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Recent and potential outbreaks of infectious diseases are triggering interest in predicting epidemic dynamics on
a national scale and testing the efficacies of different combinations of public health policies. Network-based simulations
are proving their worth as tools for addressing epidemiology and public health issues considered too complex for field
investigations and questionnaire analyses. Universities and research centres are therefore using network-based
simulations as teaching tools for epidemiology and public health education students, but instructors are discovering that
constructing appropriate network models and epidemic simulations are difficult tasks in terms of individual movement
and contact patterns. In this paper we will describe (a) a four-category framework (based on demographic and
geographic properties) to discuss ways of applying network-based simulation approaches to undergraduate students and
novice researchers; (b) our experiences simulating the transmission dynamics of two infectious disease scenarios in
Taiwan (HIV and influenza); (c) evaluation results indicating significant improvement in student knowledge of epidemic
transmission dynamics and the efficacies of various public health policy suites; and (d) a geospatial modelling approach
that integrates a national commuting network as well as multi-scale contact structures.
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1. Introduction

Network-based simulation approaches have gained accep-

tance as trustworthy means of investigating a wide variety

of epidemics (Boccara and Cheong, 1993; Axelrod, 1997;

Gilbert and Troitzsch, 1999; Alfonseca et al, 2000; Barrett

et al, 2003; Huang et al, 2004, 2005b; Schneeberger et al,

2004; Ferguson et al, 2005; Hsieh et al, 2005, 2006;

Sumodhee et al, 2005; Stroud et al, 2007). For the purposes

of training students and novice researchers, epidemiology

instructors from many disciplines are collaborating with

simulation researchers to recreate the transmission dynamics

of infectious diseases and to improve our understanding of

the efficacies of public health policies (Huang et al, 2005a;

Hsieh et al, 2006). However, computational epidemiology

researchers and instructors are still addressing individual

problems involving movement and contact patterns among

millions of people of different ages and with different

professions, educational levels, marital/partner statuses, and

levels of epidemiological resistance (Boccara and Cheong,

1993; Barrett et al, 2003; Huang et al, 2004, 2005b).

In addition, emerging and re-emerging infectious disease

outbreaks can develop randomly and unexpectedly depend-

ing on the breadth of early stage outbreaks, numbers of

randomly imported cases, infected individuals’ responses,

and contacts with other susceptible individuals (Barrett et al,

2003; Huang et al, 2004, 2005a, b). Public health policies

executed by health authorities also directly and indirectly

affect epidemic dynamics and spreading situations (Hsieh

et al, 2005). Furthermore, improper implementation and

the inappropriate timing of public health policy activation

occasionally produces such secondary impacts as disease

concealment and social discrimination against infected

patients and the health care employees who work with them

(Huang et al, 2004). In spite of these factors, most students

and novice researchers in public health and related disciplines

still use questionnaires or field investigation techniques when

studying epidemic outbreaks—a process that prevents many

from gaining a macro view of epidemic dynamics or from

assessing the potential efficacies of public health policies for

prevention and control.

Network-based simulations are proving successful for

solving individual movement and contact problems, explor-

ing epidemic dynamics, and assessing the efficacies of public

health policies (Barrett et al, 2003; Huang et al, 2004, 2005b;

Schneeberger et al, 2004; Ferguson et al, 2005; Hsieh et al,

2005, 2006; Sumodhee et al, 2005; Stroud et al, 2007). In

previous studies we have applied our social network

simulation experiences to the transmission dynamics of

HIV, SARS, and influenza in Taiwan (Huang et al, 2004,

2005b; Hsieh et al, 2005, 2006; Sumodhee et al, 2005). In this

paper we will explain our proposal for a four-category
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framework based on demographic and geographic proper-

ties, discuss ways of applying network-based simulation

approaches to undergraduate students and novice research-

ers, and describe our experiences simulating the transmission

dynamics of two infectious disease scenarios in Taiwan (HIV

and influenza). In doing so, we hope to clearly illustrate

existing challenges to building network-based epidemic

simulations. We hope that our pre-analysis framework and

two application examples will assist epidemiology students

and novice researchers in their efforts to predict the trans-

mission dynamics of emerging and re-emerging infectious

diseases, as well as to improve current public health policies

and immunization strategies.

2. Simulations for epidemiology and public health

education

Using computer simulations as a pedagogical tool is now

common in many scientific technology training and the

teaching of science concepts (Liao and Sun, 2001; Colpitts,

2002; Hsieh et al, 2006). Computer simulations are also

being used in epidemiology disciplines to support educa-

tional and training efforts based on constructivist learning

principles. In addition to mitigating learner obsession with

the minutiae of complicated procedures described in

epidemiological textbooks (Wenglinsky, 1998), simulations

provide multiple opportunities for ‘learning by doing’

(Oehme, 2000). Constructivists believe that learners draw

upon prior knowledge when forming new schema via

discovery learning (Bruner and Lufburrow, 1963). When

confronted with a new stimulus, learners apply their own

knowledge bases to accommodate new information and to

alter their existing schema (Piaget, 1978). When constructive

learning processes are embedded in epidemic simulations,

students can learn by doing, have more and better

opportunities for discovering interesting primary and

secondary epidemic issues, and gain hands-on experience

for dealing with real-world public health issues.

Instructional simulations exemplify problem-based learn-

ing. Originally developed for medical education in the early

1970s, problem-based learning is now considered a core

teaching model in over 60 medical schools (Savery and

Duffy, 1995). The use of simulations for learning and

teaching has two characteristics that make it compatible with

the theoretical foundations of problem-based learning:

1. Engagement. Students often request epidemic simulations

to assist with learning and to gain a sense of engagement

with real-world epidemiology problems. This allows for

the introduction of related concepts to the learning

process. There is no ‘perfect’ simulation, but simulations

can still support meaningful learning experiences as long

as scenario limitations are taken into account (Aldrich,

2004).

2. Interaction flexibility. Epidemic simulations can be used

with interaction and feedback methods to illustrate how

infectious diseases are spread under different conditions

and circumstances (Aldrich, 2004). Epidemiology pro-

blems are usually complicated and rarely have single

‘correct’ answers, which encourages learners to repeatedly

manipulate parameters. With sufficient practice, learners

or novice researchers can learn how to transfer their new

knowledge to real-world infectious diseases.

Learning through epidemic simulations has at least three

potential benefits:

1. Operational. Epidemiology problems often require exam-

inations of the influences of various public health policies

in specific environments. Using the SARS outbreak of

2003 as an example, epidemiologists may want to

measure the potential impacts of public health policies,

but it is impossible to do so when running real-world

experiments. Epidemiology instructors and students

can examine the influences of different public health

policies in different regions, and execute ‘what-if’ experi-

ments to study the emerging behaviours of infections

when irrelevant health policies are temporarily removed.

In short, simulations can be optimized for learning

(Bertsche et al, 1996).

2. Observational. Users can take epidemic simulation

processes and adjust their scales for observation pur-

poses, slow them down, or speed them up (Sumodhee

et al, 2005). Epidemic simulations not only allow novice

researchers to practice professional skills without having

to invest large amounts of resources, but are also

recognized as an efficient approach to reviewing or

proving epidemiological concepts. This protects them

from having to jump into high-risk situations for learning

purposes. In classrooms, post-simulation reports allow

teachers to determine which concepts their students have

mastered (Levy et al, 1995; Hargrave and Kenton, 2000;

Klein et al, 2004).

3. Construction. Epidemic simulations can be used to create

or explore environments. Using public health policy

assessments as an example, learners can practice predict-

ing developments that might result from different

combinations of public health policies. In classrooms,

epidemiology instructors can exert relatively precise

control over knowledge construction and accumulation

(Hargrave and Kenton, 2000).

Processes and goals associated with learning via epidemic

simulations differ from those associated with traditional

classroom and textbook-centred learning. Epidemic simula-

tion scenarios are often open-ended and poorly defined

(Hsieh et al, 2005), and problems frequently arise after
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simulations are started. We therefore suggest that novices

be required to use instruction-based manuals to run

epidemic simulations and to create professional quality

reports or presentations of their learning results. Teacher

preparation time will vary depending on the required

epidemiology background, scenario construction require-

ments, and instruction needed to help learners formulate

problem statements, collect data, run simulations, and create

reports. Evaluative techniques for learning results also differ

from those used in traditional classroom settings, and

require some training on the part of instructors.

In light of the amount of required background knowledge

(Hargrave and Kenton, 2000), we suggest using pre-instruc-

tional time to teach public health policy assessment and

epidemic outbreak prediction skills, and post-instructional

time to teach skills in epidemic simulation construction and

analysis. Both are appropriate for learning-by-doing experi-

ences. We designed a five-step epidemiology teaching process:

(a) introducing epidemiology knowledge and background

scenarios; (b) preparing a pre-test for guiding students to key

properties of an epidemiology issue; (c) creating step-by-step

instruction-based epidemic simulations with appropriate

sample data, user manuals for operating epidemic simula-

tions, and experiment design examples; (d) unrestrained

operating time, which allows students to construct and

develop their own experiments; and (e) post-tests or final

presentations to evaluate student understanding of the issue.

Since disease scenarios often have no single or absolute

approach, it is difficult to evaluate how well novice learners

understand the operational aspects of simulations. One

potential solution is to design constructive pre-tests and

post-tests. Using epidemic simulations associated with public

health policies as an example, novice learners may be asked

to compare the efficacies of different combinations of public

health policies before and after an epidemic simulation is

run. In addition, we have observed that novice learners

exhibit wide differences in terms of controlling simulation

parameters (Hsieh et al, 2006), and therefore suggest that

parameters be used as an evaluation criterion.

3. Network-based epidemic simulations

Compared to agent-based simulations, network-based simu-

lations rely more on relationships among individuals. Recent

mathematical studies and experimental simulations indicate

that the topological features of social networks exert

considerable influence on the transmission dynamics and

critical thresholds of infectious diseases, thereby supporting

subtle analyses that agent-based simulations are incapable of

performing (Moore and Newman, 2000; Barrett et al, 2003;

Huang et al, 2004, 2005a, b; Sumodhee et al, 2005; Kao

et al, 2006). Accordingly, epidemiologists are focusing on

the transmission dynamics of specific network models to

investigate in the spread of emerging infectious diseases.

Network-based simulations entail computer entities that

imitate contact patterns between individuals and apply state-

of-the-art computing technology to study the movement of

heterogeneous individuals. Lattice graphs have been applied

for purposes of determining distance relationships between

individuals. For example, von Neumann and Moore neigh-

bourhood concepts are commonly used in two-dimensional

lattice graphs in which one node’s four or eight adjacent

nodes are defined as neighbours, respectively (Gilbert and

Troitzsch, 1999). The use of two-dimensional lattice graphs

allows for the easy representation and measurement of

geographic spatial and distance concepts. In contrast,

random graphs support features associated with casual

contacts among mobile individuals in addition to the low

degree of separation commonly observed in social networks.

Two major modelling issues associated with network-

based epidemic simulations must be considered: choosing an

appropriate network model, and integrating knowledge and

properties of epidemiology issues into that model. Different

epidemiology issues require different network topology

structures for building epidemic simulations based on specific

contact patterns. For example, both sexual contact and

illegal drug use cause HIV infections and diffusion, but their

network topology structures are very different. Sexual

contact networks should be scale-free to reflect the power-

law statistical distribution of sex partners, but bipartite

networks are more likely to accurately reflect needle sharing

among injecting drug users (IDUs). Several network model

types can be adopted, including daily contact networks that

make use of individual activity records (Barrett et al, 2003;

Stroud et al, 2007) or bipartite networks composed of

individuals and most frequently visited places (eg homes,

train stations, school buses, workplaces, restaurants) (Kao

et al, 2006).

Data granularity and detail also affect network topology

structures: if a disease control agency can trace all IDU

activities, it is possible to use identified matches to build a

relatively precise daily contact network. In contrast, simula-

tions performed by researchers limited to knowing specific

locations where IDUs congregate require more assumptions

regarding contact patterns. Static demographic data (eg age,

gender, profession, educational level, marital status) can be

represented as the social network attributes of nodes. In

addition to well-constructed and appropriate assumptions,

individual movement and contact patterns require support in

the form of demographic, geographic, and transportation

data—for instance, average daily movement statistics for

railway passengers between counties and cities, statistical

distributions of family members per household in each

county, numbers of employees in workplaces, and numbers

of students in classrooms. For novice researchers interested

in network-based epidemic simulations, these requirements

pose significant challenges to the collection and analysis of

demographic, geographic, and related statistical data on

individual movement and contact patterns.
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In response to a wide variety of geographic and

demographic restrictions, we divided all network-based

epidemic simulations into four categories. The first category

reflects the use of real contact tracing for constructing

small-scale individual-to-individual contact networks. Using

the 2003 SARS outbreak as an example, health authorities

in Taiwan and Singapore attempted to construct contact

histories for all infected individuals in order to quarantine

anyone who had come into contact with a carrier.

The second category consists of individuals and locations,

with individuals passively connected by activity locations.

For example, saunas and bars frequented by homosexuals

can be viewed as activity locations bridging susceptible

individuals with HIV carriers; for illegal drug users, infection

locations include syringes and chemicals used for drug

dilution. To construct social networks for illegal drug users,

epidemiologists must determine how many times a user

shares a syringe with other users during 1 week/month, or

how many users share the same diluting agent in a single

session.

The third category reflects individual neighbourhood

concepts using statistical geographic properties. In the

absence of real contact data, epidemiologists may need to

build a specific and customized social network using well-

constructed and appropriate interaction and contact assum-

ptions. In previous studies we proposed a Cellular Automata

with Social Mirror Identity Model (CASMIM) consisting of

two layers: the upper layer is a simplified multi-agent system

for simulating heterogeneous cohorts, and the lower layer

contains two-dimensional cellular automata for retaining the

geographic mobility of individuals and for representing

real-world activity spaces (Figure 1) (Huang et al, 2004,

2005b). The social mirror identities that connect the two

layers establish CASMIM as a small-world social network

and preserve the properties of individuals who interact with

their neighbours within two-dimensional geographic spaces.

Those properties reflect such activities as long-distance

movement and daily visits to fixed locations.

The fourth category frequently requires significant sup-

port in the form of demographic or geographic data. For

example, Ferguson’s Southeast Asian influenza simulation

(Ferguson et al, 2005) uses statistical data for group density,

household size, age distribution, school and workplace

size, and individual travel information. The spread of HIV

among homosexuals serves as a negative example—that is,

movement, location, and means of sexual contact are less

obvious, making it more difficult to build a network-based

HIV epidemic simulation (Sumodhee et al, 2005).

The four properties considered most important for

building network-based epidemic simulations are:

1. Time scale. In the case of HIV diffusion via heterosexual

intercourse, frequency distributions of sexual behaviours

over 1 month or 1 year show power-law distribution

features (Schneeberger et al, 2004), but the same is not

true when the time scale is reduced to 1 day or 1 week.

It is also important to remember that different diseases

have different incubation periods (5 days for SARS

versus 6 months to 20 years for HIV) and immunization

periods.

2. Geographic scale. Care must be taken when selecting this

scale. Whereas CASMIM can be applied to simulate

Figure 1 Cellular Automata and Social Mirror Identity Model (CASMIM).
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SARS outbreaks in modern cities such as Taipei or

Singapore, simulating multi-region epidemic dynamics

requires additional demographic data. One possible

solution is building a separate CASMIM for each city

and measuring transportation flow between paired cities.

For example, a new form of influenza tends to be

expressed as a large-scale epidemic, therefore models for

countries that have multiple regions require the con-

sideration of cross-border transportation networks.

Building a social network for any modern city with an

established mass transportation system must assume

a strong and varied mix of human movement, which

can affect considerations of inter-regional transportation.

3. Data dependency. Data granularity determines the best

method for building a network model. Using homosexual

HIV diffusion as an example, a situation in which data

are limited to frequency distributions of sexual contact

restricts modellers to using abstract von Neumann and

Moore neighbourhood concepts (Huang et al, 2005b).

However, if movement within a high-risk contact group

can be traced, modellers can create simulations capable of

predicting further development.

4. Extendability. Due to the diversity of data collected for

epidemiology issues, simulations of specific infectious

diseases often require modifications to existing network

models. For example, the homogeneous mixing hypoth-

esis used in random networks assumes that all members

of a group are well-mixed (ie equal probabilities exist for

contact between any two members), but data on sexual

contact or needle sharing do not support this hypothesis.

Therefore, extendibility is a major concern when applying

an existing network model to new epidemic simulations.

In the next two sections we will share our modelling

experiences to construct network-based epidemic simula-

tions. We applied an event-driven programming concept to

implement the user and input/output interfaces of epidemic

simulations. In addition to providing specific statistical

reports and charts presenting experimental results, the two

epidemic simulations let learners use browser windows to

observe real-time infection situations in an agent society. For

a detailed description of our epidemic simulations, please

contact the corresponding author.

4. HIV simulation

According to annual statistics presented by Taiwanese health

authorities (World Health Organization (WHO), 2003), the

number of HIV-1-infected patients increased nationally from

861 in 2003 to 1519 in 2004 to 3386 in 2005 (Table 1). The

proportion of IDUs in this population increased from 8.6%

in 2003 to 35.8% in 2004 to 71% in 2005 (Sumodhee et al,

2005). In light of these sharp increases, government

agencies initiated several projects aimed at identifying at-risk

populations and controlling the rate of new infections. Due

to our success simulating the 2003 SARS outbreak (Huang

et al, 2004, 2005b), we were asked by the Taiwan Centers for

Disease Control (CDC) to collaborate with Professor

Yi-Ming A. Chen of the AIDS Prevention and Research

Center of National Yang-Ming University to build a

network-based epidemic simulation capable of predicting

HIV-1 infections among Taiwanese IDUs.

4.1. Data collection

We used data on HIV-positive Taiwanese gathered between

1984 and 2008. In addition, between November 2004 and

December 2006 we collected HIV-1-seropositive blood

samples and conducted questionnaire interviews with 518

inmates living in four detention centres and two prisons

across Taiwan; 3% were teenagers, 73% adults, and 24%

adults 60 years of age or older (mean age 32.677.7). The

large majority (505, or 97.4%) described themselves as

IDUs. The women in our sample were three times more

likely than their male counterparts to have had sex partners

who were also IDUs (65.8% versus 19.4%). On average,

each IDU shared a drug dilution chemical with two or three

other IDUs between two and three times per month; 86.9%

stated that they had shared at least a heroin diluent, and

98% said they had shared either diluent or syringes. Results

from a logistic regression produced 17.2, 34.0, and 46.7 odds

ratios for sharing heroin diluent, sharing syringes, or sharing

both diluent and syringes, respectively. In summary, the

major causes of HIV-1 infection among the IDUs in our

sample were identified as syringe sharing, heroin dilution

sharing, low education level, and number of IDUs using the

same syringe.

Table 1 Numbers of HIV-1 infections in Taiwan from January
1984 to December 2008

Year Number of HIV-1 cases per year

1984 9
1985 15
1986 11
1987 12
1988 29
1989 43
1990 36
1996 277
1997 348
1998 401
1999 478
2000 530
2001 654
2002 771
2003 861
2004 1519
2005 3386
2006 2924
2007 1935
2008 1752
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4.2. Simulation model

Since our data were limited to the average number of

syringe- and diluent-sharing events per month and average

number of persons sharing them per occasion, we treated

users as abstract neighbours when developing a bipartite

network model based on our social mirror identity concept

(Figure 2). The model consisted of two layers connected by

social mirror identities: an upper layer representing real-

world high-risk locations and a lower layer for simulating

IDUs. The individual labeled ‘P’ in Figure 2 visited more

high-risk places than the other IDUs; ‘L’ marks a frequently

visited gathering place.

The time unit used in this simulation was equivalent to

1 month in the real world; results and epidemic curves are

reported for each year. We used the average number of

syringe and diluent-sharing events per month to represent

the number of social mirror identities owned by a lower layer

IDU. For the upper layer we used the average number of

persons sharing either syringes or a chemical diluent during

each occasion to represent the number of IDUs gathered at

a high-risk location (Figure 2). Real-world IDU gathering

places are located throughout the country and in multiple

locations in individual cities, meaning that the spread of HIV

among different high-risk locations has no effect on local

spreading. In contrast, note that our SARS simulation

CASMIM incorporated the effect of local spreading, mean-

ing that SARS could still spread to any other location via

transmission between local neighbours in the absence of

social mirror identities or shortcuts. Since these high-risk

locations are not adjacent, the same CASMIM is inap-

propriate for simulating HIV transmission among IDUs.

While we were able to obtain data on the statistical

distribution of shared syringe and diluent events, we had no

data on the statistical distribution of IDUs visiting each

location. According to the most common topological

features of social networks, we assumed that this reflects

a power-law connectivity distribution. However, we had

insufficient empirical data for model validation—especially

since the reported number of infected individuals may not

have contained concealed cases. This situation shows how

difficult it is to build an HIV epidemic simulation without

sufficient support in the form of demographic data for

building detailed syringe- and diluent-sharing rules for

IDUs.

4.3. Discussion

The gray bar in Figure 3 represents the 19 years (1984–2002)

of HIV data used for model training and fitting, and the

black bar represents 6 years (2003–2008) of data used for

model testing and validation.1 For each simulation we

activated a harm reduction policy in December 2005

(simulation time step 264) and increased the policy

participation rate from 30% to 80% in June 2006 (time

step 270). Prediction results are presented as the curves

marked with squares: pre-2006 results were well above actual

2003–2008 HIV epidemic curves (eg 1047 cases predicted for

2003 compared to 861 actual) and post-2007 results were

below the actual number (1782 versus 1935).

Taiwanese health authorities initiated an HIV harm

reduction policy in December 2005. Despite the low policy

participation rate (30%), it exerted a strong positive effect

in terms of bringing the HIV epidemic under control by

reducing the number of new HIV-positive cases from 3386

to 2924 by the end of 2006. This represents the first decrease

in the number of new HIV cases in Taiwan since 1986. A

stronger harm reduction policy was activated in June 2006,

Agent #7

Location #3Location #1 Location #2 Location #4 Location #n

Agent #1 Agent #2 Agent #3 Agent #4 Agent #5 Agent #6 Agent #8 Agent #m

L

High-risk locations

Injecting drug users

P

Figure 2 Bipartite relations among injecting drug users (IDUs) and their meeting locations.
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resulting in a further decrease in the number of new HIV-

positive cases to 1935 by the end of 2007. Our 2002–2010

simulation results also indicate a decreasing trend and

suggest that an ongoing harm reduction plan would both

lower the number of new HIV-positive individuals and

reduce the HIV reproduction number from 28 (during 1984–

2006) to 1.1 (during 2007–2008).

4.4. Evaluation results

Participants were 14 graduate students recruited from a 2008

infectious disease informatics course taught as part of Chang

Gung University’s Advanced Biotechnology Education

Program. Students worked in pairs to design simulations

and to discuss results. For each of two experiments, students

were given a pre-test to determine their understanding of

(a) HIV transmission dynamics among IDUs, and (b) harm

reduction policies activated by Taiwanese health authorities

in December 2005. Participants were also given verbal and

written information on simulation goals and a post-test to

measure the effects of the simulation activity on learning.

Each pair was given a user manual for running simulations.

After the end of the experiment we evaluated student

knowledge on the HIV epidemic, the role of IDUs in HIV

transmission, and harm reduction policies. As predicted,

results from a paired sample t-test indicated statistically

significant improvement in the students’ overall under-

standing of HIV epidemic dynamics among IDUs and the

efficacies of various harm reduction policies based on

different participation rates (Table 2).

5. Influenza simulation

Up to two billion people may be susceptible to the next high

pathogenic influenza virus; the predicted mortality rate will

approach 65% (WHO, 2008). According toWHO surveillance

reports (WHO, 2007), a novel influenza virus is inevitable, yet

it is impossible to predict when and in what form the virus will

invade individual countries, or how it will specifically threaten

the health of individuals. Taiwanese health authorities have

already announced three major public health policies:

vaccines, antiviral drugs, and rapid containment operations.

As part of this programme, starting in 2006 we participated in

a 2-year project managed by the Taiwan CDC to work with

sociologists to develop a multi-region influenza simulation for

the entire country. Lacking epidemiological data for prior

outbreaks, we simulated the transmission dynamics of

seasonal influenza and assessed the efficacies of prevention

and public health policies to determine the optimal application

timing of vaccine and antiviral drug responses.

5.1. Data collection

We used transportation data to establish a model of daily

inter- and intra-regional contact between individuals—

specifically, statistics for the average daily movement of

railway passengers between counties and cities (Institute of

Transportation, Executive Yuan, Republic of China, 2008).

Demographic data from the 2006 Social Indicators Report

(Directorate General of Budget, Accounting and Statistics,

Executive Yuan, Republic of China, 2006) published by the
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Figure 3 A comparison of actual and predicted1 HIV epidemic curves from 2003 to 2010 in Taiwan.

1
In this prediction simulation, we averaged 1000 independent experi-
ments to obtain the mean value of error in the epidemic parameter
space, then chose parameters and named the optimal parameters with
minimal mean error. As shown in the figure, the prediction result
corresponds to the best one (ie minimal error) among 30 simulations
under the optimal parameters. The parameters did not change with
time—that is, predictions are only valid for cases with no additional
interventions.
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Taiwanese government were used to assign individuals to

various locations. These data include statistical distributions

of family members per household in each county, numbers

of employees in workplaces, and numbers of students in

classrooms. We combined data in an effort to achieve an

approximate understanding of the overall distribution of the

number of persons in each regularly visited activity location.

As shown in Table 3, most activity locations had fewer than

10; exceptions included movie theatres and classrooms, each

with 40 or more.

5.2. Simulation model

Based on our SARS modelling and simulation experience,

we knew that CASMIM is suitable for simulating the

transmission dynamics of contagious diseases in well-mixed

but not in poorly mixed modern cities. We therefore assigned

a separate CASMIM to each county, with model scale

determined by the number of counties included in the overall

simulation. Each CASMIM model cell represented one

real-world activity location (household, classroom, train

station, etc), and the number of individuals in each cell was

assigned according to the statistical distribution of numbers

of observed persons in regularly visited locations. Railway

transportation data were used to represent inter-county

movement, with each instance representing a pair of social

mirror identities belonging to the same individual but in

different counties. Social mirror identities for the majority

of individuals stayed within the same county. Since the

incubation period for influenza is only 1–3 days, the simula-

tion time unit in this simulation was equivalent to 1 day in

the real world.

The epidemiological progress states for influenza shown in

Figure 4 are the same as those described by Longini et al

(2005) and used in Stroud et al’s influenza simulation

system (Stroud et al, 2007). Separate epidemiological

Table 2 Statistical results for (a) HIV and (b) Flu simulations pre-tests and post-tests

Question set Pre-test score Post-test score t-test p-test

M SD M SD

(a) HIV simulation
Set 1. Understanding of HIV epidemic concepts

and comparisons of actual and predicted
HIV epidemic curves from 2003 to 2010
in Taiwan.

6.57 0.73 8.14 0.83 �5.08 Po0.001

Set 2. Understanding of harm reduction policies
associated with HIV and assessing efficacies
according to different participation rates
and activation dates.

6.71 1.03 8.29 0.45 �5.08 Po0.001

(b) Flu simulation
Set 1. Understand of epidemiology concepts

associated with influenza and transmission
dynamics of the 1918 influenza pandemic.

5.63 1.15 7.77 1.26 �5.89 Po0.001

Set 2. Assessing and analysing the prevention
effects of five public health policies at low
and high regional densities and with three
policy activation dates (10/1B10/07,
10/22B10/28, and 11/19B11/25).

5.13 0.62 6.68 0.9 �6.86 Po0.001

Set 3. Assessing and analyzing the cost-efficacies
of five public health policies at low and high
regional densities with three policy activation
dates (10/1B10/07, 10/22B10/28, and 11/19B11/25).

5.68 0.47 6.40 0.49 �5.41 Po0.001

Table 3 Statistical of numbers of persons in regularly visited
locations such as households, workplaces, and classrooms

Number of persons in
regularly visited locations

Percentage of regularly
visited locations

1 9
2 28
3 14
4 22
5 13
6 5
7 4
8 1

15 1
25 1
30 1
35 1
40 0.3
45 0.3
50 0.3
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progress states were implemented for four demographic

categories: preschool (younger than 5 years), youth (between

5 and 21 years), adult (between 21 and 65 years), and senior

(older than 65 years). Base infection rate (infectivity level)

was established as 0.21888 per contact per day for adults and

symptomatic seniors, and 0.43680 per contact per day for

symptomatic preschoolers and youth. The rate of asympto-

matic infectious individuals was equal to one-half the base

infection rate (Figures 4 and 5).

A weak point of our multi-region influenza simulation

model was its lack of network topology properties for an

epidemic simulation model consisting of multiple poorly

mixed cities. Unlike a well-mixed modern city, modellers

cannot assume that the interaction and contact networks

of individuals distributed among multiple counties have

small-world properties. Furthermore, there is a lack of

epidemiological data for recent novel influenza pandemics to

use for empirical validation. Some epidemiologists have

constructed simulations of the 1918–1919 influenza pan-

demic (Stroud et al, 2007), but we believe the network

topology structure of modern counties is far different from

that observed in 1918. Despite these weaknesses, we used our

multi-region influenza model to simulate the transmission

dynamics of seasonal influenza and to assess the efficacy of a

vaccine policy and related public health policies under

different conditions and in different regions.

5.3. Discussion

We used two assessment indicators—prevention effect and

cost-efficacy—to replace previously employed epidemic

curves to help epidemiologists and public health experts

assess the efficacies of public health policies. The first

indicator (Equation 1), prevention effect, was used to

evaluate the effect of specific public health policies; its value

was set at >1 to produce better prevention effects (for values

o1, the policy actually supports the spread of a disease). By

comparing different policies at this level, public health

experts can identify the best public health policy. The second

indicator (Equation 2), cost-efficacy, was used to evaluate

the prevention effect per unit cost; it was given a positive

value to achieve better prevention effects (when the

value¼ 0, the policy has no preventive effect). Public health

experts can use the same benchmark to make decisions for

2.
Incubating #1
Asymptomatic
Non-infectious

All-day histogram
{0.3, 0.497, 0.203}

3.
Incubating #2
Asymptomatic

Infectivity = 0.15xi
Stage duration: 1 day

4.
Symptomatic circulating #1

Infectivity = i
Stage duration: 1 day

5a.
Asymptomatic infectivity #1

Infectivity = 0.5xi
Stage duration: 2 days

5b.
Symptomatic circulating #2

Infectivity = i
Stage duration: 1 day

5c.
Symptomatic non-circulating #1

Infectivity = i
Stage duration: 1 day

6a.
Asymptomatic infectivity #2

Infectivity = 0.125xi
All-day histogram

{0.13, 0.365, 0.325, 0.18}

6b.
Asymptomatic infectivity #3

Infectivity = 0.125xi
All-day histogram

{0.13, 0.365, 0.325, 0.18}

6c.
Symptomatic non-circulating #2

Infectivity = 0.25xi
All-day histogram

{0.13, 0.365, 0.325, 0.18}

6d.
Complications / hospitalized

Infectivity = 0.25xi
Uniform stage duration:

5 to 9 days

7.
Convalescent
Infectivity = 0
Uniform stage

Duration: 5 to 9 days

(i = Transmissions rate / Contact-day)
Senior    0.50      0.21888
Adult    0.50      0.21888
Youth    0.75      0.43680
Preschool    0.80      0.43680
h = 0.11 hospitalizations per individual symptomatic
f = 0.02 fatalities per individual symptomatic
Reduce i and f by 80% 2 weeks after vaccination
Reduce i and f by 80% during antiviral treatment
Reduce susceptibility by 60% during antiviral treatment

1.
Susceptible

1a.
On antivirals

8a.
Immune

8b.
Deceased

0.667

0.333

1 - C

C

(1 - h)/C

h/C

0.8: vaccinated

(1 - f)/C

f/C

Figure 4 Epidemiological progress states of epidemic influenza disease manifestations for four age categories with no treatment
(Longini et al, 2005; Stroud et al, 2007).
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the best timing of public health policies in response to a

novel influenza.

Prevention effect ðPolicyAÞ

¼Total infected cases without activating any policy

Total infected caseswithA activated
2 0;1½ �

ð1Þ

Cost Efficacy ðPolicyAÞ

¼
Total infected cases with activating any policy�

Total infected cases with A activated
Total consumed resource costs of A

ð2Þ

We used our influenza simulation to compare prevention

effects and cost-efficacy for five public health policies, two

regional densities (low and high), and three policy applica-

tion dates (the first at 10/1B10/07, the fourth at 10/22B10/

28, and the eighth at 11/19B11/25). The five public health

policies and corresponding objects were (a) give the vaccine

to randomly chosen individuals, (b) track and inoculate

individuals coming into contact with infected individuals,

(c) strongly encourage hand washing and mask-wearing by

the general public during the influenza season, (d) enforce

home quarantines for infected individuals until they recover

and for individuals who have come into contact with them

for a minimum of 8 days, and (e) give anti-virus medicine in

advance to all individuals. As shown in Table 4, the two best

public health policies were giving vaccines to randomly

chosen individuals and the use of anti-virus medicines;

encouraging hand washing and mask-wearing was the third

best. All three policies were more effective when activated as

early as possible, with little difference in effect between

activating the policies in late October and late November.

Our main conclusions derived from the simulation results

were (a) hand washing and mask-wearing by the general

public during the influenza season is the most cost-effective

policy, and (b) using anti-virus medicine in advance is more

cost-effective than buying and using a mix of vaccines and

anti-virus medicines (Table 4).

5.4. Evaluation results

Participants were 22 graduate students recruited from

a spring, 2009 data mining course given by the Department

of Computer Science and Information Engineering at Chang

Gung University. Most of the participants had no previous

knowledge of or experience with influenza epidemiology.

Students worked in pairs to construct simulations and to

discuss results. Each participant pair was asked to conduct

three instructional experiments. For each experiment they

were given a pre-test to examine their understanding of

transmission dynamics of the 1918 influenza pandemic and

five public health policies that were established in response

to the pandemic, verbal and written information on simula-

tion goals, and a post-test to determine the effects of the

simulation on learning. Each pair was given an instructional

manual for running multi-region influenza simulations. As

shown in Table 2, results from a paired-sample t-test of

evaluation scores indicate statistically significant improve-

ment in the students’ overall understanding of 1918 influenza

transmission dynamics and public health policies.

Figure 5 Northern Taiwan commuter network.
Each node represents a city or town and each edge represents a commuter connection. Node size reflects the percentage of persons
who work and live in the same city. Edge thickness reflects the number of commuters travelling between cities.
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6. Multiple-scale epidemiological dynamics for the

geospatial diffusion of directly transmitted infectious

diseases

Using high quality epidemiologic data to understand the

mechanisms underlying the geographic spread of diseases is

central to devising spatially targeted prevention and control

strategies, a task requiring comparisons of potential out-

comes among control measures. Spatial simulation model-

ling represents a practical approach to helping policy makers

decide among various combinations of control strategies in

response to real and potential disease epidemics. In this

section we will describe a multi-scale simulation process to

support the efforts of students, academic researchers, and

policy makers to study the spatial dynamics of epidemics

and to observe various control measure scenarios.

6.1. Data collection

The diffusion of directly transmitted (droplet and air-borne)

diseases results from close human contact and population

movement. Accordingly, contact structures and commuting

routes between homes and workplaces play important roles

in spatial dynamics. To determine the role of commuters in

disease transmission, we used data from the 2000 Taiwan

Census Database to create a link-node network structure in

order to simulate complex relationships between cities and

towns. Figure 5 is an illustration of the commuter network in

north Taiwan (the country’s economic, cultural, and political

centre). It consists of 359 nodes (cities or towns) and more

than 120 000 edges (commuter connections between cities).

We calculated contact density as the number of commuters

between cities multiplied by each city’s population density.

6.2. Simulation model

To simulate different contact patterns at different levels, we

constructed the four-layer multi-scale model shown in

Figure 6. To model intra-city contacts and to reflect different

contact structures among age groups, we divided the

population into children (younger than 15 years), adults

(16–64 years), and seniors (older than 65 years). Layer 1

addresses population contact within the same age group,

with Susceptible, Exposed, Infective and Removed (S-E-I-R)

statuses used as governing equations to simulate disease

transmission. The Susceptible-to-Exposed transmission

process begins with the initial transmission of a very small

number of pathogens. During the early part of the Exposed

stage, pathogens reproduce but remain below a threshold

for active transmission to other Susceptible individuals. After

Table 4 Comparisons of (a) prevention effects and (b) cost-efficacies among five public health policies

Public health policy Activated at the
beginning of October

Activated at the
end of October

Activated at the
end of November

(a) Prevention effects
Densely populated region #1 40.34 10.63 3.00

#2 2.16 1.98 1.62
#3 28.68 6.92 2.65
#4 1.84 1.67 1.45
#5 41.55 7.38 2.64

Sparsely populated region #1 14.79 5.60 2.05
#2 3.85 3.00 2.14
#3 10.83 5.02 3.26
#4 1.86 1.80 1.46
#5 15.11 6.96 3.38

(b)Cost-efficacies
Densely populated region #1 0.81 0.75 0.55

#2 0.45 0.41 0.32
#3 1.39 1.23 0.90
#4 0.01 0.01 0.01
#5 0.81 0.72 0.52

Sparsely populated region #1 0.28 0.25 0.20
#2 0.22 0.20 0.16
#3 0.48 0.42 0.36
#4 0.01 0.01 0.01
#5 0.28 0.26 0.21

Note: #1: Inoculate individuals at random; #2: Locate and inoculate those who have come into contact with infected individuals; #3: Encourage hand
washing and mask-wearing by the general public during the flu season; #4: Quarantine infected individuals until complete recovery and home
quarantine individuals who have come into contact with them for a minimum of 8 days; #5: Give anti-virus medicine in advance for prevention
purposes.
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a certain period in which individuals move from Exposed

to Infective status, the number of pathogens becomes

sufficiently large for transmission to other Susceptible hosts.

Eventually the host enters the Removed stage in which it

achieves a state of immunity or dies.

Layer 2 addresses the difference in contact densities

between two age groups. Layer 3 addresses regional

commuting between population centres. We assumed that

children and seniors are immobile, since the bulk of their

activities occur close to their homes. In contrast, adults are

more likely to move between fixed geographic locations on a

daily basis, increasing their likelihood of carrying pathogens

between two or more populations. Layer 4 addresses the

national commuting network that can be used to simulate

daily population movement throughout Taiwan. The link-

node network structure is used to determine disease

dynamics among cities.

6.3. Discussion

Developing appropriate prevention and control measures

entails making and monitoring the results of multiple rules

and decisions made at different points during an epidemic.

Conflicts among decision criteria for different strategies are

inevitable, and our proposed multi-scale simulation frame-

work can help decision makers test and refine different

strategies at different layers. For example, Layer 1 can be

used to simulate and evaluate a vaccination policy by

changing transmission rates among groups at greater risk of

infection (eg children or seniors). This would allow for the

testing of social distance measures such as school closures.

Layer 2 can be used to evaluate quarantine strategies by

changing contact rates among different age groups, Layer 3

can be used to evaluate travel restrictions by changing

regional contact rates among cities, and Layer 4 can be used

for the same purpose by changing the structure of the

commuting network. By analysing multi-scale interactions,

decision makers can prepare themselves for making rapid

proactive intervention decisions in response to identified

outbreak transmission pathways.

Furthermore, our simulation framework can provide

additional geospatial insight into epidemiological processes

underlying control measures. Spatial orientation and visua-

lization are necessary when monitoring disease progression

and generating potential control strategies. We incorporated

a geographic information system (GIS) into our multi-scale

simulation framework in order to capture spatial variation in

disease transmission throughout Taiwan. The GIS supports

a visual analysis of the spatial impacts of individual control

measures. Combining multi-scale simulations, spatial visua-

lization, and geographic information can clarify spatial and

temporal characteristics in support of potential pandemic

preparation and control measures.

7. Conclusion

In this paper we proposed a pre-analysis framework for

network-based epidemic simulations for purposes of training

students and novice researchers, and gave framework

reduction and extension examples in terms of collected

geographic and demographic data. Epidemiologists can use

this information to support such tasks as analysing

spreading situations and outbreak patterns, predicting future

transmission dynamics, and assessing the efficacies of public

health policies for disease prevention and control, vaccine

development, and other efforts to fight epidemics. We also

described two sample cases to discuss applications of

City k

City j

City i Age Groups

Children

Adult
Senior

S-E-I-R Process

City i

City j

Layer 1:Contact between
same age groups.

Layer 2:Contact between
different age groups
in the same city.

Layer 3:
Regional contact
between cities.

Layer 4:
Nationwide
commuting network.

Figure 6 Multi-scale framework for epidemiologic dynamics simulation.
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network-based epidemic simulations. Our experiences in

teaching epidemiological modelling and simulations have

allowed us to identify three challenges for instructors: choice

of a suitable network model, preparation for instruction-

based teaching, and evaluating student understanding.

Network-based simulations for solving epidemiology issues

require more demographic and geographic data support and

larger amounts of initial domain knowledge. In other words,

most epidemiology issues require collaborations among

computer scientists, sociologists, epidemiologists, and policy

decision-makers.
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