an N-processor LARPBS

with up to N /2 faults in O(logJV) steps.

Proof; First, each good processor locally determines the total sum for the one or two

elements it is simulating. Next, using the rankings of the good processors, perform

prefix sums as in A ll P r o c e sso r s P r e f ix S u m s . Since only healthy processors are

participating, there is no need to check for a faulty partner. Each healthy processor

is able to determine from its ranking whether or not it should segment the bus.

Then each communication phase is performed in two steps. In the first, the lower

ranked processor broadcasts its message on the subarray, and in the second, the higer

ranked processor broadcasts its message. Once the prefix sums is complete, each

working processor can locally determine the prefix sum for each of the elements it is

simulating. ■

Figure 7.3 shows the processors involved during each step of the prefix sums op­

eration for the system shown in Figure 7.1. For example, processor R x participates in

the operation by simulating faulty processors Ri and R*. Also, R j does not exchange

data with any other processor until the third phase of steps, since it is the fifth and

last ranked working processor out of a possible eight processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.3: Communication phases for prefix sums on a faulty LARPBS

Recall from Section 2.3.2 that the compression algorithm shifts all marked ele­

ments to the lower end of the array and unmarked elements to the upper end of the

array maintaing the original order.

T heorem 7.3 Compression of x elements, where x < N , can be performed on an

N-processor LARPBS with up to N /2 faults in O(log AT) steps.

Proof: First the working processors rank the marked processors, using the prefix

sums algorithm of the previous theorem, in 0(log N) steps. Call this the marked rank.

The processor with marked rank t determines the index of the processor simulating

Pi and routes its data to that processor.

Each working processor holds the indices of only the processors it is simulating. It

does not hold the indices of the faulty and healthy processors, therefore, it is not able

to easily determine which processor is simulating a specific processor. The method for

the processor with marked rank t to determine the index of the processor simulating

P i is described below.

The processor, p*, with marked rank z /2 broadcasts its index to all processors.

Next, the processor simulating processor pz/a broadcasts its index, j , to all processors.

As a result, all processors receive the index of the processor simulating the processor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

with the middle rank. Next, the processor with marked rank z /4 (3z/4) multicasts

its index to po,pi,. . . , P j _ i (Pj+nPj+2» • • • , P n - i)- Similar to the previous phase, the

processor simulating pz/< (pzx/i) multicasts its index to the segment of processors

below (above) pk- Repeat this phase logz times, until all ranked processors can

determine the corresponding indices.

Refer to Figure 7.4 to see the communication steps for the first two iterations of a

sixteen processor array with five faulty processors and seven marked elements. In the

first iteration, po broadcasts its index since it simulates pg which holds the element

with the middle rank of three. Processor p? then broadcasts its index since it simulates

P3. At this point, processors holding an element with rank below three determine that

the final destination will be P2 or below. Processors holding an element with rank

above three determine that the final destination will be pi or above. During the second

iteration, processors simulating p< (rank 1) and pn (rank 5) multicast their indicies

below and above P2 respectively. Next, processors simulating pi and p5 multicast their

indicies in the corresponding subarrays. The procedure continues for logz iterations,

for z marked elements.

Repeat these steps to compress data in unmarked processors to the right end

of the LARPBS. These processors will determine the indices of processors starting

after the last ranked processor in the previous phase, however. Once all indices of

the simulating processors have been determined, send messages in two steps. First,

send messages destined for an even numbered simulated processor, then those for odd

numbered simulated processors. Recall that each working processor simulates up to

two processors with consecutive indices. Therefore, routing messages this way will

prevent messages from colliding at any processor, since at most one message will be

destined for a particular processor at each step. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Ran* 0 1 2 3 4 5 6
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 6 *

Iter. 1

Iter. 2

2

4 8
0

O Healthy processor $ Faulty processor

0 Healthy processor Faulty processor
with ranked element with ranked element

Figure 7.4: Communication phases for compression on a faulty LARPBS

T heorem 7.4 Sorting N k-bit integers can be performed on an N-processor LARPBS

with up to AT/2 faults in 0 (k log N) steps.

Proof: We use the radix sort method and the compression algorithm to sort the N

integers [56]. The algorithm proceeds in k phases, one for each bit position of the

integers. During execution of phase j , where j < k, perform compression based upon

the j tH bit position (Theorem 7.3). Each phase takes O(logiV) steps, for a total of

0 (k log N) steps. ■

A generalized permutation routing step is one in which each processor sends at

most one message and is the intended destination for at most one message.

T heorem 7.5 Any generalized permutation routing step can be performed on an N-

processor LARPBS with up to N/2 faults in 0(log2 N) steps.

Proof: The LARPBS first sorts the messages by their destinations in 0 (log2 N)

steps (Theorem 7.4). Since some processors may not be receiving messages, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

____________ Table 7.1: Fault Tolerant LARPBS Algorithms____________
Algorithm Time on Fhulty Time on Fault-Ftee No. of Processors

median row O(logJV) 0(1) 0 (N)
image area O(loga N) 0(1) 0 (N)
image perimeter 0(loga N) 0(1) 0 (N)
histogram O(logMogJV) O(log h) 0 { N)
matrix transposition 0(loga N) 0(1) 0 (N a)
matrix multiplication 0 (N log2 N) 0 (N) 0(ATa)

messages are in order after the sort, but not necessarily at their final destinations,

so the LARPBS will next shift the messages to the intended processors. Perform the

algorithm in two phases, one for messages destined to even numbered processors, and

one for messages destined to odd numbered processors.

To perform the shifting, the processors holding the messages before the shifting

determine the indices of the destination processors. Since all messages are in proper

order, we can proceed in O(logJV) phases broadcasting the indices of midpoints of

segments, as in the compression algorithm (Theorem 7.3). The algorithm runs in

0(log2 N) steps. ■

7.3.2 Extended Algorithms

We extend the results from the previous subsection to apply to other algorithms

in the areas of image processing and matrix operations. Table 7.1 lists the algorithms

considered, the time complexity on a faulty and a fault-free LARPBS, and the number

of processors required. The algorithms listed tolerate at most N /2 faults for an

JV-processor LARPBS. Our fault tolerant algorithms combine the techniques of the

previous fundamental algorithms presented and build upon existing algorithms for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

the LARPBS. The image processing algorithms follow the approach of Pan and Li

[56]. The matrix operation algorithms follow the approach of Li et al. [39, 40].

Specifically, the median row, area, and perimeter algorithms make use of the

binary prefix sums algorithm. The histogram algorithm utilizes the sorting and binary

prefix sums algorithms. The matrix multiplication algorithm consists of multiple

phases of the permutation routing algorithms along with local computations, while

the matrix transposition uses the general permutation routing algorithm once.

7.4 Constant Number of Faults

Consider an LARPBS of N processors in which a constant number of processors are

faulty, say / . The algorithms discussed earlier will apply here, but it is possible to

do better utilizing the limit on faults to a constant number.

To begin preprocessing steps, each working processor determines if its neighbors

are faulty in the same manner as in Section 7.1. Next, each processor needs to

determine the number of fixed delay switches ahead of it on the bus. Each processor

sends a message with its index to itself. If it did not receive its own message, then

shift the select frame by one to the right and repeat. This may need to be repeated

/ + 1 times. Once a processor receives its own message, it then knows how many

fixed delays are ahead of it on the bus. Call this 4 for processor ifc. To compensate

for the stuck delays in future steps, each processor shifts its reference pulse by <U to

the left and does not alter its select frame.

Once the preprocessing is complete, each healthy processor keeps a table listing

the faulty processors and the working processors that are simulating them. The

algorithms then run as required, with a constant number of straightforward steps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

to accommodate the faulty processors. Each communication step is executed in the

following four phases:

• Good to good

• Good to faulty

• Faulty to good

• Faulty to faulty

Separating each communication step into these four phases ensures that each

processor is the actual destination for at most one message in a single bus cycle.

Lem m a 7.6 Any algorithm executed on an N-processor LARPBS with 0(1) faults

will result in o constant factor slowdown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

The aim of this dissertation is to further demonstrate the claim that pipelined optical

models are powerful parallel architectures and to show how these models fit into the

well established hierarchy of complexity classes. We accomplished this by developing

simulations relating different optical models to one another and also by developing

more efficient algorithms and algorithms that considered certain physical restrictions.

In Chapter 4 we established the equivalence of three one-dimensional optical mod­

els, namely the LARPBS, LPB, and POB. We first developed an algorithm to compute

binary prefix sums without using the segmenting ability of the LARPBS. This algo­

rithm is instrumental in developing a cycle of simulations among the three models, as

both the LPB and POB do not have segment switches. The equivalence establishes

reconfigurable delay (rather than the segmenting ability) as the key to the power of

optically pipelined buses. This separation of the powers of segmentation and delays

is similar to that established in the context of the RMBM [74].

The equivalence established provides us with the ability to efficiently translate

algorithms designed for any of these models to any other regardless of their structure

differences. It would be beneficial to consider other one-dimensional optical models

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

and determine their relations to the LARPBS. The LAROB and LAPOB are examples

of other one-dimensional models to consider.

In Chapter 5 we introduced the PR-Mesh, a A-dimensional extension of the LARPBS,

and established that the PR-Mesh has the same complexity as the LR-Mesh. This

relation differs from the equivalence relations of the one-dimensional models of Chap­

ter 4. Here we relate time and processor-bounded complexity classes for these models.

Essentially, any step of the PR-Mesh can be simulated by the LR-Mesh or vice versa

within a constant number of steps allowing a polynomial increase in processors. We

also prove that the PR-Mesh can solve the same class of problems as the LR-Mesh

within the same order of steps using polynomial processors. We extend this complex­

ity class to include two other optical models, the AROB and APPBS.

This result allows us to translate algorithms from one model to another and also

helps to unify existing research on reconfigurable optical models. The relations also

distinguish capabilities and limitations of these models by placing the models into an

established complexity class.

An open problem that involves establishing relations among models is the relation

between the LARPBS and PR-Mesh. It does not seem likely that the LARPBS is as

powerful as the PR-Mesh due to the steps required to perform list ranking along a

bus. The LARPBS may be more powerful than the HV-RN, since it is not known if

the HV-RN can compute prefix sums in a constant number of steps. (The HV-RN

is a restricted version of the R-Mesh in which only horizontal and vertical buses are

allowed.) It may be possible, however, to place the LARPBS into a class that lies

between the LR-Mesh and HV-RN. There are three types of simulations we could

consider: i) fix the number of processors to be the same and determine the number of

steps required by the LARPBS to simulate the LR-Mesh, ii) determine the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

processors required for the LARPBS to simulate the LR-Mesh to within a constant

factor of the same number of steps, and iii) allow an 0(log N) factor increase in steps

and determine the number of processors required. The same could be done between

the LARPBS and HV-RN.

In Chapter 6 we developed algorithms in the areas of arithmetic analysis, compu­

tational geometry, and image analysis. Some of these algorithms are more efficient

than other existing algorithms, in the sense tha t there is a reduction in either time

and/or size. Some of the algorithms generalize existing algorithms to accommodate

arbitrary word sizes.

We also developed algorithms to compute binary prefix sums and perform com­

pression that limit the communication distance between two processors. This is an

important consideration when evaluating practical implications. For instance, with­

out restricting communication distances, additional hardware, such as repeaters or

optical amplifiers, may become necessary, thus increasing the size and cost of the

systems.

Consideration of other physical constraints could lead to further algorithm devel­

opment. One example is, rather than limiting the communication distance, one could

limit the bus length. If this is considered, then a natural direction is the development

of scalable algorithms. Currently, few papers consider restricted bus length for recon­

figurable models [7,15, 35], despite cost and space limitation factors motivating this

research.

Rather than focusing only on constraints, it is desirable to develop algorithms for a

more generalized system. Thus far, all algorithms developed for reconfigurable models

have assumed that a healthy system is available. For practical purposes this is not

a reasonable assumption, therefore, in Chapter 7 we developed algorithms that can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

tolerate up to N/2 faults on an A/-processor LARPBS. In particular, we present fault-

tolerant algorithms to compute binary prefix sums, perform compression, sorting, and

a general permutation routing. We then use these fundamental algorithms as building

blocks to develop more extensive algorithms in the areas of image analysis and matrix

operations. There are many other problems for pipelined optical models that do not

yet have fault tolerant algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] B.F.A. AlMohammad and B. Bose, “Fhult-Tolerant Communication Algorithms
in Toroidal Networks," IEEE Trans. Parallel Distrib. Systems, vol. 10, (1999),
pp. 976-983.

[2] Y. Aumann and M. Ben-Or, “Computing with Faulty Arrays,” Proc. 24th Ann. ACM
STOC, (1992), pp. 162-169.

[3] Y. Azar and U. Vishkin, “Tight Comparison Bounds on the Complexity of Parallel
Sorting,” SIAM J. Comput., vol. 16, (1987), pp. 458-464.

[4] Banerjee, Rahmeh, Stunkel, Nair, Roy, Balasubramanian, and Abraham, “Algorithm-
Based Fhult Tblerance on a Hypercube Multiprocessor,” IEEE TYans. Comput., vol. 39,
(1990), pp. 1132-1144.

[5] Y. Ben-Asher, K. J. Lange, D. Peleg, and A. Schuster, “The Complexity of Reconfig­
uring Network Models,” Information and Computation, vol. 121, (1995), pp. 41-58.

[6] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, “The Power of Reconfigura­
tion,” J. Parallel Distrib. Comput., vol. 13, (1991), pp. 139-153.

[7] B. Beresford-Smith, O. Oiessel, and H. ElGindy, “Optimal Algorithms for Constrained
Reconfigurable Meshes,” J. Parallel Distrib. Comput., vol. 39, (1996), pp. 74-78.

[8] A. G. Bourgeois and J. L. TVahan, “Fault Tolerant Algorithms for a Linear Array with
a Reconfigurable Pipelined Bus System,” to appear in Proc. Wkshp. on Optics and
Comp. Sc., (2000).

[9] A. G. Bourgeois and J. L. Ikahan, “Relating Two-Dimensional Reconfigurable Meshes
with Optically Pipelined Buses,” to appear in Int’l. J. on Found, of Comp. Sc.

[10] A. G. Bourgeois and J. L. Italian, “Relating Two-Dimensional Reconfigurable Meshes
with Optically Pipelined Buses,” to appear in Proc. Int’l. Par. and Distr. Process.
Symp., (2000).

[11] H.-L. Chen and S.-H. Hu, “Distributed Submesh Determination in Fhulty Tori and
Meshes,” Proc. Int’l. Par. Processing Symp., 1997.

[12] G.-M. Chiu and S.-P. Wu, “A Fault-Tblerant Routing Strategy in Hypercube Multi-
computers,” IEEE TYans. Comput., vol. 45, (1996), pp. 143-154.

[13] D. M. Chiarulli, S. P. Levitan, R. G. Melhem, M. Bidnurkar, R. Ditmore, G.
Gravenstreter, Z. Guo, C. Qiao, M. Sakr, and J. P. Tna, “Optoelectronic Buses for

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

High-Performance Computing," Proceedings of IEEE, vol. 82, (1994), pp. 1701-1709.

14] T. H. Cormen, C. E. Leiserson, and R. L. Riveet, Introduction to Algorithms, MIT
Electrical Engineering and Computer Science Series MIT Press, Cambridge, MA, 1990.

15] O. Diessel, H. ElGindy, and L. Wetherall, “Efficient Broadcasting Procedures for
Constrained Reconfigurable Meshes,” Technical Report 96-07, Dept, of Comp. Sci. and
Software Engr., Univ. of Newcastle, Australia.

16] H. ElGindy, “Improved Convex Hull Algorithm on a Processor Array with a Recon­
figurable Bus System,” Technical report No. SOCS 91.12, School of Computer Science,
McGill Univ.

17] H. ElGindy, “A Sparse Matrix Multiplication Algorithm for the Reconfigurable Mesh
Architecture,” Technical Report 96-08, Dept, of Comp. Sci. and Software Engr., Univ.
of Newcastle, Australia.

18] H. ElGindy, “An Improved Sorting Algorithm for Linear Arrays with Optical Buses,”
Manuscript, 1998.

19] H. ElGindy and L. Wetherall, “A Simple Voronoi Diagram Algorithm for a Reconfig­
urable Mesh,” IEEE TYans. Parallel Distrib. Systems, vol. 8, (1997), pp. 1133-1142.

20] J. A. FernAndez-Zepeda, J. L. TVahan, and R. Vaidyanathan, “Scaling the FR-Mesh
under Different Concurrent Write Rules,” Proc. World MulHconf. on Systemics,
Cybernetics, and Informatics, (1997), pp. 437-444.

21] J. A. FernAndez-Zepeda, R. Vaidyanathan, and J. L. TVahan, “Improved Scalability
Simulations of the General Reconfigurable Mesh,” Proc. 6th Reconfigurable Architecture
Workshop. LNCS vol. 1586, April 1999, pp. 616-624.

22] J. A. FernAndez-Zepeda, R. Vaidyanathan, and J. L. TVahan, “Scaling Simulation of
the Fusing-Restricted Reconfigurable Mesh,” IEEE TYans. Parallel Distrib. Systems,
vol. 9, (1998), pp. 861-871.

23] Z. Guo, “Sorting on Array Processors with Pipelined Buses,” Proc. Int’l. Conf. Par.
Processing, (1992), pp. 289-292.

24] Z. Guo, “Optically Interconnected Processor Arrays with Switching Capability,” J.
Parallel Distrib. Comput., vol. 23, (1994), pp. 314-329.

25] Z. Guo, R. Melhem, R. Hall, D. Chiarulli, and S. Levitan, “Array Processors with
Pipelined Optical Busses,” J. Parallel Distrib. Comput., vol. 12, (1991), pp. 269-282.

26] M. Hamdi and Y. Pan, “Efficient Parallel Algorithms on Optically Interconnected
Arrays of Processors,” IEE Proceedings - Computers and Digital Techniques, vol. 142,
(1995), pp. 87-92.

27] T. Hayashi, K. Nakano, and S. Olariu, “An 0((log logn)2) Time Convex Hull
Algorithm on Reconfigurable Meshes,” IEEE TYans. Parallel Distrib. Systems, vol. 9,
(1998), pp. 1167-1179.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

[28] J. J6J4, An Introduction to Parallel Algorithms, Addison*Wesley Publishing Co., 1992.

[29] J. Jang, H. Park, and V. K. Prasanna, “A Fist Algorithm for Computing a Histogram
on a Reconfigurable Mesh,” IEEE Trans, on Pattern Anal, and Mach. Intell., vol. 17,
(1995), pp. 97-105.

[30] D. S. Johnson, “A Catalog of Complexity Classes,” in Handbook of Theoretical
Computer Science, Vol. A: Algorithms and Complexity, J. van Leeuwen, ed., MIT
Press, (1990), pp. 67-162.

[31] R. M. Karp and V. Ramachandran, “Parallel Algorithms for Shared-Memory
Machines,” in Handbook of Theoretical Computer Science, Vol. A: Algorithms and
Complexity, J. van Leeuwen, ed., MIT Press, (1990), pp. 869-941.

[32] H. Kim and Y. Cho, “Point Visiblility of a Simple Polygon on Reconfigurable Mesh,”
Proc. Proc. 5th IEEE Symp. Par. and Distr. Proc., (1993), pp. 748-751.

[33] M. Kim and J. Jang, “Fhst Quadtree Building on a Reconfigurable Mesh,” Proc. Srd
Workshop on Reconfig. Arch, and Algs., 1996.

[34] S. -R. Kim and K. Park, “Fully-Scalable Fhult-Tblerant Simulations for BSP and
CGM," Proc. 18th Intl. Par. Process. Symp. & 10th Symp. Par. Distr. Process.,
(1999), pp. 117-124.

[35] M. Kunde and K. Giirtzig, “Efficient Sorting and Routing on Reconfigurable Meshes
Using Restricted Bus Length,” Proc. Intl. Par. Processing Symp., 1997.

[36] S. -S. Lee, S. -J. Horng, H. -R. Tsai, and S. -S. Tsai, “Building a Quadtree and
Its Applications on a Reconfigurable Mesh,” Pattern Recognition, vol. 29, (1996),
pp. 1571-1579.

[37] T. Leighton, “Tight Bounds on the Complexity of Parallel Sorting,” IEEE TYans.
Comput., vol. 34, (1985), pp. 344-354.

[38] K. Li, Y. Pan, and S. Q. Zheng, Parallel Computing Using Optical Interconnections,
Kluwer Academic Publishers, Boston, MA, 1998.

[39] K. Li, Y. Pan, and S. Q. Zheng, “Ffcst and Efficient Parallel Matrix Operations Using
a Linear Array with a Reconfigurable Pipelined Bus System,” in High Performance
Computing Systems and Applications, J. Schaeffer and R. Unrau, eds., Kluwer
Academic Publishers, Boston, MA, 1998.

[40] K. Li, Y. Pan, and S. Q. Zheng, “Fhst and Efficient Parallel Matrix Multiplication
Algorithms on a Linear Array with a Reconfigurable Pipelined Bus System,” IEEE
TYans. Parallel Distrib. Systems, vol. 9, (1998), pp. 705-720.

[41] K. Li, Y. Pan, and S. Q. Zheng, “Simulation of Parallel Random Access Machines
on Linear Arrays with Reconfigurable Pipelined Bus Systems,” Proc. Intl. Conf. Par.
Distr. Proc. Tech. and App., (1997), pp. 590-599.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

[42] Y. Li, Y. Pan, and S. Q. Zheng, “Pipelined TDM Optical Bus with Conditional
Delays,” Optical Engineering, vol. 36, (1997), pp. 2417-2424.

[43] Y. Li and S. Q. Zheng, “Parallel Selection on a Pipelined TDM Optical Bus,” Proc.
Int’l. Conf. Par. Distr. Comput. and Sys., (1996), pp. 69-73.

[44] R. Lin and S. Olariu, “Reconfigurable Buses with Shift Switching: Concepts and
Applications,” IEEE Trans. Parallel Distrib. Systems, vol. 6, (1995), pp. 93-102.

[45] Y. Matias and A. Schuster, “Fhst, Efficient Mutual and Self Simulations for Shared
Memory and Reconfigurable Mesh,” Par. Alga, and Appi, vol. 8, (1996), pp. 195-221.

[46] R. Melhem, D. Chiarulli, and S. Levitan, “Space Multiplexing of Waveguides in
Optically Interconnected Multiprocessor Systems,” The Computer Journal, vol. 32,
(1989), pp. 362-369.

[47] M. Middendorf and H. ElGindy, “Matrix Multiplication on Processor Arrays with
Optical Buses,” to appear in Informatica.

[48] K. Nakano, “A Bibliography of Published Papers on Dynamically Reconfigurable
Architectures,” Parallel Proc. Letters, vol. 5, (1995), pp. 111-124.

[49] M. Nigam and S. Sahni, “Sorting n Numbers on an n x n Reconfigurable Meshes with
Buses,” J. Parallel Distrib. Comput., vol. 23, (1994), pp. 37-48.

[50] M. Nigam and S. Sahni, “Computational Geometry on a Reconfigurable Mesh,” Proc.
8th Int’l. Par. Proc. Symp., (1994), pp. 86-93.

[51] M. Nigam and S. Sahni, “TViangulation on a Reconfigurable Mesh with Buses," Proc.
Int’l. Conf. on Par. Proc., (1994), pp. 251-257.

[52] S. Olariu, J. Schwing, and J. Zhang, “Applications of Reconfigurable Meshes to
Constant Time Computations,” Par. Comput., vol. 19, (1993), pp. 229-237.

[53] Y. Pan, “Hough Transform on Arrays with an Optical Bus,” Proc. 5th Int’l. Conf.
Par. Distr. Comput. and Sys., (1992), pp. 161-166.

[54] Y. Pan, “Order Statistics on a Linear Array with a Reconfigurable Bus,” Future
Generation Computer Systems, vol. 11, (1995), pp. 321-328.

[55] Y. Pan and M. Hamdi, “Singular Value Decomposition on Processor Arrays with
a Pipelined Bus System,” J. Network and Computer Appl., vol. 19, (1996), pp. 235-248.

[56] Y. Pan and K. Li, “Linear Array with a Reconfigurable Pipelined Bus System: Con­
cepts and Applications,” Information Sciences - An International Journal, vol. 106,
(1998), pp. 237-258.

[57] Y. Pan, K. Li, and S. Q. Zheng, “Ffcst Nearest Neighbor Algorithms on a Linear Array
with a Reconfigurable Pipelined Bus System,” to appear in Parallel Algorithms and
Applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

[58] B. Parhami, “Fhult Tblerance Properties of Mesh-Connected Parallel Computers
with Separable Row/Column Buses,” Proc. Midwest Symp. on Cir. and Syst., (1993),
pp. 1128-1131.

[59] B. Parhami and C.-H. Yeh, “The Robust-Algorithm Approach to Fault Tblerance on
Processor Arrays: Fault Models, Fhult Diameter, and Basic Algorithms,” Proc. Int’l
Par. Processing Symp., (1998), pp. 742-746.

[60] H. Park, V. K. Prasanna, and J. Jang, “Fhst Arithmetic on Reconfigurable Meshes,”
Proc. Intl. Conf. Par. Processing, (1993), pp. 236-243.

[61] S. Pavel and S. G. Aid, “Integer Sorting and Routing in Arrays with Reconfigurable
Optical Buses,” Int’l. J. Foundations of Computer Science, vol. 9, (1998), pp. 99-120.

[62] S. Pavel and S. G. Akl, “Matrix Operations Using Arrays with Reconfigurable Optical
Buses,” Par. Algs. and Appl., vol. 8, (1996), pp. 223-242.

[63] S. Pavel and S. G. Akl, “On the Power of Arrays with Optical Pipelined Buses,” Proc.
Int’l. Conf. Par. Distr. Proc. Techniques and Appl., (1996), pp. 1443-1454.

[64] S. Pavel and S. G. Akl, “Efficient Algorithms for the Hough TVanaform on Arrays with
Reconfigurable Optical Buses,” Proc. Int’l. Par. Processing Symp., (1996), pp. 697-701.

[65] C. Qiao, “On Designing Communication-Intensive Algorithms for a Spanning Optical
Bus Based Array,” Parallel Proc. Letters, vol. 5, (1995), pp. 499-511.

[66] C. Qiao and R. Melhem, “Time-Division Optical Communications in Multiprocessor
Arrays,” IEEE TYans. Comput., vol. 42, (1993), pp. 577-590.

[67] C. Qiao, R. Melhem, D. Cliiarulli, and S. Levitan, “Optical Multicasting in Linear
Arrays,” Int’l. J. Optical Computing, vol. 2, (1991), pp. 31-48.

[68] S. Rajasekaran and S. Sahni, “Sorting, Selection and Routing on the Arrays with
Reconfigurable Optical Buses,” IEEE Trans. Parallel Distrib. Systems, vol. 8, (1997),
pp. 1123-1132.

[69] A. G. Ranade, “How to Emulate Shared Memory,” J. Comput. System S e t., vol. 42,
(1991), pp. 301-324.

[70] J. L. TVahan, A. G. Bourgeois, Y. Pan, and R. Vaidyanathan, “Optimally Scaling
Permutation flouting on Reconfigurable Arrays with Optically Pipelined Buses,” Proc.
18th Int’l. Par. Process. Symp. & 10th Symp. Par. Distr. Process., (1999), pp. 233-237.

[71] J. L. TVahan, A. G. Bourgeois, Y. Pan, and R. Vaidyanathan, “An Optimal and
Scalable Permutation Routing Algorithm for Reconfigurable Linear Arrays with
Optically Pipelined Buses,” submitted to J. Parallel Distrib. Comput

[72] J. L. TVahan, A. G. Bourgeois, and R. Vaidyanathan, “Tighter and Broader Com­
plexity Results for Reconfigurable Models,” Parallel Proc. Letters, vol. 8, (1998),
pp. 271-282.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

[73] J. L. TVahan, Y. Pan, R. Vaidyanathan, and A. G. Bourgeois, “Scalable Basic
Algorithms on a Linear Array with a Reconfigurable Pipelined Bus System,” Proc.
Intl. Con/, on Parallel and Distributed Computing Systems, (1997), pp. 564-569.

[74] J. L. Italian, R. Vaidyanathan, and R. K. Thiruchelvan, “On the Power of Segmenting
and Fusing Buses,” J. Parallel Distrib. Compute vol. 34, (1996), pp. 82-94.

[75] R. Vaidyanathan and J. L. Italian, “Optimal Simulation of Multidimensional Recon­
figurable Meshes by Two-Dimensional Reconfigurable Meshes,” Info. Proc. Letters,
vol. 47, (1993), pp. 267-273.

[76] T. A. Varvarigou, V. P. Roychowdhury, and T. Kailath, “Reconfiguring Processor
Arrays Using Multiple-Ttack Models: The 3-track-l-spare-approach,” IEEE TYans.
Comput., vol. 42, (1993), pp. 1281-1293.

[77] B. F. Wang and G. H. Chen, “Constant Time Algorithms for the Ttansitive Closure
and Some Related Graph Problems on Processor Arrays with Reconfigurable Bus
Systems,” IEEE Trans. Parallel Distrib. Systems, vol. 1, (1990), pp. 500-507.

[78] C. -H. Yeh, B. Parhami, H. Lee, and B. A. Varvarigos, “2.5n-Step Sorting on n x n
Meshes in the Presence of o(y^n) Worst-Case Faults,” Proc. 13th Int'l. Par. Process.
Symp. & 10th Symp. Par. Distr. Process., (1999), pp. 436-440.

[79] S. Q. Zheng and Y. Li, “Pipelined Asynchronous Time-Division Multiplexing Optical
Bus,” Optica/ Engineering, vol. 36, (1997), pp. 3392-3400.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita

Anu Goel Bourgeois was bom in Baton Rouge, Louisiana, on December 11, 1969. She

received her bachelor’s degree in electrical engineering from Louisiana State Univer­

sity (LSU) in 1991. She worked as a consulting engineer from 1991 until 1994. She is

currently a doctoral student in the Department of Electrical and Computer Engineer­

ing at LSU. Since 1996, she has been a Dean’s Fellow and is expecting to complete

her degree in May 2000. Her current research interests include parallel processing,

algorithm design and analysis, reconfigurable models, and pipelined optical networks,

in which she has a number of conference and journal publications. She will receive

the degree of Doctor of Philosophy in May, 2000.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOCTORAL EXAMINATION AND DISSERTATION REPORT

candidate: Anu Goel Bou rgeois

Major Plaid: E l e c t r i c a l Engineer ing

Title of oiaaartation: S im u la t io n s and Algorithms on Reconf igurable
Meshes with P i p e l i n e d O pt ica l Buses

Approved:

iraduate School

EXAMINING COMMITTEE:

Pate of la— i nation:

March 21, 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Simulations and Algorithms on Reconfigurable Meshes With Pipelined Optical Buses.
	Recommended Citation

	tmp.1489519448.pdf.YuLmh

