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Abstract

Recently, many models using reconfigurable optically pipelined buses have been pro­

posed in the literature. A system with an optically pipelined bus uses optical waveg­

uides, with unidirectional propagation and predictable delays, instead of electrical 

buses to transfer information among processors. These two properties enable syn­

chronized concurrent access to an optical bus in a pipelined fashion. Combined with 

the abilities of the bus structure to broadcast and multicast, this architecture suits 

many communication-intensive applications.

We establish the equivalence of three such one-dimensional optical models, namely 

the LARPBS, LPB, and POB. This implies an automatic translation of algorithms 

(without loss of speed or efficiency) among these models. In particular, since the LPB 

is the same as an LARPBS without the ability to segment its buses, their equivalence 

establishes reconfigurable delays (rather than segmenting ability) as the key to the 

power of optically pipelined models.

We also present simulations for a number of two-dimensional optical models and 

establish that they possess the same complexity, so that any of these models can sim­

ulate a step of one of the other models in constant time with a polynomial increase in 

size. Specifically, we determine the complexity of three two-dimensional optical mod­

els (the PR-Mesh, APPBS, and AROB) to be the same as the well known LR-Mesh 

and the cycle-free LR-Mesh.

viii
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We develop algorithms for the LARPBS and PR-Mesh that are more efficient than 

existing algorithms in part by exploiting the pipelining, segmenting, and multicasting 

characteristics of these models. We also consider the implications of certain physical 

constraints placed on the system by restricting the distance over which two processors 

are able to communicate.

All algorithms developed for these models assume that a healthy system is avail­

able. We present some fundamental algorithms that are able to tolerate up to N/2  

faults on an N-processor LARPBS. We then extend these results to apply to other 

algorithms in the areas of image processing and matrix operations.

ix
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Chapter 1

Introduction

Advances in optoelectronic technologies have catapulted optical interconnects and 

optical computing to the forefront; this has opened up possibilities previously not 

considered in conventional electrical and electronic interconnection environments. An 

optically pipelined bus is one such example. It differs from an electronic bus in that it 

employs optical waveguides to transmit information. In such a model, many messages 

can be in transit simultaneously, pipelined in sequence on an optical bus, while the 

time delay between the furthest processors is only the end-to-end propagation delay 

of light over a waveguided bus. Currently, optical fiber is the preferred medium for 

telecommunication networks of long distances, due in part to its high bandwidth, 

reliability, low distortion, and low attenuation [38]. In parallel processing systems, 

communication efficiency determines the effectiveness of processor utili2ation, which, 

in turn, determines performance.

As a result, researchers have proposed several models based on pipelined optical 

buses as practical parallel computing platforms including the Linear Array with a 

Reconfigurable Pipelined Bus System (LARPBS) [38, 56, 73], the Linear Pipelined 

Bus (LPB) [54], the Pipelined Optical Bus (POB) [42, 79], the Linear Array with 

Pipelined Optical Buses (LAPOB) [18], the Pipelined Reconfigurable Mesh (PR-Mesh)

1
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2

[72], the Array with Reconfigurable Optical Buses (AROB) [62, 63], the Array Pro­

cessors with Pipelined Buses (APPB) [47], the Array Processors with Pipelined Buses 

using Switches (APPBS) [24], the Array with Synchronous Optical Switches (ASOS) 

[66], and the Reconfigurable Array with Spanning Optical Buses (RASOB) [65].

Many parallel algorithms, such as sorting [23], selection [54], matrix operations [38, 

39,62], Hough transform [53], singular value decomposition [55], nearest neighbor [57], 

and some numerical algorithms [26], exist for arrays with pipelined buses, indicating 

that such systems are very efficient for parallel computation due to the high bandwidth 

available by pipelining messages.

This dissertation focuses on two of the proposed optical models, specifically, the 

one-dimensional LARPBS and the multi-dimensional PR-Mesh. We present simula­

tions for these models relating them to other similar optical models. We first relate the 

LARPBS to two other one-dimensional optical models, proving that the three models 

are equivalent. Next, we relate the PR-Mesh to other two-dimensional models, two 

with optical buses and two with electrical buses. We relate these two-dimensional 

models in the context of their computational power and prove that they belong to 

the same complexity class. These relations allow us to unify existing research on 

optical models and also to relate them to other well-established traditional models. 

This is the first work to determine relations between varying optical models.

We develop algorithms that are more efficient on these models than on other re­

configurable models that do not use optical buses. This is achieved by exploiting key 

features of optical models, such as pipelining and constant propagation delays. All 

existing algorithms for optical models assume that a healthy system is available, that 

is, all processors and switches are in working condition. This is not a reasonable as­

sumption, therefore, we develop fault tolerant algorithms that are able to tolerate up
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3

to N /2  faults for an JV-processor LARPBS. This provides the latitude of being able 

to develop algorithms without being concerned with the status of the available sys­

tem. Fault-tolerant algorithms have been developed for other parallel architectures, 

however, this is the first work to address the issue for reconfigurable optical models.

The remainder of this chapter is organized as follows. Section 1.1 describes the 

main features of reconfigurable models with and without pipelined buses. Section 1.2 

details the scope of the dissertation and the contributions of this work. Finally, 

Section 1.3 presents the organization of the dissertation.

1.1 Reconfiguration and Pipelining

Recently, researchers have proposed many reconfigurable models such as the Re­

configurable Mesh (R-Mesh) [5, 7, 45], Linear Reconfigurable Mesh (LR-Mesh) [5], 

Fusing Reconfigurable Mesh (FR-Mesh) [20, 22], Processor Array with Reconfigurable 

Bus System (PARBS) [77], Reconfigurable Multiple Bus Machine (RMBM) [74], and 

Reconfigurable Buses with Shift Switching (RESBIS) [44]. Nakano presented a bib­

liography of published research on reconfigurable models [48]. Chapter 2 describes 

some of these models in more detail.

Processors can fuse together the edges of a reconfigurable model to form buses 

(either electrical or optical buses) [6]. The main characteristics of these models are 

as follows.

•  Each processor can locally determine its internal port connections and/or switch 

settings at each step to create or segment buses.

•  The model assumes constant propagation delays on the buses.

•  The model uses the bus as a computational tool.
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The following examples demonstrate how reconfigurable models utilize these char­

acteristics. Consider the OR operation on N  bits, where each processor of an N- 

processor array holds an input. It is possible to perform this operation in constant 

time on an JV-processor LR-Mesh. Assume N  =  8 and that each processor holds one 

input bit and fuses its ports to form a single bus as shown in Figure 1.1(a).

Each processor that holds a value of T  internally disconnects the bus and writes 

on the bus through its left port. The leftmost processor, Ho, reads the value on the 

bus; this value corresponds to the result of the OR operation (Figure 1.1(b)). If one 

or more processors hold a ‘1’, then Rq reads a ‘1* from the leftmost processor (fl2 in 

Figure 1.1(b)) holding a ‘1’. The processors between J2o and R? all hold a 'O’, so they 

keep the bus intact and allow the value written by R2 to reach Rq. If all processors 

hold a ‘O’, then no value is written on the bus and the result is ‘O’. All processors 

then fuse their ports to connect the bus and processor Ro broadcasts the result to all 

processors as in Figure 1.1(c).

The time required to perform this computation on a Parallel Random Access 

Machine (PRAM) with exclusive writes is O(logJV) steps for N  input bits. The 

demonstrated example performs the computation in a constant number of steps using 

only exclusive writes on a one-dimensional R-Mesh. In the second step, although both 

Ri and R* are writing simultaneously, the two processors are writing on separate 

buses, maintaining an exclusive write.

The example demonstrates some of the key features of reconfigurable models. 

First, processors determine their internal port configurations based only upon the 

local variable held; those with a ‘1’ disconnect their ports and those with a ‘0’ connect 

their ports. Second, broadcasting a value on a bus takes a single step due to the 

assumption of constant propagation delay on a bus.
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Inputs: 0 0 1 0 0 1 0 0

(a)

Broadcast (  ______Broadcast_______  t

*0  R2 (b) r 5

. Broadcast

(c)

Figure 1.1: Computing the OR function on an LR-Mesh: (a) initial configuration;
(b) disconnect bus and broadcast toward Ro! (c) broadcast result.

Next consider computing a binary sum on an R-Mesh. This is a two-dimensional 

model in which each processor has four ports (North, South, East, and West). The 

processors on the bottom row hold the input bit values.

First, all processors form vertical buses by fusing their North and South ports. 

Each processor on the bottom row broadcasts its input value to all processors on its 

vertical bus. A processor that reads a (0* on its vertical bus fuses its East and West 

ports together. A processor that reads a ‘1’ on its vertical bus fuses its North and 

West ports together and its South and East ports. (Refer to Figure 1.2. The figure 

only shows the first four rows of the R-Mesh.)

The processor at the bottom left corner writes a signal at its West port. The 

internal port connections form staircase buses allowing a signal to step up a row 

for each *1’ in the input. Figure 1.2 shows in bold the bus on which the signal 

propagates. The processors in the rightmost column read their East port. The
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Row

: 0 0 0 1 0 0 1 0

Figure 1.2: Summation of eight bits on an R-Mesh

processor that detects a signal determines the sum to be the same as its row value. 

This technique uses an (N  +  1) x N  R-Mesh to sum N  bits in constant time. This 

example demonstrates the method of using the bus as a computational tool. In 

Section 4.2.1 we develop a binary prefix sums algorithm that runs on an iV-processor 

LARPBS in constant time for N  input bits.

The examples that we have considered thus far all can be executed on systems 

with either optical or electrical buses. Using optical waveguides provides us with the 

advantage of being able to pipeline messages on a bus. This is the ability of having 

multiple messages on a single bus concurrently. Chapter 2 provides more detail on 

how it is possible to pipeline messages on an optical bus.

We will use a general permutation routing example to illustrate the benefit pipelin­

ing provides. Let A f =  { 0 ,1 ,..., N  -  1} and let n : M  — ► Af be a bijection. Permu­

tation routing of N  elements on an JV-processor system refers to sending information 

from processor i to processor 7r(i), for each t € N .  We will first describe how to 

implement this on an R-Mesh and then contrast this with how the LARPBS can 

perform a general permutation routing step more efficiently by using pipelining.
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Consider a 4 x 4 R-Mesh in which each processor in column i on the bottom row 

holds 7r(i) as shown in Figure 1.3. Assume each processor is to send value to 7r(i) 

on the bottom row.

Destination (i): 1 3  0 2

Value (i): 1 9  8 4

[ |  Writing processor

I •

i Reading processor
I I

Figure 1.3: Permutation routing on an R-Mesh

First, each processor fuses its North and South ports forming vertical buses. Each 

processor on the bottom row broadcasts ir(») and along the vertical buses to all 

processors on the column. Next, all processors fuse their East and West ports forming 

horizontal buses. The processor with column index t and row index n(i) writes on 

the row bus as shown in Figure 1.3. Each processor with column index j  and row 

index j  reads from the bus with row index j .  The processors then fuse their North 

and South ports forming vertical buses again. Each processor that read a value in 

the previous step writes on the bus so that the processors in the bottom row can read 

the value from the permutation.

If there are N  inputs, then an JV x N  R-Mesh is required to execute a permutation 

routing in 0(1) steps. If an JV-processor, one-dimensional R-Mesh is all that is avail­
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able, then, by a simple bisection width argument, it would require N  communication 

steps to route the permutation.

Pipelining enables an JV-processor one-dimensional LARPBS to perform this gen­

eral permutation routing in a single step. The properties of an optical waveguide 

support the propagation of multiple messages on a single bus during one communica­

tion step. (We discuss the details of pipelining messages in Chapter 2.) All processors 

of an LARPBS can concurrently select distinct destinations and each sends a message 

to its chosen destination in one bus cycle. To perform the permutation routing, each 

processor i selects ir(i) as its destination and sends its value v< on the data waveguide. 

This ability of optical buses provides a savings in size and/or time.

1.2 Scope and Contributions of the Dissertation

The aim of this dissertation is to further demonstrate the claim that pipelined optical 

models are powerful parallel architectures and to show how these models fit into the 

well established hierarchy of complexity classes. We accomplish this by proceeding 

in two directions:

•  Development of simulations relating models to one another, and

•  Algorithm development.

We first develop a cycle of simulations between three one-dimensional optically 

pipelined models. This establishes the equivalence of these models in the sense that 

any step of one model can be simulated by either of the other two in a constant 

number of steps using the same number of processors. This result implies that any of 

these models can efficiently execute any algorithm designed for any of these models 

regardless of their structure differences.
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Expanding these results to relate two-dimensional models is not straightforward: 

two-dimensional models have many different bus configurations that can be formed 

at any given step and the models that are considered have considerable differences 

in their features and capabilities. For instance, two of the models are able to change 

their switch configurations multiple times within a bus cycle. Another has additional 

hardware such as a relative delay counter and a rotate shift register and is also 

able to insert multiple delays at each processor within a bus cycle. As a result, we 

relate these models in a different context. Rather than focusing on equivalence as 

defined above, we relate models to within a constant factor of time while allowing 

a polynomial increase in the number of processors. The motivation for associating 

models in this way is that this relates time and processor-bounded complexity classes 

for these models. (Such a complexity class is the class of problems that can be solved 

by the model with the given time and processor resources.) Furthermore, this setting 

permits relating complexity classes based on these models to established complexity 

classes, firmly locating the abilities of these models relative to more widely studied, 

traditional models. Other reconfigurable models have been placed within established 

complexity classes, however, no effort had been given to place reconfigurable optical 

models within these classes.

We establish that the PR-Mesh has the same complexity as the cycle-free Linear 

Reconfigurable Network (LR-Mesh). In other words, any step of the PR-Mesh can 

be simulated by the cycle-free LR-Mesh or vice versa within constant time allowing 

a polynomial increase in processors. We also prove that in constant time using a 

polynomial number of processors the cycle-free LR-Mesh can solve the same class of 

problems as the LR-Mesh. This result implies that the PR-Mesh can solve the same 

class of problems within the same order of steps using polynomial processors. We
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extend this complexity class to include two other optical models, namely the Array 

with Reconfigurable Optical Buses (AROB) [62, 63] and the Amoy of Processors with 

Pipelined Buses using Switches (APPBS) [24].

Once the relations between different models are established, algorithms can be 

designed for one model and translated to the others appropriately. We therefore 

focus our attention to the LARPBS and PR-Mesh and develop algorithms for these 

two models.

We have developed algorithms in the areas of computational geometry, arithmetic 

operations, and image analysis. These algorithms modify existing algorithms to ex­

ploit pipelining and reconfiguration abilities, thereby providing savings in time and/or 

size, and improving efficiency.

Most algorithm development for reconfigurable models assumes availability of a 

healthy system with an unrestricted number of processors. Some of these assump­

tions are unrealistic and unfeasible for implementation. To accommodate this, we 

first considered limiting the communication distance between processors. With this 

approach, the length of the bus is unrestricted, however, the distance that a message 

is able to travel in a single step is limited. We present algorithms to compute binary 

prefix sums and perform compression on an N-processor LARPBS with the commu­

nication length restricted to L, where L < N. This Tesults in a slowdown factor of 

N /L , which is optimal.

It is impractical to design an algorithm for a healthy system, only to have it be 

unusable due to a single faulty processor. Therefore, the next assumption that we 

tighten is allowing some processors to fail. We present several basic fault tolerant 

algorithms for the LARPBS. Specifically, we have developed algorithms to calculate 

binary prefix sums, perform compression, sort, and perform a general permutation
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routing step on an iV-processor array that can have up to N /2  static faults. We then 

extend these results to other fault tolerant algorithms in the areas of image processing 

and matrix operations.

The relational results obtained (for both the one-dimensional models and the two- 

dimensional models) are some of the first to unify reconfigurable optical models to 

each other and relate them to other more widely known models. This is also the 

first work to consider physical restrictions and develop fault-tolerant algorithms for 

optically pipelined models.

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 describes the structure and ad­

dressing techniques of the LARPBS and PR-Mesh. The chapter also presents some 

fundamental algorithms that highlight the features of these models. This sets the 

framework for the remaining chapters of the dissertation.

Chapter 3 is a literature review that surveys other similar models and describes 

their differences from the LARPBS and PR-Mesh. The chapter provides an overview 

of algorithms that have been developed for optically pipelined models. The overview 

illustrates the key techniques utilized and the wide range of applications.

Chapter 4 presents a new algorithm to perform a binary prefix sums operation 

without using the segmenting ability of the LARPBS. This algorithm was presented at 

the International Conference on Parallel and Distributed Computing Systems, in New 

Orleans, Louisiana, in 1997 [73]. This algorithm provides the tool necessary to estab­

lish the equivalence of three one-dimensional optical models, namely the LARPBS, 

LPB, and POB. The work of this chapter was presented at the International Paral­

lel Processing Symposium and Symposium on Parallel and Distributed Processing, in
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San Juan, Puerto Rico, in 1999 [70]. The work was also submitted to the Journal of 

Parallel and Distributed Computing [71].

Chapter 5 relates the PR-Mesh to other reconfigurable models with and without 

optical buses and establishes its complexity. Portions of this work appeared in Parallel 

Processing Letters, in 1998 [72]. This work will be presented at the International 

Parallel and Distributed Processing Symposium, in Cancun, Mexico [10]. It will also 

be published in the International Journal on the Foundations of Computer Science 

[»]•

Chapter 6 develops algorithms for the LARPBS and PR-Mesh that are more 

efficient than existing algorithms. These algorithms are in the areas of computational 

geometry, arithmetic operations, and image analysis. The chapter also considers the 

implications of certain physical constraints and details the method to overcome these 

restrictions for performing binary prefix sums and compression.

Chapter 7 presents algorithms that can tolerate up to JV faults for an JV-processor 

LARPBS. We first present four fundamental fault-tolerant algorithms that can be 

used as building blocks for more extensive algorithms. We also describe how to use 

these building blocks to develop fault-tolerant algorithms for some matrix operations 

and image analysis. This work will be presented at the Workshop on Optics and 

Computer Science, in Cancun, Mexico [8].

Finally, Chapter 8 provides a summary of the dissertation and possible future 

work and extensions of the results.
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Chapter 2 

Model Description

A system with an optically pipelined bus uses optical waveguides instead of elec­

trical buses to transfer information among processors. Signal (pulse) transmission 

on an optical bus possesses two advantageous properties: unidirectional propagation 

and predictable propagation delay per unit length. These two properties enable syn­

chronized concurrent access to an optical bus in a pipelined fashion [25, 46, 66, 67]. 

Combined with the abilities of a bus structure to broadcast and multicast, this archi­

tecture suits many communication-intensive applications.

We adapt the following framework from Qiao and Melhem [66]. Organize data 

into fixed-length data frames, each comprising a train of optical pulses. The presence 

of an optical pulse represents a binary bit with value 1. The absence of an optical 

pulse represents a binary bit with value 0. Let u  denote the pulse duration. Define a 

unit pulse length A to be the spatial length of a single pulse; this is equivalent to the 

distance traveled by a pulse in w units of time. The bus has the same length of fiber 

between consecutive processors, so propagation delays between consecutive processors 

are the same. Let r  denote the time for a signal to traverse the optical distance on 

the bus between two consecutive processors with spatial distance D0; time r  is also 

referred to as a petit cycle.

13
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As mentioned, the properties of an optical bus allow multiple processors to con­

currently write on the bus by pipelining messages. This is possible provided that the 

following condition to assure no collisions is satisfied:

D0 > bucg,

where b is the number of bits in each message and ct is the velocity of light in the 

waveguide [25]. The assurance that all processors start writing their messages on the 

bus at the same time is another condition that must be satisfied to guarantee that 

no two messages will collide. Let a bus cycle be the end-to-end propagation delay on 

the bus. We specify time complexity in terms of a step comprising one bus cycle and 

one local computation.

The next section describes the structure of the Linear Army with a Reconfigumble 

Pipelined Bus System (LARPBS). This model will serve as a representative for linear 

arrays with optical buses in this work. Section 2.2 explains the addressing techniques 

of this model. Section 2.3 briefly describes two fundamental algorithms utilized by 

the LARPBS, namely binary prefix sums and compression. These algorithms high­

light the key techniques of the LARPBS. Section 2.4 extends the one-dimensional 

model to a multi-dimensional optical model, called the Pipelined Reconfigumble Mesh 

(PR-Mesh). This model will serve as a representative for two-dimensional optical 

models in this work.

2.1 LARPBS Structure

In the LARPBS, as described by Pan and Li [56], the optical bus is composed of 

three waveguides, one for carrying data (the data waveguide) and the other two (the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

reference and select waveguides) for carrying address information (see Figure 2.1). 

(For simplicity, the figure omits the data waveguide, as it resembles the reference 

waveguide.) Each processor connects to the bus through two directional couplers, 

one for transmitting and the other for receiving [25, 66]. Note that optical signals 

propagate unidirectionally from left to right on the upper segment (transmitting 

segment) and from right to left on the lower segment (receiving segment), with a 

U-turn connecting the two segments. Referring to Figure 2.1, the processor furthest 

from the U-turn, J2o, is the tail of the bus, and the processor at the U-turn, fi*, is 

the head.

Reference
But

Select
Bus

R4J

Figure 2.1: Structure of an LARPBS

The receiving segments of the reference and data waveguides contain an extra 

segment of fiber of one unit pulse-length, A, between each pair of consecutive pro­

cessors (shown as a delay loop in Figure 2.1). The transmitting segment of the select 

waveguide has a switch-controlled conditional delay loop of length A between proces­

sors Ri and Ri+i, for each 0 < i < N  -  2 (Figure 2.1). Processor i +  1 controls the 

switch between processors t and «+1. A processor can set a switch to the straight or 

cross states, as shown in Figure 2.2. The length of a bus cycle for a  system with N  

processors is 2N r  +  (JV -  l)w.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

n
(a) (b)

Figure 2.2: Conditional delay switch: (a) straight state; (b) cross state

z Transmuting /  segment

Receiving
segment

Segment
switch

Figure 2.3: Segment switch

To allow segmenting, the LARPBS has optical switches on the transmitting and 

receiving segments of each bus for each processor. Let trans{i) and recv(i) denote 

these sets of switches on the transmitting and receiving segments, respectively, on the 

three buses between processors Ri and Ri+i- Switches on the transmitting segment 

are 1 x 2 optical switches, and on the receiving segment are 2 x 1 optical switches as 

shown in Figure 2.3. With all switches set to straight, the bus system operates as 

a regular pipelined bus system. Setting trans(i) and recv(t) to cross segments the 

whole bus system into two separate pipelined bus systems, one consisting of processors 

R c ,R i , '" ,R i  and the other consisting of A,+i, Ri+i, • • • ,R n- i - Figure 2.4 shows an 

LARPBS with six processors, in which switches in trans(3) and recv(3) are set to 

cross, splitting the array into two subarrays with the first having four processors and 

the second having two processors. (For clarity, the figures show only one waveguide 

and omit conditional delay switches.)
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tnni(O) trani(l) trantQ) umn«(3) tnni(4)

RO R2 R3 R4

recv(O) recv(l) recv(2) recv(3) recv(4)

Figure 2.4: A six processor LARPBS model with two subarrays

2.2 Addressing Techniques

The LARPBS uses the coincident pulse technique [66] to route messages by manipu­

lating the relative time delay of select and reference pulses on separate buses so that 

they will coincide only at the desired receiver. Bach processor has a select frame 

of N  bits (slots), of which it can inject a pulse into a subset of the N  slots. For 

example, let all switches on the transmitting segment of the select waveguide be set 

straight to introduce no delay. Let source processor Ri send a reference pulse on the 

reference waveguide at time tref  (the beginning of a bus cycle) and a select pulse on 

the select waveguide at time t,ei = t^ j + (N  -  1 -  j)w. Processor Ri also sends a 

data frame, on the data waveguide, that propagates synchronously with the reference 

pulse. After the reference pulse goes through N  -  1 -  j  fixed delay switches, the 

select pulse catches up to the reference pulse. As a result, processor A, detects the 

double-height coincidence of reference and select pulses, then reads the data frame. 

Figure 2.5 shows a select frame relative to a reference pulse for addressing processor 

j .  The coincident pulse technique admits broadcasting and multicasting of a single 

message by appropriately introducing multiple select pulses within a select frame.
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Time e----------

Sel

0 i j

.............. ■ ............................

N-l

Ref

■

Figure 2.5: Select and reference frames

The conditional delay switches on the transmitting segment introduce delays to 

the select pulses and can alter the location at which the select and reference pulses 

will coincide. These switches are useful as a computing tool to calculate binary 

prefix sums and perform compression, for example (Section 2.3). The length of the 

bus between two processors provides enough space for two frames of N  slots to fit, 

although there is only one such frame on each waveguide for each processor. This 

prevents a pulse in the select frame of processor Ri from being shifted to overlap the 

reference frame of fZj-i.

When multiple messages arrive at the same processor in the same bus cycle, it 

receives only the first message and disregards subsequent messages that have coin­

ciding pulses at the processor. This corresponds to the p r i o r i t y  concurrent write 

rule. The PRIORITY write rule has the processor with the highest priority (in this 

case, the processor with the highest index or nearest the U-turn) win a write conflict 

when multiple processors are attempting to write to the same destination.

We will refer to the processor that has a select pulse injected in its slot in a select 

frame for a particular message as the selected destination. The actual destination will 

denote the processor that detects the coinciding reference and select pulses (the two 

may be different due to conditional delay loops and segmenting). The normal stale
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of operation is when the actual destinations of messages are the selected destinations. 

For the LARPBS, the normal state of operation is when all conditional delay switches 

and segment switches are set to straight.

Consider the LARPBS shown in Figure 2.1. Suppose processor Ri injects a select 

pulse so that /2a is its selected destination, and R q  attempts to broadcast. The 

message sent by Ri encounters one conditional delay switch set to cross, and the 

message sent by R q  encounters two. As a result, the actual destination of Ri is R2 

instead of R q . The actual destinations of the message broadcast by R q  are R2, R\, 

and R q , rather than all five processors. Even though R q  is the actual destination of 

the message sent by R q , processor R2 will receive only the message sent by Ri because 

this message arrives prior to the one sent by R q .

2.3 Fundamental Algorithms

There are a few fundamental algorithms that find use as building blocks for other 

more extensive algorithms. Two that appear frequently are binary prefix sums and 

compression [56]. To demonstrate LARPBS operations, we will describe these in this 

section. The following chapters will use various forms of these algorithms. For in­

stance, in Section 4.2.1, we describe a binary prefix sums algorithm that does not 

utilize the segmenting ability. Section 6.2 describes methods to perform binary pre­

fix sums and compression on an array that has a restricted communication length. 

Section 7.3.1 provides fault tolerant algorithms to perform binary prefix sums and 

compression. These algorithms also play a role in relating different optical models to 

one another (Chapters 4 and 5).
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2.3.1 Binary Prefix Sums

Consider an LARPBS with N  processors such that each one holds a binary value, vit 

for 0 < i  < N. The Ith binary prefix sum, psumi, is Vq +  t>i +  . . .  +  Vj.

Lem m a 2.1 [56] Binary prefix sums of N  elements can be computed on an N  pro­

cessor LARPBS  in 0(1) steps.

Proof: First, each processor Ri, 0 < i < N, sets its conditional delay switch to 

straight if v* =  0 and cross if =  1. Referring to Figure 2.6(c), Ri and R+ both 

hold a value of ‘1’. Each processor sends a message containing its index addressed 

to processor R n- i , that is, R n- i is the selected destination for all messages. The 

conditional delay switches, however, will shift the pulses so that if N  -  1 -  j  is the 

number of switches set to cross after Ri, then the actual destination for processor Ri 

will be R j. Processor Rj may receive multiple messages, however, it accepts only the 

first message to arrive in the bus cycle. Figure 2.6(c) shows the binary values held by 

processors that would induce switch settings as shown in Figure 2.1. Based on these 

values, R i  receives a message from R ly R?, and R i, but accepts only the message from 

Ri, as shown in Figure 2.6(a).

Next, processor Rj that received an index i then replies to R, with a message 

containing its index. From the example, R i sends a message to itself, R i  to itself, 

and R i to Rq (Figure 2.6(b)). Since some messages may have been disregarded in the 

previous step, not all processors will receive a message in this step. To account for 

this, if Ri received a message from Rj during the second step, then it now segments 

the bus and broadcasts the index of j  to its segment. The reason for this is that all 

processors within the same segment have the same prefix sums value. In our example,
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Ao> As* and R* segment the bus and broadcast the values 2, 3, and 4, respectively 

(Figure 2.6(c)). Each processor stores the value it receives as x<.

R 4 — -  R4
R3 —  R3 4  —  R4

R2 — ► R3 (ignored) 3 — ►
Rl — -  R3 (ignored) 
Rq ----  R2

-— 2----------------------------- 3 -— 4 -  Xj
0 1 1 1  2 -  psun)|

(C)

Figure 2.6: Binary prefix sums example: (a) actual destinations of first set of mes­
sages; (b) response to first message; (c) segmenting, broadcasting within segments, 
and computation steps.

Once JZo receives the value z0, it calculates the sum of all values in the array as 

t =  Vo +  (/V — 1 — x0) =  0 +  (5 — 1 — 2) =  2. Processor Rq then broadcasts t to all 

processors, so that processor Ri can locally determine psum* = vq+ vi +  . . .  +  =

t - ( N  -  1 -  x<). ■

The conditional delay switches are used to introduce unit delays, one unit delay 

for each input value of T .  The effect of this is that select and reference pulses 

of all processors with the same prefix sum value coincide at the same processor, 

however, only one message from this group of processors is received. The segment 

switches enable the highest indexed processor of such a group to segment the bus and 

broadcast data relaying information necessary for each processor to locally compute 

its prefix sum. The ability to pipeline messages allows each processor to compute its 

prefix sum simultaneously on a single bus.
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2.3.2 Compression

Consider an LARPBS with N  processors, such that each processor holds one element 

and some of the elements are marked. Let there be x such marked elements. The 

compression algorithm compacts all marked elements to the lower end of the array, 

namely processors Ao through A ,_v, maintaining their relative order. The algorithm 

also compacts all unmarked elements to the upper end of the array, namely processors 

A* through R n- i , maintaining their relative order.

Lem m a 2.2 [56] Compression of x elements, where x  < N , can be performed on an 

N  processor LARPBS in 0(1) steps.

Proof: Consider processor Ri, where 0 < i < N , holding a marked element 

Processor Ri sets its conditional delay switch to cross and sends a message with its 

index t addressed to processor R n - i -  All processors holding unmarked elements set 

their conditional delay switches to straight. If Ri holds the marked element with the 

k01 largest index, then the actual destination for the message is A*_*. Because of the 

conditional delays, each message written at this step arrives at a different destination 

processor.

Processor Rn-ic that received an index i then replies to Ri with its index. Pro­

cessor Ri stores k (that is, N  minus this index N  -  k) as counW, this will contribute 

towards determining the final position for the marked element Uj. Next, each pro­

cessor holding a marked element multicasts its index to all processors above it. The 

lowest indexed processor A, holding a marked element will not receive a message, 

and will thus determine that it has the lowest index. Processor At then broadcasts 

count9 to all processors so that each processor R, with a marked element can then 

locally determine the final position for its element as compressi =  countg — count,.
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Repeat the process for the unmarked elements, however, the position received in 

the second step is its final position. Once all processors have determined the final 

positions, route all elements to their proper destinations. ■

2.4 PR-Mesh Description

North

Directional
Couplers

f  Top \  
Left Right
\Bouomy

EastWest

— [T j-

Fusing Connection

South

T -• Transmitting segment C -• Conditional delay loop

R -• Receiving segment F  -  Fixed delay loop

Figure 2.7: PR-Mesh processor connections

We define a new model that is a ^-dimensional extension of the LARPBS called the 

Pipelined Reconfigumble Mesh (PR-Mesh). It is a mesh of processors in which each 

processor has 2k ports. Each processor can locally configure its ports by internally
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fusing pairs of ports or leaving ports as singletons, so all buses are linear. A two- 

dimensional PR-Mesh is an R  x C mesh of processors in which each processor has 

four ports. The ports connect to eight segments of buses using directional couplers 

as shown in Figure 2.7. There are receiving and transmitting waveguides for the two 

dimensions and within each dimension there are waveguides for both directions. Each 

processor locally controls a set of switches at each of the bus intersections that allow 

it to fuse bus segments together. The dashed boxes around each bus intersection 

contain these sets of switches. (The intersection for the lower right corner of the 

processor is shown larger to distinguish the connections.) Each fusing connection 

can be in one of ten possible settings. The dashed segments within the box are 

auxiliary segments that enable the processor to create U-turns. Figure 2.8 depicts 

the ten possible port partitions for each processor of a two-dimensional PR-Mesh. To 

implement these partitions, the switches can configure from within the same set of 

configurations at the switch level. Local fusing creates buses that run through fused 

switches to adjacent processors, then through their fused switches, and so on. Each 

such linear bus corresponds to an LARPBS. The switches may not be set, however, 

so that a cycle is formed. By allowing cycles, there would be no clear head or tail of 

a bus, therefore, it would be impossible to determine priority among the processors 

for concurrent write operations.

Each processor locally controls conditional delay loops on each of the transmitting 

segments. There are also fixed delay loops on each of the receiving segments. The 

switches at each bus intersection act as the segment switches. Refer to Figure 2.7 for 

the placement of these switches. A pair of receiving and transmitting buses that are 

traversed in opposite directions corresponds to an LARPBS bus.
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Figure 2.8: PR-Mesh switch connections

The following examples help to illustrate the processor and switch connections for 

different bus configurations. Consider a processor, Ri, that is connected to a segment 

of a horizontal bus, that is, it sets its configuration so that the East and West ports 

are fused. Also, assume that the North and South ports are tails of separate buses, 

or open rather than fused. Figure 2.9(a) pictorially shows a possible set of bus 

formations at processor Ri. Processor Ri configures its switch settings so that the 

East and West ports are fused and the North and South ports are left open. Refer to 

Figure 2.9(b) to see the connections of each bus intersection. With this example, the 

left reading and writing connections do not necessarily correspond to the West port 

because of bus routing internal to the processors. For example, a read from the West 

port would be performed by either the Top or Bottom read connections. Read and 

write operations for the North port are performed by the Left connections and read 

and write operations for the South port are performed by Right connections. The 

corresponding ports and connections are fixed for each bus configuration. Since there 

are only ten configurations, each processor can keep a table holding this information. 

Throughout this dissertation we will describe a read from the West port without 

reference to internal connections.
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Once the bus is created, the orientation of the bus must be determined. To do 

this, the head of the bus broadcasts a message on the bus that corresponds to the 

correct direction and each processor connected waits for a message. For this example, 

if a message is sent on the upper horizontal segment, then A, sends and receives 

messages using its Top port. If a message is sent on the lower horizontal segment, 

then Ri sends and receives messages using its Bottom port.

(b)(»)

Figure 2.9: Example of PR-Mesh switch settings for {EW, N, S}

The next example illustrates the switch and port connections for creating U-turns. 

Consider a processor, R j , that has each of its four ports at a U-turn of a bus, so that 

the processor is the head of four separate buses. Figure 2.10(a) pictorially shows 

a possible set of bus formations at processor R j. Processor Rj configures its switch 

settings to create U-turns, utilizing the auxiliary segments, as shown in Figure 2.10(b). 

For this example, the Right connections handle communications for the North port. 

Left connections handle communications for the South port, Top connections for the 

East port, and Bottom connections for the West port.

The PR-Mesh is similar to the Linear Reconfigumble Mesh (LR-Mesh) [5] in that 

both allow processors to dynamically change switch settings to construct different 

buses. The LR-Mesh, however, uses electrical buses rather than optical buses. The
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(a)

Figure 2.10: Example of PR-Mesh switch settings for {N, S, E, W}

available internal port configurations are the same as those available to the PR-Mesh 

(Figure 2.8), thus forming only linear buses. The buses, however, can form cycles, 

unlike the PR-Mesh buses.

A more general version of the LR-Mesh is the Reconfigumble Mesh (R-Mesh) 

[5, 7, 45]. This model is able to form non-linear buses, unlike the PR-Mesh, by 

allowing its processors to fuse its ports as shown in Figure 2.11 in addition to the ten 

partitions available to the PR-Mesh.

1
(NSEW) (NEW.S) (N.EWS) (NES.W) (NSW.G)

Figure 2.11: Non-linear R-Mesh port connections
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Chapter 3

Literature Review

Most models based on optical buses similar to the LARPBS and PR-Mesh differ 

only by slight variations. For instance, they are all able to pipeline their messages. 

The differences among these models involve the switches used, the placement of the 

switches, and some other hardware features and capabilities.

The previous chapter described the structure and addressing techniques of the 

LARPBS and PR-Mesh in detail. This chapter considers other optical models and 

samples from the range of optical algorithms. In particular, Section 3.1 briefly 

describes other optically pipelined models that are similar to the LARPBS and 

PR-Mesh. Section 3.2 presents an overview of the types of algorithms that have 

been designed for these models.

3.1 Other Optical Models

The model most similar to the LARPBS is the Linear Pipelined Bus (LPB) [53]. 

This model is identical to the LARPBS with the exception that it does not have 

any segment switches. The Pipelined Optical Bus (POB) [42, 79] is similar to the 

LARPBS and LPB as it also contains three waveguides. Conditional delay switches 

are on the receiving segment of the reference and data waveguides rather than the

28
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transmitting segment of the select waveguide, and like the LPB, the POB does not 

have segment switches. We discuss these two models in more detail in Section 4.1 and 

show that in spite of these differences, the LARPBS, LPB, and POB are equivalent.

Interval Multicasting

□ □ ■ □ □ ■ □ □ ■ □ □ I
Regular Multicasting 

|  Target Processor Q  Other Processor

Figure 3.1: [18] Multicasting patterns

The Linear Array with a Pipelined Optical Bus (LAPOB) [18] is another model 

that uses directional couplers to connect to an optical bus. The model, however, 

does not possess either conditional delay or segment switches. Another restriction 

of the model is the methods available to multicast. The LAPOB is able to address 

messages using either a contiguous interval or regularly spaced addressing pattern. 

(Refer to Figure 3.1.) Although a processor of the LARPBS is able to arbitrarily set 

its select pulses, each of the algorithms presented in this work uses only the interval 

multicasting pattern.

Figure 3.2: Linear Array of Processors with Pipelined Buses (APPB)

A simpler optical model is the linear Array of Processors with Pipelined Buses 

(APPB) [24]. Each processor connects to two buses by two couplers, one for trans-
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mitting and the other for receiving (Figure 3.2). Unlike the LARPBS, processors 

transmit messages to and receive messages from the same bus segment. Extending 

this model to two-dimensions, each processor connects to four buses. The Array of 

Processors with Pipelined Buses using Switches (APPBS) is a  further extension. The 

APPBS uses switches to connect row and column buses and allow messages to pass 

directly between buses. The switches also provide the model with the ability to re­

configure itself, similar to the PR-Mesh. Section 5.2 discusses the APPBS in more 

detail and presents simulations that relate it more closely to the PR-Mesh.

Column Bus 1 Column Bus i Column Bus N

Row Bus 1

Row Bus i

Row Bus N

Figure 3.3: [66] Array structure with Synchronous Optical Switches (ASOS)

The Array structure with Synchronous Optical Switches (ASOS) [66] is another 

two-dimensional model that uses switches to connect row and column buses. Each 

processor is able to transmit on the upper segment of a row bus and receive from the
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lower segment of a row bus and the right segment of a column bus (Figure 3.3). The 

switches control the route a message takes. A switch set in the cross state causes 

messages to transfer from a row bus to a column bus.

The Linear Array with Reconfigumble Optical Buses (LAROB) [61, 62, 63] is sim­

ilar to the LARPBS with extra hardware features. Each processor has switches that 

allow it to introduce up to N  unit delays, unlike the one conditional delay of the 

LARPBS. Each processor also has a relative delay counter and an internal timing 

circuit to output a message during any petit cycle. An optical rotate-shift register 

and a counter are also present at each processor to assist in performing a bit polling 

operation. Pavel and Akl presented an extended version of the LAROB that is able 

to change switch settings within a bus cycle. They also presented a two-dimensional 

version of the LAROB called the Army with Reconfigumble Optical Buses (AROB).

These extra features not possessed by the other optical models seem to suggest 

that the LAROB (AROB) has more “power.” Section 5.3 proves that the AROB 

has the same complexity as the PR-Mesh, that is, both are able to solve the same 

problems in the same number of steps with a  polynomial increase in the number of 

processors.

3.2 Algorithm Overview

Often, algorithms designed for pipelined optical models follow the approach of R-Mesh 

algorithms, but additionally exploit the ability to pipeline messages, multicast, and 

broadcast during a single step. This results in more efficient algorithms since multiple 

buses are not needed to transfer multiple messages concurrently. To demonstrate this, 

we present existing algorithms in this section for optical models in the areas of sorting 

and selection, image analysis, and PRAM simulations.
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3.2.1 Sorting and Selection Algorithms

Sorting and selection are basic operations finding use in many applications and have 

therefore been studied extensively. In this section, we sketch a variety of algorithms 

for sorting and selection.

ElGindy presented an 0(logArlog log N) step algorithm to sort N  values on an 

JV-processor LAPOB [18]. The algorithm uses a two-way merge sort in which there 

are O (log N ) iterations of merges. Each successive merge is between larger pairs of 

sorted subsequences achieved by a multi-way divide-and-conquer strategy. The merge 

procedure executes in log log N  recursive steps of partitioning the input sequences into 

subsequences that will then be merged in parallel on disjoint sets of processors. This 

algorithm can also be implemented on the LARPBS as well as some of the other 

one-dimensional optical arrays discussed.

The algorithm takes advantage of the pipelining ability of the LAPOB. This en­

ables multiple merge operations to be executed in parallel on a single bus.

Theorem  3.1 An N-processor LARPBS can sort N  values in O (log N  log log N) 

steps.

Rajasekaran and Sahni designed an optimal algorithm to sort N  elements in 0(1) 

steps using an JV* x JV AROB, where e is any constant greater than zero [68]. This 

algorithm is optimal due to the lower bound of fl(JV1+‘) processors for a comparison 

sort [3]. Rajasekaran and Sahni followed the column sorting algorithm of Leighton 

[37], which assumes the elements are stored as a matrix of size JV̂ /3 x JV1/3. The 

algorithm consists of a constant number of column sorts and matrix transpositions. 

The transposition operations are basically permutation operations that the AROB
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can route in a single step by pipelining messages. The AROB performs column sort 

as follows.

First assume that an JV2/3 x JV AROB is available, then we will extend it for any 

€ > 0. This provides an JV2/3 x JV2/3 subarray to sort each column of JV2/3 elements. 

Sort the elements of each subarray in 0(1) steps using the R-Mesh algorithm to sort 

JV elements on an JV x JV R-Mesh in 0(1) steps [49]. This is possible due to the 

ability to broadcast along a bus in a single step. In order to reduce the size of the 

AROB for any t  > 0, recursively apply the sorting method for sorting columns for a 

total of 0(1) steps. This algorithm also runs on an JV* x JV PR-Mesh.

T heorem  3.2 An iV'xJV AROB can sort JV values in 0(1) steps, for constant e > 0.

Integer sorting is a special case of sorting, and is usually performed by a series 

of radix sorts and compressions. This approach for sorting JV fc-bit integers takes 

0(k)  steps on an JV-processor LARPBS [56]. Pavel and Akl presented an algorithm 

that runs in 0 ( l—l̂ gJV) steps on an JV-processor LAROB [62]. It takes advantage of 

the LAROB’s bit polling operation and its ability to inject multiple delays onto the 

select waveguide. We will first describe the method for k =  O(loglogJV) bits and 

then extend it for k =  O(logJV) bits.

Each processor holds a value Vi, where 0 < i < logJV. First, each processor Pi 

determines the number of processors with Vi = Vj and t < j  by using the bit 

polling operation. It then determines the total number of processors with the same 

value. The LAROB then uses the integer prefix sums algorithm to rank the elements 

and determine the final destinations [62]. The prefix sums algorithm is similar to 

the binary prefix sums algorithm of the LARPBS, however, a processor is able to 

introduce multiple delays to correspond to value V{. Lastly, route each element to its 

sorted position.
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This algorithm stably sorts N  integers with value 0 < v* < log N  in 0(1) steps on 

an JV-processor LAROB. To extend the range of values, divide the k bits in 

groups, each of log log JV bits. The LAROB performs the sorting algorithm in t— A-— 

stages. During stage », stably sort the values with respect to the ith least significant 

group of bits in 0(1) steps as above.

T heorem  3.3 An N-processor LAROB can sort JV k-bit values in O^ ^ / y ) steps.

The problem of selection is to select the k** smallest element out of JV given 

elements. Li and Zheng designed a selection algorithm that runs in O(logJV) time 

on an JV-processor POB [43]. The algorithm exploits the multicasting ability of the 

POB. It is recursive and proceeds as follows.

Let P  denote the set of active processors; initially |P | =  JV. (The base case is when 

|P | < 5.) Partition P  into groups of five contiguous processors each. In 0(1) steps, the 

tail of each group determines the median of its group. The POB compresses the [^" | 

determined medians to the [ ^ ]  leftmost processors. Recursively find the median of 

these values. Denote this value as m. The leftmost processor broadcasts m and 

the POB computes prefix sums to count the number s of elements that are less than 

or equal to m. If s =  k, then return m. If s > k (s < k), then compress the elements 

less than or equal to (greater than) m and recursively call the select procedure on the 

s ( |P | -  s) elements. This algorithm also runs on an LARPBS.

T heorem  3.4 The kP smallest element can be selected from JV elements by an JV- 

processor LARPBS in O(logJV) steps.

Rajasekaran and Sahni designed a randomized algorithm to perform selection on a 

y/N  x y/N  AROB in 0(1) steps with high probability (w.h.p.) [68]. (High probability
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is a probability > (1 — n~°) for any constant a  > 1.) The algorithm takes advantage 

of the constant time compression operation and sorting on an AROB. The algorithm 

first picks a random sample S  of size q =  o(N). The AROB compresses the sample 

elements in the first row of the AROB and then sorts the sample. Next, choose two 

elements li and I2 from the sample whose ranks in S  are kft  — 8 and kft  + S for some 

8, where 8 =  f{N).  These two elements bound the element to be selected w.h.p. 

Eliminate all elements outside of the range [/i,/a]. Repeat the process again for the 

remaining elements. The number of iterations required is less than four w.h.p.

T heorem  3.5 The kth smallest element can be selected from N  elements by a y/N  x 

y/N  AROB in 0(1) steps w.h.p.

3.2.2 Image Analysis Algorithms

A few different image analysis algorithms have been designed for the optical models 

discussed. In particular we will consider algorithms to compute the Hough transform 

of an image and the nearest neighbor. Section 6.1.3 focuses on improving the efficiency 

of other image processing algorithms that have been developed for the R-Mesh.

The Hough transform is a method to detect the shape of object boundaries in a 

binary image by obtaining a set of projections of the image from different angles. The 

image is integrated along line contours defined by the set of points (x, y) satisfying 

the equation

zcos(0) +  ysin(0) =  p,

where 0 is the angle of the line with respect to the positive y-axis and p is the distance 

of the line from the origin.

Pan and Li [56] developed an algorithm to perform the Hough transform on a 

y/N  x y/N  binary image in 0 (N  log N) steps on an iV-processor LARPBS. The algo­
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rithm takes advantage of the segmenting ability of the LARPBS to perform multiple 

prefix sums in parallel. Each processor holds the indices of a pixel of an image and 

the pixel value. There are JV projections that are calculated, or JV angle values Qi, 

0 < i < N. The Hough transform maps collinear edge pixels into the same point 

in the parameter space. The parameter space is grouped into JV 6 values and JV p 

values, where a (0, p) pair corresponds to a linear band of edge pixels, approximating 

a line. As a result, it suffices to detect a point in the parameter space to which a 

large number of edge pixels are mapped.

Processors that hold an edge pixel perform the following steps for each angle 

value. First, each processor calculates the value of p using the above equation,

0 < i < JV. The LARPBS then sorts the JV p values in O(logJV) steps [56]. Segment 

the LARPBS so that each subarray holds the same p values and perform a binary 

sum operation over each subarray in 0(1) steps to determine the number of pixels 

that are mapped to the same point. The LARPBS then applies a threshold function 

to the summed values. Since there are JV iterations (one for each angle value), the 

algorithm runs in 0 (  JV log JV) steps.

Theorem  3.6 The Hough transform of a y/N  x y/N  binary image can be computed 

in 0 (N  log JV) steps on an N-processor LARPBS.

Pavel and Akl [64] also developed an algorithm to compute the Hough transform 

of an JV x JV image in 0(1) steps on an JV x JV x JV AROB. Their algorithm exploits 

the AROB’s ability to reconfigure its buses at each step.

The nearest neighbor problem considers an JV x JV binary image A  =  (a^), 0 < 

*, j  < JV, where each element is either a black (a ,j =  1) or white (a*j =  0) pixel. Let 

B  C A b e  the subset of black pixels. The Euclidean distance dist(alj ,  a,^-) between
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two pixels Oij and Oi>j> is given by

dist(ai j ,ai ' j ' )  =  ((* -  *T +  ( j -  i')2)l/2-

A black pixel is a nearest neighbor of Oij if the distance between the two pixels 

is minimum with respect to Oij and B  -  {a^}.

Pan et ai. [57] presented an algorithm to compute the nearest neighbor in 0(log log JV) 

steps using an JV34<-processor LARPBS in which the image is stored in row major 

order. They proceeded by partitioning the image A  into two regions for each black 

pixel Oij. The left region of contains the pixels in all columns j '  such that j '  < j .  

They defined the right region similarly. The algorithm then finds the nearest neighbor 

in each region and selects the closer of the two.

Find the nearest left neighbor as follows. First find the nearest black pixel in 

the same column and row in a constant number of steps by performing segmented 

broadcasts and row transformations. Then each processor performs a series of local 

computations using the information found. Next, by pipelining messages, all proces­

sors holding a black pixel send their distance from Oij to the right within its row. 

One can view each row as a series of segments separated by black pixels, each of 

which acts as the head of its segment. Find the minimum distance value within each 

segment in 0(log log JV) steps [56]. Determine the minimum of the minimums and 

this is the nearest neighbor.

T heorem  3.7 The nearest neighbor problem of an JV x JV image can be performed 

in O(loglogJV) steps on an N 2 -processor LARPBS.
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3.2.3 PRAM Simulations

An (JV, A/)-PRAM is a shared memory model that consists of JV processors and M  

memory locations. The processors are able to read from and write to any of the 

shared memory locations. The read and write operations to a single memory location 

can either be concurrent or restricted to be exclusive to one processor at a time. 

Simulations of both Exclusive Read Exclusive Write (EREW) and Concurrent Read 

Concurrent Write (CRCW) PRAMs have been developed for some optical models. In 

this section we present two of these simulations of the more powerful CRCW PRAM.

The first result is a  simulation of an JV-processor CRCW PRAM with O(N)  

memory locations by an JV-processor LARPBS in 0(log JV) steps [41], The simulation 

takes advantage of an JV-processor EREW PRAM with 0 ( N  +  M)  memory locations 

being able to simulate an JV-processor p r i o r i t y  CRCW PRAM computation with 

M  memory locations in O(logJV) steps [28]. Using this result, the LARPBS proceeds 

in simulating an JV-processor EREW PRAM in 0(1) steps as follows.

First assume that the EREW has M  =  JV shared memory locations. Let processor 

Ri of the LARPBS simulate PRAM processor Pi and hold memory location JW<. The 

LARPBS simulates a read step of the PRAM, where Pj reads from Af*, in two steps. 

In the first step, Rj  sends its index to A*, then in the second step, A* sends the 

value of Mk to Rj- The LARPBS simulates a write step of the PRAM, where Pj 

writes value Vj into Mk, in a single step. Processor Rj  sends Vj to A* and A* stores 

this value. Since each step is an exclusive read or write step, the indices sent are 

all distinct and there are no conflicts. For the case when M  =  O(JV), there exists a 

constant c such that M  =  cJV. In order to accommodate this, each processor of the 

LARPBS holds c memory locations and then simulates the read and write steps in c 

iterations. Combining the results provides the following theorem.
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T heorem  3.8 Each step of an N-processor p r i o r i t y  CRCW PRAM with O(N)  

shared memory locations can be simulated by an N-processor LARPBS in 0(log N) 

steps.

The simulation presented by Pavel and Akl [63] is a randomized algorithm for 

the two-dimensional APPB model. They proceeded by first showing that a two- 

dimensional APPB with N  processors can simulate any iV-processor network, G , 

with constant degree in 0(1) steps. Map the processors of G to the APPB, however, 

the neighbors of a processor of G may not be neighbors in the APPB. To perform 

neighboring communications, construct a bipartite graph of G with k edges represent­

ing neighbor edges. FYom this, using k permutation routings, the APPB can simulate 

any communication step. This result implies that an Af-processor APPB is able to 

simulate an JV-processor butterfly network in 0(1) steps. Using Ranade’s result [69] 

that an JV-processor butterfly network with 0 (M ) memory can simulate a step of a 

CRCW (JV, A/)-PRAM in 0(log N) steps w.h.p. provides the following result.

T heorem  3.9 Each step of an N-processor CRCW PRAM can be simulated by a 

y/N  x y/N  APPB in 0(log N) steps w.h.p.

The algorithms presented in this chapter are a small sample of the algorithms 

that have been developed for optically pipelined models. They demonstrate the key 

techniques used by most of these models. It is not always clear, however, which 

algorithms can run on which models, besides the one for which the algorithm was 

developed. For this reason, we unify three of the one-dimensional models in the next 

chapter. The differences between the two-dimensional models make it unclear how 

they relate to each other. We relate three of these models to each other and to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

LR-Mesh and establish that they possess the same computational complexity. This 

provides a better understanding of the power of these models.

The range of algorithms that have been developed is limited, in the sense that 

only healthy systems are considered. The information provided is useful, however, the 

algorithms are of no use if one or more processors are faulty. We, therefore, consider 

faulty systems and algorithms that are able to accommodate faults in Chapter 7.
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Chapter 4

Relating One-Dimensional Optical 
Models

The introduction listed several similar models with “optically pipelined buses.” Many 

of these models have different features, making it difficult to relate results from one 

model to another. It is a useful endeavor, therefore, to unify these models in order 

to increase understanding of which features are essential and to be able to translate 

algorithms from one model to another. In this chapter we establish the equivalence 

of three one-dimensional optical models, namely the LARPBS, Linear Pipelined Bus 

(LPB) [54], and Pipelined Optical Bus (POB) [42, 79]. This implies an automatic 

translation of algorithms (without loss of speed or efficiency) among these models. In 

other words, any algorithm proposed for one of these models can be implemented on 

any of the others with the same number of processors and to within a constant factor 

of the same time (Theorem 4.5 in Section 4.2.2).

The only difference between the LARPBS and LPB is the segmenting ability of 

the former. The segmenting ability of the LARPBS simplifies algorithm design, yet, 

due to the equivalence of these models, it is not necessary to include the segment 

switches. Moreover, this equivalence establishes dynamically selectable delay loops 

(that are a part of each of the models considered in this chapter) as the key to the

41
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power of these models. This separation of the powers of segmentation and delays is 

similar to that established in the context of the RMBM [74].

Section 4.1 describes the structure of the LPB and POB models. Section 4.2 

establishes the equivalence of the three optical models by constructing a cycle of 

simulations among these models.

4.1 Model Descriptions

The Linear Pipelined Bus (LPB) [54] is identical to the LARPBS with the exception 

that it does not have any segment switches. Therefore, the LPB is not able to segment 

its bus.

Reference Bus

x
Switch controlled
delay loop 

Figure 4.1: Structure of a POB

The Pipelined Optical Bus (POB), proposed by Li and Zheng [42, 79], is a similar 

model. Like the LARPBS and LPB, the POB has three waveguides. Conditional 

delay switches, however, are positioned on the receiving side of the reference and data 

waveguides, rather than on the transmitting side of the select line (see Figure 4.1). 

The POB contains no fixed delay loops, so the length of the bus cycle is actually 

shorter than that of the LARPBS and the LPB. As the POB contains no segment 

switches, segmenting is not possible.
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The POB also uses the coincident pulse technique to route messages. The effect of 

conditional delay switches on the POB is to delay the reference pulse relative to the 

select frame, so the POB is also able to perform one-to-one addressing, multicasting, 

and broadcasting. The location of the conditional delay switches on the receiving 

end enables the POB to multicast and broadcast without having to set multiple 

select pulses in a select frame, although multiple select pulses could be set as in the 

LARPBS and LPB. Consider the case when processor £< is the selected destination, 

the delay switch between £ j and £j_i is straight, and all remaining delay switches 

are set to cross. The select and reference pulses will coincide at Bi and again at 

B i-1, therefore both processors receive the message although only one select pulse 

was injected.

We now demonstrate the addressing of the POB by referring to the switch settings 

as shown in Figure 4.1. Suppose processor B\ injects a select pulse so that £3  is its 

selected destination, and Bo injects a pulse so that £2  is its selected destination. The 

settings of the straight switches will result in a multicast operation by £ 0 to actual 

destinations Bj, £ 1 ,  and £ 0 .  The actual destination of the message sent by B\ is £ 3 . 

The normal state of operation for the POB is when all conditional delay switches are 

set to cross.

Throughout this chapter Ri, Li, and £< refer to the itA processor of an LARPBS, 

LPB, and POB, respectively.

4.2 Equivalence of the LARPBS, LPB, and POB

In this section, we prove that the LARPBS, LPB, and POB are equivalent. That is, 

each model can simulate a step of either of the two other models in constant time, 

using the same number of processors. In our simulation of a model with segmenting
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by a model without segmenting, computing the prefix sums of N  bits will play a key 

role. To this end, we now present a new algorithm to compute the prefix sums of N  

bits in a constant number of steps that uses the multicasting ability of the models, 

rather than the segmenting ability of the LARPBS. We will use the example provided 

in Figure 4.2 to assist with the explanation.

4.2.1 Computing Prefix Sums without Segmenting

Lem m a 4.1 The prefix sums of N  bits can be computed by an N  processor LPB in 

0 (1) steps.

Proof: Consider an LPB with N  processors, such that each one holds a binary value 

tij, for 0 < * < N. The t** prefix sum, psum*, is v0 +  t>i +  . . .  +  v<. Let the i** 

“reverse prefix sum” be rpsumi =  t/j+i +  Vj+3 +  . . .  +  t>Ar-i, for 0 < * < Af -  1, and 

rpsum /f-i = 0 .

First, each processor Li sets its conditional delay switch to straight if Vi =  0 and 

to cross if Vi =  1. Referring to Figure 4.2(a), L it L&, and L7 each hold a value of T  

and set their conditional delays to cross. Next, each processor injects a reference and 

a select pulse at the same time, selecting destination Ljv_i, and sends its own ID as 

data. The switch settings introduce delays on the select line corresponding to the 1 

bits. Consider processor Li. If the resulting rpsumi is m, then m switches to the right 

of Li are set to cross, and the two pulses from Li will coincide at Lk =  L n - i -m. Some 

processor receives the message originating from Li iff either v,+i =  1 or i =  N  -  1. 

Note that if a processor’s message is disregarded, then all processors between it and 

the closest processor to its right, Lj, whose message is accepted pass through the same 

number of conditional delays and arrive at the same destination because they contain 

a value of 0. Also, rpsumi — rpsumj because adding the zeros from the processors
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Conditional delays

L7 — L 7

(a)

k

l 5

- l 6

■ Lg (ignored)
7 — k rpsum7 = 0

l 4 - k
6 — L6 rpsum 6 = 1
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Figure 4.2: Binary prefix sums example without segmenting: (a) input values and 
switch settings; (b) actual destinations of first set of messages; (c) response to first 
set of messages; (d) rpsumi values; (e) multicasting step.
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between Li and L, to the summation does not alter the result. (Figure 4.2(b) shows 

which messages are accepted and disregarded for the example.) Next, each processor 

that received a message sends its own address to the original sender, Li, which stores 

rpsumi. If this address is N  -  1 -  fc, then the message was delayed by k slots, so 

rpsumi =  fc- (Figure 4.2(c) shows the response messages and Figure 4.2(d) shows the 

rpsumi values for these processors.)

Set all conditional delay switches to straight (the normal state of operation) for 

the remainder of the algorithm. Since not all messages in the first step may have been 

accepted, some processors may not have received an rpsum  message in the previous 

step. The LPB next sends rpsum  values to these processors. Let Sr denote the set of 

processors that received an rpsum  message. For each € Sr, we want to send rpsumi 

to L/,, Lj,+1, . . . ,  such that v*+i =  v*+2 =  . . .  =  =  0, as rpsumi Is equal to their

rpsum  values. To accomplish this, we exploit the feature that a processor receives the 

first of multiple messages sent to it. Processor L s - i- i  substitutes for Li, reversing the 

order of the processors. For each Li € Sr, Ln- i now multicasts rpsumi to processors 

L s - i- i ,  L fi- i , . . . ,  L n- i • Each Lk, where 0 < k < N ,  will accept exactly one message 

and store it as rpsum N -i-k• If Lfc € Sr, then the message accepted by L s - i-k  will 

be from itself, otherwise the message originated from the closest processor L n- i- 9 to 

its left such that Lt  € ST. (Refer to Figure 4.2(e) to see which processors multicast 

the rpsumi values and the values sent.) Now processor L s - i- i  sends rpsumi to Li 

which stores the data as rpsumi to reverse the order of the values back to the original 

order. Each processor Li now has rpsumi = Vj+i +  Vj+a +  . . .  +  vy-i. The total sum 

is vo +  rpsumo, which L0 broadcasts to all processors, enabling each processor Li to 

calculate the correct prefix sum psumt =  (totalsum) — (rpsumi) =  vo +  Vi +  . . .  +  Vj.
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Each phase of the algorithm runs in a constant number of steps. Based on this 

algorithm, computing the binary prefix sums of N  bits on an LPB can be performed 

in 0 (1) steps. ■

4.2.2 Equivalence of Optical Models

We will make use of the binary prefix sums algorithm presented above to show the 

equivalence of the LARPBS, LPB, and POB. For a more detailed discussion on the 

equivalence of models, see TY&han et al. [72]. We prove the equivalence of the three 

optical models by & cycle of simulations. Each simulation consists of the following 

three phases: (i) determine parameters for the actual destinations of all messages, (ii) 

create the select frames, and (iii) send the messages.

L em m a 4.2 Each step of an N  processor LARPBS can be simulated by an N  pro­

cessor LPB in 0(1) steps.

Proof: Find param eters for actual destinations: First, each processor Lj of the 

LPB identifies the nearest segment switch that is set in the LARPBS to the left of 

its position. If Li simulates a processor with a set segment switch, then Li multicasts 

i + 1 to Lj+|, L<+a ,. . . ,  Ljv-i, and Lj stores this as le ftj .  More than one message may 

coincide at a single processor, however, the first one received identifies the lowest 

indexed processor that is in the same subarray as Lj. If a processor did not receive a 

message, it will assume the lowest indexed processor within its subarray to be L0. To 

identify the nearest set segment switch to the right, reverse the order of the processors, 

letting processor L s - i - j  substitute for Lj, and then proceed the same as before. If 

a processor did not receive a message, it assumes the highest indexed processor in 

its subarray to be Ljv-i* Each Lj stores the index of the rightmost processor in its 

subarray as rightj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Next, each processor Lj determines the number of set conditional delay switches to 

the right of processor it, of the LARPBS in its subarray (that is, between processors 

indexed j  to rightj). To do so, the LPB computes the binary prefix sums of the 

number of set switches (Lemma 4.1). Each processor Lj then refines its prefix sum 

based upon the prefix sum of processor rightj and stores it as psumj.

C rea te  select fram es: Given the location of the select pulses within the se­

lect frame (selected destinations), the information on set segment switches, and the 

number of set conditional delay switches, Lj  locally determines the actual destinar 

tion processors for its message as follows. Processor Lj shifts its select pulse(s) by 

(rightj -  N  + 1 -  psumj)  to match the actual destinations. If some of the resulting 

select pulses correspond to processors that are not within its subarray, then Lj uses 

le ft j  to mask off the bits for those select pulses.

Send messages: At this point, processors set all delay switches to straight and 

transmit their messages. If a message was to be received by Rj in the LARPBS, 

then Li successfully receives it in the LPB. A message sent by a processor of the 

LARPBS to multiple destinations would be sent to the corresponding processors of 

the LPB. Also, if multiple messages arrive at one processor in the LARPBS, then 

the simulating LPB maintains their order of arrival so that the processor receives the 

proper message. Therefore, the simulation also properly handles any concurrent-read 

or concurrent-write step of the LARPBS. ■

Though neither the LPB nor the POB can segment its buses, the simulation of 

an LPB on a POB is not automatic due to differences in the location of conditional 

delay switches, normal state of operation, and methods of multicasting. For instance, 

if processor Lj of the LPB sets its conditional delay switch to cross to introduce a 

delay, then messages originating from L„ 0 < i < j ,  will be shifted. If processor Bj
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of the POB sets its delay switch to straight, however, then messages destined for £<, 

0 < t < j ,  will be shifted. The proof of the lemma below addresses these issues.

L em m a 4.3 Each step of an N  processor LPB can be simulated by an N  processor 

POB in 0(1) steps.

Proof: F ind param eters for ac tual destinations: The POB first determines the 

number of conditional delay switches set to cross to the right of each processor on 

the LPB (using binary prefix sums [42]). Each processor £ , stores the prefix sum it 

calculated as psum,. If Lj is a selected destination for the message sent by L,, then 

the message will arrive at actual destination with index (j — psumi) on the LPB.

C rea te  select frames: Based on the prefix sum values, each processor can shift 

and mask its select frame, as in the proof of Lemma 4.2, placing select pulses according 

to the actual destinations.

Send messages: After adjusting the select pulses, set all delay switches to cross 

on the POB and send the messages. This is the normal state of operation for the 

POB, so no messages will be shifted in this step. If a  message was to be received 

by Li in the LPB, then B, successfully receives it in the POB. As in the proof of 

Lemma 4.2, this simulation properly handles any concurrent-read or concurrent-write 

step. ■

For an LARPBS to simulate a POB, the differences mentioned before the previous 

lemma pose a problem, even though the LARPBS can segment its buses and the POB 

cannot. In particular, one select pulse in the LARPBS can address only one proces­

sor, while the POB can address multiple processors with one select pulse by setting 

successive conditional delay switches to straight. To overcome these differences, the 

LARPBS sends messages to intermediate destinations as described in the following 

proof.
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Lem m a 4.4 Each step of an N  processor POB can be simulated by an N  processor 

LARPBS in 0(1) steps.

Proof: F ind param eters  for actual destinations: To simulate the POB on the 

LARPBS, we first determine the number of conditional delay switches on the receiving 

side that are set to straight before each of the processors. Recall that a delay switch 

set to straight shifts messages on the POB (and may cause multiple processors to 

receive the same message), so this will provide information for the actual destinations 

of the messages. Each processor A< of the LARPBS calculates the binary prefix sum, 

pswni, based on the number of straight switches.

The number of straight switches preceding the processor simulated by A* on the 

receiving side is d* =  p su m s-i — psum^. If a message was to be sent to selected 

destination Bi on the POB, then it would actually arrive at A*, such that k + dt = i- 

Also, if the computed value k +  dk is the same for multiple processors, then these 

processors would receive the same message, corresponding to a concurrent-read step 

of the POB. Note that a select and a reference pulse in a frame may not coincide at 

any processor in the POB if enough conditional delay switches are set to straight. In 

this case, there will be no nonnegative k to satisfy the previous equation.

C reate  (partia l) select fram es and send messages: Send messages in the 

normal state (all conditional delay switches set straight) on the LARPBS without 

altering the select frames. Next, A, sends a message containing its ID to the processor 

indexed (j +  dj) requesting the data that processor (j +  dj) received. This is because 

the message A, would have received after being shifted by dj in the POB was actually 

received by processor (j +  dj) in the LARPBS without being shifted. Processor 

(j +  dj) might be the destination of multiple such requests, corresponding to multiple 

contiguous processors that should receive copies of the message processor {j +  dj)
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holds. This occurs when the multiple processors should receive the same message 

on the POB due to straight conditional delay switches. Processor (j +  dj) then 

sends the data it originally received to the processor whose request it received in the 

previous step. Each processor R+ of the LARPBS then sets its segment switch if 

processor Bj+l has its delay switch set to cross in the simulated model. A crossed 

delay switch represents the boundary for which contiguous processors would receive 

the same message due to straight delay switches. The head of each subarray now 

broadcasts the data it received in the last step. Each processor Ri in the LARPBS 

now has the same message as Bi would in the POB. Also, the LARPBS properly 

handles any concurrent-read or concurrent-write step of the POB. ■

The cycle of simulations described by the preceding lemmas establishes the equiv­

alence of these models.

T heorem  4.5 The LARPBS, LPB, and POB are equivalent models. Each one can 

simulate any step of one of the other models in 0 (1) steps with the same number of 

processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Relating Two-Dimensional Optical 
Models

We have listed a number of models that utilize “optically pipelined buses” in Chap­

ter 1. In this chapter we will concentrate on the two-dimensional version of the 

LARPBS, the Pipelined Reconfigurable Mesh (PR-Mesh) [72]. Other proposed, sim­

ilar two-dimensional optical models are the Array with Reconfigurable Optical Buses 

(AROB) [62, 63], the Array Processors with Pipelined Buses (APPB) [47], the Array 

Processors with Pipelined Buses using Switches (APPBS) [24], the Array with Syn­

chronous Optical Switches (ASOS) [66], and the Reconfigurable Array with Spanning 

Optical Buses (RASOB) [65].

Many of the optically pipelined models have different features, making it difficult 

to relate results across models. It is a useful endeavor, therefore, to unify these models 

in order to increase understanding of which features are essential and to be able to 

translate algorithms from one model to another. In Chapter 4, we determined the 

equivalence of three one-dimensional reconfigurable optical models: the LARPBS, 

LPB, and POB. This result implies an automatic translation of algorithms (without 

loss of speed or efficiency) among these models. In this chapter we consider two- 

dimensional models. This presents obstacles not present when analyzing linear arrays,

52
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such as the larger number of configurations possible due to the multiple dimensions. 

To account for this, we establish their equivalence in a slightly different context; here 

we consider their complexity by relating their time to within a constant factor and 

the number of processors to within a polynomial factor. Two models have the same 

complexity if either model can simulate any step of the other model in a constant 

number of steps, with up to a polynomial increase in the number of processors.

Given the number of algorithms developed on reconfigurable models and the grow­

ing body of research on them, it is important to relate these models to each other 

and to other, more widely known models. In this chapter we prove that the PR-Mesh 

has the same complexity as the cycle-free Linear Reconfigurable Network (LR-Mesh), 

that is, in constant time using a  polynomial number of processors, the PR-Mesh and 

the cycle-free LR-Mesh can solve the same class of problems. We also show that these 

models have the same complexity as the LR-Mesh that allows cycles (Section 5.1). We 

extend this complexity class to include two other optical models, namely the AROB 

and APPBS. Section 5.2 relates the APPBS and the PR-Mesh, then Section 5.3 re­

lates the AROB and the PR-Mesh. Our results obtained in this chapter are some of 

the first to unify reconfigurable optical models to each other and relate them to other 

more widely known models.

We will first define some terminology prior to presenting the results. We draw 

on the complexity class definitions in this section from Johnson [30] and Karp and 

Ramachandran [31]. Let N  denote the input size.

For model Z, let Z (T , poly (A)) denote the class of languages accepted by model Z 

in 0 (T )  steps with polynomial in N  processors. The class L is the class of languages 

accepted by deterministic Turing machines with work space bounded by log N. This 

class is contained inside P  and the corresponding algorithms use less workspace than
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the size of their input [30]. For example, a problem in L is one that can be solved in 

a reasonable amount of time by a polynomial number of computers.

5.1 Complexity of the PR-Mesh

The Linear Reconfigurable Network (LR-Mesh) [5] has the same structure as the 

PR-Mesh and each processor can locally configure its port connections as in a PR-Mesh 

(Figure 2.8). The difference is that it uses electronic buses instead of optical buses. 

Thus, it is not able to pipeline messages. A value written on a port reaches all ports 

connected to the same bus in one time step, however.

Due to the U-turn structure of the PR-Mesh buses, cycles are not allowed; it is nec­

essary to separate the transmitting segment from the receiving segment. Therefore, 

the LR-Mesh model that we will first relate to the PR-Mesh is one that is cycle-free, 

that is, all buses are linear and without cycles. Refer to this model as the cycle-free 

LR-Mesh (CF-LR-Mesh). We will first establish that L =  CF-LR-Mesh(l, poly(Ar)), 

thereby indirectly relating the complexity of the CF-LR-Mesh to that of the LR-Mesh. 

We will then establish in Section 5.1.2 that the PR-Mesh has the same complexity 

as the CF-LR-Mesh and can thus solve any problem in L in constant time using a 

polynomial number of processors.

5.1.1 Relating the LR-Mesh and CF-LRrMesh

Ben-Asher et aI. [5] established L =  LR-Mesh{l,po\y(N)) using an LR-Mesh that 

allows cycles. They used the decision problem C y c l e , which is complete for L with 

respect to JVC1 reductions. The class JVC1 consists of all languages recognizable 

by log-space uniform classes of Boolean circuits having polynomial size and depth 

O(logJV). A reduction of a problem is a mapping of problem A to an instance of
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another problem Y, such that the solution to Y  provides a solution to the instance 

of X  [14]. An N C l reduction from problem X  to problem Y  is a log-space uniform 

family of Boolean circuits that

•  solves X  given Y,

•  contains at most a polynomial number of gates, and

•  has O(logJV) depth.

This implies that any problem that the LR-Mesh can solve in constant time using a 

polynomial number of processors can be mapped to the problem C y c l e .

D efinition 1 [5] C y c l e  is the following decision problem. The input is a permuta­

tion on N  vertices, that is, a directed graph of out-degree 1 and in-degree 1 (given by 

its adjacency matrix), with two special vertices u and v. The answer is ‘1’ if u and v 

are on the same cycle.

To solve the C y c l e  problem, Ben-Asher et al. devised the following algorithm. 

Let each processor o f e a x N x N  LR-Mesh hold one bit of the input adjacency matrix. 

Assume that vertex i maps to j  and j  maps to vertex k. After a  series of communi­

cation steps, all processors in column j  hold the IDs of predecessor * and successor k. 

Processors then create a linear bus between adjacent vertices. For instance, processors 

in column j  and row k fuse their ports to create a bus from processor p{j,j)  (rep­

resenting vertex j )  along column j  to p{k,j), then along row k to processor p(k, k). 

In this manner, each cycle in the input permutation induces a cycle in the LR-Mesh. 

Processor u writes a message on its cycle, and v receives the message if the two are 

on the same cycle.
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This gives the following LR-Mesh solution to any problem n  in L: simulate the 

N C l circuit transforming the instance of II to an instance of C y c l e , then solve the 

resulting instance of C y c l e . Ben-Asher et al. also developed a simulation of the N C l 

circuit (without the use of cycles), establishing L C LR-Mesh(l, po\y(N)). They fur­

ther proved that LR-Mesh(l,poly(N)) C L, thereby obtaining L =  LR-Mesh(l,po\y(N)).

We aim to prove that CF-LR-Mesh(l,po\y(N)) = L. We use an O(N) x O(N) x  

O(N)  CF-LR-Mesh to solve C y c l e , and thus establish the same complexity. The 

approach we take is similar to that of Ben-Asher et al., mapping the given adjacency 

matrix to the bottom layer 0 ( N ) x O ( N )  LR-Mesh and after a series of communication 

steps, all processors in the j 01 column hold the IDs of the vertices immediately before 

and after vertex j  in the permutation. Ben-Asher et al. actually embed the graph 

in an O(N) x O(N)  LR-Mesh with the cycles. The CF-LR-Mesh, however, does not 

allow cycles. For this reason, we embed the permutation graph edges using the third 

dimension of the CF-LR-Mesh, as described below.

The LR-Mesh has N  layers of O(N) x O(N)  processors, where each layer can be 

broken down into 4 x 4  blocks of processors, as shown in Figure 5.1. Label eight 

of the processors within each block as “in” or Mout” to represent the direction of 

the permutation mapping, although the CF-LR-Mesh is undirected. We will refer to 

these as ports or port processors for the block. (This labeling represents the direction 

of buses for the simulations involving optical buses in the sections to follow.) Let 

block(i, j)  denote the block in the Ith row and j th column of blocks, where 0 < », j  < N. 

The blocks on the diagonal represent the vertices, for instance, block(i, i) represents 

vertex *'.

We create linear buses, one bus corresponding to each vertex, such that the buses 

extend up the layers of the mesh. Bus connections are identical in each layer and
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(•) <b)

Figure 5.1: Block of 4 x 4 processors for simulations: (a) labeling of processors within 
blocks; (b) arrangement of blocks and connections.

depend on the permutation. For each vertex j  with successor vertex k, in each layer, 

a bus connects block(j,j) via block(k,j) to block(k,k) within the layer, then steps 

up to block(k,k) in the next layer. This bus exits block(j,j) from or Sout and 

enters block(k,k) from £<„ or Wi„, depending on the relative values of j  and k. The 

“in” port also routes this connection up to block(k, k) in the layer above. The bus 

coming from the layer below also enters at the same “in” port processor, and is 

configured to connect to the vertical bus leaving block(kt k). Figure 5.1(b) shows the 

connections for a block whose predecessor reaches it via a block from its left, and 

successor corresponds to some row above. (Connections shown as dashed lines are all 

within the same layer. Connections shown as solid lines run either to the layer above 

or from the layer below.)

Consider a vertex u. The linear bus that starts at block(u, u) in the bottom layer 

passes a block for each vertex reachable from u. Since a bus only moves up in layers 

of the CF-LR-Mesh, the bus from block(u, u) may reach another copy of block(u, u)
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in a later layer (because of a cycle in the permutation graph), but no cycle exists in 

the mesh.

To determine if vertices u and v are on the same cycle, let block (u, u) in layer 0 

write on its bus. If u is on a cycle with u, then block(v, v) in some layer will receive 

the message from block(u,u). Multiple blocks simulating v on different layers may 

receive the message. Each block simulating v sets its configuration to connect in a bus 

crossing all layers, but if it received the message from block(u, u), then it disconnects 

from the layer above it and sends a message down the bus connecting it to the bottom 

layer. (Disconnecting the bus prevents concurrent writes.) If block(v, v) receives this 

message on the bottom layer, then u and v are both on the same cycle, indicating a 

‘1’ answer to the C y c l e  decision problem.

Therefore, we have the following result.

T heorem  5.1 CF-LR-Mesh(l,poly(N)) =  L.

5.1.2 Relating the CF-LR-Mesh and PR-Mesh

We will use the result of the following lemma to show that the CF-LR-Mesh can 

simulate each step of a PR-Mesh in a constant number of steps with a polynomial 

increase in the number of processors.

Lem m a 5.2 Each step of an N  processor LARPBS can be simulated in 0(1) steps 

by an N  x N  CF-LR-Mesh.

Proof: Let nitj where 0 < *, j  < N, denote a processor of the CF-LR-Mesh 

(LARPBS). The CF-LR-Mesh computes prefix sums in constant time [52] on the set 

conditional delay switches to determine actual destinations. A similar computation 

determines the segment switch locations and the CF-LR-Mesh adjusts the actual des­

tinations accordingly. Each processor ttqj sends its prefix sum, psumj,  and the select
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frame for pj down column j .  Each processor tt^ performs a bitwise AND between the 

select frame for p, and 2,+pn,m>. A nonzero result corresponds to coincident reference 

and select pulses at processor p* of the LARPBS. To determine priority, a processor 

that detected coinciding pulses disconnects its ports and writes the message on its 

east port, while the remaining processors configure their ports as {N, S, EW}. Thus, 

the processors in the rightmost column receive the message that originated from the 

highest priority processor in 0 (1) steps. ■

North

West East

South

Sub-block layout (NS.EW) (NE.SW) (NW.se)

Figure 5.2: CF-LR-Mesh block configurations

T heorem  5.3 PR-Mesh( log* N, poly(jV)) =  CF-LR-Mesh^ log* N , poly (A)).

Proof: A PR-Mesh can simulate each step of a CF-LR-Mesh in a constant number 

of steps, as it can configure its buses in the same manner and simply broadcast all mes­

sages [21,63]. Therefore, CF-LR-Mesh(\og* N, poly(N)) C PR-Mesh(\og> N,po\y{N)).

Let V  be an N  x N  PR-Mesh and let p,; denote a processor of V. We construct an 

0 ( N 3) x 0 (N 3) CF-LR-Mesh £  that simulates each step of V  in a constant number of 

steps. Partition £  into 0(AT2) x 0{N*) size blocks, each with nine sub-blocks of size 

0 (N a) x 0 (N a) as shown in Figure 5.2. Number each block, B y, so that simulates 

Pij of V . Four of the sub-blocks correspond to the ports of Pi and the center sub-block 

is reserved for routing. All sub-blocks labeled "North” and "South” configure their
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ports as {NS,E,W} and those labeled “East” and “West” as {N,S,EW}. The center 

sub-block of Bij sets processor connections according to the partition set by pij as 

shown in Figure 5.2. This forms the same linear buses as in the PR-Mesh.

The head of each bus sends its processor and port number as a bus id to la­

bel all ports on the bus. Rank the list of blocks along each bus starting at the 

head in constant time [52]. Next, transfer simulated processor to the rightmost 

column of the sub-block that matches its bus id and in the row that corresponds 

to its list ranking within the bus in 0(1) steps. Now each linear bus is in the 

rightmost column of its own O(N^) x 0 ( N 2) sub-block. Simulate one step of each 

such bus in 0(1) steps (Lemma 5.2) and then route simulated processors back to 

the proper blocks. Therefore, a CF-LR-Mesh of 0 { N 3) x 0 ( N 3) size can simulate 

each step of an N  x N  PR-Mesh in 0(1) steps, so PR-Mesh(\ogi N, poly(Ar)) C 

CF-LR-Mesh(log' N, poly(N)).

Thus, PR-Mesh{\otf N, poly{N)) =  CF-LR-Mesh{log* N, poly(N)). ■

It is possible to reduce the number of processors required for this .simulation to 

a 4N  x  4N  x N 2 CF-LR-Mesh. The approach is similar, however, we use a 4 x 4 

block of processors to simulate each processor of the PR-Mesh. Replace each undi­

rected CF-LR-Mesh bus by two “directed” buses, although the buses are not actually 

directed. This is similar to the block shown in Figure 5.1, such that the inner four 

processors are used for routing and the center two processors along the perimeter 

of the block contain the buses. Rank the processors along each bus in 0(1) time 

using prefix sums. During this step, the active processors are on the bottom layer 

of the CF-LR-Mesh. The CF-LR-Mesh configures each of its layers the same as the 

PR-Mesh configurations and then processors with rank j  write on layer j .  In this way, 

processors with higher priority on a bus write on lower layers than other processors
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within the same bus. Then, buses are formed between layers, and processors that 

received a message disconnect from upper layers and write its message on the bus. 

This allows it to properly handle any concurrent writes.

Vaidyanathan and Trahan [75] established that it is possible to translate a three- 

dimensional R-Mesh to a two-dimensional R-Mesh by increasing the number of pro­

cessors by a factor of the smallest dimension. If we were to translate this three- 

dimensional CF-LR-Mesh to two-dimensions, this would result in an 0 ( N 3) x 0(JV7) 

CF-LR-Mesh, which is smaller by a factor of N  than the model used in the previous 

simulation.

Combining the previous results, we obtain the following result.

Corollary 5.4 PR-Mesh (log1 AT, poly (N )) =  CF-LR-Mesh (log* N, poly (AT))

=  LR-Mesh (log* JV, poly (Af)), for each j  > 0.

Corollary 5.5 PR-Mesh(l, poly(AT)) =  L.

5.2 Complexity of the APPBS

The Array of Processors with Pipelined Bases using Switches (APPBS) [24] is another 

reconfigurable model that uses pipelined optical buses. We will first describe the 

structure of the APPBS and then relate the complexity of the APPBS to the PR-Mesh 

in Section 5.2.2.

5.2.1 Structure of the APPBS

Unlike the structure of the PR-Mesh, the APPBS uses four switches at each processor 

to connect to each of the adjacent buses (Figure 5.3(a)). Four configurations are 

available to each switch. Figure 5.3(b) shows the configurations available to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

top right switch at a processor. Each processor locally controls its switches, and 

can change its configuration once or twice at any petit cycle(s) within a bus cycle. 

(Recall from Chapter 2 that a petit cycle is the node-to-node propagation delay.) 

The available switch configurations form non-linear buses that are not allowed in the 

PR-Mesh, though the model is restricted so that only one of two possible converging 

paths can carry a message in any given petit cycle, so messages do not collide. This 

does allow messages to be interleaved from different buses. To overcome the obstacle 

of non-linear buses or the “merged” switch configurations, we create copies of the 

buses for each message sent. We describe this in more detail later in this section.

~  ^  L .

(b)

L

Figure 5.3: APPBS processor with switches: a) switch connections at each APPBS 
processor; b) switch configurations of top right switch at each APPBS processor.

Another difference between the PR-Mesh and the APPBS is that the APPBS 

cannot end a bus in the middle of the mesh, so each bus must extend to the outer 

processors in the mesh. The APPBS can use either the coincident pulse technique 

or the control functions send(m) and wait(n) to send a message from processor m 

to processor n. These functions define the number of petit cycles processor m has to 

wait before sending a message and processor n must wait before reading a message.

The ability of different switches to change their settings during different petit 

cycles could result in many different model configurations within a single bus cycle. 

Note that (i) the path any given message traverses is linear, despite all the switch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

changes, and (ii) a message may follow a different path than the one that initially 

precedes (or succeeds) it in the pipeline. If we do not allow an increase of processors 

on an ^-processor PR-Mesh, then simulating an APPBS appears to require one 

step to simulate each petit cycle, leading to 0(JV2) steps to simulate each step of an 

iV2-processor APPBS. To overcome the obstacle of changing switch settings, we use 

a block of processors to simulate each APPBS processor, as in the simulation of an 

LR-Mesh by a CF-LR-Mesh. By allowing the number of processors to increase by a 

polynomial factor, the PR-Mesh can simulate each step of an APPBS in a constant 

number of steps.

In the other direction, the obstacles to simulating a PR-Mesh by an APPBS are 

that the APPBS does not have delay loops and is not able to segment its buses. 

To simplify the description of how we overcome these problems, we simulate an 

CF-LR-Mesh by an APPBS, rather than a PR-Mesh by an APPBS. This, along 

with the result of Corollary 5.4, implies that the APPBS can simulate any step of a 

PR-Mesh in constant steps using polynomial processors.

5.2.2 Relating the APPBS and PR-Mesh 

T heorem  5.6 PR-Mesh (log* N, poly (A)j = APPBS (log7 N, poly (A)).

Proof: S im ulation of A PPB S by PR-M esh: Let S  denote an N  x N  APPBS 

and let sXJ denote a processor of S. We construct an O(N) x O(N) x 0 ( N 2) PR-Mesh 

V  that simulates each step of 5  in 0(1) steps. Let layer rp of V  represent the APPBS 

configuration at petit cycle t/>, where 0 < tp < N2. V  creates a vertical bus repre­

senting the path each message would follow over the APPBS, such that the message 

passes switches in layer ip corresponding to the APPBS switches it would pass in petit 

cycle ip. This way, time travels up by layers within a single step of the PR-Mesh.
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We first present an APPBS simulation by a PR-Mesh that does not allow non-linear 

connections and then extend the simulation to include non-linear connections.

Within each layer of the PR-Mesh, we use a 4 x 4 block of processors to simulate 

each processor of the APPBS, as in Section 5.1.1. Let blockij simulate Sij. Refer to 

Figure 5.1 to see the arrangement of processors and blocks in each layer. The eight 

port processors of blockij represent the four ports of as well as the direction of 

the port connections. Each block in layer tj> sets its configuration to simulate the 

corresponding APPBS processor during petit cycle \j}. Blocks connect within the 

same layer to the preceding block on the bus and then route the bus up to the next 

layer. Referring to Figure 5.1(b), the block shown represents a processor in which a 

bus enters from the west port and leaves by the north port.

Consider blockij, such that has the function aend(i,j). The block should send 

its message during petit cycle aend(i,j), however, all writing processors send their 

message in petit cycle 0 from layer 0. Blockij first broadcasts the value it holds for 

aend(i,j) along its bus. The block on the bus with value wait(g, h) in layer k, such 

that k =  wait(g, h) -  aend(i,j)t determines that it should receive the message. Next, 

blockij broadcasts its message, and each block on the bus in every layer either accepts 

or ignores the message it receives depending on the above considerations.

The simulation described above properly handles messages sent by an APPBS, 

however, certain switch configurations are not addressed in this simulation. To ac­

commodate the non-linear, “merged” switch configurations of an APPBS switch we 

duplicate the simulation described for each message sent. Since non-linear connec­

tions are not allowed by the PR-Mesh and the path that each individual message 

follows is linear, we identify the path for a particular message within its own copy.
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In this way, we use N* copies of an 0{N)  x 0 ( N)  x O(A^) PR-Mesh to handle all 

switch settings of an APPBS and all possible messages.

First, each processor in layer rj) of the PR-Mesh sets its configuration as the 

corresponding APPBS processor during petit cycle ip as in the previous simulation, 

if it is a linear connection. Processors simulating merging switches will act as nodes 

in a tree and communicate with its neighbors to determine if it has a parent in order 

to identify the root of the tree and the leaves. Processors with linear connections 

act as edges in the tree. We create a linear acyclic bus that traverses the path of 

an Euler tour of the tree. The root of the tree segments this bus ensuring that the 

bus is acyclic. With the merging processors acting as nodes in the tree, we perform 

a prefix sums operation on the Euler tour, such that each node holds a value of *1’. 

This ranks the nodes of the tree and provides a preorder numbering of the nodes in 

the tree. An example of a tree with preorder numbering is shown in Figure 5.4.

We will consider one such copy for one particular message that passes through 

the leaf with preorder number j .  The leaf broadcasts the value j  within this message 

copy. All processors within the copy for this message can determine which merged 

setting to assume based upon its own preorder number and the number for this copy. 

For instance, a node with preorder number i < j ,  determines that if it is to route the 

message further up the tree, then the message will be received from the right. A node 

with preorder number k > j ,  determines that if it is to route the message further up 

the tree, then the message will be received from the left. Once all switches are set, 

the messages are sent as in the earlier simulation in a constant number of steps. Since 

the APPBS guarantees no message conflicts, only one block of processors simulating 

a particular APPBS processor will receive a message in a given layer of the PR-Mesh. 

Recall that each layer of the PR-Mesh represents a given petit cycle. Therefore, if
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two processors within the same layer that are simulating the same APPBS processor 

receive a message, then there was a conflict, however, this will not occur. As a 

result, we first merge the messages to one block by forming horizontal buses and then 

broadcast the received messages in each layer to the leftmost block. Next, we form 

buses across layers and send received messages down to the lowest layer as before.

1 3 5 7 11 13

Figure 5.4: Preorder numbering of nodes in a  tree

Therefore, a polynomial size PR-Mesh can simulate each step of an N x N  APPBS 

in 0(1) steps, and APPBS (log* N, poly (A)) C PR-Mesh (log1 N , poly (AT)).

S im ulation o f PR -M esh (via CF-LR-M esh) by A PPB S: We now present a 

simulation of a CF-LR-Mesh that can in turn simulate a PR-Mesh. Now let £  denote 

an N x N  CF-LR-Mesh and let i* denote a processor of £  numbered in row major 

order. We construct an 0(N)  x 0 ( N )  APPBS S  that simulates each step of £  in a 

constant number of steps.

We use a 3 x 3 block of processors in S  to simulate each processor of £ , as shown 

in Figure 5.5(a). The center processor of the block, sq, sets its switches corresponding 

to the port configuration of /«, and the remaining processors simulate the instances of 

buses that are segmented in £. All of these processors set their switches to straight. 

If a bus ends at one of the ports of /<, then the corresponding “port processor” (that
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Figure 5.5: Configuration of APPBS processors to simulate a CF-LR-Mesh: a) 3 x 3 
block of APPBS processors for each CF-LR-Mesh processor; b) configuration of port 
processors for a bus ending at a port of /<.

is, either sn^ssj, se<, or swi) sets its switches as shown in Figure 5.5(b). This will 

form alleyways to shunt messages if a bus is supposed to end. All processors on the 

alleyway disregard messages sent along alleyways, except for the port processor at 

which the bus was to end. To simulate a communication step, first set all switches as 

described above and send the messages along the buses. Next, all processors set their 

switches to straight, and any port processor that handled a bus termination sends 

the message to sc*, so that sq  can get the last message sent on its bus.

Thus, an APPBS of O(N) x O(N) size can simulate each step of an N  x N  

CF-LR-Mesh in 0(1) steps. Combining this with the fact that a CF-LR-Mesh of 

0 ( N 3) x 0(JV3) size can simulate each step of an N  x N  PR-Mesh in 0(1) steps 

(Theorem 5.3), we have PR-Mesh (log* N, poly (JV)) C  APPBS  (log* N, poly (A T)).

Therefore, APPBS  (log' N, poly (N )) =  PR-Mesh (log' N, poly (N )). ■

It is possible to simulate a CF-LR-Mesh by an APPBS without using merging 

switches. This can be accomplished by increasing the number of rows and columns 

by a factor of N  to give individual alleyways for each port.
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5.3 Complexity of the AROB

The Linear Array with Reconfigumble Optical Buses (LAROB) and AROB [63, 68], 

are similar to the LARPBS and PR-Mesh, respectively, with some extra hardware 

features. They are able to segment buses into separate subarrays as are the LARPBS 

and PR-Mesh. We will first describe the structure of the AROB and then relate the 

complexity of the AROB to the PR-Mesh in Section 5.3.2.

5.3.1 Structure of the AROB

Each processor of the AROB can add an arbitrary number of unit delays to shift 

the select pulse with respect to the reference pulse. There is also a relative delay 

counter and an optical rotate-shift register at each processor enabling it to perform 

a bit polling operation within one step. This is the ability to select the It** bit of 

each of N  messages and determine the number of these bits that are set to 1. Pavel 

and Aid [61] also presented an extended version of the LAROB. The extended model 

allows on-line switch settings during a  bus cycle and the transmission of up to N  

messages with arbitrary word size. The AROB is also able to address processors 

using the control functions send(m) and wait(n) as the APPBS. The PR-Mesh is 

able to simulate these functions as in the simulation of an APPBS.

These features suggest that the AROB does not have the same complexity as the 

PR-Mesh. By allowing the number of processors to increase polynomially, however, 

we establish the same complexity despite these obstacles.

5.3.2 Relating the AROB and PR-Mesh

Theorem  5.7 PR-Mesh (log* N, poly (AT)) =  AROB (log* N, poly (A )).
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Proof: An N  x N  AROB can simulate each step of an N x N  PR-Mesh in a constant 

number of steps, as it can configure its buses in the same manner and has the same 

capabilities. Therefore, PR-Mesh (log* N, poly (N ) )  C AROB (log* N , poly ( N ) ) .

Let B denote an N  x N  AROB and let hi denote a processor of B in row major 

order. We construct an O(N) x O(N) x 0(N*) PR-Mesh V  that simulates each step 

of B  in 0(1) steps. The approach we take to describe the simulation is to individually 

present simulations of each of the extra features not possessed by the PR-Mesh.

The first feature we simulate is the bit polling operation. We use a similar ap­

proach as in the APPBS simulation without <(merging” switches (Section 5.2) and 

consider 2N* layers of a PR-Mesh to simulate an AROB. Again, we use a 4 x 4 block 

of processors, as shown in Figure 5.1, to simulate each processor of the AROB on each 

layer. Each block sets its configuration to form buses up through the layers of the 

PR-Mesh. As in the proof for Theorem 5.6, all incoming connections are routed up to 

the next layer, and all connections coming in from the layer below are routed on the 

same layer to the next block on the bus. The block that corresponds to an end of a 

bus in the AROB sets its connections so that it ends the bus in the PR-Mesh as well. 

This, once again, forms a bus for each message. In contrast to previous simulations, 

the base layer here is layer N 2, the center layer.

Consider one of the original buses of the AROB, where the head of the bus is 

processor by. All processors on the bus now determine their distances from the head 

of the bus by computing prefix sums [63] on the upper N 2 layers of the bus. Call this 

distance d ^  for processor 6f*. Do this for all buses of the AROB.

Each block on the center layer has its own personal copy of its bus. The bus 

corresponding to begins in layer N2 -  d ^ .  This way the bit that is to be polled
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will be polled in the corresponding layer. Bach block on the center layer broadcasts 

its corresponding message. If processor bafl was to perform a bit-polling operation 

on the »** bit, then each block p,/, on each layer that received a message extracts 

the *** bit from the message it read and uses this value in the next step. Next, all 

blocks connect in vertical buses and sum these bits to get the bit polling result within 

a constant number of steps. The sum obtained by pth represents the number of i** 

pulses that are *1’.

The second feature we consider is the ability to set an arbitrary number of delays. 

We will use the result of the following lemmas to show that the PR-Mesh can simulate 

setting an arbitrary number of delays in 0(1) steps with a polynomial increase in the 

number of processors.

Lem m a 5.8 An N2 -processor LARPBS can simulate in 0(1) steps any step of an 

N-processor LAROB that allows an arbitrary number of delays.

Proof: Let processor fNi of the LARPBS simulate processor bi of the LAROB, so 

that each pm has a segment of N  processors corresponding to it. Processor pNi sends 

a message to each of the N  processors in its segment with the value of its delay. For 

a delay of Xi corresponding to psu  each of the first processors of psi s segment sets 

its value to ‘1’. Perform a prefix sums operation over all N 2 processors. Processor 

PNi then adjusts its prefix sum by i*. Based on the adjusted prefix sum value, pn\ 

adjusts its select frame. Processor pNi sends this information to pt. Now p, simulates 

bi and sends the messages in a normal state of operation, such that all conditional 

delay loops are set to straight. Only the first N  processors are active in this last step.
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Lem m a 5.9 An 0 (N )  x 0(N )  x 0 (N a) PR-Mesh can simulate in 0(1) steps any 

step of an N  x N  AROB that allows an arbitrary number of delays.

Proof: We first present this for an 0 (N )  x 0{N )  x 0 (N 4) PR-Mesh, and then reduce 

it down to the desired size. Configure all processors to form the buses of the AROB in 

the bottom layer of the PR-Mesh. Perform prefix sums on each bus so each processor 

can get its ranking within its bus. The head of each bus sends its ID along the bus 

to provide a bus ID to all processors on that bus. Due to the third dimension, each 

of the processors on the bottom layer has an JV4-processor LARPBS associated with 

it. For the bus with ID {j, k), map the Ith processor on bus (j, *) to processor p/w  of 

the JV4-processor LARPBS beginning at processor {j, k) on the bottom layer. From 

Lemma 5.8, each processor can determine the number of delays that will affect it, 

and can adjust its select frame accordingly. (The longest bus length possible for the 

AROB is N7 processors and each processor is able to insert up to N 2 delays, hence 

the PR-Mesh uses a bus of length N 4 to simulate each bus of the AROB.) Repeat 

this four times, once for each port, in case a processor was the head of more than one 

bus. Once all select frames have been adjusted, all processors along the bottom layer 

can send their messages through the bottom layer.

To reduce the PR-Mesh to N 2 layers, first rank processors along each bus as before. 

Next the tail of each bus sends the count to the head of its bus, so the head holds the 

total number of processors on its bus. To get the bus IDs, perform a prefix sum of the 

bus lengths using the heads of buses. (In the case above, the bus ID was simply the 

index of the processor at the head of the bus. In this case, the bus ID is determined 

from an ordering of the buses.) By connecting the three-dimensional mesh in a snake­

like pattern, the entire mesh is just a one-dimensional LARPBS. Now, place each bus 

in contiguous segments of the mesh, with the starting location depending on the bus
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ID. This problem then reduces to the one presented in Lemma 5.8. Therefore, we can 

simulate any step of the AROB using arbitrary delays on a PR-Mesh in 0(1) steps.

■

The third feature considered is the on-line switching ability of the AROB. This 

simulation follows the simulation of this feature of the APPBS without “merging” 

switches by the PR-Mesh in Section 5.2.

The fourth feature considered is the relative delay counter. This counter of each 

AROB processor is able to detect the relative time delay between select and reference 

pulses that pass each processor. We proceed as before configuring layer t of the 

PR-Mesh as the AROB configuration at petit cycle ». The message is sent with the 

corresponding select pulses injected and a single reference pulse in the highest slot. 

Next, configure buses that connect each layer together and any processor that received 

a message broadcasts its layer value on the bus. This provides information regarding 

the time slot of a  select pulse. Each processor can then use this information along 

with its layer value to determine the relative delay between the select and reference 

pulses. Combining these results, we can simulate any step of an AROB on a PR-Mesh 

by performing the following steps:

•  Perform bit polling if required.

•  Calculate the number of delays for each message.

•  Adjust select frames.

•  Send messages.

This proves that AROB (log* A, poly (A)) C PR-Mesh (log* A, poly (N )), thus 

establishing that the two models have the same complexity. ■
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Figure 5.6: Complexity class relations

We have established that the LR-Mesh, CF-LR-Mesh, PR-Mesh, APPBS, and the 

AROB have equivalent complexity and can solve any problem of size N  within class L 

in constant time using polynomial in N  processors. Figure 5.6 places these models in 

relation to other models and their established complexity classes. For model Z, let Zi 

denote the class of languages accepted by model Z in 0(log* N) time with number of 

processors polynomial in N . Class ACj is the class of languages accepted by logspace- 

uniform, unbounded fan-in circuits of size polynomial in N  and depth 0(log* N). The 

dashed lines represent previously known results [72]. The solid line represents results 

obtained in this work and places the models within their corresponding complexity 

class.

The results obtained prove that pipelining messages using optical buses provide 

us with better efficiency than electrical buses. The PR-Mesh requires fewer buses 

than the CF-LR-Mesh, however, the PR-Mesh possesses the same limitations as the 

CF-LR-Mesh in solving graph problems since non-linear connections are not allowed.

*

R-Mcsh J

LR-Mesh

ACj

J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Algorithm Development

It is always desirable to improve the efficiency of existing algorithms, either by re­

ducing the time required to execute a specific algorithm or by reducing the number 

of processors required. In this chapter we improve existing algorithms in the areas 

of computational geometry, image analysis, and arithmetic algorithms by adapting 

them to the PR-Mesh (Section 6.1). We also briefly discuss a few algorithms that are 

likely candidates to be improved.

When developing algorithms, many assumptions are made that are not always 

realistic during implementation. Thus far, all of our work has assumed that N  pro­

cessors are connected to an optical bus, with no restriction on the size of N. There 

are many practical constraints that could have impact on the length of the bus con­

sidered, which would, in turn, limit the number of processors that could be connected 

to the bus. Section 6.2 discusses some of these restrictions and an approach to work 

within these limitations.

6.1 Algorithm Improvement

Certain features of the LARPBS and PR-Mesh may be exploited to develop faster 

and more efficient algorithms. These models are able to compact data, perform

74
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Table 6.1: Improved Algorithms for the LARPBS and PR-Mesh
Algorithm Size Reduction Factor

dominance counting \ fN
prefix modular k N
number conversion N
conversion to quadtree N

binary prefix sums, and route any permutation in a constant number of steps with 

N  processors for a problem size of N. Binary prefix sums takes O(logN) steps on 

an JV-processor LR-Mesh. Compaction and permutation routing take O(N) steps on 

an JV-processor LR-Mesh. Alternatively, at greater size cost, each of these operations 

takes 0(1) steps on an N  x N  LR-Mesh. The ability to pipeline messages enables the 

use of smaller sized models, as extra buses are not required to send multiple messages 

simultaneously.

A second advantage of being able to pipeline messages is a savings in steps, because 

many messages can be in transit during one step, and space, because extra buses are 

not required to transmit messages simultaneously. Another feature that is not possible 

is the ability to send a message on an electrical bus past a processor connected to the 

bus without the processor receiving it. We will identify problems and algorithms in 

which we take advantage of these features. The specific problems we consider and the 

size improvements for each problem are given in Table 6.1. The size improvements 

are relative to the best known R-Mesh algorithms for the problems.

6.1.1 Computational Geometry Algorithms

Computational geometry has a wide range of applications. Computer graphics utilizes 

computational geometry because the scenes displayed consist of geometric objects.
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Geographic information systems are concerned with points and regions on the surface 

of the earth, generating many geometric problems. Robotics is another area utilizing 

computational geometry because robots are basically geometric objects that operate 

in 3-dimensional space.

Many computational geometry algorithms exist on reconfigurable models with 

electrical buses, such as convex hull [16, 27], triangulation [51], Voronoi diagram 

[19], and point visibility [32]. Few such algorithms, however, exist on reconfigurable 

optical models. We are interested in identifying algorithms that are adaptable to the 

LARPBS or PR-Mesh such that the time and/or size can be improved.

We have improved an existing algorithm to perform dominance counting. Domi­

nance counting is to determine for each point, p, in a set S  of N  distinct planar points, 

\{q : q € S,px > qx and pv > qy}\. Nigam and Sahni [50] presented an algorithm to 

solve this problem on an N x N  R-Mesh in a constant number of steps. We follow 

their procedure, however, we are able to reduce the number of processors, obtaining 

the following result.

Lem m a 6.1 Dominance counting for each point p € S, where |5 | = N, can be 

computed on an TV1/ 2 x  N  PR-Mesh in a constant number of steps.

Proof: S tep 1: Sort S  by the y-coordinate in 0(1) time (Theorem 3.2). Store the 

results, one element per processor, in the top row of the PR-Mesh. Partition S  into 

N l/2 sets Yi, 1 < i < N l/2, such that |Vj| =  N lf2 and no point in VJ has a larger 

y-coordinate than any of the points in Fl+l. Within each partition, Yit sort by the 

x-coordinate. Let the processor with the highest index in Yt be the border processor 

for Yi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

Step  2: Sort S  by the x-coordinate in 0(1) time (Theorem 3.2). Partition these 

elements into N l 2̂ sets X i ,  1 < i < N 1^2 , such that |Xi| =  N 1^2 . Store the results, 

one element per processor, in the top row of the PR-Mesh.

S tep  3: Each processor sets its configuration to fuse its North and South ports 

to form vertical buses. Each processor on the top row broadcasts the two values it 

holds (one element of A'< and one element of Vi) on its column bus.

S tep  4: Each processor sets its configuration to fuse its East and West ports to 

form horizontal buses. Broadcast the border element for Yi on row t, for 0 < t < N l/2.

S tep  5: On row t, compress elements that have a larger y-coordinate than the 

border element for Yx. Let SX] = X x fl Yj. For each p € Sy, DY(p) =  (number of 

points dominated by p in (Yj -  Sy)), DX(p) =  (number of points dominated by p in 

X &  and Dip, S) = DY[p) +  DXip) +  E „< >  \SW\.

Perform the summations on each row in constant time obtaining the final result.

■

The ability to identify the maximum/minimum of N  elements on an N  processor 

LARPBS in 0(log log N)  steps [56] provides a savings in steps in parts of two existing 

algorithms. The first is an algorithm to determine the point visibility of a simple 

polygon using an R-Mesh. This problem is to find for a given point z  in the interior 

of an N  vertex polygon P, all the points of P  that are visible from z. The existing 

R-Mesh algorithm [32] runs in (^(log2 N )  steps; we conjecture, however, that it is 

possible to run in 0(log N  log log N)  steps on an LARPBS using the same number 

of processors. The second algorithm is one to compute the Voronoi diagram for N  

points. The Voronoi diagram takes a set S  of N  points and decomposes the space 

in regions around each point, such that all points in the region around p, are closer 

to pi than to any other point in S.  The existing R-Mesh algorithm [19] runs in
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0(log N  log log N) steps, however, we have been able to reduce the steps required for 

some phases of the Voronoi diagram algorithm.

6.1.2 Arithmetic Algorithms

Arithmetic algorithms include a wide range of problems that may have room for 

improvement. Examples of such algorithms include matrix multiplication [17, 62], 

Discrete Fourier Transform (DFT) [60], multiple addition [47, 60], and singular value 

decomposition [55]. These algorithms depend heavily on multiple additions as well as 

compaction of data, both of which are more efficient on the LARPBS and PR-Mesh 

than on the LR-Mesh and R-Mesh.

We now present extensions of some arithmetic algorithms concerning matrix mul­

tiplication. Pavel and Akl [62] presented results leading to the multiplication of dense 

N x N  matrices on the AROB, in which the word size is assumed to be 0(\ogN )  bits. 

(Refer to Sections 3.1 and 5.3.1 for a description of the AROB.) We are interested in 

generalizing their results to account for an arbitrary word size. This can be done by 

either increasing the time required or the number of processors required as a factor 

of the word size. By allowing the time to increase, we achieve the following results 

for arbitrary word size of tu-bits.

Lem m a 6.2 Addition of N  w-bit numbers can be performed in 0(fn*jvl) steps on 

on OQogN x N) AROB.

Proof: Assume the top row holds the N  values Vj, 0 < j  < N. Broadcast v, in 

column j .  Processor p,, stores the k * *'** bit of Vj, for 0 < i < log A, 0 < j  < N, 

and 0 < k < f * iterations, where I = f is^jvl, each row determines the sum

of the bits within its row using binary prefix sums. This results in (/ log N) log TV-bit
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binary values. Locally adjust the weights of the values depending upon the row in 

which the values are stored. Sum these values in log(f j^ jv l) steps. ■

Lem m a 6.3 For a w-bit word size, the multiplication of an N x N  matrix A with an 

N  x 1 vector b can be performed in stePs on an N  x N  x \ogN AROB.

Proof: Assume the elemeuts of matrix A are stored iu the base array of the AROB. 

Assume the elements of vector b are stored in the top row of the base array of the 

AROB. Broadcast bj down column j  of the base array. Processor PiJ locally computes 

Oij*bj = Cjj. The next step is to compute the elements of the vector c by c< =  Cij- 

This results in the addition of N  w—bit numbers on each of the N  rows. Using the 

third dimension and Lemma 6.2, the multiplication can be completed. ■

Lem m a 6.4 Given two N x N  matrices A and B, w-bit word size, the matrix mul­

tiplication AB = C can be performed in steps on an N  x N  x N  x \ogN

AROB.

Proof: Route the elements of A and B  such that pij,* holds a*,* and 6*j. Locally 

compute the factor Cij(k) =  a** * The next step is to compute the elements of 

the matrix C by Cij =  £*Cij(fc). This results in the addition of N  w -b it numbers 

on each column p ijj.  This summation can be computed in CKTtajf/vl) steps. ■ 

It would also be beneficial to extend these results to use floating point inputs 

instead of restricting them to integers.

6.1.3 Image Analysis Algorithms

Many algorithms exist in the area of image processing, such as quadtree building 

[33], histogram finding [29], Hough transform [53], and nearest neighbor [57], to name
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Figure 6.1: [29] Three different representations of number 3

a few. By taking advantage of the key features of the LARPBS and PR-Mesh, we 

improve some of these algorithms.

A basic operation in image processing is to compute a histogram of an N  x N  

image. The problem is to determine the number of occurrences of each of h grey level 

values within the image. The R-Mesh histogram algorithm proposed by Jang et al. 

[29] consists of a few subroutines. The two subroutines we consider here both run in 

a constant number of steps on an LARPBS.

Lem m a 6.5 Prefix modular k computation of a 0/1 sequence of length N  can be 

performed in 0(1) steps on an N-processor LARPBS.

Proof: First compute the prefix sums of the N  numbers in a constant number of

steps. Next, perform a local modulo k operation. ■

A group of N  processors can represent a number with value less than N  in different 

formats. In the 2UN representation of integer i, a subset of t processors hold a ‘1’ 

and the remaining processors hold ‘O’. In the 1UN representation of integer i, each 

processor k, 0 < k < i, holds a ‘1* and the remaining processors hold ‘O’. In the BIN
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representation of integer t, each processor k holds a ‘1’ if the kth bit position of i is 

a ‘1’ and the remaining processors hold ‘O’. Refer to Figure 6.1 for an example of 

different representations.

Lem m a 6.6 Conversion of a number from 2UN or 1 UN representation to either 1 UN 

or BIN representation can be performed in 0(1) steps on an N-processor LARPBS.

Proof;

•  2UN — ► 1UN: Sum the bits of the 2UN representation in one step. Processor 

P o  stores the sum, j , and then broadcasts the value to all processors. Each 

processor with index i such that i < j  sets its bit to high, thus obtaining the 

1UN representation.

•  2UN — ► BIN: Sum the bits of the 2UN representation. Processor po stores 

the sum, j, and then broadcasts the value to all processors. Processor p, sets 

its bit to high if bit i of the binary representation of j  is a ‘1’, thus obtaining 

the BIN representation.

•  1UN — ► BIN: Each processor with a ‘1’ broadcasts its index to the head of the 

array. The bead of the array receives the integer value due to the priority write 

property and then broadcasts the value. Processor p, sets its bit to high if bit i 

of the binary representation of j  is a ‘1’, thus obtaining the BIN representation.

■

Both of these subroutines provide a savings in the number of processors used. The 

first subroutine as presented by Jang et al. uses a (k + 1) x 2N R-Mesh as opposed 

to a 1 x N  PR-Mesh. The second uses a log2 N x N  R-Mesh. This may carry over to 

a savings of size to find the histogram of an image, as these subroutines are utilized
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in the algorithm. The obstacle arises from trying to reduce the number of processors 

to sort the pixels of the image.

A quadtree is a data structure often used to represent binary images and finds 

use in many operations on binary images and spatial information systems. It breaks 

an N x N  image into quadrants, such that the root represents the entire image, and 

each node can have up to four children. It then continues to break the image down 

until each pixel represented by a node is of the same color. For example, if the image 

consists of all pixels being the same color, then the quadtree would contain only the 

root node, else, the root would have four children representing the NW, NE, SW, and 

SE quadrants of the image.

1 1 0 0 0 0 0 0
1 1 0 0 0 0 1 0
0 0 0 i 1 I 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 1

1 0 I I 1 I 1 1
1 1 0 1 1 1 1 1
I 1 1 0 1 1 1 1

A
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17 20

B C F 0D J K
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Figure 6.2: [33] Image representations (a) 8 x 8 binary image, (b) block decomposition 
of the binary image, (c) shuffled row-major order, (d) quadtree representation.
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The specific algorithm in which we are interested is converting between a quadtree 

and a binary image, which takes a constant time number of steps on an N  x N  x N  

R-Mesh [33]. Refer to Figure 6.2 for the different representations.

There are different methods to store the quadtree representation. An obvious 

method would be to use a tree structure. This, however, requires excessive space due 

to the pointers needed. An alternative method is a linear quadtree, in which only 

the black leaf nodes are stored. The data necessary for each black leaf node is the 

shufiled-row major number (see Figure 6.2(c)) of the top leftmost pixel of its block t 

(shown as a shaded block in the figure), and the level on which the node is located in 

the tree I (see Figure 6.2(d)). Represent each black node leaf by (t, /). Referring to 

the binary image in Figure 6.2(a), the linear quadtree representation is: (0,2), (13,3), 

(14,3), (22,3), (24,2), (33,3), (34,3), (36,2), (40,2), (45,3), (46,3), (48,1).

The algorithm presented by Kim and Jang [33] uses a three-dimensional R-Mesh. 

The algorithm uses the third dimension to perform permutation routing, compression, 

and basic data movement of N 2 elements. An N x N  PR-Mesh can perform these 

operations in 0(1) steps, providing us with the following result.

Theorem  6.7 Conversion from an N  x N  binary image to a quadtree can be per­

formed in 0(1) steps using an N  x N  PR-Mesh.

Quadtree representations find use in computing certain distance transforms, spa­

tial information systems, and geometric applications, including data clustering and 

shape representation [36]. Therefore, improving the efficiency of the quadtree conver­

sion could carry through to other image analysis algorithms.
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6.2 Algorithms with Physical Constraints

In this section we consider some physical constraints that can impact algorithm per­

formance. For instance, when considering optical models in practice, a pulse traveling 

from one processor to the next may not take exactly the same time. Errors of this 

type may accumulate when the number of processors is large, resulting in synchro­

nization error [13]. Degradation of light intensity is another problem that grows with 

an increase in distance, or processors, and may prevent detectors on the receiving end 

from properly interpreting data. Repeaters or optical amplifiers could be placed at 

regular intervals to overcome these problems. This, however, would introduce addi­

tional delays along the bus, and the pulse timing for receiving messages would have 

to be adjusted.

One approach we can take to accommodate the problem is to place a restriction 

on the communication length between two processors. For instance, on an LARPBS 

with N  processors, permit a processor to send a message to another processor only 

with distance at most L.

In the following sections we provide algorithms to compute prefix sums and per­

form compression for an AT-processor LARPBS that has the restricted communication 

length described above. The base of the algorithms on an unrestricted PR-Mesh fol­

lows the approach of Pan and Li [56]. The results obtained for these two algorithms 

are time optimal for this communication length.

6.2.1 Prefix Sums with Restricted Communication Length

Assume each processor holds one data element. The LARPBS sets its segment 

switches so that there are 2N /L  subarrays of length L/2. Number each segment 

from 0 to 2N /L  -  1. Each processor knows the value of N  and L  and can thus de­
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termine if it is in an even or odd segment. Denote hi as the head of subarray t, for 

0 < t < 2N /L . Perform prefix sums within each subarray. Let hi hold the prefix sum 

for subarray t, ps<.

Consider segment head hi. If t is even, then segment head hi+\ segments the bus 

and hi sends to Next, tn+\ sets it segment switch to straight and hx segments 

the bus. Segment head hi now receives psj_t from hi-X. If i is odd, the steps are in 

reverse order. Each segment head now segments the bus to form the 2N /L  subarrays 

as before. Processor hi now broadcasts psj_i within its subarray and forwards ps<_i 

to hi+i after setting its segment switch as in the previous step. This is repeated for 

2N /L  phases, providing us with the following result.

Lem m a 6.8 Prefix sums of N  elements can be computed in 0 ( N /L )  steps on an 

N-processor LARPBS with communication length restricted to L.

6.2.2 Compression with Restricted Communication Length

Assume that each processor of an IV-processor LARPBS holds an element that is 

either marked or unmarked. Recall from Section 2.3.2 that the compression algorithm 

shifts all marked elements to the lower end of the array, namely processors po through 

p*_ i, and unmarked elements to the upper end of the array. The algorithm also 

maintains the order within the marked elements and within the unmarked elements. 

Let x  denote the number of marked elements.

First the LARPBS computes the prefix sums of the marked processors in 0 ( N / L ) 

steps as in the previous lemma. The prefix sum computed provides the index of the 

processor to which the marked element should be routed. The processor with index 

N  -  1 broadcasts the total number of marked processors by passing the value from 

one segment head to the next in 0 (N/L)  steps. Next, compute the prefix sums of the
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unmarked processors. By adding this value to the sum of the ranked processors, the 

index of the processor to which the unmarked element should be routed is determined.

Route the messages to the proper processors in 2N /L  phases, comprised of the 

following steps.

1. Even indexed segment heads segment the bus.

2. Processor pi with rank A: in an even numbered segment sends the element it 

holds and its destination to the A:** ranked processor of the segment ahead of it 

if the destination has index greater than t.

3. Processor pj with rank A: in an odd numbered segment sends the element it 

holds and its destination to the k01 ranked processor of the segment below it if 

the destination has index less than j .

4. Odd indexed segment heads segment the bus.

5. Repeat the previous steps.

6. If a processor received an element that has a final destination within its segment, 

then it sends the element to its final destination.

After 2N /L  phases, the messages reach the desired locations.

Lem m a 6.9 Compression of x elements, where x < N , can be performed on an 

N-processor LARPBS with communication length restricted to L in 0(N/L)  steps.
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Chapter 7 

Fault Tolerant Algorithms

As mentioned in the introduction, architectures using optically pipelined buses suit 

many communication-intensive applications. As the sizes of the applications and 

problems grow, so does the number of processors. The number of processors involved 

in the systems considered raises the probability of a fault occurring. The occurrence 

of even a single fault can have dramatic impact upon the performance of various 

parallel platforms. It is not practical to allow an entire system to fail due to the 

failure of a few components. For this reason, researchers have proposed fault tolerant 

algorithms for many parallel architectures, such as the hypercube, mesh, and torus 

[11, 12, 58, 59]. They have not, however, addressed the issue of fault tolerance for 

reconfigurable models, and more specifically, for any of the optically pipelined models.

In this chapter we present several basic fault tolerant algorithms for the LARPBS. 

Specifically, we have developed algorithms to calculate binary prefix sums, perform 

compression, sort, and perform a general permutation routing step on an A-processor 

array that can have up to N/2  static faults. We then extend these results to other 

fault tolerant algorithms in the areas of image processing and matrix operations.

Section 7.1 describes the fault model used. Section 7.2 explains the preprocessing 

phase for fault tolerant algorithms. We present the basic fault tolerant algorithms

87
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in detail and extend the results to other more complex algorithms in Section 7.3. 

Section 7.4 explains the faster methods used to design fault tolerant algorithms for 

an LARPBS that has a constant number of faults.

7.1 Fault Model

Let a processing element consist of a single processor, its conditional delay switches, 

and its directional couplers. We consider a processing element to be faulty if any one 

of its components is faulty, and refer to it as a faulty processor for short. Faults on 

any of the three optical waveguides are not considered.

Assume that all faults are static and occur prior to the execution of any algorithm. 

Therefore, faults occurring during execution of an algorithm are not considered. The 

algorithms presented in Section 7.3 can tolerate up to N/2  faults on an JV-processor 

LARPBS. These assumptions are consistent with those described by Parhami and 

Yeh [59] and Kim and Park [34].

If a conditional delay switch is faulty, that is, if it is stuck in either the cross or 

straight position, then it remains that way for the remainder of the algorithm. Faulty 

segment switches are not considered, since this would result in a shorter available 

working array, and thus, would be a scaling problem rather than a fault tolerance 

problem. (For work on scalable algorithms for the LARPBS, refer to TYahan et al. 

[70, 73].)

Many fault models previously described for other architectures allow a healthy 

processor to detect if its neighbors are faulty [1, 59]. In the LARPBS, a fault-free 

processor is able to determine if either of its neighbors is faulty in two phases, with 

each phase consisting of a constant number of steps. During the first phase, each even 

numbered processor segments the bus. Next, each odd numbered processor broadcasts
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its index. If an even numbered processor did not receive the index of the preceding 

processor, then it determines that its left neighbor is faulty. Each even numbered 

processor now broadcasts its index. If an odd numbered processor did not receive 

the index of the succeeding processor, then it determines that its right neighbor is 

faulty. The second phase is similar, except the odd numbered processors segment 

the bus instead of the even numbered processors. Due to the priority write rule of 

the LARPBS, a healthy processor will not receive incorrect information from another 

healthy processor if a faulty processor is unable to segment the bus.

Many fault tolerance schemes require extra hardware. The schemes of Baneijee 

et al. [4], for instance, depend upon the existence of spare processors and links. In 

contrast, the method presented by Varvarigou et al. [76] reconfigures a faulty mesh to 

a smaller sized system. This results in many healthy processors being unused. There 

are also others that ignore data held by faulty processors and handle only one datum 

per healthy processor [2, 78], while some methods determine alternative paths for 

sending messages in order to avoid faulty processors. The method presented in this 

paper, however, does not require any extra hardware, utilizes all healthy processors, 

and does not attempt to find alternative paths. Actually, since the LARPBS is a 

one-dimensional array of processors, it is not possible to use a  path bypassing the 

faults.

7.2 Preprocessing Phase

Prior to running any algorithm on a faulty LARPBS, we perform some initial process­

ing to ensure proper execution. Each working processor, pi, determines the number of 

faulty processors to its right (p; , where i < j  < N) that have their conditional delay 

switches stuck at cross. Call the value of this suffix sum fa. This value is important
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because any stuck delays through which a select pulse travels will alter the destina­

tion of the message sent by a working processor. By determining the total number of 

stuck delayB ahead of it on the bus, each working processor can adjust its reference 

pulse to avoid miscommunication. Processor shifts its reference pulse to the left by 

fi slots. With this adjustment, provided each working processor has its conditional 

delay switch set to straight, the message sent by p< reaches the intended destination.

Once the information concerning the number of stuck delay switches has been 

determined, the LARPBS must determine a mapping scheme. The fault model that 

we consider does not ignore data held by faulty processors, therefore, all processors 

need to be mapped to the remaining working processors. Section 7.2.2 discusses this 

mapping.

7.2.1 Determine Number of Stuck Delay Switches

To determine the number of delay switches to the right stuck at cross, first, each 

working processor segments the bus if it detects a faulty processor to its left. This 

working processor will be at the head of its segment. Each such segment will contain 

exactly one interval of faulty processors ending just to the left of the head processor. 

Two cases arise for the remainder of the segment: 1) one or more good processors are 

present to the left of an interval of faulty processors, or 2) no other good processors 

are present.

The LARPBS proceeds in two phases to determine the number of stuck delay 

switches ahead of each processor. The first phase calculates the number of stuck 

delays within each of the segments that are formed as described above. Determining 

the number of stuck delays within each segment, that is, within an interval of faulty 

processors, is not a  trivial task. Each healthy processor needs to first determine the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

number of faulty processors within its segment. Since the number of stuck delay 

switches is undetermined, a processor cannot readily address a specific processor. 

Therefore, healthy processors must observe the effects of stuck delay switches that 

shift sent messages.

The second phase uses information collected within segments to determine the 

number of stuck delay switches to the right of each working processor over the entire 

array of the LARPBS. A prefix sums operation is utilized, however, due to the faulty 

processors, adjustments must be made to overcome the stuck delay switches.

Delays Within Each Segment

We will first determine the number of stuck delay switches within each segment. 

Recall that each processor that detects a faulty left neighbor sets its segment switch 

to cross, thus segmenting the bus. The two possibilities are that the tail of a segment 

is healthy or it is faulty. The head of the segment, pn, broadcasts its index to the 

segment. Any other fault-free processor, pi, with a fault to its right, broadcasts its 

index to the head. (There is only one such processor in a segment that fits the first 

case.) If the head does not receive a message, then it determines that its segment fits 

the second case. We repeatedly use the head of each segment during the process of 

this section since the messages it sends are not affected by stuck delay switches. We 

now describe the method to determine the delays within a single segment, although 

all segments execute the appropriate case simultaneously.

Consider a segment that fits the first case, in which the tail of the segment is 

a healthy processor. The number of faults in the segment is (h — I — 1), call this 

value k. The head of the segment now determines the number of stuck delays by a 

binary search technique. Processor pi injects select pulses into its highest k/2  slots
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and sends its index. Processor p* then broadcasts a message indicating whether or 

not it received the message. (The segment head would receive the message if there 

were at most k/2  stuck delay switches.) If it did, then pi repeats this by injecting 

select pulses into its highest k/A slots. If not, then jn injects select pulses into slots 

(N  — 1) — Zk/A through (N  -  1) -  k/2.  Repeat this binary search process a total 

of log k times to determine the number of conditional delay switches that have failed 

in the cross position. Worst case time complexity is when k =  N/2,  resulting in 

0(\ogN ) steps.

Now consider a segment that fits the second case, in which the tail of the segment 

is a faulty processor. The head of the segment needs the index of the head of the 

previous segment to determine the number of faults within its own segment. There 

could, however, be a string of such segments, each needing the index of the head of 

the preceding segment. We proceed in log AT phases to relay information between 

these heads of segments, with each phase corresponding to one bit position of the 

processor indices. During phase *, where 1 < i < log A/’, each segment head with a 

‘O’ in bit position i — 1 of its index segments the bus and listens while each segment 

head with a *1* broadcasts its index within the newly formed segment. This step 

is then repeated with the writers now reading, and the readers now writing. Once 

the preceding index is known, each segment head determines the number of stuck 

delays within its segment, as in the first case, in 0 ( logJV) steps. Eventually, in some 

phase, each segment head will receive the proper index since the two must differ in 

at least one bit position. In addition, the first index the segment head receives is the 

proper index, since the previous segment head would be segmenting the bus for each 

of the phases until the two communicate. With logJV phases, and each phase taking 

0(\ogN ) steps, the total time to determine the number of stuck delay switches in
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each segment takes (^(log2 N) steps. This is done in log N  phases rather than a simple 

odd/even phase, because the two processors communicating could possibly both have 

odd or even indices.

Consider the example shown in Figure 7.1. The LARPBS in this example has 

three faulty processors, namely R2, iZa, and R&, each of which has its conditional delay 

switch stuck in the crossed position. (The delay switches of the healthy processors 

are shown as dashed lines, as they are able to change their settings, unlike the faulty 

processors.) Processor R+ is a segment head that fits case one, and determines that 

two switches have failed in the cross position within its segment. Processor R* is 

a segment head that fits case two, that first determines that R* is the head of the 

previous segment, then it determines that one switch has failed in the cross position

within its segment.
      -»

Reference
Bus

Select
Bus

R4 RT

< •

Figure 7.1: Example of a faulty LARPBS 

Delays Over the  L A R PB S

At this point, the LARPBS has calculated the number of stuck delay switches for 

each segment. With this information, it is possible to determine the number of stuck
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delays ahead of each working processor in the array by the prefix sums of the stuck 

delays in each segment, as follows.

Perform a prefix sums operation as on a tree-like structure. We will refer to this 

procedure as the A ll  P r o c e sso r s  P r e f ix  S u m s . The head of each segment holds 

the data for its segment, and each other working processor holds a value of ‘O’. In 

phase j  of the prefix sums, processor pairs with indices differing in bit position j  com­

municate with each other. Each processor of a communicating pair must determine 

whether its partner is faulty, so that the working processor can take the place of the 

faulty processor in the following phases. For each communicating pair, the higher 

indexed processor segments the bus, in order for the two to exchange information by 

broadcasting within their segment (since the exact identity of the partner is unknown 

because another working processor may be substituting for a faulty expected partner). 

When communicating, the writing processor first sends its index and then its data so 

that a reading processor can determine if it is paired with a faulty processor. If the 

lower indexed processor is faulty, then the higher indexed processor will not receive 

a message. If the higher indexed processor is faulty, then it will not have segmented 

the bus, so the lower indexed processor may receive a message from a processor in 

another segment. Using the index of the writer, the lower indexed processor can de­

termine that the writer was not in the expected range, so its partner is faulty. Once 

a working processor determines that it is paired with a faulty processor, the working 

processor continues on to the next phase. After log N  phases, the head of the array 

broadcasts the total, so that each processor can then locally determine the number 

of stuck delay switches ahead of it on the bus. The prefix sums can be computed in 

0(log N) steps.
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Example: Figure 7.2 shows which processors communicate during the execution of 

A l l  P r o c esso rs P r e f ix  S um s for the example given in Figure 7.1. For instance, 

since R* is faulty, R* takes its place in the following phases as shown in the figure. 

Also, in the first phase, when R& is supposed to segment the bus and write, R4 will 

actually receive the message from R7. Then, when R+ writes, its message will reach 

R 7t but will be ignored.

7.2.2 Determine Mapping

The next item to consider is the mapping of all processors to working processors, since 

each good processor will need to simulate up to two processors. Two different methods 

exist. The first is a ranked mapping and the second is a  compaction mapping. The 

algorithms presented in this paper all use compaction mapping. The algorithms for 

a constant number of faults (Section 7.4), however, can use either mapping.

A ranked mapping is one in which the 1th working processor simulates the *** faulty 

processor. In this method, each working processor always simulates itself as well as 

possibly one faulty processor.

Compaction mapping differs such that the i** working processor simulates proces­

sors with indices 2t and 2i +  1, for < < / ,  where /  is the total number of faults. The

Figure 7.2: Communication steps to perform prefix sums
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remaining working processors simulate the processor with index t + / .  In this method, 

each working processor simulates up to two processors; it is possible, however, that 

neither of the two simulated is itself.

To perform the compaction mapping, the LARPBS ranks all fault-free processors. 

Set the data value to ‘1’ for each good processor and perform A ll P r o c e sso r s  

P r efix  S u m s  in O(logW) steps. With this ranking, each working processor can 

determine which processor(s) it simulates.

Referring to the example in Figure 7.1, the resulting mapping would be as follows:

•  i2o simulates Ao and Ai

• Ri simulates Aa and As

• Ri simulates R* and Ag

•  A« simulates A#

•  A7 simulates Rj

Combining the time to determine information on the number of stuck delay 

switches and to determine the mapping results provides us with the following result.

Theorem  7.1 An N-processor LARPBS with up to N /2  faults is able to compute the 

number of stuck delay switches succeeding each working processor and determine the 

mapping of all processors to working processors in a total of 0(log2 N) preprocessing 

steps.

It is important to note that the preprocessing stage is not necessary before execu­

tion of each algorithm. If the LARPBS is to execute a sequence of algorithms, it need 

only perform preprocessing once. Once the mapping and information on the number
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of stuck delays has been established, it will apply to all algorithms run thereafter on 

the LARPBS.

7.3 Fault Tolerant Algorithms

In this section we describe some basic algorithms for an ^-processor LARPBS that 

can tolerate up to N /2  faults. The basic algorithms considered are prefix sums, 

compression, sorting, and permutation routing. Using these fundamental algorithms, 

we can then extend the results to develop other more complex fault tolerant algorithms 

for the LARPBS, such as median row, image area and perimeter, histogram, and 

matrix transposition and multiplication.

After the preprocessing is complete, each healthy processor has determined the 

number of stuck delay switches ahead of it on the array, its ranking among healthy 

processors, and the indicies of the processors it is simulating. In spite of having this 

information available, it is still necessary to develop algorithms designed specifically 

for instances when faults are present. Algorithms for a fault-free LARPBS depend on 

the ability to set conditional delay switches. If a healthy processor sets its conditional 

delay switch to cross, then a message sent by a healthy processor could possibly land 

at a  faulty processor. The index of this faulty processor could not be identified in 

constant time, therefore, alternate algorithms are necessary.

7.3.1 Fundamental Algorithms

The first algorithm we consider is the prefix sums of N  elements on an N -processor 

LARPBS. We are not able to use the standard LARPBS prefix sums algorithm as 

described in Section 2.3.1, because messages may arrive at faulty processors. In this 

case, the ranking of the healthy processors determines which processors communicate
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with each other; this results in only working processors attempting to communicate.

In contrast, A l l  P r o c e sso r s  P r e f ix  S u m s  used the indices of the processors 

for determining which processors participate in a specific step. This results in all 

processors attempting to communicate, rather than just the working processors. With 

the ranking of the working processors known, as well as the number of stuck delays 

ahead of each processor, it is possible perform the operation in 0(log N) steps.

T heorem  7.2 Prefix sums of N  elements can be computed on an N-processor LARPBS 

with up to N /2 faults in O(logJV) steps.

Proof; First, each good processor locally determines the total sum for the one or two 

elements it is simulating. Next, using the rankings of the good processors, perform 

prefix sums as in A ll  P r o c e sso r s  P r e f ix  S u m s . Since only healthy processors are 

participating, there is no need to check for a faulty partner. Each healthy processor 

is able to determine from its ranking whether or not it should segment the bus. 

Then each communication phase is performed in two steps. In the first, the lower 

ranked processor broadcasts its message on the subarray, and in the second, the higer 

ranked processor broadcasts its message. Once the prefix sums is complete, each 

working processor can locally determine the prefix sum for each of the elements it is 

simulating. ■

Figure 7.3 shows the processors involved during each step of the prefix sums op­

eration for the system shown in Figure 7.1. For example, processor R x participates in 

the operation by simulating faulty processors Ri and R*. Also, R j does not exchange 

data with any other processor until the third phase of steps, since it is the fifth and 

last ranked working processor out of a possible eight processors.
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Figure 7.3: Communication phases for prefix sums on a faulty LARPBS

Recall from Section 2.3.2 that the compression algorithm shifts all marked ele­

ments to the lower end of the array and unmarked elements to the upper end of the 

array maintaing the original order.

T heorem  7.3 Compression of x  elements, where x < N , can be performed on an 

N-processor LARPBS with up to N /2 faults in O(log AT) steps.

Proof: First the working processors rank the marked processors, using the prefix 

sums algorithm of the previous theorem, in 0(log N) steps. Call this the marked rank. 

The processor with marked rank t determines the index of the processor simulating 

Pi and routes its data to that processor.

Each working processor holds the indices of only the processors it is simulating. It 

does not hold the indices of the faulty and healthy processors, therefore, it is not able 

to easily determine which processor is simulating a specific processor. The method for 

the processor with marked rank t to determine the index of the processor simulating 

P i is described below.

The processor, p*, with marked rank z /2  broadcasts its index to all processors. 

Next, the processor simulating processor pz/a broadcasts its index, j ,  to all processors. 

As a  result, all processors receive the index of the processor simulating the processor
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with the middle rank. Next, the processor with marked rank z /4  (3z/4) multicasts 

its index to po,pi,. . .  , P j _ i  (Pj+nPj+2» • • • , P n - i )-  Similar to the previous phase, the 

processor simulating pz/< (pzx/i) multicasts its index to the segment of processors 

below (above) pk- Repeat this phase logz times, until all ranked processors can 

determine the corresponding indices.

Refer to Figure 7.4 to see the communication steps for the first two iterations of a 

sixteen processor array with five faulty processors and seven marked elements. In the 

first iteration, po broadcasts its index since it simulates pg which holds the element 

with the middle rank of three. Processor p? then broadcasts its index since it simulates 

P3. At this point, processors holding an element with rank below three determine that 

the final destination will be P2 or below. Processors holding an element with rank 

above three determine that the final destination will be pi or above. During the second 

iteration, processors simulating p< (rank 1) and pn (rank 5) multicast their indicies 

below and above P2 respectively. Next, processors simulating pi and p5 multicast their 

indicies in the corresponding subarrays. The procedure continues for logz iterations, 

for z marked elements.

Repeat these steps to compress data in unmarked processors to the right end 

of the LARPBS. These processors will determine the indices of processors starting 

after the last ranked processor in the previous phase, however. Once all indices of 

the simulating processors have been determined, send messages in two steps. First, 

send messages destined for an even numbered simulated processor, then those for odd 

numbered simulated processors. Recall that each working processor simulates up to 

two processors with consecutive indices. Therefore, routing messages this way will 

prevent messages from colliding at any processor, since at most one message will be 

destined for a particular processor at each step. ■
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Figure 7.4: Communication phases for compression on a  faulty LARPBS

T heorem  7.4 Sorting N  k-bit integers can be performed on an N-processor LARPBS 

with up to AT/2 faults in 0 (k  log N) steps.

Proof: We use the radix sort method and the compression algorithm to sort the N  

integers [56]. The algorithm proceeds in k phases, one for each bit position of the 

integers. During execution of phase j , where j  < k, perform compression based upon 

the j tH bit position (Theorem 7.3). Each phase takes O(logiV) steps, for a total of 

0 (k  log N ) steps. ■

A generalized permutation routing step is one in which each processor sends at 

most one message and is the intended destination for at most one message.

T heorem  7.5 Any generalized permutation routing step can be performed on an N- 

processor LARPBS with up to N/2 faults in 0(log2 N) steps.

Proof: The LARPBS first sorts the messages by their destinations in 0 ( log2 N)

steps (Theorem 7.4). Since some processors may not be receiving messages, the
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____________ Table 7.1: Fault Tolerant LARPBS Algorithms____________
Algorithm Time on Fhulty Time on Fault-Ftee No. of Processors

median row O(logJV) 0(1) 0 ( N )
image area O(loga N) 0(1) 0 ( N )
image perimeter 0(loga N) 0(1) 0 ( N )
histogram O(logMogJV) O(log h) 0 { N )
matrix transposition 0(loga N) 0(1) 0 ( N a)
matrix multiplication 0 ( N  log2 N) 0 ( N) 0(ATa)

messages are in order after the sort, but not necessarily at their final destinations, 

so the LARPBS will next shift the messages to the intended processors. Perform the 

algorithm in two phases, one for messages destined to even numbered processors, and 

one for messages destined to odd numbered processors.

To perform the shifting, the processors holding the messages before the shifting 

determine the indices of the destination processors. Since all messages are in proper 

order, we can proceed in O(logJV) phases broadcasting the indices of midpoints of 

segments, as in the compression algorithm (Theorem 7.3). The algorithm runs in 

0(log2 N) steps. ■

7.3.2 Extended Algorithms

We extend the results from the previous subsection to apply to other algorithms 

in the areas of image processing and matrix operations. Table 7.1 lists the algorithms 

considered, the time complexity on a faulty and a fault-free LARPBS, and the number 

of processors required. The algorithms listed tolerate at most N /2  faults for an 

JV-processor LARPBS. Our fault tolerant algorithms combine the techniques of the 

previous fundamental algorithms presented and build upon existing algorithms for
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the LARPBS. The image processing algorithms follow the approach of Pan and Li

[56]. The matrix operation algorithms follow the approach of Li et al. [39, 40].

Specifically, the median row, area, and perimeter algorithms make use of the 

binary prefix sums algorithm. The histogram algorithm utilizes the sorting and binary 

prefix sums algorithms. The matrix multiplication algorithm consists of multiple 

phases of the permutation routing algorithms along with local computations, while 

the matrix transposition uses the general permutation routing algorithm once.

7.4 Constant Number of Faults

Consider an LARPBS of N  processors in which a constant number of processors are 

faulty, say / .  The algorithms discussed earlier will apply here, but it is possible to 

do better utilizing the limit on faults to a constant number.

To begin preprocessing steps, each working processor determines if its neighbors 

are faulty in the same manner as in Section 7.1. Next, each processor needs to 

determine the number of fixed delay switches ahead of it on the bus. Each processor 

sends a message with its index to itself. If it did not receive its own message, then 

shift the select frame by one to the right and repeat. This may need to be repeated 

/  +  1 times. Once a processor receives its own message, it then knows how many 

fixed delays are ahead of it on the bus. Call this 4  for processor ifc. To compensate 

for the stuck delays in future steps, each processor shifts its reference pulse by <U to 

the left and does not alter its select frame.

Once the preprocessing is complete, each healthy processor keeps a table listing 

the faulty processors and the working processors that are simulating them. The 

algorithms then run as required, with a constant number of straightforward steps
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to accommodate the faulty processors. Each communication step is executed in the 

following four phases:

•  Good to good

•  Good to faulty

•  Faulty to good

•  Faulty to faulty

Separating each communication step into these four phases ensures that each 

processor is the actual destination for at most one message in a single bus cycle.

Lem m a 7.6 Any algorithm executed on an N-processor LARPBS with 0(1) faults 

will result in o constant factor slowdown.
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Chapter 8

Conclusions

The aim of this dissertation is to further demonstrate the claim that pipelined optical 

models are powerful parallel architectures and to show how these models fit into the 

well established hierarchy of complexity classes. We accomplished this by developing 

simulations relating different optical models to one another and also by developing 

more efficient algorithms and algorithms that considered certain physical restrictions.

In Chapter 4 we established the equivalence of three one-dimensional optical mod­

els, namely the LARPBS, LPB, and POB. We first developed an algorithm to compute 

binary prefix sums without using the segmenting ability of the LARPBS. This algo­

rithm is instrumental in developing a cycle of simulations among the three models, as 

both the LPB and POB do not have segment switches. The equivalence establishes 

reconfigurable delay (rather than the segmenting ability) as the key to the power of 

optically pipelined buses. This separation of the powers of segmentation and delays 

is similar to that established in the context of the RMBM [74].

The equivalence established provides us with the ability to efficiently translate 

algorithms designed for any of these models to any other regardless of their structure 

differences. It would be beneficial to consider other one-dimensional optical models
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and determine their relations to the LARPBS. The LAROB and LAPOB are examples 

of other one-dimensional models to consider.

In Chapter 5 we introduced the PR-Mesh, a A-dimensional extension of the LARPBS, 

and established that the PR-Mesh has the same complexity as the LR-Mesh. This 

relation differs from the equivalence relations of the one-dimensional models of Chap­

ter 4. Here we relate time and processor-bounded complexity classes for these models. 

Essentially, any step of the PR-Mesh can be simulated by the LR-Mesh or vice versa 

within a constant number of steps allowing a polynomial increase in processors. We 

also prove that the PR-Mesh can solve the same class of problems as the LR-Mesh 

within the same order of steps using polynomial processors. We extend this complex­

ity class to include two other optical models, the AROB and APPBS.

This result allows us to translate algorithms from one model to another and also 

helps to unify existing research on reconfigurable optical models. The relations also 

distinguish capabilities and limitations of these models by placing the models into an 

established complexity class.

An open problem that involves establishing relations among models is the relation 

between the LARPBS and PR-Mesh. It does not seem likely that the LARPBS is as 

powerful as the PR-Mesh due to the steps required to perform list ranking along a 

bus. The LARPBS may be more powerful than the HV-RN, since it is not known if 

the HV-RN can compute prefix sums in a constant number of steps. (The HV-RN 

is a restricted version of the R-Mesh in which only horizontal and vertical buses are 

allowed.) It may be possible, however, to place the LARPBS into a class that lies 

between the LR-Mesh and HV-RN. There are three types of simulations we could 

consider: i) fix the number of processors to be the same and determine the number of 

steps required by the LARPBS to simulate the LR-Mesh, ii) determine the number of
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processors required for the LARPBS to simulate the LR-Mesh to within a constant 

factor of the same number of steps, and iii) allow an 0(log N) factor increase in steps 

and determine the number of processors required. The same could be done between 

the LARPBS and HV-RN.

In Chapter 6 we developed algorithms in the areas of arithmetic analysis, compu­

tational geometry, and image analysis. Some of these algorithms are more efficient 

than other existing algorithms, in the sense tha t there is a reduction in either time 

and/or size. Some of the algorithms generalize existing algorithms to accommodate 

arbitrary word sizes.

We also developed algorithms to compute binary prefix sums and perform com­

pression that limit the communication distance between two processors. This is an 

important consideration when evaluating practical implications. For instance, with­

out restricting communication distances, additional hardware, such as repeaters or 

optical amplifiers, may become necessary, thus increasing the size and cost of the 

systems.

Consideration of other physical constraints could lead to further algorithm devel­

opment. One example is, rather than limiting the communication distance, one could 

limit the bus length. If this is considered, then a  natural direction is the development 

of scalable algorithms. Currently, few papers consider restricted bus length for recon­

figurable models [7,15, 35], despite cost and space limitation factors motivating this 

research.

Rather than focusing only on constraints, it is desirable to develop algorithms for a 

more generalized system. Thus far, all algorithms developed for reconfigurable models 

have assumed that a healthy system is available. For practical purposes this is not 

a  reasonable assumption, therefore, in Chapter 7 we developed algorithms that can
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tolerate up to N/2  faults on an A/-processor LARPBS. In particular, we present fault- 

tolerant algorithms to compute binary prefix sums, perform compression, sorting, and 

a  general permutation routing. We then use these fundamental algorithms as building 

blocks to develop more extensive algorithms in the areas of image analysis and matrix 

operations. There are many other problems for pipelined optical models that do not 

yet have fault tolerant algorithms.
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