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Abstract 

We present cellular automata on appropriate digraphs and show that any covered normal logic 
program is a cellular automaton. Seeing programs a.s cellular automata. shifts attention from classes 
of Herbrand models to orbits of Herbra.nd interpretations. Orbits capture both the declarative, 
model-theoretic meaning of programs a.s well a.s their inferential behavior. Logically and intentionally 
different programs can produce orbits that simulate each other. Simple examples of such behavior are 
compellingly exhibited with space-time diagrams of the programs a.s cellular automata. Construing 
a. program a.s a cellular automaton leads to a general method for simulating any covered program 
with a. Horn clause program. 

1 Introduction 

1 

A covered [Su87] normal logic program is a cellular automaton (CA). The natural questions that 
arise in the context of cellular automata have to do with orbits of their initial states. Hence, by 
emphasizing the CA aspect of a logic program we our shifting attention from models of programs 
to orbits produced by programs. 

Orbits provide a way to reveal dynamical relationships between various programs, but models 
remain important. Indeed, the portion of our work reported here has its origin in work of Melvin 
Fitting's on the subject of metric methods in the foundations of logic programming [Fi94]. Fitting 
discussed the way a set of Herbrand interpretations of some programs could be equipped with a 
complete metric such that the program becomes a contraction mapping on the set of interpretations. 
Hence by the Banach contraction mapping theorem, the program has a unique fixed point, i.e. a 
unique supported model. In terms of orbits, this means that all orbits converge to the program's 
unique supported model. We will give an example below that discusses Fitting's program: a program 
that Fitting discussed in his tutorial that is not a contraction mapping, has two supported models, 
and has orbits that chaotically swing back and forth between these supported models. The two 
supported models are the two accumulation points [Ke55] of the orbit, coming progressively closer 
to each one of the them for longer and longer periods with each swing. 

Orbits conveniently allow us to observe that in certain cases programs that are rather logically 
and intentionally inequivalent are nevertheless equivalent in a dynamical sense. The general idea is 
to set up a notion of the way Herbrand interpretations are simulated by other selected Herbrand 
interpretations. Then, for two programs P and Q, and two Her brand interpretations, I for P and J 

1 Address correspondence to this author. 
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for Q, one wants selected members of the orbit of I with respect to P to simulate selected members 
of the orbit of J with respect to Q. The notion of simulation between Herbrand interpretations is 
to be formulated according to the purpose at hand, but should be compelling in each case. 

A similar notion of simulation exists with the way Turing machines can be set up to simulate 
other Turing machines. The computations of Turing machines are orbits of initial instantaneous 
descriptions (i.e. tape-state configurations) [Ro67] of the machines. A universal Turing machine is 
universal in the sense that one can set up a notion of how selected instantaneous descriptions of 
the universal machine simulate instantaneous descriptions of any other machine. Given one machine 
M and an instantaneous description I, one can find an instantaneous description of the universal 
machine whose orbit (i.e. computation) simulates the orbit of I (i.e. computation proceding from I). 

The situation for logic programs allows simulating orbits to be more tightly coupled to the 
simulated orbits than is the case just described above for Turing machines. In general one wants to 
set up a simulation of Herbrand interpretations u so that the following diagram commutes. 

Tq 
J ----~---JI 

uj 
I ---------I' 

Tp 

Call an Herbrand interpretation that assigns false to all but finitely many ground atoms small. 
Unfortunately the orbit of a small Herbrand interpretation in general does not stay among small 
interpretations. But we can often simulate programs with ones that produce orbits of small inter
pretations that remain small. This is the case with Fitting's program in example 2.2. 

Informally, the concept of a cellular automaton (CA) begins with a space of interconnected cells, 
each being in a definite state at a definite time. The cells undergo state transitions. The range 
of possibilities for the states of a cell, in particular whether the set of cell states is discrete or 
continuous is an adjustable parameter in the concept. Important in the CA concept is that each 
cell's state transitions are determined by the cell's current state, together with the states of all 
cells to which it is connected. Call a cell c together with all the cells to which it is connected the 
neighborhood of c. Neighborhoods are finite and we think of all the cells in a given neighborhood as 
being close together. 

Conway's game of Life is a familiar example of a cellular automaton [Ga70, TM87]. There, the 
cell space consists, essentially, of the integer lattice points of the plane. Each cell, i.e. lattice point, is 
connected to the cells to the north, northeast, east, southeast, south, southwest, west, and northwest, 
as well as to itself. 2 The state of a cell is either on or off. The cells update their states synchronously 
according to the rule: A cell that is on (alive) remains on iff it is surrounded by 2 or 3 neighbors 
that are on, and a cell that is off (dead) turns on iff it is surrounded by exactly 3 live neighbors. 

Covered logic programs are those in which every variable that occurs in the body of a program 
clause also occurs in that same clause's head. The ground call graph of such a program bears a 
resemblance to the situation with the cell space of Conway's life. A given ground atom occurs in the 
head of at most finitely many ground clauses and hence immediately depends on only finitely many 
ground atoms. Since there are only finitely many nonground clauses to begin with, there is a uniform 
finite bound on the number of atoms upon which a ground atom immediately depends. Moreover, if 
ground atom A1 immediately depends on ground atom A2, then every variable occurring in A2 also 
occurs in A1. A1 and A2 syntactically differ by a pair of nonground atoms present in the nonground 

2 The reader who is unfamiliar with Life is enthusiastically recommended to consult [Ga70] for a pleasurable 
introduction intended for general readers. Familiarity with Conway's Life is not required to read this paper, 
but will provide a general orientation to the subject of cellular automata. 
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program. Hence there is a uniform bound on how much "syntactic difference" there can be between 
two ground atoms, one of which immediately depends on the other; hence they are syntactically 
close. 

We assume that the reader is familiar with the basics of the foundations of logic programming. 
An excellent, widely available introduction the subject is by K. R. Apt, [Ap90]. In most cases readers 
who are insufficiently familiar with logic programming will have their puzzlements cleared up with 
a few minutes' perusal of Apt's article. 

Some notation: variables occurring in logic programs are denoted by z and y with or without 
subscripts, and constants are denoted a, b, and c with or without subscripts. 

2 Logic Programs as Cellular Automata 

Definition 2.1: A norma/logic program is a finite collection of clauses 

A+- £1 A ···ALn 

where each Li is a literal, and A is an atom. Each Li and A may be ground or nonground. A is the 
head, and £1 A · · · A Ln is the body of the clause. I 

Definition 2.2: A clause is covered if every variable occurring in the body also occurs in the head. 
A program consisting of covered clauses is itself said to be covered. I 

Definition 2.3: A formula is ground if it contains no free occurrences of variables. (Note that we 
regard normal clauses as open formulas, i.e., all occurring variables occur free.) If Pis a program, 
ground(P) is the set of all ground instances of clauses in P. I 

Proposition 2.1: If Pis a covered program and A is a ground atom, then there are at most finitely 
many ground clauses in ground(P) in which A is the head. I 

Covered programs constitute a computationally universal class of programs, as shown by Shep
herdson [Sh91] and Nerode and Shore [NS93]. In particular, register machines are easily representable 
as covered Horn programs (i.e., all of the literals in the clause bodies are positive). The property 
that covered programs have that was given in the previous proposition permits us to view covered 
programs as cellular automata. Conversely, since left-bounded !-dimensional cellular automata are 
easily representable as monadic covered programs, these programs also constitute a computationally 
universal class. 

Formally, a cellular automaton (CA) consists of a cell space and a state transition rule. We take 
an ordered digrap:tJ. with finite or countably many nodes, and an integer bound k ~ 1, such that the 
outdegree of every node is bounded by k (outdegree(c) $ k, for all nodes c.) If there is an edge from 
node c to node c' we say that c is connected to c'. We assume that every node is directly connected 
to itself. The digraph is ordered in the sense that for each node c the set of edges from c is totally 
ordered. The digraph is the cell space. Each node is a cell. The CA has a finite set of cell-states. (The 
restriction that the set of cell-states be finite can be usefully relaxed, but we shall be considering 
CA's of this kind only in a subsequent paper). A state of theCA is a mapping from cells, the set 
of cells, to S, the set of cell-states. 

For each cell c, let Pc : S'" -+ S, where r is the out-degree of cell c. Since r $ k and S is finite, 
the set B = {Pc I c E cells} is finite. Thus, pis a function which maps a cell c to its update rule Pc· 
Now, let CS be the set of states of the CA, let u be a state of the CA, and let u( c) be the state of cell 
c. The state transition rule is a mapping /j : CS -+ CS defined by ( 6( u ))(c) = Pc ( u( ct), ... , u( Cr)) 
where c1, · · ·, Cr are the cells to which cell cis connected in the order given. 
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Example 2.1: Consider the !-dimensional CAin which each cell has a left and right neighbor. The 
state of each cell is either on or off, (i.e. 1 or 0) and each cell is updated simultaneously with every 
other cell by taking the exclusive-or (xor) of its left and right neighbors. In the figure that follows, 
each row is a sequence, indexed by the integers, of on/off states. The row immediately below a given 
row is obtained by applying the state transition rule. The first row contains exactly one cell which 
is on (cell number 0). The sequence of transitions procedes down the vertical axis of the figure. 

The figure above is an example a space-time diagram of a !-dimensional cellular automaton. The 
diagram depicts an orbit of the initial state of the cell space, i.e. a sequence of states of the cell 
space beginning with state depicted by the top row. In this example, the set of all cells is Z, the 
integers. The set of edges can be given by { i -+- j I li - j I ::; 1}. Each cell i has three outgoing edges 
i-+- (i- 1), i-+- i and i-+- (i + 1). k = 3, S = {0, 1}, B = {;3} where ;J(p, q, r) = xor(p, r)}, and 
(6(u))(i) = u(i- 1) xor u(i + 1). I 

Theorem 2.1: Every covered normal logic program is a CA. 

Proof: 
The set of cells of the cell space is the Herbrand base of the language L of P (i.e., the set of 

ground atoms of L.) The edges are determined as follows. Ground atom A refers to ground atom B 
with respect to P if there exists a clause 

in ground(P) such that B is L; or ·B is L; for some i = 1, · · ·, r. For each pair of ground atoms 
(A, B) such that A refers to B with respect to P, include edge A -+- B. Let n be the maximum 
number of literals occurring in any clause in P, and let c be the number of clauses in P. Let k be 
the maximum number of ground atoms that any ground atom A is connected to via an outgoing 
edge. Since P is covered, k ::; en. The set of cell-states is {true ,false}. A state of the automaton is 
an assignment of truth values to the ground atoms of L. Equivalently, a state of the automaton is 
an Herbrand interpretation for L. 

Let A be a ground atom. Suppose the clauses from ground(P) in which A occurs in the head are 

A...._ Lml 1\ ... 1\ Lmnm 
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Let A1 , ... , AkA be the distinct ground atoms to which A is connected (the order is actually imma
terial, as in Conway's Life.) Let I be an Herbrand interpretation for Land define PA by 

Note that each atom occurring in the literals Lij is in the set {A1, .. . ,AkA}. Each function PAis a 
" Boolean function of arity at most k. Thus, there are at most 22 such functions. I 

We next give a precise definition of the term orbit for Herbrand interpretations with respect to 
programs and present an example of a simulation. 

Definition 2.4 Let I be an Herbrand interpretation for L(P). The orbit of I with respect to program 
P is the sequence 

{lP(I)}nEw· 

I 

We are referring throughout this paper to the program P in the next example as Fitting's program 
whose origin was mentioned in the introduction. We must first make the notion of supported model 
precise. 

Definition 2.5: Let A be a model (Herbrand or otherwise) of P. A is supported iff for each A
valuation v and clause head A of P, if A Fv A, then for some clause body Body of P, A Fv Body. 

I 

It is an easy exercise to show that supported Herbrand models of P are fixed points of the operator 
Tp on Herbrand interpretations of L(P). 

Example 2.2: Let P be 

and let Q be 

p(O) <-- -,p(s(O)) 
p(s(x)) <-- p(x),p(s(s(x))) 
p(s(x)) <-- -.p(x ), -,p(s(s(x ))), 

p(O) <-- -,p(s(O)) 
p(s(x)) <-- p(x), -,p(s(s(x))) 
p(s(x)) <-- -,p(x ), p(s(s(x ))). 

Notice that longer and longer initial segments of both of the programs' supported models (fixed 
points of T p) are obtained as the orbit progresses. There is a natural sense in which P and Q 
simulate each other. 

It is easy to calculate the two supported Herbrand models of P and of Q: 

P: p(O) p(s(O)) p(s(s(O))) p(s(s(s(O)))) p(s(s(s(s(O))))) ... 
F T F F T 
T F F T F 

Q: p(O) p(s(O)) p(s(s(O))) p(s(s(s(O)))) p(s(s(s(s(O))))) ... 
F T T F T 
T F T T F 

The simulation in this example is extremely simple, but we get wholesale returns for such a trifling 
investment. As mentioned in the introduction, the orbit of a small interpretation remains small. 
(Conway's Life has this property also.) The supported models of P and Q are seen to be comple
mentary. If, for each Herbrand interpretation I for a language C we define -.I(A) = -.(I(A)) for all 
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ground atoms A of£, then --.Tp(l) = TQ(--.1)). Beginning with complementary Herbrand interpre
tations 10 and J0 , where in 10 all ground atoms are false, and in J0 all ground atoms are true, we 
obtain the orbits displayed below. In the figures, the truth values of atoms p(O) through p(s232(0)) 
are displayed across each horizontal row; the kth row of the first figure is Ik and the kth row of the 
second figure is Jk. 10 and J0 are at the top of each figure, respectively. Dark cells are assigned trice. 
As we expect from the preceding remarks, Ik and Jk complement each other. 

Clearly, for any pair of orbits of P and Q, respectively that begin from complementary interpreta
tions will be complementary throughout. Thus, relative to the notion that complementary Herbrand 
interpretations simulate each other, P and Q simulate each other. I 

We will now give a uniform way to simulate a covered logic program with a definite clause 
program. The simulation is set up in two stages: First, given a program P, we first simulate P by 
a general program Q that we call the case-simulation of P. Q has the property that each ground 
atom is an instance of at most one clause head. 

Some notation: If P is a program, the language determined by the constant function and predicate 
symbols of Pis denoted by L(P). 

The way in which an Herbrand interpretation of L( P) is simulated by an Herbrand interpretation 
of L(Q) has to do with projection and will become clear in the course of construction Q. Second, 
we construct a definite clause program R to simulate Q. The difficulty regarding elimination of 
negations in the clauses of Q centers on the ground atoms of Q that are not instances of any clause 
head in Q. Given an orbit 0 of Q with respect to an interpretation Io, we want to be able to find 
an orbit 0' of R with respect to an interpretation Jo such that 0' simulates 0. We will be able 
to arrange for the interpretation Jn of 0' to simulate In of 0, for every n E w. The catch is that 
we get to pick Jo. Part of the criteria for selecting Jo is that every ground atom of L(P) that is 
not an instance of any clause head of P will have a corresponding ground atom in L(R) which is 
false in Jo. No Herbrand interpretation that assigns true to a ground atom which is not an instance 
of any clause head in a program P can be a supported model of P. Hence, at least with respect 
to supported models such interpretations are irrelevant for P; that is, no supported model can be 
found outside this class of interpretations. 
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Definition 2.6 An Her brand interpretation I is relevant for P if every atom which is not an instance 
of any clause head of P is false in I. I 

We want positive simulations to treat orbits that begin from relevant Herbrand interpretations. 

3 Simulations 

We will show in this section that any covered normal logic program can be simulated, in a sense to 
be made precise, by a Horn clause program. Hereafter we use the more precise term definite clause 
program for Horn clause program. The construction of the simulation consists of two stages. The 
first obstacle is that different ground atoms with the same predicate symbol can be instances of 
different sets of clause heads in the given programs. To overcome this first obstacle one introduces 
a means of keeping track of which clause with a given predicate symbol occurring in its head yields 
a given ground atom. In PROLOG terminology we want only single-clause procedures. We call such 
programs nonbacktracking, and the nonbacktracking representation of a given program is called a 
case-simulation. The reduction to case-simulations is the first stage of the construction. The second 
stage uses new predicates to keep track of which ground atoms come out false after applying the 
familiar one-step consequence operator T p. 

We begin by setting up case-simulations. 

Definition 3.1: A general program clause is a formula of the form 

A+-cp 

where A is an atom and <p is a formula of first-order logic. A general logic program is a collection 
of general program clauses. We shall have need below of general logic programs in which either all 
of the clause bodies are formulas in conjunctive normal form (CNF) (conjunctions of disjunctions 
of literals), which we call CNF-general logic programs, or all of the clause bodies are formulas in 
disjunctive normal form (DNF) (disjunctions of conjunctions ofliterals), which we call DNF-general 
logic programs. I 

In the definition that follows, the proliferating notation really makes the definition of case
simulation much more concise than it would otherwise be. We ask the reader to be patient; the 
example following the definition should clarify matters. 

Definition 3.2: Let q be a predicate symbol occurring in program P and let 

q(tn) +-- <pn 

be all of the clauses in P in which q occurs in the head. We call each of these clauses a case of q. The 
case-simulation R (which is a CNF-general program) of Pis obtained as follows. For each predicate 
symbol q of P replace the cases of q by the clauses 

q'(t1, c1) +-- <p1 

q'(tn, Cn) +-- <pn · 

We assume that all of the predicate symbols q' are new and distinct predicate symbols not previously 
occurring in P. Also, the constants C1, ••• , en, called case-labels, are assumed to be new and distinct. 
For each atom A, where A is q(t), A+ is 

q'(tbcl) V · · · V q'(tn,Cn) 
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and A- is 

•q'(tt, ct) 1\ · · · 1\ •q'(tn, Cn) 

For a literal L in the language of P, let L 0 be A+ if L is the positive literal A and be A- if L is the 
negative literal •A. Now, let £ 1 1\ · · · 1\ Ln be a conjunction of literals in the language of program 
P and let (Lt 1\ · · · 1\ Ln) 0 is L~ 1\ · · · 1\ L~. R is the result of replacing each clause body <pin 
P: by <p0 • I 

Definition 3.3 We define the case-projection of A as the atom that results by replacing q', the 
predicate symbol of A, by q and deleting the last argument. Denote the case-projection of atom 
A by 1r(A), and let the case-projection of Herbrand interpretation I be { 1r(A) I A E I}, which we 
denote by 1r( I). I 

Example 3.1 Let P be Fitting's program. The case-simulation of Pis 

p'(O, a)- •p'(s(O), a) 1\ •p'(s(O), b) 1\ •p'(S(O), c) 
p'(s(x ), b) - [p'(x, a) V p'(x, b) V p'(x, c)] 

1\[p'( s( s(x )), a) V p'( s( s(x )), b) V p' ( s( s(x )), c)] 
p'(s(x), c) - •p'(x, a) 1\ •p'(x, b) 1\ •p'(x, c) 

1\•p'(s(s(x)), a) 1\ •p'(s(s(x)), b) 1\ •p'(s(s(x)), c) 

The following table shows a portion of the the first seventeen interpretations of the orbit of J0 , 

the Herbrand interpretation for the case-simulation of P where every ground atom is assigned false. 
The rows in bold-face give the result of projecting each interpretation J; to the language of P. The 
table illustrates the lemma that follows. 

p(O) F T F F T T T F F F F T F F F F 
p'(O, a) F T F F T T T T F F F T F F F F 
p'(O, b) F F F F F F F F F F F F F F F F 
p'(O, c) F F F F F F F F F F F F F F F F 
p(s(O)) F T T F F F T T T T F T T T T F 
p'(s(O),a) F F F F F F F F F F F F F F F F 
p'(s(O), b) F F T F F F F T F F F F T F F F 
p'(s(O), c) F T F F F F F F T T F T F T T F 
p(s(s(O))) F T T T F F T F F T F T F F T T 
p'(s(s(O)),a) F F F F F F F F F F F F F F F F 
p'(s(s(O)),b) F F T T F F F F F T F F F F T T 
p'(s(s(O)),c) F T F F F F T F F F F T F F F F 
p(s(s(s(O)))) F T T T T F F F T F F F F T T T 
p'(s(s(s(O))),a) F F F F F F F F F F F F F F F F 
p'(s(s(s(O))),b) F F T T T F F F F F F F F F F T 
p'(s(s(s(O))),c) F T F F F F F F T F F F F T T F 
p(s(s(s(s(O))))) F T T T T T F F T F T F F T T T 
p'(s(s(s(s(O)))),a) F F F F F F F F F F F F F F F F 
p'(s(s(s(s(O)))),b) F F T T T T F F F F F F F F T T 
p'(s(s(s(s(O)))),c) F T F F F F F F T F F F F F F F 

I 

Lemma 3.1 (Lemma on case-projections): Let R be a case-simulation of P, let I be an Herbrand 
interpretation of L(P), and let J be an Herbrand interpretation of L(R) such that I is a case
projection of J. Let (In)new be the orbit of I with respect toP, and (Jn)new be the orbit of J with 
respect to R. Then 

In is a case-projection of Jn, for all n E w . 



Proof: Induction on n. 
n = 0: By hypothesis, Io is a case-projection of Jo. For a ground atom A, 

A E J1l£(P) 
iff 

A E Tp(Jo) and A E Bp 
iff (since A E L(P)) 

q'(t, c) E Jo, where A is q(t), for some case-constant c. 
iff (since Io is a projection of Jo) 

A E Io. 

9 

n + 1: Assume In is a case-projection of Jn and Jn+l h(P) =In. The following diagram commutes: 

Tn 
Jn Jn+l 

case I r-projection projection 

In In+l 
Tp 

To see this, we must show In+l is a case-projection of Jn+l· For a ground atom A, 

A E In+l 
iff 

for some clause A+- Body in ground(P), In f= Body 
iff (since In is a case-projection of Jn) 

iff 

for some clause A'+- Body in ground(R) such that 1r(A') =A and 
1r(Body1) =Body, Jn f= Body'. 

A' E Jn+l. where 1r(A') =A. 

Hence, In+l is a case-projection of Jn+l· I 

Definition 3.4: A logic program with the property that each ground atom is an instance of at 
most one clause head is called nonbacktracking. I 

Case simulation programs are nonbacktracking. 
Fix a first-order language .C. For each predicate symbol p of .C, if A is an atom p(ul. ... , uk), let 

A denote the atom p(u1 , ... , UJ:). If Lis a positive literal, let L* beL, and if Lis a negative literal 
-,A, let L * be A. If If' is a formula in either DNF or CNF, let If'* be the result of replacing each 
occurrence of a literal L by L •. 

We now set up the positive simulation of a nonbacktracking CNF-general program. 

Definition 3.5: Let P be a nonbacktracking CNF general program. The positive simulation Q of 
P is obtained as follows: We will first construct an intermediate program Q0 • For each predicate 
symbol p of L(P), introduce new predicate symbols p and p with the same polyadicity (same number 
of arguments as) p. For each non-unit clause A+--; of P, let f3 be a formula in DNF equivalent to 
;, and let 1/J be a formula in DNF equivalent to...,,, (;is in CNF), and include in Q0 the clauses 

A +-- {3* and A +-- 1/J* . 
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No negative literals occur in the bodies of the clauses in Q0 , and each clause in Qo has the form 

Ao <-(Au A·· ·A AtnJ V · · · V (AmtA ···A Amnm). 

For each such clause in Q0 include in Q the clauses 

Ao <- Aml A · · ·A Amnm 

Lastly, include both in Qo and in Q the clauses 

p(x) <- p(x) 
p(x) <- p(x) 

for each predicate symbol p of P. Q is a definite clause program. I 

It is clear that any Herbrand interpretation J of Q, is an Herbrand interpretation of Qo, and 
Tq(J) = Tq 0 (J). 

Example 3.2: Let P be the case-simulation of Fitting's program. The positive simulation Q of P 
is obtained from the program Qo as in the definition. Qo is: 

p'(O, a) <- p(s(O), a) A p(s(O), b) A p(s(O), c) 
p(O, a)<- p'(s(O), a) V p'(s(O), b) V p'(s(O), c) 

p'(s(x ), b) <- [p'(x, a) A p'(s(s(x )), a)] 
V[p'(x, a) A p'(s(s(x )), b)] 
V[p'(x, a) A p'(s(s(x )), c)] 
V[p'(x,b) Ap'(s(s(x)),a)] 
v[p'(x,b) Ap'(s(s(x)),b)J 
V[p'(x,b) Ap'(s(s(x)),c)J 
V[p'(x, c) Ap'(s(s(x)), a)] 
V[p'(x, c) Ap'(s(s(x)), b)] 
V[p'(x, c) 1\p'(s(s(x)), c)] 

p(s(x), b) <- [p(x, a) A p(x, b) A p(x, c)] 
V[p(s(s(x )), a) A p(s(s(x )), b) A p(s(s(x )), c)] 

p'(s(x), c) <- p(x, a) A p(x, b) 1\p(x, c) 
1\p(s(s(x )), a) A p(s(s(x )), b) A p(s(s(x )), c) 

p(s(x), c)<- p'(x, a) V p'(x, b) V p'(x, c) 
Vp'(s(s(x)), a) V p'(s(s(x)), b) V p'(s(s(x)), c) 

p(x) <- p(x) 
p(x) <- p(x) 

I 

The conversion of CNF clause bodies to DNF in the worst case results in generating eXponentially 
many clauses in the positive simulation. However, this combinatorial explosion only occurs if one 
insists on presenting the positive simulation formally as a definite clause program. If one is content to 
let the clause bodies consist of formulas formed by conjunctions and disjunctions of atoms, then no 
combinatorial explosion results. Such programs are logically equivalent to definite clause programs, 
and produce the same orbits. 

In order to have a simulation by a definite clause program we must set up the simulations between 
Herbrand interpretations. 
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Definition 3.6 Let P be a program and let I be an Herbrand interpretation for L(P), and let L' 
be the expansion of L to include new predicate symbols p, p with the same polyadicity as p, for each 
predicate symbol p of L(P). An Herbrand interpretation J for L' is a negation-simulation of I (with 
respect to P) iff the following conditions hold: 

1. I f= p(t) iff J f= p(t) 
2. If= --.p(t) iff J f= p(t) 
3. J f= p(t) iff p(t) is not an instance of any clause head in P. 

We shall write M NS N iff M is the negation-simulation of N. I 

Recall the definition of 1p* for CNF and DNF formulas 1p used in the lemma on case-projections. 

Lemma 3.2 Let 1p be either a CNF or DNF ground formula and suppose M NS N, where N is an 
Herbrand interpretation for the language £ in which 1p is a formula. Then 

I 

If P is a program that is covered and nonbacktracking then each ground atom occurs in the head 
of at most one clause in ground(P). This simple observation is crucial for the next theorem and 
explains why the construction of positive simulations has been confined to covered programs only. 

Theorem 3.1 Let P be a covered nonbacktracking CNF-general logic program and let Q be the 
positive simulation of P. Let I be an Her brand interpretation relevant for P. Let J be the negation
simulation of I. Then 

TQ(J) is the negation-simulation of Tp(I), for all n E w. 

Proof: 
Let M be an Herbrand interpretation of Q and N an Herbrand interpretation of P. 
n = 0: JQ(J) = J NS I= 1'$(!). 
n + 1: Assume Jn = TQ(J) NS Tp(I) =ln. We must show 

p(t) E Tq(Jn) iff p(t) E Tp(In) and p(t) E Tq(Jn) iff p(t) fl. Tp(In) 

for all ground atoms p(t) of L(P). Thus, 

p(t) E Tp(ln) 
iff 

iff 
for the unique clause p(t) +--I{) in ground(P) whose head is p(t), In f= 1p 

for the unique ground clause p(t) +-- 1p in ground(P) whose head is p(t), In f= {3, 
where f3 is the formula in DNF equivalent to 1p such that p(t) +-- {3* 
is the unique clause in ground(Qo) whose head is p(t) 

iff (since Jn NS In) 

iff 

for the unique ground clause p(t) +-- 1p in ground(P) whose head is p(t), Jn f= {3*, 
where f3 is the formula in DNF equivalent to 1p such that p(t) +-- {3" 
is the unique clause in ground(Qo) whose head is p(t) 

p(t) E Tq(Jn)· 

Also note that if p(t) is not an instance of any clause head in P, then p(t) fl. Tq(Jn)· 
Now, suppose p(t) is an instance of some clause head in P. Then 



p(t) ~ Tp(In) 
iff 

for the unique clause p(t)- r.p in ground(P) whose head is p(t), In ~ r.p. 
iff 

iff 

iff 

for the unique clause p(t) - r.p in ground(P) whose head is p(t), In I= ...,r.p 

for the unique clause p(t)- r.p in ground(P) whose head is p(t), In I= 1/J, 
where 1/J is the formula in DNF equivalent to ...,r.p such that p(t) -1/J* is 
the unique clause in ground( Qo) whose head is p( t). 

.P(t) E Tq0 (Jn)· I 
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Example 3.3: The nonbacktracking program P = {(r(b), q(a), p(z) - q(y)} is not covered. 
The positive simulation that would result fails to simulate P as may be seen by inspecting the 
interpreation I= {r(b), q(a),p(a)}. I 

4 Concluding Remarks and Future Work 

In prior work [B-H96] we studied analytical properties of covered monadic logic programs, programs 
such as in the example involving Fitting's program, and the relationship of such programs to finite 
automata and discrete dynamical systems. Although such programs constitute a severely restricted 
class with regard to expressive succinctness, the expressive power of the class is largely unknown. 
However, the class is computationally universal. The class is equivalent to what are called left
bounded !-dimensional cellular automata. The latter class is computationally universal since Turing 
machines can be represented in it [Mi96]. The computational universality indicates that at least the 
full power of locally stratified programs [Pr88, BMS95] should be obtainable for covered monadic 
programs, but for the present, this remains a conjecture. 

The relationship between the results reported in [B-H96] and the simulations discussed in the 
present paper is important. The monadic covered logic programs naturally fit into an infinite di
mensional vector space with a rich Euclidean-like geometric structure, the space £2 [B-H96, Ha82]. 
We conjecture that this result applies to all covered programs, not just the monadic ones, and this 
is the subject of an ongoing investigation. An Herbrand interpretation that assigns false to all but 
finitely many ground atoms also lives in (a tiny subspace of) £2 • Recall from the introduction that 
such interpretations are called small. The orbit of a small Herbrand interpretation in the space 
{0, 1 }w ~ Rw escapes £2 in general. But simulations can often be set up so that the simulating orbits 
that start small remain small. Why is this important? 

Just as we want to know how models change as programs change, we want to know how orbits 
change. It should be clear that as a program is perturbed its models change in rather unmanageable 
ways: chaotically. So too for orbits. But these changes in the orbits are not completely arbitrary and 
unstructured. Considerations of how perturbations of programs induce changes in the orbits within 
Rw seems intractible; within £2 the situation is much better due to the presence of a complete 
Pythagorean metric with respect to which convergence, divergence, contractions and attractors of 
orbits are being explored. 
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