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Simulations Based on Product-
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Connected Products to Support
Redesign for Improved
Performance: Exploration of
Practical Application to
Domestic Fridge-Freezers
The real-life use of a product is often hard to foresee during its development. Fortunately,
today’s connective products offer the opportunity to collect information about user
actions, which enables companies to investigate the actual use for the benefit of next-
generation products. A promising application opportunity is to input the information to
engineering simulations and increase their realism to (i) reveal how use-related phenom-
ena influence product performance and (ii) to evaluate design variations on how they
succeed in coping with real users and their behaviors. In this article, we explore time-
stamped usage data from connected fridge-freezers by investigating energy losses caused
by door openings and by evaluating control-related design variations aimed at mitigating
these effects. By using a fast-executing simulation setup, we could simulate much faster
than real time and investigate usage over a longer time. We showed that a simple, single-
cycle load pattern based on aggregated input data can be simulated even faster but only
produce rough estimates of the outcomes. Our model was devised to explore application
potential rather than producing the most accurate predictions. Subject to this reservation,
our outcomes indicate that door openings do not affect energy consumption as much as
some literature suggests. Through what-if studies we could evaluate three design varia-
tions and nevertheless point out that particular solution elements resulted in more
energy-efficient ways of dealing with door openings. Based on our findings, we discuss
possible impacts on product design practice for companies seeking to collect and exploit
usage data from connected products in combination with simulations.
[DOI: 10.1115/1.4042537]

1 Introduction

1.1 Utilizing Time-Stamped Usage Information From
Connected Product in Prescriptive Analytics. Product usage
information (PUI) can be considered a valuable source of knowl-
edge for predicting usage and behaviors of current and future
products. Traditional ways of collecting PUI include observation
of human subjects, conducting user surveys, and taking interviews
[1]. Also, researchers have instrumented product units that are
already owned by users with sensors and communication units to
collect information [2,3]. However, now that information-
collection capabilities and connectivity are increasingly becoming
standard features of products, it becomes even easier for manufac-
turers to obtain PUI [4], so that users of the same product can be
compared with each other.

In the FALCON project funded by the European Union
(2015–2017), we have investigated opportunities to exploit col-
lected data from connected products in several ways. The main

deliverable of the project was a “virtual open platform” to collect
and process data generated by connected products and related
social media, with the objective to extract actionable knowledge
to be used as input for (re)design of products and related services
[5]. This article describes a study conducted in the context of
FALCON that aimed to report on, and implement, simulations
based on time-stamped PUI (TPUI)—i.e., each data sampling
holds information about the time of usage or nonusage. The vir-
tual open platform offers a data export module that converts user-
specified selections from the collected data to a comma-separated
values (CSV) file, a basic table format that can be read by most
simulation packages. The user-specified selection of the TPUI to
be listed in the CSV file is handled by a module called PUI query
builder [5].

According to Porter and Heppelmann [4], the transformation
from PUI to knowledge or, as they call it, insight, can be achieved
by applying data analytics, which manifests at various levels of
sophistication, namely, (i) descriptive, (ii) diagnostic, (iii) predic-
tive, and (iv) prescriptive. In the literature on data analytics, simu-
lation is considered to be one of the pillars to support the highest
sophistication level, i.e., prescriptive analytics [6,7]. One of the
business processes where prescriptive knowledge can be deployed
is in design. Simulations can also be used just for predictive
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analytics, for instance, predicting when a particular part in a par-
ticular fielded unit will be worn out—but the potential prescrip-
tive1 power lies in the capability to evaluate design alternatives by
modifying the simulation model and thus generate actionable
knowledge from TPUI. The term “actionable” expresses that the
knowledge is supposed to provide insight in how, given the actual
usage, the product’s design can be improved in terms of perform-
ance, which can refer to any output measure that determines the
quality of the product’s functioning. Examples of performance
indicators are speed of operation, supplies consumption, noise
production, and quality of product outputs.

1.2 Testcase Product: A Domestic Fridge-Freezer. From
the companies participating in FALCON, various products
equipped with information collection capabilities were available.
A fridge-freezer produced by consortium partner Arçelik, a con-
sumer electronics and household appliance manufacturer based in
Turkey, was selected for demonstrating the potential of TPUI-
based simulation. We based our choice primarily on two require-
ments. Obviously, a key requirement for the product to be used as
a simulation testcase is that the collected information should cover
aspects of use by human users or operators. The second require-
ment was that it could reasonably be expected that the simulations
would produce actionable knowledge pertaining to the product’s
design. To that end, our reasoning has been that dynamic simula-
tion with TPUI as input can only produce actionable knowledge if
the investigated performance measure of the product (i) is quanti-
fiable from the simulation results, (ii) is influenced by the timing
of changes in the TPUI, and (iii) design modifications can be con-
ceptualized of which the influence on performance can be tested
through simulation.

As prerequisite (i) suggests, some performance measures are not
quantifiable based on simulation results. This is for instance the
case if a performance measure is subjective, such as the taste of cof-
fee produced by a coffee maker. Concerning (ii), for many products
the available TPUI is likely to represent the type, intensity, and tim-
ing of user interactions. If, for instance, we consider a washing
machine—another product from which TPUI was available in
FALCON—the predominant interactions are program selection and
inserting/removing the laundry. The timing of these interactions
usually does not influence typical performance measures such as
energy consumption and program duration. These are determined
by what happens when the program is executed, after program
selection and laundry insertion and before laundry removal. In other
words, there is no direct interplay between user interactions and the
part of product operation that determines performance. To allow
performance assessment, simulation only needs user-interaction
related input parameters for each washing cycle (i.e., selected pro-
gram and characteristics of the laundry), not their timing: the
implicit assumption that these inputs have taken place before the
start of the program is enough. Except for allowing investigation of
effects on a large time scale, such as seasonal influences on pro-
gram selection, time stamps have no added value.

Contrarily, in the case of a fridge-freezer, there is direct inter-
play between, on the one hand, user interactions with its doors
and its contents and, on the other hand, the part of product opera-
tion that determines performance, i.e., its continuously ongoing
refrigeration cycle. In this case, we need to consider use interac-
tions with their timing as simulation input, because the distribu-
tion of consecutive openings over time is likely to have influence
on their overall effect on energy consumption.

Regarding prerequisite (iii), we identified three control-related
design variations that influence the fridge-freezer’s performance
in terms of energy consumption. The investigated fridge-freezer is
equipped with fans that are supposed to improve heat exchange in
the compartments. It can be expected however, that when the door
is open, a fan will stimulate heat exchange with the warmer air
outside, which can possibly be mitigated by additional control of
the fan or by leaving out the fan. Thus, the three design variations
that we decided to compare by exposing them to real usage infor-
mation are as follows: (i) no fan, (ii) a fan that is controlled based
on compressor activity only, and (iii) a controlled fan that also
switches off if the door is open.

1.3 Structure of the Article. This article elaborates on a
paper we presented at the ASME-CIE 2018 conference [8] and is
structured as follows. In Sec. 2, we report on related work: first,
on simulations with data and second, on energy consumption of
fridge-freezers, and how it is influenced by usage. Next, in Sec. 3,
we present our research approach, including considerations
regarding data collection and sampling, as well as our simulation
approach and validation approach. The results are presented in
Sec. 4, where we discuss outcomes in terms of performance of
fridge-freezers and the influence of user actions, the simulation
performance and the utility of TPUI-based simulations. Finally, in
Sec. 5, we present our conclusions and discuss what could be
done next.

2 Related Work

2.1 Simulation With Data From Connected Products.
Shannon [9] defined simulations experiments with input–output
models of real systems in order to predict probable future output
for a given input, to understand system behavior and/or to evalu-
ate operation strategies, pointing out that that gathering reliable
input data can be time consuming and that questionable input data
cannot be compensated by a good simulation model.

In many cases, products operate based on frequently applied
and well-understood physics principles (e.g., electric motor, heat
pump), that can adequately be captured in well-validated engi-
neering simulation models. Yet, mathematical models fall short in
capturing certain other involved processes, such as human activity
or the weather. This is where sometimes makeshift models are
applied, introducing artificial input signals based on assumptions
or aggregations from user observations, such as repetitive cyclic
load patterns (e.g., Refs. [10] and [11]). Instead of using such
potentially questionable inputs we propose to use the real-life
TPUI that is increasingly becoming available from connected
products.

A concept related to TPUI-based simulation is data-driven sim-
ulation, where data not only corresponding to the inputs to the
simulation model (e.g., human interactions) but also real-life data
corresponding to simulation outputs is used, with the goal to opti-
mize the simulation model in terms of accuracy (e.g., Ref. [12]).
The concept of digital twins goes beyond this by realizing a two-
way connection: it aims to implement real-time adaptation of the
product (in particular through maintenance) based on the simula-
tion forecasts [13,14]. Digital twins focus on monitoring of indi-
vidual product units, which are typically capital goods such as
aircraft [15], whereas TPUI-based simulation includes analysis of
the use of multiple units as it is typically important in the case of
consumer products. Unlike data-driven simulation or digital twins
according to these interpretations, it does neither include runtime
improvement of the simulation model nor interventions during
operation of individual units.

In the case of TPUI-based simulation, real-life data are only
used as simulation input, while the simulation model itself is
assumed to be sufficiently realistic. Hence, it is assumed that the
simulation results, can be used to (i) evaluate the performance of
the product under realistic circumstances, (ii) identify mismatches

1Interpretation of the term “prescriptive analytics” remains somewhat fuzzy, and

the suggestion that it is supposed to correspond to a high level of refinement can be

disputed. Admittedly, our implementation does not produce a direct what-to-do

recommendation. Instead, the prescriptive effect of simulations is indirect: the

simulation results have to be interpreted, and humans have to prepare the alternative

designs for evaluation. On the other hand, there are very direct ways of using

analytics prescriptively that are hardly sophisticated: consider for instance a sensor

able to detect part failure in association with a straightforward rule “IF part failed

THEN arrange to have part replaced.”
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between assumed inputs and real inputs, (iii) support finding
directions to improve the design based on (i) and/or (ii), and (iv)
evaluate alternative designs in the form of variations on the simu-
lation model, based on real inputs.

In our focus area, simulations with consideration of human
inputs, interactive simulations with real humans in the loop have
been put forward to increase realism (e.g., Refs. [16] and [17]).
Just like hardware-in-the-loop simulations, where the hardware,
or part thereof, is physical rather than virtual, these have the draw-
back that they must run in real time and cannot be accelerated to
investigate usage over longer time intervals [18]. Moreover, user
testing is known to be expensive [19]. Figure 1 illustrates how
TPUI from real-life usage of fielded products can fill the gap by
providing realistic human inputs and thus contribute to more real-
istic results [20], without the need to recruit human subjects and
slow down to real-time execution. Similarly, realistic inputs can
also be obtained from observation of human users (e.g., Ref.
[21]), but today’s connected products provide the opportunity to
automate this process and have new data reflecting changes in
user’s behaviors over time immediately available.

Our literature search revealed that in most other reports on
product simulations with TPUI, also output data were processed
in a data-driven simulation setup, and the focus was on optimizing
models—particularly discrete-event simulation models of manu-
facturing systems [22–24]. Others have conducted simulations
based on PUI in a descriptive-analytics setup, with the aim to
assess performance of products or product instances with no feed-
back loop to design: Gonder et al. [25] used location data from
instrumented electric vehicles to obtain realistic energy consump-
tion values from simulations, and Urban and Roth [26] simulated
smart thermostats together with air conditioner systems based on
mainly static PUI, such as temperature set-points, collected from
end users to compare the performance of different types of ther-
mostats. Goyal et al. [27] simulated distribution transformers in
power networks based on data collected from smart meters in end
users’ homes to support predictive maintenance. In this case, the
simulated products were not the products providing the TPUI.

One example where some prescriptive feedback to design was
realized is the work by Pei et al. [3], who aimed to improve elec-
tronics packaging. They did not only compare and optimize data-
driven simulation models of degradation based on TPUI from 100
units of an unspecified mobile computing device but also used the
simulation results to derive more realistic requirements for next-
generation designs. However, they did not perform what-if studies
with design variants.

2.2 Energy Consumption of Fridge-Freezers. The fridge-
freezer is known to be one of the largest electricity consumers in
households. Typically, refrigerators and freezers are on all the
time [28], and domestic refrigeration is considered responsible for
4.5% of the total global electricity consumption [29], for about
12% of residential electricity consumption in Australia [30] and
for 33.6% of the total electricity consumption per household in

the United Kingdom [31]2. According to investigations by Biglia
et al. [33] involving 483 fielded fridge-freezers, an average unit
consumes 390 kWh/year with the freezer compartment set at
–20.3 �C (–4.5 �F) on average and the cooler compartment at
5.3 �C (41.5 �F).

The frequency and duration of door openings are known to
have influence on a fridge-freezer’s thermodynamic performance
and energy consumption [34]. On the one hand, there are authors
who point out that other use-related factors, such as temperature
setting and room temperature are more influential [29,35], on the
other hand, several sources reviewed in Ref. [36] claim that with
other factors constant, door openings are reported to increase
energy consumption by 1–8%. Thus, considering the aforemen-
tioned percentages reflecting the contribution of refrigeration
appliances to overall electricity consumption, reducing the influ-
ence of door openings can have a large impact. Experiments with
installed refrigeration units as well as simulations have also been
conducted to investigate the influence of door openings. Sarmah
[37] applied several variations of cyclic door-opening patterns to
a refrigerator and reported up to 113% increase in energy con-
sumption for a somewhat unrealistic pattern where the door was
open 1/3 of the time. Simulations have been deployed, for
instance, in Refs. [38] and [39], also based on cyclic patterns
rather than on data collected from real usage.

3 Research Approach

3.1 Data Collection, Sampling Considerations and Statisti-
cal Analysis. The original data produced by Arçelik’s connected
fridge-freezers contains time-stamped values of readouts from
various sensors. The defaulted interval between successive read-
outs is tsampling � 1 h. Among these are (i) the end time of the
interval (the time stamp), (ii) the total door opening times for the
fridge compartment and freezer compartment, and (iii) the num-
bers of door openings during the elapsed interval.

Currently, exact timings of door openings are not included: To
further increase realism in simulations, data would have to be col-
lected at shorter intervals. For now, we have approximated the
occurrence of door openings by taking the total opening time per
hour, starting at the time of data transfer. If during the interval
(ttransfer – tsampling, ttransfer] the door has been open n times for the
cumulative duration

Dti ttransferð Þ ¼
Xn

k¼1

Dtk (1)

with the individual Dtk not specified in the data, we have simu-
lated that, starting at ttransfer, the door was open for Dti(ttransfer).
With this processing scheme, a future setup in which event-based
data transfer provides data at the end of every door opening, so
that n¼ 1 for each transfer and Dti(ttransfer] is no longer cumula-
tive, would enable us to simulate the actual door openings.

In principle, more accurate input can already be generated from
the currently available data by randomly distributing n door open-
ings over the interval (ttransfer – tsampling, ttransfer]. However, this
would introduce additional processing steps that are eventually
not needed once event-based data collection has been imple-
mented. Although, for now, it will produce less accurate outcomes
due to disregard of the expected nonlinear temperature effects
after each door opening3, we have assumed that the workaround
to use hourly accumulated door openings as the actual data will
not influence our assessment of the added value that TPUI can
offer in evaluation of design decisions.

Fig. 1 Filling the gap between virtual-user input and real-user
real-time input (arrow depicts increasing realism)

2The discrepancy between the last two figures can possibly be explained by the

fact that air conditioners are more commonly used in Australia than in the UK [32].
3The average for n for those intervals where n> 0, in the data from all the fridge-

freezer units, is around two for both compartments, i.e., mostly the door has been

open twice. This corresponds to ignoring nonlinear effects from one additional

opening per opening that was considered.
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The data that we used was collected from 43 fielded fridge-
freezer units during 432 days. The total number of samplings over
all units was 67,234, but upon closer inspection several irregular-
ities of three particular types were revealed: (i) 7826 samplings
turned out to be duplicates, (ii) another 5847samplings were taken
less than an hour after the previous sampling, often reporting the
same data, and (iii) the data contained 202 gaps of more than a
day, each unit showing one or more such gaps in its data series.
Since these gaps cannot be ascribed to lack of user interactions—
which would have led to data samplings reporting zero door
openings—we have assumed that they were caused by connectiv-
ity problems. To be able to further characterize the data, we
deployed RAPIDMINER data-mining software to remove all dupli-
cates and samplings reporting at less than an hour or more than a
day after the previous one. We also removed the five units that
had been in use for less than three days, while all other units had
been in use for more than six days. In the remaining data set from
35 units, the data-collection time span per unit ranged from 6.2 to
160 days. Our assumption has been, that data from longer time
intervals provide more complete insight in the use patterns,
because they are likely to include effects of seasonal changes and
absence due to, for instance, vacations.

Applying judgmental sampling [40], we selected nine units that
covered a reasonable spread over the daily open durations and
number of openings, and for each, selected the longest possible
contiguous interval of samplings that did not contain gaps of more
than a day. We compared the freezer data from our selected units
A–J (letter I omitted to avoid confusion) to the preselected popula-
tion of 35 units based on the following statistical descriptors: (i)
time interval covered by all the samplings in days, Dttot, (ii) aver-
age number of door openings per day, f , (iii) average time4 per
door opening in seconds, Dti , (iv) its standard deviation rðDtiÞ,
(v) average door-open time per day in seconds, Dtdaily ¼RDti/
Dttot, (vi) average interval between openings, Dtij , and (vii) its
standard deviation rðDtijÞ. We did this for both the total set of
samplings from each unit A–J and for the subset selected as simu-
lation input (for unit D the subset is identical to the total set). The
result is visualized as histograms in Fig. 2, and the most important
average values are compared in Table 1. The histograms suggest
that the selected samplings reasonably cover the same ranges as
the preselected 35 units do, but the averages in Table 1 reveal a
bias toward more openings and a longer opening time per day in
the simulated samples. To express this bias, we have included a
“door-openings exaggeration factor” for f and RDti/Dttot that will
have to be considered in generalizing the outcomes.

3.2 Simulation Approach. For simulation modeling and exe-
cution, we deployed MATLAB/SIMULINK, as it is widely used for
engineering simulations [41,42], and provides a basic refrigeration
model that we could adapt and extend for use in our investiga-
tions. Figure 3 shows our simulation model of the fridge-freezer.
It is based on a refrigeration model provided with SIMULINK

(Refrigeration cycle model […]) [43], which was modeled using
Simscape, SIMULINK’s physical-systems modeling environment. As
our main goal was to investigate the opportunities TPUI-based
simulation offers for conducting what-if studies, we have not
spent efforts in fine-tuning the simulation model so that it gives
the best possible behavioral approximation of a particular product
design. Assuming that door-opening behaviors in using fridge-
freezers do not depend on the particular make of the appliance,
our investigations in this article can be said to apply to a hypothet-
ical fridge-freezer design and variations on it. This way, we also
did not have to expose company-confidential design information.

To consider the effect of door openings we applied modifica-
tions and extensions, the most important ones of which are (names
in italics refer to block names in Fig. 3) as follows:

(1) Adding (i) a TPUI data import block to import the CSV file
using the “signal builder” and (ii) stateflow decision logic
interpolation removal to remove meaningless interpolated
values that the signal builder adds between entries in the
CSV file.

(2) Adding a manual override to allow interactive checking of
the effect of door openings and activating a reference simu-
lation during which the door is always closed. It consists of
two manual switches, which can be operated by the simula-
tion user, even while the simulation is running. To use the
TPUI data, the source selector switch is set as shown. In
the other position, the simulation interactively receives its
door openings from the door opened/closed switch. To run
the reference simulation with zero door openings, the man-
ual input is permanently set to its “0” port.

(3) Modification of the Simscape model of the compartment of
the fridge-freezer. The compartment model from Ref. [43]
was altered by including stored items, by adding a fan and
by implementing the influence of door openings on heat
exchange. The fan (if present) reacts to compressor activity
and, depending on the design variant, to door openings. In
accordance with the fans in Arçelik’s fridge-freezer, a con-
stant 3 W is added to the power consumption if it is on.
Influence of door openings and the fan on heat exchange
was implemented by including modified Simscape blocks
representing heat conduction and convection—which nor-
mally have fixed parameters (coefficients and/or surface
areas)—so that they could receive varying parameters
based on door-openings and activity of the fan. Table 2
shows the logic of changing heat-exchange parameters at
the evaporator, inside the interior (air), through the door (if
closed) and outside (air). We optimized the positive influ-
ence of the fans by applying fine-tuned delays to the syn-
chronization with the compressor.

(4) Adapting values regarding dimensions, etc., to values cor-
responding to those of a typical household fridge-freezer.

(5) Creating outputs to allow assessment of our performance
measures (i) energy consumption by the compressor and
the fan (energy, numeric), and (ii) average temperatures
inside the compartment as well as output graphs.

(6) Adding a subsystem performance computation, mainly to
compute the performance of the simulation itself according
to Eq. (2), as well as elapsed and remaining simulation
time.

Figure 4 shows an example of typical graphical output of the
simulations. Since in simulations based on TPUI, interesting phe-
nomena in the graph are too far apart in time to produce an illus-
trative picture, it was created interactively by operating the switch
in Fig. 3. Figure 4 shows the course of the temperature in the com-
partment, as well as the temperatures of already-cold food and
power consumption. The influence of door openings is obvious
(annotated as “door open” and “door closed,” respectively). The
figure also gives evidence of a boot-up effect that reflects the com-
missioning of the fridge-freezer. Since this is a one-time event
that does not apply during steady-state use, we have eliminated its
influence by ignoring the first 8000 s of each simulation run.

The actual fridge-freezer from which the data was collected
uses one compressor for both compartments. We simplified this
setup by running separate simulations for the fridge and the
freezer, each with their own door-opening data and set tempera-
tures (4 �C and –18 �C, respectively), and, where applicable,
merged the results afterward. Consequently, we also did not con-
sider heat exchange between the two compartments. We have
assumed that the fridge-freezer was situated in a kitchen with
room temperature 23 �C (73 �F). The three design variations speci-
fied in Sec. 1.1, each applied to the two compartments, provided

4Cumulative times per sampling as in Eq. (1). The TPUI also contained several

door openings of zero seconds, which we ignored in counting the number of door

openings. Inclusion of these in Ref. [8] explains some differences in the results

presented here.
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six what-if alternatives to be simulated, and to be combined to
represent the fridge-freezer as a whole.

3.3 Validation Approach and Hypotheses. To validate the
utility of simulating based on TPUI, we have compared it with
conventional simulation of product usage based on a cyclic load
pattern defined by average values, as was for instance used in in
Refs. [11], [38], and [39]. Such load patterns, that can be created
from aggregated PUI, can be advantageous if they provide the
same outcomes in the much shorter simulation time that they
require. Thus, we formulated the following hypothesis: Simula-
tions based on cyclic load patterns derived from average values
cannot be used to obtain the same outcomes in less time. Our
assumption is that the irregularities in the real use patterns, absent

in repetitive identical door openings, will lead to different out-
comes thus underpinning the added value that TPUI-based simula-
tion offers over cyclic load patterns, where, ideally, a fast
simulation result over a longer time of usage Dttot can be obtained
by simulating just one cycle—representing the average time Dtij
between two openings—and multiplying the outcomes by a factor
Dttot/tcycle.

Rather than to create faster or more accurate or simulations of
fridge-freezers, our objective was to validate the added value of
real-life TPUI as simulation input to support evaluation of design
decisions. Yet, to achieve added value we considered it important
that simulations could be executed reasonably fast and that the
results are sufficiently correct to be realistic. Therefore, we per-
formed a basic assessment of these aspects.

Fig. 2 Statistics of collected and selected fridge-freezer data

Table 1 Statistical comparison between population of 35 units and selected units (freezer compartment)

f : average
number of door
openings /day

RDti/Dttot:
average door

open duration/day (s/day)

Dti : average
open-time per
opening (s)

Dtij : average
time between
openings (days)

rðDti Þ ðsÞ r(Dtij)
(days)

Population average (35 units) 1.15 4.32 3.55 1.43 4.59 1.76
Sample average (units A–J) 1.34 5.82 3.07 1.27 3.45 1.88
Sample average
(simulated interval of units A–J)

2.09 9.99 3.60 0.80 4.34 0.92

Door-openings exaggeration
factor in simulated samples

1.82 2.32
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To assess the speed of simulations, we measured the simulation
performance. According to Ref. [18], where it was applied to
unrelated other simulations, simulation performance can be
defined as

psim ¼
Tvirtual

Tsim
(2)

where Tvirtual is the time elapsed in the virtual, simulated world
and Tsim the duration of the simulation computation on a given
system. A value psim> 1 indicates a performance psim times faster
than real-time.

For a basic verification of the correctness of the simulations, we
have compared the overall energy consumption to values from lit-
erature, and, in relation to the considered door openings and
design variations, formulated the following expected outcomes:
(i) a fan active in a closed compartment improves heat exchange
when the evaporator is active, and therefore reduces energy con-
sumption, (ii) door openings increase energy consumption, and
(iii) a fan active in an opened compartment will lead to even more
energy consumption than is caused by the open door alone. These
expectations are based on common knowledge available from
refrigeration literature cited in Sec. 2.2. Thus, we expect our three
design alternatives to rank as follows: with all other factors equal,

Fig. 3 Fridge-freezer simulation mode

Table 2 Influence of door openings on heat transfer mode

Heat transfer

Door Fan Evaporator Interior Door Outside

Closed Off/absent Natural convection Natural convection Conduction Natural convection
Closed On Forced convection Forced convection Conduction Natural convection
Open Off/absent Natural convection Natural convection Infinite conductiona and convectionb Infinite convectionb

Open On Forced convection Infinite convectionb Infinite conductiona and convectionb Infinite convectionb

aEnabled by reducing area in variable-conduction block to include only walls, bottom and top.
bBased on the principle that if the door is open, there should be only one heat-transport barrier (convection or conduction) between the inside air and the
outside (if the door is closed, there is convection on both sides of the door).

Fig. 4 Simulation output with annotations

031003-6 / Vol. 19, SEPTEMBER 2019 Transactions of the ASME

Downloaded From: https://computingengineering.asmedigitalcollection.asme.org on 05/09/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the design with no fan consumes the most energy, followed by the
design in which the fan is controlled based on compressor activity
(provided that the door is closed most of the time), and then the
variant with fan that is also switched off when the door is open.
Note that these expectations just predict rankings of design alter-
natives and situations for verification purposes and do not predict
the magnitudes of the differences.

4 Results and Discussion

4.1 Fridge-Freezer Performance and Influence of Door
Openings. Focusing on the freezer compartment, which con-
sumes the bulk of the power, Fig. 5 shows our simulation out-
comes. The relative influence d of door openings on the energy
was calculated as a percentage (right-hand side), based on com-
paring a simulation with TPUI input with the reference simulation
in which the door was always closed. In the reference simulation
with closed door the energy consumption is 0.87 kWh/day, which
is reduced by 0.02 kWh/day with a fan (both variants). In Figure
5, the units are ordered based on the value for d in the two cases
where a fan is employed.

The relative influence d of door openings appears to increase
consistently if, comparing the same fan-control alternative in two
units, both the average daily frequency f of door openings and the
average daily opening duration Dti increase. There appears to be
no consistent relation if only one of the two descriptors increases.

For three units we have also simulated the use of the fridge
compartment. The results are shown in Table 3, together with the

consequences for the fridge-freezer as a whole. In the reference
simulation, the fridge compartment consumes considerably less
than the freezer, namely, 0.057 kWh/day (only 6.6% of the freezer
consumption), which is reduced by 0.002 kWh/day with a fan. As
expected, in all simulations, the design alternatives without fan
consistently showed the highest energy consumption, and the ones
with fan controlled by both the compressor and the door the
lowest.

In all investigated cases, the relative influence (%) of door
openings d is larger in the fridge compartment than in the freezer,
and, on the other hand, the absolute influence (kWh) is larger in
the freezer. The largest relative influence, namely about 15%
increase of energy consumption caused by door openings, could
be seen in the case of a fan controlled by the compressor only, in
the fridge compartment. This is an unlikely design choice (and
therefore not included in Table 3), since practically every fridge-
freezer has lighting in its fridge compartment, operated by a door-
controlled switch that, at the same time, can easily be deployed as
a door-open sensor to control the fan. However, unlike the Arçelik
fridge-freezers from which we collected data, many fridge-
freezers have no door switch for lighting the freezer compartment.
Here, the design variant with fan that is controlled based on com-
pressor activity only is a realistic design choice that is worth being
evaluated and that, of all remaining options, shows the largest
absolute impact of door openings on energy consumption.

Based on the computed daily consumption rates, the yearly
energy consumption turns out to be in the range of 330–340 kWh/
year. Considering that the investigated fridge-freezer is a recent
model, and that average energy consumption values from the liter-
ature typically include older units [34,36], while energy savings
advance with every next generation of refrigeration appliances
[44], this appears to be consistent with the 390 kWh/year from
Ref. [33] with the average freezer set at 2.1 �C colder than in our
simulation and the average fridge compartment at 1.5 �C warmer.

The average temperatures that were computed in the simula-
tions revealed differences between the design variations with and
without fan. Without fan, the air and the food items averaged at
1.5 �C warmer than the set temperature in the freezer compart-
ment and 0.4 �C colder than the set temperature in the fridge com-
partment. Using a fan consistently resulted in a 0.2 �C and 0.4 �C
higher average temperature, respectively. The air temperature
curve in Fig. 4 clarifies how the average temperature does not nec-
essarily correspond to the set temperature: the cycle is
“asymmetric,” with different areas above and below the set value.
By lowering the set value for the fan-equipped varieties we could
achieve the same average temperatures as for the fanless varieties.
Although this increases energy consumption by about 1.3% for
the freezer and 3.6% for the fridge compartment, the fan-equipped
varieties still prove to be more energy efficient.

Based on our findings, we could assess some of the statements
regarding influence of door openings that we cited in 2.2. It turns
out that when the doors are being opened rather frequently, the
lower end of the 1–8% range mentioned in Ref. [36] is reached,
but only if the freezer compartment has a fan that does not react to
door openings. In the corresponding design variation in our simu-
lations, door openings had a 0.138–1.43% impact on energy con-
sumption. In these cases, it might be worthwhile to consider
adding a door switch to control the fan or not to have a fan in the
freezer compartment.

4.2 Simulation Performance. To conduct the simulations,
we relied on hardware with a level of processing power that is eas-
ily accessible within typical engineering environments5. Overall,
simulation performance according to Eq. (2) was between 1500
and 1900 times real-time. We could not find any evidence that
having to import and process TPUI would slow down the

Fig. 5 Overview of simulation outcomes (freezer
compartment)

52017 Apple MacBook Pro with 3.1GHz Intel Core i5 processor and 16 GB of

RAM, which was also used for other tasks in parallel.
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simulations. Although the fast simulation execution allowed us to
investigate use over a longer time interval, an average simulation
run still took around 30min. For each unit, five runs were needed
to consider the three design variants (each variant responds differ-
ently to door-opening data but the two fan-equipped ones behave
the same if the door remains closed) for the freezer and five more
for the fridge, plus additional runs as discussed in Sec. 4.3. The
total time needed per unit limited us to investigating both fridge-
freezer compartments of only three units, and just the freezer—
which has the largest impact—of six additional units.

4.3 Utility of Time-Stamped Product Usage Information-
Based Simulations. To test our hypothesis that there would be no
gain in replacing the real time-stamped usage data input by equiv-
alent cyclic door-opening patterns, we have created repetitive pat-
terns for the freezer compartment as described in Sec. 3.3. We did
this for four of the units, A, B, D, and J, which according to Fig. 2,
together offer a reasonable coverage of the various intensities of
door-opening activity, and for all three design variations, i.e., 12
simulation runs. To compare the results, we computed both the
absolute aberration Ddabs¼ |dcyc – dTPUI| and the relative aberra-
tion Ddrel¼ |dcyc – dTPUI|/dTPUI, both expressed as percentages—
with dcyc the value obtained based on the cyclic pattern and dTPUI
the value obtained from the original simulation based on TPUI.

Since the real advantage of simulation with cyclic patterns lies
in the time savings that can be achieved by simulating just one
cycle with one door opening, to be taken as representative for
any—longer—time span, we executed the 12 runs for just one
cycle. Simulating the longest cycle among the units A–J takes
about 1min, and the longest cycle in the whole population of 46
units takes about 6min to simulate with the performance rates
mentioned in Sec. 4.2.

Comparing the 12 single-cycle simulation runs for units A, B,
D, and J, we found that the absolute aberration ranged from
0.008% � Ddabs � 0.173%, averaging at Ddabs ¼ 0.071%, and the
relative aberration compared to the results obtained from TPUI
ranged from 1.50% � Ddrel � 388% averaging at Ddrel ¼ 71.2%
(Table 4, first four result columns). All combinations of units and
design variations showed similar values for Ddabs, and conse-
quently, if the resulting value of d is low, the value of Ddrel
becomes large, i.e., the increase predicted based on one cycle can
be almost four times higher than the increase based on TPUI
input.

It seemed likely that our simulation results were influenced by
interference between door-opening cycles and the compressor on-
off cycle, which have periods in the same order of magnitude, i.e.,
100 s–1000 s of seconds. To mitigate the influence of the compres-
sor on-off cycle, we have, therefore, repeated all simulations of
units A, B, D, and J with door-opening times shifted over half the

compressor cycle time, and averaged the outcomes among each
pair of shifted/nonshifted simulations, thus obtaining a value dmiti-

gated¼ (dnonshiftþ dshift)/2, with dnonshift the value obtained with-
out, and dshift the value obtained with the shift in door-opening
times. To quantify the influence of the interference, we first com-
puted both the absolute aberration ddabs¼ |dshift – dnonshift| and the
relative aberration ddrel¼ |dshift – dnonshift|/dnonshift, both expressed
as percentages.

Expectedly, shifting door-opening times had less influence on
the original TPUI-based simulations (0.000% � ddabs � 0.034%,
dabs ¼ 0.007%; 0.011% � ddrel � 63%, ddrel ¼ 8.47%) than on the
single-cycle simulations (0.000% � ddabs � 0.228%,
dabs ¼ 0.062%; 4.06% � ddrel � 270%, ddrel ¼ 49.5%). Besides,
we also found an indication that, for the single-cycle simulations,
the compressor on-off cycle influences even the outcomes of the
reference simulations (no door openings), probably due to the
shorter time span being simulated: whereas the longer reference
simulations of the TPUI-based simulations consistently showed a
ratio of 1.0274 when comparing energy consumption with and
without fan, the same ratio varied between 1.0261 and 1.0272 for
the reference simulations of the single-cycle investigations.

Considering the fact that the on-off cycle of the compressor can
have any arbitrary offset in time, we have assumed that the value
of dmitigated for the TPUI-based simulation provides the best
assessment of the influence of door openings. Once again we com-
puted the values for Ddabs and Ddrel

, to compare values of dmiti-

gated. It turns out that a value obtained from single-cycle
simulations shifted over time slightly improves the assessment of
the influence of door openings based on one averaged cycle: com-
paring the 12 values for dmitigated from single-cycle simulations
with the ones from simulations based on TPUI, we found that the
absolute aberration ranged from 0.003% � Ddabs � 0.154%, aver-
aging at¼ 0.054%, and the relative aberration ranged from 3.89%
� Ddrel � 263% averaging at Ddrel¼ 49.2% (Table 4, right-hand
part).

These findings appear to support our hypothesis: at least if pre-
dicting small increases in energy consumption, either due to the
door-opening intensity or due to the design variant, the results
from single-cycle simulations show unacceptably high relative
aberrations. However, to get a first impression whether d is, for
instance, in the 0.01% or the 1% range, running single-cycle simu-
lations seems to make sense.

One likely cause of the inaccuracy of single-cycle simulations
is interference with the compressor on-off cycle: after all, for just
one cycle, the outcomes will more strongly depend on how, in
time, a door opening is situated in relation to the compressor
cycle. Over a longer simulation time with multiple repetitive
door-opening cycles, variations caused by this effect may average
out unless the door-opening cycle time happens to be a multiple
of the compressor cycle time. We did perform some additional

Table 3 Simulation outcomes including fridge compartment

Unit A D G

Average daily fridge compartment
open duration, s (simulated interval)

101.4 88.0 19.4

Average daily fridge compartment
open frequency (simulated interval)

9.9 6.3 2.7

Fridge
compartment

Both
compartments

Fridge
compartment

Both
compartments

Fridge
compartment

Both
compartments

Influence d of door
openings
on energy
consumption

No fans 1.75% 0.22% 3.89% 0.38% 0.40% 0.03%
Freezer fan controlled
by compressor only,
fridge fan controlled

by compressor and door

1.66% 1.01% 3.2% 1.54% 0.35% 0.23%

Both fans controlled
by compressor and door

1.66% 0.34% 3.2% 0.50% 0.35% 0.17%

Note: Maxima in bold, minima in bold italics.
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simulations with repetitive patterns over the full simulation time
and still found values for Ddrel of more than 300%. Moreover,
these simulations would not offer any time savings, since we also
found that using cyclic patterns does not improve the simulation
performance. It is likely that by using the much more irregular
TPUI data, interference with the compressor cycle is practically
eliminated, as is evidenced by the small differences between the
columns “d based on TPUI” and “dmitigated based on TPUI” in
Table 4 (which is also why we have not updated Fig. 5 to reflect
the values of dmitigated).

This brings us to another possible reason for the differences in
outcomes when comparing TPUI-based simulations with simula-
tions based on cyclic patterns: possibly, the increase in energy con-
sumption d depends not just on the average daily frequency f of
door openings and the average interval between openings Dtij but
also on other features hidden in less obvious characteristics of the
TPUI (for instance, standard deviations of these values) or on char-
acteristics of more complex regular patterns, such as concentrations
of multiple openings in the morning and/or evening, or on week-
ends. In principle, it is for instance possible to identify such rela-
tions if we extract potentially interesting features from the original
dataset, and experiment with machine-learning (ML) techniques to
find combinations of factors that can predict simulation outcomes
without running the simulations—after having performed TPUI-
based simulations of several units with corresponding values of the
candidate features to train the ML model.

With the features that we already extracted, one could for
instance try to identify a single generalized relation expressing d
as a function of uncorrelated statistical descriptors (see Sec. 3.1)
as predictors, e.g.,

d ¼ dðf ; Dti ; rðDtiÞ; Dtij ; rðDtijÞÞ (3)

In a sense, this can be considered a metamodeling [45] or system-
identification (cf. Ref. [46]) exercise, where a mathematical model
is fitted to simulation inputs and outputs in order to replace the
simulation. However, literature suggests that 10-15 observations
per predictor variable (feature) are needed in order to avoid over-
fitting of the ML model [47]. With only 9 observations, we can
hardly use only one of the features in Eq. (3), while, as argued
above, the two features f and Dtij can probably not characterize
the relation. This means that we need to run simulations with
TPUI from a considerably larger number of units. Although the
resulting ML model can be used to obtain fast predictions that

replace further simulations, it applies to only one particular design
variant, and it cannot directly be modified to represent and evalu-
ate other design variants.

5 Conclusions and Future Work

In this article, we explored the use of TPUI-based simulations
to assess the effect of user interactions and to review how possible
design variations can influence these effects. To allow using TPUI
as input during simulations we created custom simulation-
modeling elements that accept input signals in order to vary val-
ues that are normally assumed to be constant.

Using TPUI as input for dynamic simulation models only
makes sense if performance measures are investigated that are
actually influenced by the timing of changes in the TPUI and if
these measures form an assessable part of the simulation outputs.
A domestic fridge-freezer is a typical product that lends itself for
such simulations: an important, quantitative performance measure
is its energy consumption, which is dynamically influenced by
detectable user interactions while the fridge-freezer is operating
and consuming energy.

In the case of our fridge-freezer, the possibility to run simula-
tions at 1500–1900 times real-time is indispensable to allow eval-
uation of design alternatives in a reasonable timeframe. We have
investigated whether the TPUI can also be used to derive simple
cyclic use patterns of which only one cycle needs to be simulated,
which would make it possible to investigate a considerably larger
number of units in less time. It turned out that a single-cycle pat-
tern based on the average opening time per opening and the aver-
age time between openings can be used to get a first impression of
the influence of door openings on the energy consumption. How-
ever, predicted increases in energy consumption that are well
below 1% are subject to high error margins.

It is perhaps possible to construct more complex and more reli-
able single-cycle patterns if more features from the data are
extracted and used, such as standard deviations of statistical
descriptors and data reflecting the time of the day or the day of the
week. In connection to the investigation of short single-cycle sim-
ulations, we found that interference with the compressor on-off
cycle causes inaccuracies in the results. If our approach is general-
ized toward products other than fridge-freezers, one mandatory
step in that approach should be to identify cyclic behavior and
finding ways to mitigate it—e.g., by averaging simulations run at
half the cycle time apart.

Table 4 Simulation of freezer compartment: comparison between real usage data and cyclic door-opening pattern (one cycle
only)

d dmitigated

Unit
Design
variant

Based on
TPUI

Based on
one cycle Ddabs Ddrel

Based on
TPUI

Based on
one cycle Ddabs Ddrel

A No fan 0.114% 0.174% 0.0597% 52.2% 0.117% 0.0993% 0.0173% 14.8%
Fan controlled by compressor only 0.968% 0.851% 0.117% 12.1% 0.971% 0.817% 0.154% 15.9%
Fan controlled by
compressor and door

0.257% 0.159% 0.0977% 38.0% 0.259% 0.190% 0.069% 26.6%

B No fan 0.00622% 0.0304% 0.0241% 388% 0.00634% 0.0230% 0.0166% 263%
Fan controlled by compressor only 0.138% 0.238% 0.100% 72.3% 0.138% 0.237% 0.099% 72.0%
Fan controlled by
compressor and door

0.0872% 0.068% 0.0188% 21.6% 0.0838% 0.0654% 0.0184% 22.0%

D No fan 0.153% 0.326% 0.173% 112.7% 0.154% 0.212% 0.058% 37.9%
Fan controlled by compressor only 1.434% 1.412% 0.022% 1.50% 1.432% 1.376% 0.056% 3.89%
Fan controlled by
compressor and door

0.327% 0.289% 0.0384% 11.7% 0.327% 0.276% 0.051% 15.6%

J No fan 0.0174% 0.026% 0.008% 47.4% 0.0228% 0.0197% 0.003% 13.6%
Fan controlled by compressor only 0.282% 0.198% 0.085% 30.0% 0.299% 0.188% 0.111% 37.0%
Fan controlled by
compressor and door

0.166% 0.0541% 0.111% 67.3% 0.173% 0.0539% 0.119% 68.7%

Average Dd 0.0712% 71.2% 0.0644% 49.2%

Note: maxima in bold, minima in bold italic.
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The increases in energy consumption as predicted by our simu-
lations are by no means spectacular, indicating that the influence
of door openings might be less than the consulted literature sug-
gests. At any rate, considering the fact that domestic refrigeration
appliances substantially contribute to the world’s overall electric-
ity consumption, even attempts to deal with the small influence of
door openings that we found in our investigations could make
sense, and we could demonstrate that, as design variant, having a
fan in the freezer that does not react to door openings is not a
good way to deal with user behaviors. This is particularly true for
a small number (2 out of 9 in our simulations) of units that are
subject to high door-opening intensities, leading to around 1%
increased energy consumption. Since our sampling was biased
toward more door openings by an exaggeration factor of about 2
(Table 1), a cautious estimate (also given the fact that devising the
most accurate simulation model was not our primary goal) could
be that an increase in energy consumption of around 1% due to
door-openings occurs in 5–10% of all fielded refrigerators.

What we did not include in our simulations was the putting in
and taking out of food items that goes together with door openings.
Items that are put in typically have a higher temperature than the
compartment temperature, which might partly explain the differen-
ces with findings from field studies in the literature. With the sens-
ing technologies currently implemented in fridge-freezers, it does
not seem likely that such data can be added to the TPUI already
collected [28]. Another factor resulting in larger energy-
consumption increases could be the inclusion of older, less efficient
refrigeration appliances in the field studies discussed in Ref. [38].

The possibility to exploit TPUI by performing simulations is
likely to have impact on the way future products will be designed.
Although we only investigated one type of product, we can pro-
vide some general recommendations based on the work presented
in this article. First, in designing each first generation of a product
range to collect and transfer data, anticipative consideration must
be paid as to what data collection capacities will be included in
the design. For example, in the case of fridge-freezers, changes in
ambient temperature are known to affect performance. Since the
investigated fridge-freezers were not equipped with external tem-
perature sensors, we could not investigate this effect. Moreover, if
the product would keep track of its own energy consumption, sim-
ulations would no longer be useful for studying effects of user
behavior on the current design—yet they would still add value if
design alternatives are to be explored.

Second, once product units are out on the market, TPUI-based
simulations can be used to study how real-life usage affects per-
formance. If the data indicate that certain manifestations of usage
negatively affect performance (as in our case the door openings),
comparison with reference data that lack these manifestations (in
our case fictitious input with the door always closed) can reveal the
severity of the problem. If serious enough, designers can ideate pos-
sible solutions to mitigate the negative effects, implement these in
the simulation model and run simulations with the real-life data to
compare the effectiveness of the proposed solutions.

After selecting an effective solution, it can be implemented in a
redesign or, if feasible, in a software update for fielded products.
TPUI-based simulations will mostly facilitate not-too-drastic rede-
sign of existing products. After all, the usage-related input signals
to the original simulation model must also be meaningful in a modi-
fied model. If the opaque compartment door is replaced by a trans-
parent one, openings just for peeking inside will no longer happen,
and the collected door data are likely no longer meaningful.

In the aforementioned product development scenario, the benefits
gained from collecting and investigating TPUI, i.e., optimizing a
future version of the product does not present any direct advantage
to the end user. This alone will probably not justify having to pay
extra for the connected product, and allowing it to consume band-
width from the wireless home network. Therefore, we suggest that
if a company wants to convince customers to buy connected prod-
ucts, it has to offer additional services that exploit the data in a way
that is attractive to them—for instance, supporting analytics-based

predictive maintenance (e.g., Ref. [48]). An alternative would be to
not let the customer pay for the connectivity, and, for instance, to
let the product transmit its data using an wireless phone connection
with a subscription paid by the manufacturer.

Obviously, TPUI-based simulation is far from a mature
approach. Up till now, we have applied several simplifications
and shortcuts in our simulations, which we applied to a limited set
of units of only one type of product. We could think of several
options to further improve the realism and the usefulness of
TPUI-based simulations. To start with, for the fridge-freezer it
seems worthwhile to consider and investigate:

� Influence of usage phenomena such as environment tempera-
ture, quantity and temperature of items put in and taken out.

� Inclusion of physics effects currently ignored in the model,
such as heat exchange between compartments, energy con-
sumption by the light, interior geometry, etc. In addition, the
model parameters can be fine-tuned by comparison with a
physical specimen of the fridge-freezer. This is up to the
company, and it might not lead to publishable results due to
confidentiality issues.

� Elimination of interference in connection with cyclic on/off
switching, for instance by implementing a proportional–
integral–derivative-controlled thermostat (cf. Ref. [49]).

� Spreading multiple openings during an hour randomly over
that hour. Some first trials where we implemented this indi-
cated that the influence of the frequency of door openings is
greater than that of their duration, and therefore, door
openings—and mitigation thereof—may have more impact
than the presented findings have suggested after all.

� Other characteristics that may be hidden in the TPUI, such as
preferences for hours of the day or weekdays when opening
the door, in combination with the statistical descriptors pre-
sented in Sec. 3.1, in order to construct more complex single-
cycle patterns that provide better predictions of the influence
of door openings. In addition, these features can possibly be
used to (i) apply machine-learning to create fast-executing
models that replace simulations for a given design variant,
and (ii) cluster households and identify clusters of typical
types of households. This will also require collecting data
from more fielded units.

Finally, in the context of generalization, it would be interesting to
investigate how TPUI-based simulation can be applied to other prod-
ucts and how these may benefit from it. Some of our current findings
may be specific for refrigeration appliances, such as those that can
be attributed to interference due the compressor on/off cycle. It is
possible that for other products cyclic use patterns representing user
actions can be deployed to drastically reduce simulation time, or that
more spectacular influences of usage can be uncovered and miti-
gated. Experience with more products may lead to a generalized
approach for implementing and applying TPUI-based simulations.
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E ¼ energy, kWh
f ¼ daily average number (frequency) of door openings
t ¼ time, s, h or days

Dttot ¼ total time interval covered by the considered or simu-
lated samplings belonging to one unit, s or days

Dtdaily ¼ average door-open time per day, s

Dti ¼ average time (duration) per door opening, s
Dtij ¼ average time between two subsequent door openings, s

or days
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