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Simulations, Models, and Theories: 
Complex Physical Systems 
and Their Representations 

Eric Winsberg?$ 
University of South Florida 

Using an example of a computer simulation of the convective structure of a red giant 
star, this paper argues that simulation is a rich inferential process, and not simply a 
"number crunching" technique. The scientific practice of simulation, moreover, poses 
some interesting and challenging epistemological and methodological issues for the 
philosophy of science. I will also argue that these challenges would be best addressed 
by a philosophy of science that places less emphasis on the representational capacity 
of theories (and ascribes that capacity instead to models) and more emphasis on the 
role of theory in guiding (rather than determining) the construction of models. 

1. Introduction. There are many complex phenomena in the physical world 
which, from an epistemological point of view, share a curious character- 
istic. These are systems for which the governing laws of physics are well 
understood but, due to the complexity of interactions that develop, the 
implications of these laws are not. These systems, generally chaotic and 
nonlinear, are typically studied using the techniques of computer simula- 
tion. 

The term 'computer simulation' is used to describe a wide variety of 
different applications. This paper will focus on the particular techniques 
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of simulation that are used to study the kinds of systems described above. 
In other words, I will be talking about the use of computers for modeling 
very complex physical phenomena for which there already exist good, well- 
understood theories of the processes underlying the phenomena in ques- 
tion. These computational techniques, often called simulations, have as 
their aim the understanding and representation of the complex phenomena 
they model. 

Why should a scientific practice that already begins with good theo- 
retical understanding be of interest to philosophers of science? Once we 
acquire a good theoretical understanding of a phenomenon, must not all 
of the scientific work that could be of philosophical interest be over? In 
this paper I will argue to the contrary. I will argue that the scientific prac- 
tice of simulation poses some interesting and challenging epistemological 
and methodological issues for philosophers of science. I will also argue 
that these challenges would be best addressed by a philosophy of science 
that places less emphasis on the representational capacity of theories (and 
ascribes that capacity instead to models) and more emphasis on the role 
of theory in guiding, rather than determining, the construction of models. 

First I give an overview of the techniques of simulation I am concerned 
with in this paper. I focus my overview of the methods of simulation on 
the role played by a series of different levels of models. In Section 3, I 
describe the work of a group of astrophysicists using simulation to study 
the convective structure of red giant stars. In Section 4, I discuss some of 
the distinct epistemological characteristics that are exhibited by simulation 
studies and argue that these characteristics are novel to the philosophy of 
science. I argue that the realization and sanctioning of simulation results 
relies on many resources that come from outside of the domain of theory, 
even when the system in question is theoretically well understood. In Sec- 
tion 5, I argue that we should take a fresh look, in the light of an inves- 
tigation of simulation modeling, at what we take to be the nature of the 
relationship between scientific theories and their empirical consequences. 
In Section 6, I draw connections with some recent philosophical work on 
models. In the last section, I make some concluding remarks. 

2. Simulation Techniques. Let me begin by giving a rough sketch of the 
kinds of techniques that are at issue. As an illustration, let us suppose that 
we are confronted with a physical system of which we would like to gain 
a better understanding: a severe storm, a gas jet, or the turbulent flow of 
water in a basin.' The system in question is made up of certain underlying 

1. Compare Wilhelmson et al. 1990 on the simulation of a severe storm, Smarr 1985 
and Kaufmann and Smarr 1993 on the simulation of intergalactic gas jets, and Moin 
and Kim 1997 on simulations of turbulence. 
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components that behave according to a well-established set of physical 
laws. We begin with the assumptions that we know what these components 
are, and that we know the laws that govern them. 

The assumptions we have made about our system allow us write down 
a set of partial differential equations. These differential equations repre- 
sent the exact determination of how the system will evolve through time, 
as given by the physical model and the laws that describe it. The problem 
is that when these underlying components of the system (i.e., solid parti- 
cles, parcels of fluid, etc.) interact in the manner that we suppose they do 
in our physical system, the mathematical equations of our model have an 
unfortunate feature. In the types of systems that the simulation modeler 
is concerned with, it is mathematically impossible to find an analytic so- 
lution to these equations-the model is said to be nonintegrable. That is, 
it is impossible to write down closed form equations (i.e., equations given 
in terms of known mathematical functions) which represent an exact so- 
lution to the set of differential equations and will thereby tell us what the 
system will do over time. 

The approach that the simulationist takes to this problem involves turn- 
ing differential equations, which relate continuous rates of change over 
infinitesimal intervals, into difference equations, which relate rates of 
change over finite, or discrete, intervals. The values provided by these 
difference equations can then be calculated by a digital computer, from 
one discrete moment of time to the next. 

A point that is crucial to my argument in this paper, however, is that 
simulation is frequently not a simple matter of number crunching. The 
reason for this is quite simple. In the study of complex non-linear systems, 
the full set of differential equations determined by the kind of purely theo- 
retical reasoning I have discussed so far is often both computationally and 
analytically intractable. In other words, there is usually insufficient time 
and computer power to crunch through these equations with enough ac- 
curacy to be useful. One of the most common reasons that this problem 
arises is the fact that often, especially in systems involving complex fluid 
flows, there are motions that occur on very small time and length scales 
that are very important to the evolution of the system as a whole. Any 
reasonable attempt simply to crunch through the equations will end up 
leaving some of these important features behind. The upshot is that if a 
simulation study is to be successful at accurately representing the motions 
of a complex non-linear system, many "tricks of the trade" need to be 
employed. In the end, the process becomes much more complicated than 
simply a matter of substituting difference equations for differential equa- 
tions, and numerical calculation for true integration. 

Transforming the continuous differential equations of a dynamical 
model into discrete algebraic equations that can be cranked out by the 
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computer is only the first step of the process. Even though this solves the 
problem of analytical intractability, the new model also must be made 
computationally tractable. Simulationists use ad hoc modeling assump- 
tions to help make their computational models more tractable and man- 
ageable. 

Ad hoc modeling assumptions include such techniques as simplifying 
assumptions, removal of degrees of freedom, and even substitution of sim- 
pler empirical relationships for more complex but also more theoretically 
founded laws. This model making can be eliminative or creative. The mod- 
eling can involve eliminating considerations from the dynamical model, 
or making up new ones. Sometimes the simulationist will ignore important 
factors or influences from their computational models because limitations 
of computational power make their inclusion impractical. This is what I 
refer to as eliminative ad hoc modeling. In this case, the simulationist has 
one of two options: either to assume that the effects of this neglected factor 
are negligible or to make use of some sort of empirical "fudge factoro-- 
creative ad hoc modeling-to make up for the absence of the neglected 
factor. 

Ad hoc models typically involve some kind of relatively simple math- 
ematical relationship that is designed to approximately capture some 
physical effect in nature. When appropriately "coupled" to the more theo- 
retical equations of a simulation, they allow the simulation to produce 
results that are more realistic than they could have been without some 
consideration of that physical effect. 

3. A Model Star. A concrete example will help to clarify the remarks in 
the previous section. Consider the work conducted by David Porter, Steve 
Anderson, and Paul Woodward of the University of Minnesota's Labo- 
ratory for Computational Science & Engineering (LCSE). Their research 
focuses on the convective properties of red giant stars using techniques of 
simulation (Porter, Anderson, and Woodward 1998; Jacobs, Porter, and 
Woodward 1998). The group's interest in this species of star stems from 
the fact that these stars are convectively unstable almost all the way 
through to the core. In younger stars, heat from nuclear fusion finds its 
way to the surface primarily through radiative diffusion. Only during the 
cooler last third of their journey is this heat transported by convective 
motions of stellar gas. But in a red giant, the complex and turbulent pro- 
cess of convection begins much nearer to the core, and so these stars ex- 
hibit particularly complex and unstable motions of fluid. 

Modeling the convective movement of energy through this system is 
correspondingly difficult. Very small changes in temperature, pressure, 
and density in one part of the system may lead to turbulent vortices else- 
where; small surface eddies can lead to large convective flows. Thus, if the 



S446 ERIC WINSBERG 

model is to capture large-scale effects with any degree of accuracy, it must 
take into account the effects that take place on small scales-without the 
computations overwhelming the computing system. 

The basic equations that govern the model are the Euler equations for 
fluid dynamics. These are relatively simple forms of fluid dynamical equa- 
tions. They are based on the laws of conservation of mass, momentum, 
and energy. They ignore viscosity but include the effects of compressibility 
(Porter and Woodward 1994). The use of the inviscid Euler equations is 
an example of eliminative ad hoc modeling. Viscosity is clearly present in 
the flow of gas in a star and, in fact, contributes to the dynamics in crucial 
ways. It does so, however, at length scales which are far too small to be 
tracked by a reasonable computer program. The researchers deal with this 
problem using what I call creative ad hoc modeling-making up a factor 
to replace the one that has been removed. Here is how they describe the 
situation in their own model: 

Viscous effects, which act only on tiny scales unresolvable by the com- 
putational grid, were approximated by a carefully formulated numer- 
ical viscosity. This viscosity of the numerical scheme dissipates kinetic 
energy of fluid motion into heat, like the real viscosity of the gas, but 
on the much larger scales of the computational grid. This numerical 
viscosity was carefully designed to restrict its dissipative effects to the 
shortest length scales possible, consistent with accurate representation 
of the nearly inviscid flow on the longer length scales. (Porter, An- 
derson, and Woodward 1998) 

The researchers made many other modeling assumptions. Since they 
were primarily interested in the star's envelope, and not the core, the core 
was treated as a simple heat source, without regard to the internal physics. 
The model core was also much larger (relative to the envelope) than a real 
core, in order to allow the core to be closer to spherical without altering 
the grid structure of the simulation. 

The model also needs to track how heat moves through the system via 
conduction. The modelers assume that the rate of thermal diffusivity de- 
pended only on the gas pressure, and could therefore be treated with rela- 
tive simplicity. Finally, the model needs to account for how energy dissi- 
pates from the surface of the star. The physics of this process are in fact 
quite complicated, but the researchers were able to argue for a much sim- 
pler treatment of the problem. They simply used the standard formula for 
the radiation of a black body and applied it exclusively to those parcels 
of fluid that, based on their calculated pressures, were likely to be found 
close enough to the surface to be able to efficiently radiate heat. 

4. A Distinct Epistemology. Given the complexity of the methodological 
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structure of simulation, it is not surprising that simulationists need to be 
concerned about how they can justify the conclusions reached in their 
studies. Even though simulation is fundamentally about replacing analyt- 
ical solution with calculation (a mere mathematical transformation), the 
question of the reliability of the results of simulation modeling goes be- 
yond mere worries about the reliability of the calculation, and reaches out 
to the entire simulation process and the conclusions scientists reach using 
these techniques. 

Computer simulation has a distinct epistemology (Winsberg 1999). In 
other words, the techniques simulationists use to attempt to justify simu- 
lation are unlike anything that usually passes for epistemology in the phi- 
losophy of science literature. I would like to focus on three of the unusual 
features of this epistemology: it is downward, it is autonomous due to a 
scarcity of data, and it is motley. 

The first point may be fairly clear by now, but it is worth making 
explicit. Typically, to a philosopher of science, epistemological issues arise 
when we try to justify high level theoretical claims based on low level data 
or specific observational reports. But simulation is about starting with 
theory and working your way down. This kind of epistemology is, to the 
philosopher of science, a curious beast. It is an epistemology that is con- 
cerned with justifying inferences from a theory to its application-an in-
ference that most philosophy of science has assumed is deductive and 
consequently not in need of justification. 

The second point is more subtle. Also typical of the notion of episte- 
mology in philosophy of science is that it is founded on comparison. If 
you want to know if some representational structure is accurate or reliable, 
compare it to the thing it is meant to represent. But simulation techniques 
are used precisely when data on the phenomena to be represented are 
conspicuously sparse. Because of this I describe the epistemology of simu- 
lation with a term I borrow from Jeffrey Ramsey: autonomous (Ramsey 
1992). 

Since simulations are used to generate representations of systems for 
which data are sparse, the transformations they make use of need to be 
justified internally; that is, the transformations need to be considered well 
motivated based on their own internal form, and not solely on the basis 
of what they produce. Simulation requires an epistemology that will guide 
us in evaluating the trustworthiness of an approximation qua technique, 
in advance of being able to compare our results with the broad range of 
the phenomena we might wish to study. In general, the inferential moves 
made in simulations are evaluated on a variety of fronts, and they can be 
justified based on considerations coming from theory, from empirical gen- 
eralizations, from data, or from experience in modeling similar phenom- 
ena in other contexts. 
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The last but probably most important point is that the epistemology of 
simulation is motley. Even though all simulation modeling of the kind 
described in this paper fundamentally begins with theory, and even though 
we think of simulation as an attempt to "solve" the mathematical equa- 
tions of this theoretical structure, our theoretical knowledge is just one of 
several ingredients that simulationists use to produce their results. All of 
these sources and their influences need to be considered when justifying 
simulation results. 

If the influences and possible pitfalls of each element are not properly 
understood and managed by the simulationist, they may potentially 
threaten the credibility of simulation results. Doing so, moreover, requires 
reliance upon an equally diverse range of sources of knowledge and skills. 
A great deal of this knowledge is not contained in the theoretical knowl- 
edge that formed the original basis for the simulation. 

For example, in many simulations, it is very important for researchers 
to keep track of the movement of kinetic energy in the system being sim- 
ulated. But in any simulation of a fluid system that employs a discreet 
space-time grid, there is always the need to consider the impact of motions 
that occur "inside" the cells of the grid. In order to avoid losing energy 
to these local motions, simulations often keep track of a variable called 
"sub-grid-scale kinetic energy" that is calculated for each cell. But theory 
does not dictate what mathematical function should be used to "couple" 
this variable to the rest of the system. Therefore, the particular choice of 
how to calculate the interaction between this variable and the others of 
the simulation needs to be justified on some other basis. 

5. Models, Theories, and Representations. Once we understand that simu- 
lation has its own epistemology-and that this epistemology is downward, 
autonomous, and motley-I argue that we should take a fresh look at our 
understanding of the nature of the relationship between scientific theories 
and their empirical consequences. 

In most cases, the equations that form the theoretical basis of systems 
of interest to simulationists are analytically unsolvable. That is, there is 
no mathematically expressible function that is the solution to these equa- 
tions. Therefore, representations of these systems cannot possibly come in 
the form of linguistic entities derivable from a linguistic theoretical struc- 
ture. The syntactic view is clearly not going to do the work that we need 
here. 

Moreover, deductive inferences, by definition, confer certainty on their 
conclusions (provided that the premises are true!). The inferences that take 
place in simulation modeling confer no such thing. At their best, they 
confer reasonable warrant for believing the conclusions reached, and this 
only when painstaking steps are taken to ensure success. 
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It might be argued, however, that while simulation results are not ac-
tually deducible from the theory, they do bear a logical relation to the 
theoretical structure, namely, a relation of semantic containment. Before 
we consider this possibility, we need to look carefully at what we might 
be proposing. One thing that we would probably not want to propose is 
that our models of phenomena themselves actually stand in a logical re- 
lation to our theories. Our models are approximate, and they are often 
rich with detail that we know is not robust. 

What one might propose though, is that if all has gone well, the results 
of a particular simulation closely resemble an ideal structure that is em- 
bedded in the overall structure of the theory. Unfortunately, this ideal 
structure itself and the exact nature of the embedding relationship are 
inaccessible to us. We should, nevertheless, be confident that the structure 
is there and that we have successfully approximated it. The fact that we 
lack the certainty of deduction is merely a symptom of the fact that there 
is some chance that we are wrong and that our results do not bear any 
relation to the ideal structure. In other words, there is some structure that 
is a logical consequence of our theories, and what we have is something 
that we strongly believe approximates the structure. Is this a view that we 
should adopt? 

All of this talk about abstract structures that stand in logical, but not 
strictly deductive, relations ought to make it pretty clear that we should 
turn to the resources of the semantic view of theories to get a good frame- 
work for making this question more precise. The semantic view has been 
articulated, with substantial variations, by Patrick Suppes (1962),Bas Van 
Fraassen (1970, 1980), and Frederick Suppe (1974, 1989). But according 
to a generalized semantic view of theories, a theory is a cluster of trajec- 
tories, in some state space, which specifies a set of allowable state transi- 
tion trajectories. Thus, according to this view, a theory is a family of 
models. A model, in this sense, is an abstract mathematical entity. More 
specifically, such a model is a trajectory in a particular phase space. To 
specify a theory is to specify a cluster of geometrical objects in a phase 
space that, in turn, specifies the allowable state transition trajectories for 
any system under the domain of the theory. 

If this is the prevailing philosophical conception of a scientific theory, 
it becomes natural to ask the following question about the practice of 
simulation: Do we contribute to our philosophical understanding of the 
practice of simulation by characterizing it as an attempt to extract infor- 
mation about the structure of the allowed state transition trajectories of 
a theory, where such trajectories are specified by the underlying laws of 
the simulation as articulated in their mechanical models? To break this 
question into manageable parts: Should we think of the laws, equations, 
and mechanical models which simulations take as their starting point as 



S450 ERIC WINSBERG 

specifications of phase space trajectories? And should we think of simu- 
lation as merely the process of mathematically calculating the phase space 
trajectories that have already been specified? 

I would argue that we should not. Given the rich complexity of the 
process of deriving warrant for simulation results, and the extent to which 
this process focuses on elements external to anything we would reasonably 
include as part of theory, it would be unrealistic to interpret this war- 
ranting process as being about the relationship of the results to some for- 
mal model. That is, if we think carefully about the epistemological steps 
that go into warranting the reliability of simulation results, we find that 
they have everything to do with ensuring that the results match up well 
with the real world, and little to do with ensuring that they resemble some 
ideal structure. If we think of simulations (of the kind I present) as at- 
tempts to determine which state transition trajectories are the ones that 
are determined by our laws and mechanical models, then we must con- 
clude that our results are totally unwarrantable-an unsavory conclusion 
indeed. It is only if we view simulations as attempts to provide--directly- 
representations of real systems, and not abstract models, that the episte- 
mology of simulation makes any sense. Only the former kind of inference 
can be warranted with the motley epistemology I have described. 

Perhaps more importantly, the picture of simulation that the semantic 
view of theories proposes obscures one of the most interesting facts about 
the practice of simulation modeling: Simulation is a practice in which 
having confidence in the models we construct depends on several factors 
being in place, none of which are guaranteed by our theoretical knowledge. 
It depends on facts we know about our computers and about our graphical 
techniques. It depends on the confidence we have in the various ad hoc 
models we use4onfidence we derive from laboratory and observational 
experience. It depends on our ability to calibrate models against empirical 
results. And, finally, it depends on the confidence we have in the tacit 
observing abilities (often acquired in the role of skilled experimenters and 
observers, as well as in the role of skilled simulators) of simulationists to 
make judgments about the degrees of resemblance between different 
classes of images. In short, while we make use of laws, mechanical models, 
and equations in order to construct our representations of the motions of 
complex physical systems, these elements alone do not determine, or spec- 
ify, these motions for us. 

6. Mediating Models. It is perhaps worthwhile, at this point, to compare 
the conclusions we have thus far drawn with some remarks about the 
semantic view of theories recently made by a group of philosophers inter- 
ested in the role of "mediating models" (cf. Morgan and Morrison 1999). 
These philosophers have argued for a rejection of the semantic view of 
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theories based on their account of the role of mediating models in the 
application of theory to the world. Beginning with Nancy Cartwright's 
book How the Laws of Physics Lie (1983), this literature has identified the 
role played by models in making theoretical laws applicable to concrete 
physical situations. 

Mediating models are models that stand between theory and the world. 
They function by making theory applicable to real-world situations that 
do not immediately fall under the theory's domain. In a recent paper, 
Margaret Morrison has identified two facets of mediating models that are 
crucial for our purposes (Morrison 1998; Suarez 1999). First, mediating 
models are not derivable from theory; that is, this practice of model mak- 
ing is not theory driven. The second facet Morrison identifies is that me- 
diating models are not necessitated by data. They involve substantial theo- 
retical and conceptual assumptions that have their origin in what we would 
loosely call theorizing, not data analysis. So, while mediating models are 
not theory driven, they are a form of theorizing rather than a means of 
organizing data. As Morrison writes, 

Although they are designed for a specific purpose these models have 
an autonomous role to play in supplying information, information 
that goes beyond what we are able to derive from the dataltheory 
combination alone. (Morrison 1998, 67) 

Because of these two characteristics (especially the first), several au- 
thors, including Cartwright (1994, 358-359), Morrison (1998,67-69), and 
Suarez (1999, 171-173), have pointed out that the necessity of mediating 
models in science spells trouble for the semantic view of theories. If me- 
diating models come from outside of theory and are required in the ap- 
plications of theory in many instances, then an account in which the dis- 
tinction between model and theory collapses will be inadequate. Suarez 
makes the point most succinctly: 

[In the] semantic conception of theories . . . the distinction between 
theory and model collapses as, according to the semantic view, theo- 
ries are models-they are really nothing but collections of models. . . . 
So the contrast between theories and models disappears. (Suarez 1999, 
172) 

It occurs to me that the immediate move from this realization to a 
rejection of the semantic conception might seem to some as though it relies 
on a conflation of two separate notions of "model." It is true that "theories 
are families of models" has long been a slogan of the semantic conception. 
It is also true that in order to adequately understand scientific practice, 
we need to understand mediating models as being separate from theory. 

It is perfectly possible, however, that theories are families of models 
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(i.e., clusters of trajectories in a particular phase space) whose specification 
requires models of a different type (what we might call mediating models) 
in order for a set of laws in a domain to successfully pick out the appro- 
priate set of trajectories. It is meant to be one of the semantic view's 
strengths that it remains silent about the particular linguistic formulation 
of theories. If, then, mechanical models are needed to help clarify what 
the laws are specifying, then so be it. This is what I had in mind when I 
asked, above: "Should we think of the laws, equations, and mechanical 
models, which simulations take as their starting point, as specifications of 
phase space trajectories?" 

This rebuttal is perfectly sensible, but I believe it also misses a crucial 
point. Mediating models are constructed in order to extend theories into 
new domains of application. In practice, theories provide guidance on how 
these mediating models should be constructed but do not determine their 
final form. I believe that this is what Morrison means when she says that 
mediating models are neither derivable from theory, nor driven by data. 
The semantic view of theories is to be criticized because it inhibits us from 
seeing how a theory can guide its own application in an area previously 
not in its domain. 

Quite similarly, I believe, a semantic conception of theories (and other 
theory driven reconstructions of scientific practice of its ilk) inhibits us 
from seeing how theory guides, but does not determine, how models of 
complex systems are constructed. What an examination of the epistemol- 
ogy of simulation shows is that the semantic theory lacks the resources to 
provide us with an understanding of how theory gets applied in practice, 
even in situations where the theory is not being extended into new domains 
of application. That is, even in situations where a phenomenon is theo- 
retically well understood, traditional accounts of the nature of theories 
obscure the complex relationship that sometimes exists between theory on 
the one hand, and actual representation of phenomena on the other. 

In dealing with very complex systems, we proceed from theoretical 
knowledge and move to new knowledge and representations of systems 
that are already theoretically well understood. When it comes to complex 
systems, we simply cannot bend our theories to our cognitive will-they 
will not yield results with any mechanical turn of a crank. The models that 
we need to construct in order to do our science need to be constructed 
delicately and from as many sources as are available. Consequently, these 
models are no mere instantiations of our theoretical structures, though 
they are the results of a form of calculation; they are rich, physical con- 
structs that mediate between our theories and the world. 

7. Conclusion.What are the philosophical lessons to be learned here? I will 
focus on two which, broadly speaking, are perhaps lessons that are be- 
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coming familiar in recent philosophy of science. The first lesson is that we 
need to move towards a philosophy of science that focuses on concrete 
models, rather than abstract theories, as the loci of reliable representations 
of real systems. Understanding how these models get constructed, how 
they function in their representational capacity, and where they get their 
reliability is an important challenge facing the philosophy of science. 

Furthermore, as Morrison notes, modeling practices in the physical 
science are diverse. "Models are used in a broad field of subjects each with 
its own particular techniques for model construction [and] even in a dis- 
cipline like physics its history displays a diversity of models that cannot 
be encapsulated by one specific characterization" (1998, 81). But in ad- 
dition to being diverse, modeling techniques are also layered, that is, they 
are applied one on top of the other. 

Perhaps most importantly, we need to understand how theory can play 
a pivotal role in the construction and sanctioning of models without suc- 
cumbing to a view in which models are merely subordinate to theory. I 
can perhaps best articulate this second lesson with reference to the follow- 
ing quotation from Manfred Stockler's commentary on Nancy Cart- 
wright's "anti-fundamentalism." Stockler is responding to Cartwright's 
claim that the laws of nature are "each heavily constricted in the domain 
of features it rules and each separate and independent from the other" 
(Cartwright 1998, 23): 

I argue that from failures of constructing concrete models it does not 
follow much about the range of fundamental laws. Suppose these fail- 
ures are caused by practical limits to writing down equations and 
solving them. Such practical problems do not allow us to restrict the 
set of possible models of quantum mechanics which is determined by 
the structure of the theory. (Stockler 1998, 38; original emphasis) 

The debate in which Stockler and Cartwright are engaged is a meta- 
physical one, and the criteria for its resolution are not obvious at this time. 
But the second lesson of this paper is this. Whatever metaphysical position 
we hold in that debate, there are important and challenging epistemolog- 
ical and methodological issues in scientific theorizing that will be over- 
looked by a philosophy of science that sees theories as fully articulated 
structures and treats calculational problems as merely the result of prac- 
tical limitations. 
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