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ABSTRACT

Observational evidence suggests a link between long-duration gamma-ray bursts (LGRBs) and Type Ic supernovae.
Here, we propose a potential mechanism for Type Ic supernovae in LGRB progenitors powered solely by accretion
energy. We present spherically symmetric hydrodynamic simulations of the long-term accretion of a rotating
gamma-ray burst progenitor star, a “collapsar,” onto the central compact object, which we take to be a black hole.
The simulations were carried out with the adaptive mesh refinement code FLASH in one spatial dimension and with
rotation, an explicit shear viscosity, and convection in the mixing length theory approximation. Once the accretion
flow becomes rotationally supported outside of the black hole, an accretion shock forms and traverses the stellar
envelope. Energy is carried from the central geometrically thick accretion disk to the stellar envelope by convection.
Energy losses through neutrino emission and nuclear photodisintegration are calculated but do not seem important
following the rapid early drop of the accretion rate following circularization. We find that the shock velocity, energy,
and unbound mass are sensitive to convective efficiency, effective viscosity, and initial stellar angular momentum.
Our simulations show that given the appropriate combinations of stellar and physical parameters, explosions with
energies ∼5 × 1050 erg, velocities ∼3000 km s−1, and unbound material masses �6 M⊙ are possible in a rapidly
rotating 16 M⊙ main-sequence progenitor star. Further work is needed to constrain the values of these parameters,
to identify the likely outcomes in more plausible and massive LRGB progenitors, and to explore nucleosynthetic
implications.

Key words: accretion, accretion disks – black hole physics – gamma-ray burst: general – stars: winds, outflows –
supernovae: general
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1. INTRODUCTION

A clear observational link has been established between long-
duration gamma-ray bursts (LGRBs) and Type Ic supernovae
(Galama et al. 1998, 2000; Reichart 1999; Bloom et al. 2002;
Della Valle et al. 2003, 2006; Garnavich et al. 2003; Hjorth
et al. 2003; Kawabata et al. 2003; Stanek et al. 2003; Matheson
et al. 2003; Malesani et al. 2004; Campana et al. 2006;
Mirabal et al. 2006; Modjaz et al. 2006; Pian et al. 2006;
Chornock et al. 2010; Cobb et al. 2010; Starling et al. 2011).
However, only a small percentage of Type Ic supernovae
exhibit the late-time radio signatures of LGRBs (Podsiadlowski
et al. 2004; Soderberg et al. 2006). LGRBs are believed to be
manifestations of rotationally powered ultrarelativistic outflows
developing in the wake of the formation of black holes or neutron
stars in rotating progenitor. However, the exact mechanism
for the production of LGRBs and their associated supernovae
remains a subject of debate (Woosley & Bloom 2006; Hjorth &
Bloom 2011, and references therein). At present, it is not clear
whether the processes that give rise to LGRBs also drive stellar
explosions, or whether the explosions are driven independently,
perhaps by the standard, neutrino-mediated mechanism.

In the standard supernova mechanism, an outward-moving
shock forms after core-bounce. This shock stalls, but may
be reinvigorated by heating by neutrinos emitted during the
neutronization near the proto-neutron star (Bethe & Wilson
1985), and in principle drive the star to explosion in the so-called
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delayed neutrino mechanism. Some simulations of this process
in at least two spatial dimensions seem to produce successful
explosions (see, e.g., Buras et al. 2006b; Scheck et al. 2006;
Mezzacappa et al. 2007; Murphy & Burrows 2008; Marek &
Janka 2009; Nordhaus et al. 2010), although the success of two-
dimensional and possibly three-dimensional simulations may
be dependent upon the progenitor mass and the treatment of
neutrinos (Buras et al. 2006a; Nordhaus et al. 2010). Supernovae
associated with LGRBs seem to be more energetic than the
typical Type Ic supernovae (Iwamoto et al. 1998; Woosley &
MacFadyen 1999; Mazzali et al. 2003, 2006), with large kinetic
energies reaching ∼1052 erg. Even if the neutrino mechanism
can unbind the star, it still seems unclear whether it can deliver
the energies found in supernovae associated with LGRBs.
An alternative or augmentative explosion mechanism may be
required to explain the supernovae associated with LGRBs.
Alternatives to the neutrino mechanism call on the extraction of
the rotational energy of the central compact object—a neutron
star or a black hole—or on tapping the gravitational energy of
the material accreting toward the compact object. It remains to
be determined which, if any, of the alternative pathways can
deliver the large energies, and what are the resulting compact
remnant masses.

If the post-bounce neutrino-mediated energy transfer is too
weak to unbind all of the infalling stellar strata, some material
may continue to fall onto the proto-neutron star and possibly
take it to collapse further into a black hole (e.g., Burrows
1986; MacFadyen et al. 2001; Heger et al. 2003; Zhang et al.
2008; Sekiguchi & Shibata 2011; O’Connor & Ott 2010).
This is especially relevant for rapidly rotating progenitors,
as the progenitors with rapidly rotating cores may produce
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lower neutrino luminosities, decreasing the effectiveness of the
neutrino-powered explosion mechanism (Fujimoto et al. 2006;
Lee & Ramirez-Ruiz 2006).

The infall or fallback of the stellar envelope should continue
past the initial emergence of the event horizon, but then the
structure of the accretion flow becomes sensitive to its angu-
lar momentum content. Given sufficient angular momentum,
the flow becomes rotationally supported. Such a “collapsar”
configuration has been proposed to naturally lead to the ultra-
relativistic outflow in LRGBs (Woosley 1993), as gamma rays
can be produced in an ultrarelativistic jet launching from the
magnetosphere of the black hole that forms in the aftermath of
the collapse of the rotating progenitor. The jet is powered by a
continuous infall and disk-like accretion of the progenitor star’s
interior.

It has long been hypothesized that a “wind” outflowing from
a collapsar accretion disk could unbind the stellar envelope
and synthesize sufficient 56Ni to produce an optically bright
supernova (e.g., MacFadyen & Woosley 1999; Pruet et al. 2003,
2004; Kohri et al. 2005). The dynamics of the energy flow in
such a system has yet to be elucidated. In the present study, we
utilize one-dimensional hydrodynamic simulations with rotation
(1.5D) to test the hypothesis that accretion power can drive
an explosion of the star. We do not simulate the core bounce,
and simply posit that any prompt and neutrino-reinvigorated
shock has failed and that the stellar atmosphere has not acquired
outward motion and is free to accrete toward the black hole.

In Lindner et al. (2010), we simulated the post-core-
collapse hydrodynamical evolution of the rapidly rotating
14 M⊙ Wolf–Rayet (W-R) stellar model 16TI of Woosley &
Heger (2006) that has been proposed as an LGRB progenitor.
The rate at which the infalling stellar envelope was being ac-
creted onto the black hole evolved through two distinct phases
during the first ∼200 s following the initial collapse of the stel-
lar core. First, the low specific angular momentum material of
the inner layers of the star accreted quasi-spherically through
the inner boundary and is presumed to have accreted onto the
black hole. Then, the material that had sufficient angular mo-
mentum to become rotationally supported on the computational
grid formed a thick accretion torus. Simultaneously, an accre-
tion shock appeared at the innermost radii and traversed the star.
Most of the stellar envelope traversed by the shock was in radial
hydrostatic equilibrium and convective; convection transported
the energy dissipated at the smallest simulated radii toward the
expanding shock. The central accretion rate was nearly time-
independent prior to rotating torus and shock formation, and
dropped sharply afterward. The abrupt drop of the accretion rate
closely resembled the prompt γ -ray and the early X-ray LGRB
light curves measured with the NASA Swift satellite (Tagliaferri
et al. 2005; Nousek et al. 2006; O’Brien et al. 2006), adding
weight to the hypothesis that the light curves are responding to
an evolution of the central accretion rate (Kumar et al. 2008a,
2008b). Because the innermost simulated radius was 500 km,
much larger than the innermost stable circular orbit around the
central black hole (5–50 km), the accreted-mass-to-energy con-
version efficiency was low and the shock acquired relatively low
velocities, ∼1000 km s−1, while in the interior of the star. The
star did not explode, but only lost mass to the thermally driven
wind that set in after the shock had traversed the star.

In collapsars, a substantially larger accretion energy is dis-
sipated at the radii left out from the Lindner et al. (2010)
simulations, closer to the black hole, but only a fraction of
this energy couples to the stellar envelope. The rest may be

lost to the emission of neutrinos and to the photodisintegra-
tion of hydrostatic elements into free nucleons as well as to
advection into the black hole. Crude analytical considerations
(Milosavljević et al. 2012) suggest that following shock for-
mation and the rapid accretion rate drop seen in Lindner et al.
(2010), neutrino losses are relatively small. Then, the amount
of energy transferred onto the envelope is determined by the
competition of the inward advective and the outward convective
energy transport. The advection arises from the inward drift of
the fluid in response to magnetohydrodynamic (MHD) stresses;
the convection arises from entropy gradients arising from the
dissipation of MHD turbulence. If convective transport is effi-
cient, the amount of energy transferred from near the black hole
to the shocked envelope can be sufficient to drive a fast shock
with velocity ≫1000 km s−1 and unbind the star. The model
of Milosavljević et al. (2012) suggests that the parameters de-
termining the viability and energy of such accretion-powered
supernovae are the viscous stress-to-pressure ratio α and the
convective mixing length λconv. The model could not, of course,
capture the consequences of the interplay of pressure and rota-
tion at the critical radii where the two sources of radial support
against gravity are comparable.

In this work, we show the results of a series of rotating one-
dimensional simulations of the immediate aftermath of the col-
lapse of a rapidly rotating LGRB progenitor star’s core. While
one-dimensional, our simulations include rotation in a spher-
ically averaged sense and implement a modified α-viscosity
prescription. One customarily refers to such simulations as
“1.5 dimensional.” They also take into account optically thin
cooling by neutrino emission, cooling and heating by nuclear
processes, and energy and compositional transport by convec-
tion in the mixing length theory approximation. This work is
complementary to our rotating two-dimensional simulations
(2.5D) of collapsar accretion (Lindner et al. 2010), in which
we simulated only relatively large radii and did not incorpo-
rate nuclear and neutrino physics. Here, we sacrifice in spatial
dimensionality to make it possible to track rudimentary nu-
clear compositional transformation and simulate smaller radii
(r > 25 km) over similarly extended time periods (∼40–100 s).
In the presence of cooling by neutrino emission the rotating
central torus may be geometrically thin (e.g., MacFadyen &
Woosley 1999; Popham et al. 1999; Kohri et al. 2005; Chen
& Beloborodov 2007; Sekiguchi & Shibata 2011; Taylor et al.
2011). Therefore, we include corrections to approximate the ef-
fects of such flow. The principal source of model uncertainty
is the efficiency of convection, which in the mixing length ap-
proximation can be parameterized with an effective value of
the mixing length. To our best knowledge, there has not been
a systematic first principles study of convective efficiencies in
the rapidly convecting regime. Thus the mixing length λconv and
the viscous shear stress-to-pressure ratio α are the parameter
dependences that we explore.

A magnetic outflow driven by a proto-neutron star may carry
an energy similar to that of a supernova (e.g., Bisnovatyi-
Kogan 1971; Wheeler et al. 2000; Thompson et al. 2004;
Bucciantini et al. 2007; Burrows et al. 2007; Dessart et al.
2008). However, the outflow may be too axially collimated to
produce a standard, quasi-spherical explosion (Bucciantini et al.
2008, 2009). Here, we assume that any explosion mechanism
preceding the collapse into a black hole has failed. Clearly,
our one-dimensional model cannot capture the effects of the
formation of a magnetized jet, after an accretion disk has formed.
Although this is an integral component to the collapsar model
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for LGRBs, we omit any treatment of the jet in the present
work.

This work is organized as follows. In Section 2, we discuss
our numerical algorithm. In Section 3, we present the results of
our simulations. In Section 4, we identify the parameters critical
to our model and discuss their implications for real accretion
powered supernovae. Finally, in Section 5, we summarize our
conclusions.

2. NUMERICAL ALGORITHM

The simulations were carried out with the piecewise-parabolic
method (PPM) solver in the adaptive-mesh-refinement code
FLASH (Fryxell et al. 2000), version 3.2, in one spatial dimen-
sion. Although the rotating stellar collapse is inherently three
dimensional, we have chosen to approximate the key multidi-
mensional effects, including angular momentum transport and
convective energy and compositional transport, with a spheri-
cally averaged transport scheme. In Section 2.1, we describe our
implementation of angular momentum transport. In Section 2.2,
we describe our calculation of the self-gravity of the fluid. In
Section 2.3, we describe our modeling of the transition toward
nuclear statistical equilibrium (NSE) in the hot inner accretion
flow. In Section 2.4, we discuss cooling by neutrino emission.
In Section 2.5, we describe our treatment of convective energy
transport and compositional mixing. In Section 2.6, we describe
the corrections that we apply in situations where, in the presence
of cooling, the accretion flow is expected to be geometrically
thin. In Section 2.7, we describe our initial and boundary condi-
tions. In Section 2.8, we show the results from tests of the code.
Finally, in Section 2.9, we briefly review the various limitations
of our method.

2.1. Angular Momentum

To include rotation and angular momentum transport in
our one-dimensional model, we track the specific angular
momentum ℓ ≡ rvφ , where vφ is the azimuthal velocity, which
we interpret as the mass-weighted spherical average of an
underlying polar-angle-dependent angular momentum ℓ(r, θ ).
If, e.g., spherical shells rotate rigidly, ℓ(r, θ ) ∝ sin2 θ , and the
fluid density is spherically symmetric, then the one-dimensional
specific angular momentum is two-thirds of the midplane value,
ℓ = 2/3ℓmid. The azimuthal Navier-Stokes equation, combined
with the equation of mass continuity, then implies the one-
dimensional angular momentum transport equation (see, e.g.,
Thompson et al. 2005)

∂(ρℓ)

∂t
+

1

r2

∂(r2vrρℓ)

∂r
− 1

r2

∂

∂r
(r3νρσrφ) = 0, (1)

where ν is a shear viscosity and

σrφ = r
∂

∂r

(

ℓ

r2

)

(2)

is the r−φ component of the shear tensor. The energy dissipated
through shear viscosity was accounted for by including the
specific heating rate (see, e.g., Landau & Lifshitz 1959)

ǫ̇visc ≡ Qvisc

ρ
= νσ 2

rφ, (3)

where Qvisc denotes the volumetric viscous heating rate. The
dimensional reduction in Equation (1) is inaccurate in regions

where the disk is geometrically thin. There the mass-weighted
spherical average closely approximates the midplane value,
ℓ ∼ ℓmid. We ignore this effect, but we do incorporate ther-
modynamic corrections addressing the transition to a thin disk
in Section 2.6.

Our treatment of shear viscosity is similar to our methodol-
ogy in Lindner et al. (2010), and for completeness we reproduce
our methodology here. Since we do not simulate the magnetic
field of the fluid, we utilize a local definition of the shear vis-
cosity to emulate the magnetic stress arising from the nonlinear
development of the magnetorotational instability (MRI; Balbus
& Hawley 1998 and references therein). It should be kept in
mind, however, that the effects of MRI are in some respects
very different from those of the viscous stress. For example, the
thick disk surrounding our collapsar black hole is convective;
in unmagnetized accretion flows convection transports angu-
lar momentum inward, toward the center of rotation (Ryu &
Goodman 1992; Stone & Balbus 1996; Igumenshchev et al.
2000), whereas in magnetized flows, convection can also trans-
port angular momentum outward (Balbus & Hawley 2002;
Igumenshchev 2002; Igumenshchev et al. 2003; Christodoulou
et al. 2003). Although we include treatment for convective en-
ergy flux and compositional mixing (see Section 2.5), we do not
include angular momentum transport by convection.

Our definition of the local viscous stress emulating the MRI
must be valid under rotationally supported, pressure supported,
and freely falling conditions, and we proceed as in Lindner
et al. (2010). Thompson et al. (2005) suggest that since the
wavenumber of the fastest growing MRI mode, which is given
by the dispersion relation vAk ∼ Ω where vA is the Alfvén
velocity and Ω = vφ/r is the angular velocity, should be about
the gas pressure scale height in the saturated quasi-state state,
k ∝ H−1, the Maxwell ρv2

A and viscous νρΩ stresses (up to
factors in |d ln Ω/d ln r| that we neglect) can be equated if the
viscosity is given by

νMRI = αH 2
Ω, (4)

where α is a dimensionless parameter. If the pressure scale
height is defined locally,

H = |∇ ln P |−1, (5)

the viscosity defined in Equation (4) suffers from divergences at
pressure extrema. To alleviate this problem, as in Lindner et al.
(2010), we define a second viscosity according to the Shakura
& Sunyaev (1973) prescription

νSS = α
P

ρ
Ω

−1. (6)

Shakura–Sunyaev viscosity overestimates the magnetic stress in
stratified hydrostatic atmospheres. We thus set the viscosity in
Equations (1) and (3) to equal the harmonic mean of the above
two viscosities

ν = 2 νMRI νSS

νMRI + νSS

, (7)

where the pressure gradient in Equation (5) is calculated by the
finite differencing of pressure in neighboring fluid cells. Ad-
ditionally, we have applied a Gaussian kernel smoothing to the
radial dependence of H to help filter short-wavelength numerical
instabilities. We describe this procedure in Section 2.5.

In FLASH, we treat specific angular momentum as a con-
served “mass scalar” that is being advected with the fluid, which
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makes ρℓ a conserved variable; the corresponding centrifugal
force is then incorporated in the calculation of the gravitational
acceleration as we explain in Section 2.2 below. Then the third
parabolic term in Equation (1) is computed explicitly through
the inclusion of the radial ρℓ-flux −rνρσrφ in the advection
of ℓ.

Numerical stability of an explicit treatment of a parabolic
term places an upper limit on the time step

∆t <
∆r2

2ν
, (8)

where ∆r is the grid resolution. For α ≫ 0.01, the viscous
time step in our simulations becomes significantly shorter than
the Courant time step. In our test integrations with a γ -law
equation of state (EOS; Lindner et al. 2010), we find that, while
not implying an outright instability, a choice of ∆t that saturates
the limit in Equation (8) results in weak stationary staggered
perturbations in the fluid variables. We ignore this complication
and allow our time step to be set by the limit in Equation (8)
of the cell with the smallest viscous diffusion time across the
cell.

2.2. Gravity

We calculate contributions to the gravitational potential from
a central point mass and a spherically symmetric extended
envelope. General relativistic effects become important at the
innermost radius, which in some simulations is as small as
rmin = 25 km. At radii r ∼ rmin, the black hole dominates
the enclosed mass after about 0.5 s. Thus, we describe the
gravity of the black hole using the approximate, pseudo-
Newtonian gravitational force for a rotating black hole proposed
by Artemova et al. (1996), which is a generalization of the
Paczyński & Wiita (1980) pseudopotential to rotating black
holes. However, we continue to calculate the gravity of the
fluid in the Newtonian limit. The Artemova et al. gravitational
acceleration in the equatorial plane of a rotating black hole is
given by

gBH(r, θ = π/2) = − GMBH

r2−β(r − rH)β
r̂, (9)

where rH = [1 + (1 − a2)1/2]GMBH/c2 is the radius of the
event horizon expressed in terms of the dimensionless spin
parameter a, and β = rISCO/rH − 1 is a dimensionless exponent
with rISCO denoting radius of the innermost stable prograde
equatorial circular orbit. We assume a dimensionless spin
parameter of a = 0.9 in these calculations. Our treatment
does not incorporate general relativistic corrections to the
viscous stress and momentum equations (see, e.g., Beloborodov
1999).

We adopt the form of the gravitational acceleration in
Equation (9), which was derived for the equatorial plane of the
black hole, to represent the mass-weighted spherical average of
the gravitational acceleration, by setting gBH(r) = gBH(r, θ =
π/2). This approximation is appropriate when the accreting
mass is concentrated in the equatorial plane, especially when
the innermost disk is geometrically thin, and is probably rather
inaccurate for an accretion flow that is geometrically thick down
to rISCO. Our simulations predict a geometrically thin disk at
r � 100 km or greater radii after material has circularized in
our simulation, so this assumption seems adequate.

For each zone, the gravitational acceleration due to fluid self-
gravity is calculated from

gself(ri) = − 4π

3

G

r2

{

ρi

[

r3
i −

(

ri − ∆ri

2

)3
]

+
∑

rk<ri

ρk

[

(

rk +
∆rk

2

)3

−
(

rk − ∆rk

2

)3
]}

r̂,

(10)

where ∆ri and ∆rk are the radial widths of the grid cells. The net
gravitational and inertial acceleration in our calculation is then
given by

atot = gBH + gself + acent, (11)

where

acent = ℓ2

r3
r̂ (12)

is the centrifugal acceleration.

2.3. Nuclear Processes and the Equation of State

To calculate the internal energy of the fluid, we use the
Helmholtz EOS of Timmes & Swesty (2000) included with
the FLASH distribution, which accounts for the contributions
to pressure and other thermodynamic quantities from radiation,
ions, electrons, positrons, and Coulomb corrections. We track
the abundances of 47 nuclear isotopes treated in the nuclear
statistical equilibrium (NSE) calculations of Seitenzahl et al.
(2008) and pass the local nuclear composition to the EOS as
input. Given density, temperature, and nuclear composition, the
Helmholtz EOS provides the internal energy, density, pressure,
entropy, specific heats, adiabatic indices, electron chemical
potential, and various derivative thermodynamic quantities.
During the course of the thermodynamic update and the cooling
update which is operator split from the thermodynamic update,
the temperature must be derived from the internal energy, and
in the Helmholtz EOS this is achieved by numerically solving
for the implicit relation

ǫEOS(ρ, T , X) = ǫ (13)

for the temperature, where ǫ is the specific internal energy and
X ≡ (X1, . . . , X47) is the vector of isotopic mass fractions Xi.

The fluid heats and cools in response to nuclear compositional
transformation. We do not integrate a nuclear reaction network,
but instead model the change of the nuclear composition as a
gradual convergence to NSE in the part of the flow where the
convergence timescale τNSE is comparable to or shorter than
the age of the system. In this model, as we explain below, the
nuclear composition responds instantaneously to a change of the
temperature, implying that the dependence of the composition
on the temperature must be taken into account, in a manner that
conserves the combined specific internal and nuclear energy
ǫ + ǫnuc when solving the EOS for temperature. Here, ǫnuc is the
specific (negative) nuclear binding energy of the fluid

ǫnuc =
∑

i

XiEB,i

Aimp

, (14)

while EB,i is the negative nuclear binding energy of the isotope
and Ai is the atomic mass of the isotope.
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The timescale for convergence to NSE can be approximated
via (Khokhlov 1991; see also Calder et al. 2007)

τNSE = ρ0.2 exp

(

179.7

T9

− 40.5

)

s, (15)

where T = 109 T9 K and ρ is the density in g cm−3. At
relevant densities, this timescale is of the order of 1 s for
TNSE ≈ 4 × 109 K. We calculate the nuclear mass fractions
using the publicly available solver of Seitenzahl et al. (2008)
which solves for the NSE mass fractions XNSE,i of 47 nuclear
isotopes as a function of density ρ, temperature T, and proton-
to-nucleon ratio Ye =

∑

i ZiXi/Ai , where Zi is the atomic

number an isotope. At temperatures T > 3 × 109 K we model
convergence to NSE via

(

∂Xi

∂t

)

nuc

= Xi,NSE(ρ, TNSE, Ye) − Xi

τNSE(ρ, T )
, (16)

where TNSE is the temperature that the fluid element would have
given enough time to relax into NSE while keeping the total
specific energy ǫ + ǫNSE and proton-to-nucleon ratio Ye fixed.
The temperature TNSE is implicitly defined by the condition
(cf. Equation (13))

ǫEOS[ρ, TNSE, XNSE(ρ, TNSE, Ye)] + ǫnuc[XNSE(ρ, TNSE, Ye)]

= ǫ(ρ, T , X) + ǫnuc(X). (17)

This condition ensures that the sum of the internal and nuclear
energy densities in NSE would equal the sum of the two
energy densities in the model. We solve Equation (17) for
TNSE(ρ, Ye, ǫ, ǫnuc) iteratively and then update the abundances
by discretizing Equation (16) with

Xi(t + ∆t) = Xi,NSE(ρ, TNSE, Ye)

+ [Xi(t) − Xi,NSE(ρ, TNSE, Ye)] exp

[

− ∆t

τNSE(ρ, T )

]

.

(18)

Following the update of the nuclear mass fractions, we update
the specific internal energy to account for heating or cooling
due to any change in specific nuclear binding energy

ǫ(t + ∆t) = ǫ(t) + ǫnuc[X(t)] − ǫnuc[X(t + ∆t)], (19)

and finally update the temperature from Equation (13).
This prescription does not affect the proton-to-nucleon ratio

Ye; that latter is a conserved mass scalar in our simulations. Thus,
the expected partial neutronization in the mildly degenerate
innermost segment of the accretion flow is not calculated and
our prescription cannot be used to accurately estimate the
56Ni fraction within the Fe-group elements synthesized in the
simulation.

2.4. Cooling

The hot innermost accretion flow cools via neutrino emission.
At the densities observed in our simulation, the disk and
stellar atmosphere are transparent to neutrinos. The two most
significant neutrino-emission channels (e.g., Di Matteo et al.
2002, and references therein) are as follows.

1. Pair capture on free nucleons (the Urca process). p+e− →
n + ν and n + e+ → p + ν̄. The cooling rate is

QeN = 9 × 1033ρ10T
6

11Xnuc erg cm−3 s−1, (20)

where ρ = 1010ρ10 g cm−3, T = 1011 T11 K, and Xnuc =
Xp + Xn is the mass fraction in free nucleons.

2. Pair annihilation (e− + e+ −→ ν + ν̄ ). The cooling rate is

Qe+e− = 1.5 × 1033T 9
11 erg cm−3 s−1. (21)

All three flavors, e, μ, and τ , of neutrinos are included.

We have included the above neutrino cooling rates in our
calculations, where losses are computed via

ǫ(t + ∆t) = ǫ(t) − Qν

ρ
∆t, (22)

where Qν = QeN + Qe+e− is the total volumetric neutrino
cooling rate. The update of the internal energy due to cooling
is operator split from the update due to nuclear compositional
change.

2.5. Convection

We introduce convective energy transport and compositional
mixing within the framework of mixing length theory (e.g.,
Kuhfuß 1986). In the calculation of the convective transport
fluxes, we ignore the radial variation of the mean molecular
weight as well as rotation, and the condition for instability
is simply the Schwarzschild criterion, ∂s/∂r < 0. Then, in
unstable zones, the convective energy flux is

Fconv = −1

2
cP ρvconvλconv

(

∂T

∂s

)

P

∂s

∂r
, (23)

where cP is the specific heat at constant pressure, λconv is the
length over which convection occurs, s is specific entropy, and
vconv is the convective velocity. The convective velocity can be
approximated by

vconv ∼ 1

2
λconv

[

−g

ρ

(

∂ρ

∂T

)

P

T

cP

ds

dr

]1/2

, (24)

where g < 0 is the gravitational acceleration in the local rest
frame of the convectively unstable fluid

g = ggrav − dv

dt
= 1

ρ

∂P

∂r
= − P

ρH
, (25)

and ggrav = gBH + gself is the net gravitational acceleration
in the inertial frame, v in the second step denotes the mass-
weighted spherical average of the fluid velocity at radius
r. To parameterize our uncertainty regarding the value of
the convective mixing length, we introduce a dimensionless
parameter ξconv ∼ O(1) defined as

ξconv ≡
(

λconv

H

)2

. (26)

Then, combining Equations (23)–(26), we obtain the standard
expression

Fconv = 1

4
ξconvH

2cP

[

− P

H

(

∂ρ

∂T

)

P

]1/2 (

− T

cP

∂s

∂r

)3/2

,

(27)
which is appropriate even when the fluid is not in hydrostatic
equilibrium and vr �= 0.

In evaluating the convective energy flux at a boundary
(face) of a computational cell, we use face-centered linear
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interpolation of the density, temperature, and pressure. The
zone-centered values of the specific heat cP, specific entropy
s, and thermodynamic derivatives (∂P/∂T )ρ and (∂P/∂ρ)T
are returned by the EOS routine, and the face-centered values
are again computed by linear interpolation. Then, (∂ρ/∂T )P is
calculated from

(

∂ρ

∂T

)

P

= −
(

∂P

∂T

)

ρ

/ (

∂P

∂ρ

)

T

. (28)

The convective energy flux never exceeds

Fconv � ρǫcs, (29)

where cs = (γcP/ρ)1/2 is the adiabatic sound speed and γc is
the adiabatic index.

We anticipate that a local application of MLT, in which the
expression for the convective energy flux contains a pressure
derivative in the denominator, may contain an instability. The
instability is an artifact of modeling the intrinsically nonlocal
convective energy transport with a local nonlinear differential
operator. To control—if not entirely prevent—undesirable out-
comes of the instability, we filter short wavelength perturbations
in the calculation of the pressure scale height H that enters our
estimates of the viscosity and the energy flux transported by
convection by applying a Gaussian smoothing

Psmooth(r) =
∑

i ki(r) Pi
∑

i ki(r)
, (30)

where the summations are over all of the cells in the simulation,
and the spherically averaged smoothing kernel ki is given by

ki(r)= 1

2
√

2π

∆riri

rσ

{

exp

[

− (r − ri)
2

2σ 2

]

− exp

[

− (r + ri)
2

2σ 2

]}

.

(31)

Here, σ is a radius-dependent smoothing length that we set
to (1/2)r . Similarly, in the evaluation of the specific entropy
derivative in Equation (27), we smooth the specific entropy s
via

ssmooth(r) =
∑

i ki(r) ρi si
∑

i ki(r) ρi

. (32)

The filtering affects only the evaluation of Fconv and helps avoid
breakdown of our transport scheme, but residual artificial non-
propagating waves do develop, and saturate, on wavelengths
comparable to the smoothing length.

The accretion shock formally presents a negative entropy
gradient but physically does not give rise to convection. The
upstream of the shockwave is marginally convectively stable as
the shockwave traverses the progenitor’s convective core, and
becomes absolutely stable in the radiative envelope. To prevent
spurious convection across the shock transition, we modify the
convective flux to decline to zero linearly near the shock

Fconv,mod(r) =
{

(1 − r/rshock)Fconv(r), r < rshock,

0, r � rshock,
(33)

where rshock is the radius of the accretion shock front which we
track during the simulation.

Murphy & Meakin (2011) argue that on physical grounds, in
quasi-stationary “stalled” shocks in the standard core-collapse
context, the distance from the shock rshock–r is the appropriate

convective length scale near the shock, as convective eddies
can grow to the largest size available to them. If we had set
the convective mixing length λconv proportional to the distance
from the shock, which is the adaptation of MLT that Murphy &
Meakin suggest, Equation (33) would have contained a quadratic
factor (1 − r/rshock)2, instead of the linear factor (1 − r/rshock)
that we employ. The physically motivated modification of λconv

of Murphy & Meakin, which we became aware of after the
completion of this work, and our ad hoc version should give rise
to similar dynamics, especially when the shock travels outward
as in our simulations.

Convection also gives rise to compositional mixing in the
convective region. We model the mixing of nuclear species in the
diffusion approximation (e.g., Cloutman & Eoll 1976; Kuhfuß
1986)

[

∂(ρXi)

∂t

]

mix

= − 1

r2

∂

∂r
(r2

Fmix,i), (34)

where

Fmix,i = −1

3
νconvρ

∂Xi

∂r
(35)

is the mass flux of species i transported by convection, while
νconv is the compositional diffusivity which we take to be pro-
portional to the convective velocity multiplied by the pressure
scale height

νconv = ξmixvconvλconv, (36)

and ξmix ∼ O(1) is a dimensionless parameter. We again apply
the flux limitation behind the shock front in the form of the
linear factor in Equation (33). The compositional diffusion is
also subject to the time step limitation imposed in Equation (8).
It is worth noting that compositional diffusion implies a flux of
nuclear energy given by

Fnuc,mix =
∑

i

EB,i Fmix,i

Ai mp

. (37)

The entropy transport equation implied by our algorithm is

ρT
ds

dt
+

1

r2

∂

∂r
(r2Fconv,mod) = Qvisc − Qν + Qnuc, (38)

where d/dt = ∂/∂t + vr∂/∂r and

Qnuc = −ρ
∑

i

EB,i

Aimp

∂Xi

∂t
(39)

is the rate of heating or cooling associated with nuclear compo-
sitional transformation (see Equations (14) and (16)).

2.6. Thin Disk Corrections

We have thus far assumed a rotating, quasi-spherical accre-
tion flow. However, near the black hole, where cooling by neu-
trino emission and nuclear photodisintegration into nucleons
is significant, the flow can become geometrically thin (e.g.,
MacFadyen & Woosley 1999; Popham et al. 1999; Kohri et al.
2005; Chen & Beloborodov 2007). In this case, the quasi-
spherical treatment underestimates the density, pressure, and
temperature near the midplane of thin disk, where the bulk of
the neutrino emission takes place. We introduce a correction that
adjusts the temperature of the flow to be closer to the physical,
thin-disk value.
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In what follows, the quantities applying to the thin disk

will be marked with tilde. Let H̃z denote the vertical half-
thickness of the thin disk. We assume that the vertical half-
thickness of the quasi-spherical flow is Hz ∼ (1/2)r . Since
the thin and the quasi-spherical flow must contain the same

column density, H̃zρ̃ ∼ (1/2)rρ. Ignoring differences in nuclear
composition between the thin and quasi-spherical flows, the
same correspondence must apply to the total internal energies

integrated along the vertical column, H̃zρ̃ǫ̃ ∼ (1/2)rρǫ, and

thus, ǫ̃ ∼ ǫ while H̃zP̃ ∼ (1/2)rP . Vertical force balance in the

thin disk requires P̃ /H̃z = ρ̃ |̃gz|, where g̃z = −sgn(z) g H̃z/r
is the gravitational acceleration in the z-direction and g ≡
(gBH + gself) · r̂ is the radial gravitational acceleration (see

Section 2.2). Enforcing that H̃z � Hz, we obtain

H̃z = min

[

(

− rP

ρg

)1/2

,
r

2

]

. (40)

To account for the higher density in the thin disk, we
could pass ρ̃ to the EOS. This, however, would result in a

modified pressure P̃ . Out of a possibly unfounded concern
that a modification of the pressure would introduce spurious
dynamics in the spherically averaged flow, we opted to modify
our estimate of the disk midplane temperature in a manner not
directly affecting the fluid pressure. This corrected temperature
then enters the calculation of the neutrino cooling rate and the
NSE composition, both of which are highly sensitive to the
midplane temperature.

We estimate the midplane temperature T̃ from the following
extrapolation:

ln

(

T̃

T

)

≈
(

∂ ln T

∂ ln ρ

)

ǫ

ln

(

ρ̃

ρ

)

, (41)

where the partial derivative, which we denote with χ , is eval-
uated at constant specific internal energy and can be expressed
as

χ ≡
(

∂ ln T

∂ ln ρ

)

ǫ

= −
(

∂s

∂ ln ρ

)

T

/ (

∂s

∂ ln T

)

ρ

− P

ρcV T
, (42)

where cV is the specific heat at constant volume. The quantities
on the right-hand side of Equation (42) are all provided by the
Helmholtz EOS.

Since ρ̃/ρ ∼ r/(2H̃z), the midplane temperature of the disk
can be approximated via

T̃ =
(

r

2H̃z

)χ

T ≡ Ξ T , (43)

where the last equality defines the dimensionless temperature
correction factor Ξ. To ensure continuity near the shock transi-
tion, we modify the correction factor to linearly approach unity
at the shock transition by defining

Ξmod = 1 +

(

1 − r

rshock

)

(Ξ − 1). (44)

For clarity of notation, we drop the subscript in Ξmod in what
follows.

The correction introduced in Equation (43) affects both the
temperature calculated from internal energy via the EOS and
the NSE temperature calculated from the total internal and
nuclear energy as described in Section 2.3 above. Equation (13)
is corrected to become

ǫEOS(ρ, Ξ
−1T̃ , X) = ǫ, (45)

while Equation (17) is corrected to become

ǫEOS[ρ, Ξ
−1T̃NSE, XNSE(ρ̃, T̃NSE, Ye)]

+ ǫnuc[XNSE(ρ̃, T̃NSE, Ye)]

= ǫ(ρ, Ξ
−1T̃ , X) + ǫnuc(X). (46)

Note that since Ξ � 1, the estimated midplane disk temperature
is higher than the temperature calculated without this correction,
but this allows the disk to cool faster than it would otherwise.
The rate of cooling by neutrino emission is then calculated from

Equations (20) and (21) but at density ρ̃ and temperature T̃ .

2.7. Initial Model and Boundary Conditions

The initial model is the rotating Mstar ≈ 14 M⊙ W-R star 16TI
of Woosley & Heger (2006), evolved to pre-core-collapse from a
16 M⊙ main-sequence progenitor.3 To prepare the model 16TI,
Woosley & Heger assumed that the rapidly rotating progenitor,
which is near breakup at its surface at rstar ≈ 4 × 105 km,
had low initial metallicity, 0.01 Z⊙, and became a W-R star
shortly after central hydrogen depletion, which implied an
unusually small amount of mass loss. For illustration, the
specific angular momentum at the three-quarters mass radius
was ℓ3/4 ∼ 8 × 1017 cm2 s−1, implying circularization around
a 5 M⊙ black hole at r ∼ 2500 km, much larger than ISCO.
The circularization radii of the outermost layers of the star are
in the range 104–105 km. Woosley & Heger provide a radius-
dependent angular momentum profile ℓ16TI(r). We introduce
the dimensionless parameter ξℓ to scale the specific angular
momentum ℓ(r) of our initial model relative to that of 16TI

ℓ(r) = ξℓ ℓ16TI(r). (47)

The plots of density, temperature, angular momentum, and
composition in Section 3 show the initial conditions. The angular
momentum profile is specific to our fiducial Run 1 with ξℓ = 0.5,
half of the rotation rate of 16TI.

The iron core of the model 16TI, with a mass ∼1 M⊙, has
mass too low to collapse directly into a black hole, but should
instead first collapse into a neutron star. The latter could, but
need not, be driven to a successful explosion by the delayed
neutrino mechanism. A black hole can form by fallback. We
do not in any way account for the core bounce and its conse-
quences, nor for the heating by the neutrinos emitted from the
proto neutron star. Our central compact object is a point mass
from the outset equipped with, as we clarify below, an absorbing
boundary condition.

Pseudo-logarithmic gridding is achieved by capping the
adaptive resolution at radius r with ∆r > (1/8)ηr where η
is a dimensionless parameter. We choose η = 0.15 for all but
Run 2, where η = 0.075. Beyond the outer edge of the star

3 López-Cámara et al. (2009) carried out SPH simulations of neutrino-cooled
accretion during the first 0.5 s of the collapse and Morsony et al. (2007) and
Nagakura et al. (2011a) simulated the propagation of a relativistic jet using the
same model star. We discuss important caveats of using this model in Section 4.
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Table 1
Summary of Simulation Parameters

Run ∆rmin αb ξℓ
c ξconv

d ξconv,mix
e

(km)a

1 10.0 0.1 0.5 2.0 6.0

2f 0.5 0.1 0.5 2.0 6.0

3 10.0 0.2 0.5 2.0 6.0

4 10.0 0.025 0.5 2.0 6.0

5 10.0 0.1 0.5 5.0 15.0

6 10.0 0.1 0.5 0.5 6.0

7 10.0 0.1 0.5 1.0 6.0

8 10.0 0.1 0.25 2.0 6.0

9 10.0 0.1 0.5 2.0 3.0

Notes.
a The minimum resolution element size.
b The dimensionless viscous stress-to-pressure ratio.
c Rotational profile parameter (see Equation (47)).
d Convective efficiency parameter (see Equation (27)).
e Convective compositional mixing efficiency parameter (see Equation (34)).
f This run also had additional angular resolution (see Section 2.7).

we place a cold (104 K), low-density, stellar-wind-like medium
with density profile ρ(r) = 3 × 10−7 (r/rstar)

−2 g cm−3.
The simulation was carried out in the spherical domain

rmin < r < rmax. We placed the inner boundary at rmin ∼ 25 km
and the outer boundary well outside the star at rmax = 107 km. In
Table 1, we summarize the main parameters of our simulations,
and also present some of the key measurements, defined in
Section 3, characterizing the outcome of each simulation. Each
simulation was run for ∼107 hydrodynamic time steps and
required ∼5000 CPU hours to complete.

The boundary condition at rmin was unidirectional “outflow”
that allowed free flow from larger to smaller radii (vr < 0)
and disallowed flow from smaller to larger radii (vr > 0)
by imposing a reflecting boundary condition. We imposed the
torque-free boundary condition via (see, e.g., Zimmerman et al.
2005)

∂

∂r

(

ℓ

r2

)

r=rmin

= 0. (48)

As in other Eulerian codes, the boundary conditions in FLASH
are set by assigning values to fluid variables in rows of “guard”
cells just outside the boundary of the simulated domain. Let
r1/2 denote the leftmost cell within the simulated domain, and
let rG where G = (−7/2,−5/2,−3/2,−1/2) be the four guard
cells to the left of r1/2 such that the grid separation corresponds
to ∆G = 1. The torque-free boundary condition, if assumed to
apply for r � rmin, implies ℓG/r2

G = ℓ1/2/r2
1/2. All other fluid

variables X were simply copied into the guard cells, XG = X1/2,
and were subsequently rendered thermodynamically consistent.
This simple prescription approximates free inflow (toward
smaller r) across rmin. The guard cell values for other fluid
variables are assigned ignoring curvature of the coordinate mesh
and formally violate conservation laws at r < rmin.

The mass of the black hole MBH was initialized with the mass
of the initial stellar model contained within rmin. The black hole
mass was evolved by integrating the mass crossing the boundary
at r = rmin,

dMBH

dt
= (−4πr2ρvr )r=rmin

. (49)

The sum of the mass of the black hole and the mass contained
on the computational grid remains constant to a high level of
precision throughout each simulation.

2.8. Assessment and Tests of the Code

We conducted tests of internal energy conservation, angular
momentum transport, and spatial resolution convergence. The
time-integrated equation for the conservation of internal energy
in absence of nuclear and thermal energy interconversion in
spherical coordinates reads

Eint,tot(tmax) − Eint,tot(tmin) = 4πr2
min,test

∫ tmax

tmin

(vrρǫ + Fconv)dt

− 4π

∫ tmax

tmin

∫ rmax

rmin,test

[

P

r2

∂(r2vr )

∂r
− Qvisc + Qν

]

r2drdt = 0,

(50)

where

Eint,tot =
∫ rmax

rmin,test

4πr2ρǫdr (51)

and rmin,test � rmin is a reference radius defining the inner
boundary of the spherical annulus in which we test energy
conservation. We have ignored any flow of energy through rmax,
since stellar material does not reach this radius in the course of
any simulation.

In Figure 1, we utilize Equation (50) to test the global conser-
vation of internal energy in a run with identical test parameters
to Run 2, except that we disabled nuclear compositional change
and used a Newtonian gravitational potential without relativistic
corrections. In the legend, the apparent error ∆E is defined as
the absolute value of the difference between the left- and right-
hand sides of Equation (50). The evaluation of the various terms
in Equation (50) was carried out in post-processing from cell-
centered data recorded in ∆t = 0.01 s intervals, which, in retro-
spect, is prone to the introduction of various spatial and temporal
discretization artifacts not present in the actual simulation.

We find that the apparent error is <1% of the largest term
in Equation (50) when calculated for rmin,test = 50 km for
the time interval 0 s � t � 70 s. The apparent error is most
significant, ∆E ∼ 4 × 1050 erg, prior to and during the first few
seconds after shock passage. The apparent error that accrues
after the first few seconds following shock passage is less than
1050 erg. This can be compared to the total binding energy
change on the simulation grid, which if sufficiently large can
imply a supernova. We calculate this energy in Section 3.5
below and find that it increases by ∼(1.5–2)×1051 erg following
shock formation and a significant fraction (∼5 × 1050 erg) of
the increase is accrued later than a few seconds after shock
formation, when the change in the cumulative apparent error
is very small. Therefore, it does not seem that the apparent
energy conservation error at the levels seen in the simulations
should significantly impact the prospects for explosion. We note
that in our calculations we explicitly transport specific internal
energy rather than the total energy, by setting the parameter
eintSwitch to a very large value. We would like to reiterate that
it is likely that the apparent error is an artifact of post-processing
and the true energy conservation is better. To demonstrate the
latter, however, one would have to reconstruct the diagnostic
energy fluxes using the very same interpolation procedure as is
performed within the PPM in FLASH. We anticipate carrying
out such a test in an extension of this work.

In steady state accretion, mass accretion associated with
viscous angular momentum transport should occur at the rate

Ṁs.s. = −4π

(

∂ℓ

∂r

)−1
∂

∂r

(

r4νρ
∂Ω

∂r

)

. (52)
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Figure 1. Test of internal energy conservation in a run identical to Run 2 except with nuclear compositional change disabled and using a Newtonian gravitational
potential. Plotted are each of the terms in Equation (50) calculated at rmin = 50 km (left) and rmin = 1000 km (right). Note the difference in scales on the vertical
axis. The quantity ∆E represents the absolute value of the difference between the left- and right-hand sides of Equation (50). A possibly dominant source of apparent
error is inconsistent discretization of the various fluid variables and fluxes in PPM and in the post-processing and need not reflect an inaccuracy of the computation.
Neutrino losses are insignificant outside the inner ∼1000 km. Over the interval 0 s � t � 70 s, we find that the total error is <1% of the largest term in Equation (50).

(A color version of this figure is available in the online journal.)

Figure 2. Absolute value of the actual (black, solid) and steady state analytic
(red, dotted, see Equation (52)) mass flow, Ṁ , as a function of radius in
Run 1 at t = 50 s. The deviation from the analytical value is �5% at radii

100 km � r � 1000 km. At this time, rshock ∼ 7 × 104 km.

(A color version of this figure is available in the online journal.)

In Figure 2 we show Ṁ(r) for Run 2 at t = 50 s along
with the analytic steady-state estimate of Equation (52). In
the rotationally supported region 100 km � r � 1000 km,
the deviation from the analytical value is �5%, which lends
credence to the accuracy of our angular momentum transport
scheme.

Our spatial resolution was chosen such that we resolve the
innermost, neutrino-cooled region of the disk over several zones.

One caveat is that we do not resolve the sonic radius of the flow,
an issue discussed in McKinney & Gammie (2002). Because
we use a torque-free boundary condition, the calculation is not
subject to spurious viscous dissipation at the inner boundary.
However, our boundary condition may still influence the fluid
flow, and it therefore may be more apt to consider values of Ṁ ,
as opposed to, for example, α or ℓ, when comparing our work
to other simulations.

Run 1 and Run 2 contained identical hydrodynamic parame-
ters and differed only in spatial resolution. Run 2 was capable
of one additional level of resolution refinement over Run 1 and
the parameter η described in Section 2.7 was set to one-half
the value in Run 1, allowing for significantly higher resolution
as a function of radius. Figures 3–6 show the density, temper-
ature, specific entropy, and the mean atomic weight in Run 1,
and also in the higher-resolution Run 2 at different times. Sub-
stantial agreement is seen between the low- and high-resolution
simulations.

2.9. Limitations of the Method

The primary limitations of the model of collapsar accre-
tion that we have presented here include: (1) a very approx-
imate one-dimensional treatment of the intrinsically two- and
three-dimensional flow structures; (2) limited adequacy of the
Navier–Stokes viscous stress as a model for the magnetic stress
arising in the nonlinear development of the MRI; (3) no a pri-
ori knowledge of the expected efficiency of convective energy
transport ξconv and of compositional transport ξconv,mix; (4) treat-
ment of nuclear compositional transformation through relax-
ation to NSE rather than by integrating the nuclear reaction
network that would have allowed us to make predictions about
the nucleosynthetic output; (5) neglect of ambient composi-
tional stratification and nuclear compositional transformation
inside convective cells in the calculation of the convective heat
flux; (6) the lack of modeling of the axial relativistic jet and

9
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Figure 3. Density in Run 1 (left) and the higher resolution Run 2 (right) at t = 0 s (black, solid), t = 15 s (red, dotted), t = 25 s (green, dashed), and t = 50 s (blue,
dash-dotted). In the convective region behind the shock front, some waves form due to an instability, developing at late times, which is likely an artifact of including
mixing length theory convection as an explicit term in the transport equations. The density jump across the shock front is approximately an order of magnitude.

(A color version of this figure is available in the online journal.)

Figure 4. Temperature in Run 1 (left) and the higher resolution Run 2 (right) at t = 0 s (black, solid), t = 15 s (red, dotted), t = 25 s (green, dashed), and t = 50 s
(blue, dash-dotted). Photodisintegration and neutrino emission cool the innermost disk, while nuclear fusion provides additional heating in the post-shock region (see
Section 3.4).

(A color version of this figure is available in the online journal.)

its enveloping cocoon that are thought to be present in LRGB
sources; and (7) the use of a relatively low mass progenitor star,
which may or may not be able to yield a black hole and an explo-
sion with an energy as high as has been inferred in supernovae
associated with LGRBs. Overcoming limitations (1) through
(6) will require much more computationally expensive multidi-
mensional hydrodynamic and MHD simulations. Limitation (7)
can be addressed by applying our current method to other, more
massive stellar models; here, we speculate what collapsars in
higher mass progenitors may behave like in Section 4 below.

It would be tempting in view of limitation (5) to try to
incorporate the effects of compositional stratification ambient to
convective cells in the convective energy flux, which is normally
achieved by multiplying the energy flux in Equation (27) with a
factor

[

1 −
(

dT

dμ

)

P,ρ

dμ

dr

/ (

T

cp

ds

dr

)

]1/2

, (53)

where μ is the mean nuclear mass, and utilizing the Ledoux in-
stead of the Schwarzschild criterion (see, e.g., Bisnovatyi-Kogan
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Figure 5. Smoothed entropy ssmooth per baryon in Run 1 (left) and the higher resolution Run 2 (right) at t = 0 s (black, solid), t = 15 s (red, dotted), t = 25 s (green,
dashed), and t = 50 s (blue, dash-dotted) in units of the Boltzmann constant (kB). After fluid comes into radial force balance, a strong entropy inversion is observed,
giving rise to convection.

(A color version of this figure is available in the online journal.)

Figure 6. Mass-weighted average of the atomic mass Ā in Run 1 (left) and Run 2 (right) at t = 1 s (black, solid), t = 15 s (red, dotted), t = 25 s (green, dashed), and
t = 50 s (blue, dot-dashed). Note that at t = 1 s, the iron core has already accreted onto the central point mass. At late times, photodisintegration in the hottest inner
regions behind the shock front reduces the value of Ā. Convective mixing is able to dredge up lighter elements; our scheme for nuclear compositional transformation
does not correctly model the subsequent recombination and freezeout well outside NSE.

(A color version of this figure is available in the online journal.)

2001). This would be meaningful as long as the convective eddy
turnover time τconv ∼ λconv/vconv were shorter than the nuclear
timescale τnuc � τNSE, so that the convective cells can be treated
as adiabatic before they mix. However, at radii where Ledoux
convection would differ most from Schwarzschild convection,
namely, where the photodissociation into helium nuclei and free
nucleons is substantial, the convective timescale is much longer

than the nuclear timescale, τconv ≫ τnuc. The internal composi-
tion of a convective cell evolves as it rises, and the associated
entropy change is a much stronger effect than the variation of the
ambient composition treated in Ledoux convection. Magnetiza-
tion of the medium may play a role in this regime but its effects
are poorly understood. Research into the interplay of convec-
tion and nuclear burning is ongoing (see, e.g., Arnett & Meakin
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2011). Cognizant of these and other limitations, we adopt the
Schwarzschild model and consider it but a parameterization of
complex, still-to-be-explored physics.

3. RESULTS

Nine simulations were carried out to explore sensitivity to the
resolution of the simulation ∆rmin, the viscous stress-to-pressure
ratio α, the stellar rotation ξℓ, the efficiency of convective energy
transport ξconv, and the efficiency of convective mixing ξconv,mix.
The values of these parameters in each of the simulations are
summarized in Table 1. Among these, Run 1 can be considered
the fiducial model. Each simulation was run for 100 s, except for
Runs 4 and 5, where strong numerical instabilities associated
with our convection scheme prevented us from simulating for
more than 40 s and 50 s, respectively. In what follows, we present
the results. In Section 3.1, we address the evolution of the
rate with which mass accretes onto the central black hole. In
Section 3.2, we discuss the nature of radial force balance in
the fraction of the stellar material that has been traversed by
the outgoing shock wave, but has not accreted onto the black
hole and also discuss the mass and angular momentum transport
in the system. In Section 3.3, we address energy transport. In
Section 3.4, we address the nuclear composition of the flow and
discuss the limitations inherent in our simplified treatment of
nuclear compositional transformation. In Section 3.5, we discuss
the global energetics and check whether sufficient energy may
be transported into a portion of the stellar envelope to produce
a supernova.

3.1. Central Accretion Rate and Black Hole Mass

Each simulation exhibits unshocked radial accretion of the
inner, low-angular momentum mass shells of the progenitor
star through the inner boundary lasting ∼(20–30) s at relatively
steady accretion rates of ∼(0.1–0.2) M⊙ s−1. The central mass
accretion rate, black hole mass, and total mass on the computa-
tional grid as a function of time in each simulation are shown
in Figure 7. The abrupt drop of the central accretion rate at
∼(20–30) s is associated with the appearance of an accretion
shock precipitated by the arrival of the mass shells with specific
angular momentum sufficient to lead to circularization around
the black hole.

In Figure 8, we show the location of the shock rshock and
its velocity vshock ≡ drshock/dt as a function of time. For each
of the runs, we identify the time when the shock first reaches
radius 10 rmin = 250 km as the shock formation time tshock and
list the shock formation times in Column 2 of Table 2. We also
provide the mass of the black hole at this point, MBH(tshock), in
Column 8. The black hole mass at the time of shock formation
was MBH(tshock) ∼ (5.2–5.5) M⊙ in Runs 1–7 and 9. In Run 8,
which was initiated with reduced initial angular momentum,
the accretion shock appeared later and the black hole mass is
correspondingly larger.

After the formation of the shock, the fluid nearest the inner
boundary is rotationally supported and accretes as a result of
angular momentum transport driven by the viscous shear stress.
Subsequent to shock formation, the accretion rate declines
rapidly either promptly or following a short delay. The typical
rapid drop of the accretion rate is by a factor ∼5–10 (Runs 1,
2, 3, 5, 7, and 9), and this is followed by a continued power-
law-like decline. By the end of each simulation at 100 s, the
accretion rate has typically declined to ∼(10−3 − 10−4) M⊙ s−1

(Runs 1, 2, 3, 4, 7, 8, and 9) or a factor of 100–1000 of the

Table 2
Summary of Key Measurements

Run tshock
a MBH(tshock)b Munbound

c Ebind
d Ekin

e MFe
f

1 20.3 5.4 6.0 0.40 0.31 0.06

2g 19.1 5.2 6.4 0.44 0.36 0.04

3 19.2 5.2 5.7 0.34 0.28 0.06

4 19.8 5.3 4.4 0.62 0.29 0.07

5 20.6 5.5 3.1 0.40 0.18 0.04

6 20.3 5.4 0.0 −0.43 0.16 0.03

7 19.2 5.2 4.4 0.08 0.17 0.09

8 34.0 7.9 5.9 0.54 0.29 0.02

9 19.2 5.2 6.8 0.46 0.37 0.03

Notes.
a Time at which shock reaches r = 250 km (s).
b Black hole mass at when the shock reaches r = 250 kms (M⊙).
c Unbound mass at the end of the simulation (M⊙).
d Total energy in the stellar material at the end of the simulation (1051 erg s−1;

see Section 3.5 and Figure 18).
e Total kinetic energy of outbound material (1051 erg s−1; see Section 3.5).
f Total mass of newly synthesized Fe-group elements at the end of the simulation

(M⊙; see Section 3.4).
g This run also had additional angular resolution (see Section 2.7).

pre-shock value. Final black hole masses were ∼(6–7) M⊙ in
the simulations with ξℓ = 0.5 and ∼10 M⊙ in Run 8 with
reduced initial angular momentum ξℓ = 0.25.

In Run 4, with a low value of the viscosity parameter α =
0.025, the shock first made a very slow progress from 300 km to
2000 km during the first 10 s from its appearance. Then, at 30 s,
the shock suddenly accelerated to vshock ∼ 5000 kms−1. The
near-stagnation of the shock can be understood by noticing that
during the 10 s, the neutrino cooling rate matches the viscous
heating rate; the rapid cooling prevents the central entropy rise
and convection seen in all other runs (see Section 3.3 below). In
Section 4.2 of Lindner et al. (2010), we discussed the scenario in
which the shock stagnation brought about by efficient neutrino
cooling prolongs the LGRB central engine activity resulting in
a longer prompt emission.

In Run 6, which had convective efficiency ξconv = 0.5, the
shock stalled at the radius ∼104 km for ∼5 s before proceeding
outward. Note that the reinvigoration of the shock is solely
driven by the convective energy transport, as we do not simulate
the negligible neutrino energy and momentum deposition. The
stalling and restarting of the shock was reflected in a strong
variability of the central accretion rate.

3.2. The Shocked Envelope and Angular Momentum

Shock passage leaves a shock- and convection-heated, pres-
sure supported envelope which contains much more mass than
the disk, consistent with what we saw in Lindner et al. (2010).
Figure 3 shows that the density in the envelope is an approxi-
mate power law of radius ρ ∝ r−0.9. Figure 4 indicates that the
temperature is also a power-law T ∝ r−0.4. The pressure (not
shown) is an approximate power law P ∝ r−1.8. The profiles
extend inward into the regime in which rotational support dom-
inates pressure support. The mass of the rotationally supported
material in the grid, where acent > (1/2)|gself + gBH|, promptly
following disk formation was typically �5% of the total mass
on the grid. Most of the mass on the grid was in the pressure sup-
ported atmosphere seamlessly connecting to the disk. The mass
of the disk in each simulation is shown in Figure 7. In some of
the runs, certain variability is seen in the disk mass over the first
few seconds of disk formation. Afterward, the disk mass in each
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Figure 7. Mass of the stellar envelope (top, black, solid), mass of the central object (top, red, dashed), mass of the disk (middle) as defined in Section 3.1, and mass
accretion rate through the inner boundary (bottom) in each of the runs. Most of the mass is accreted onto the central object in the first ∼20 s in most runs. The disk
mass makes up only a small portion of the total remaining, while the rest of the mass exists in a pressure supported atmosphere that may continue to feed the disk or
may be potentially unbound by the accretion shock. Plots of the disk mass begin when t = tshock. The quick drop in accretion rate seen in most of the simulations
occurs around the time of shock formation.

(A color version of this figure is available in the online journal.)

13



The Astrophysical Journal, 750:163 (22pp), 2012 May 10 Lindner et al.

Figure 8. Shock location (top) and velocity (bottom) in each of the runs. The red dashed line shows rdisk, the outermost radius where the acceleration due to the
centrifugal force is at least 50% the acceleration due to the pressure gradient. In Run 4 and Run 6, the shock stalls and is reinvigorated. Shock velocities were typically
2000–4000 km s−1. The small fluctuations in the shock velocity are numerical artifacts of the discreteness in our shock detection algorithm.

(A color version of this figure is available in the online journal.)

simulation declines monotonically. In most runs (1–4 and 7–9)
the disk mass declines to Mdisk � 10−5 M⊙ by the end of the
simulation, while in Run 6, the mass at the end of the simulation
is somewhat larger but still very small, Mdisk ∼ 3 × 10−4 M⊙.

Specific angular momentum as a function of radius is shown
in Figure 9. In the initial angular momentum profile of the
model, compositional boundaries coincide with discontinuities
in the profile, but in 16TI these occur only at mass coordinates
that are accreted directly onto the black hole, prior to the
initial circularization. The angular momentum profile of the
mass shells remaining at initial circularization is monotonically
increasing and most of the remaining mass has nearly the same

angular momentum, ∼(1–2) × 1017 cm2 s−1.4 This implies that
the shocked atmosphere has nearly uniform specific angular
momentum everywhere except at the radii where the timescale
on which the viscous torque transport angular momentum is
shorter than the time since circularization. At (25–50) s, there is
a mild, sub-Keplerian inward downturn in ℓ(r) at r � 1000 km.
Angular momentum transport is too slow within the initial
∼100 s to affect the radii �104 km.

4 Stellar models exist in which nonmonotonicity is pronounced. This can
produce an interesting variability of the central accretion rate (e.g.,
López-Cámara et al. 2010; Perna & MacFadyen 2010).
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Figure 9. Specific angular momentum, ℓ, as a function of radius in Run 1 at
t = 0 s (black, solid), t = 15 s (red, dotted), t = 25 s (green, dashed), and
t = 50 s (blue, dot-dashed). The initial rotational profile for the stellar model
shows large spikes at compositional boundaries. Early in the simulation, low
angular momentum material is quickly accreted.

(A color version of this figure is available in the online journal.)

The mass accretion rate as a function of radius in Run 1 at
t = 50 s is shown in Figure 2. The accretion rate is independent
of radius for r � 2000 km, which is the radii where the angular
momentum profile has relaxed to a viscous quasi-equilibrium.
The analytic expectation, given in Equation (52), is shown as
well. Figure 10 shows the radial velocity vr , angular velocity vφ ,
and Keplerian velocity as a function of radius at t = 18 s, just

as material begins to circularize outside of the black hole, and
at t = 30 s, after an accretion disk has formed. At t = 18 s, the
velocity vφ reaches the Keplerian value at the innermost radii.

Throughout the simulations, we tracked the value of our
estimate of the vertical (z-directed) pressure scale height-to-

radius ratio H̃z/r , as described in Section 2.6. When the
estimated ratio is below one-half, this indicates that in two
dimensions, the flow should be disk-like, and when H̃z/r ≪ 0.5,

the flow is a geometrically thin disk. We found that H̃z/r
is below 0.5 but is still always above a minimum of 0.3
everywhere, except in Run 4, which had the lowest viscosity. The
disk-like radii where the vertical pressure scale height-to-radius
ratio is below one-half are r � 200 km immediately following
circularization and shrink to r � 100 km by the end of the
simulation. In Run 4 with a reduced viscous stress-to-pressure
ratio α, neutrino cooling drove the disk to be geometrically thin,
where Hz/r � 0.3 in the inner r � 500 km. In the innermost
zone in Run 4, Hz/r = 0.1 at t = 20 s, the lowest seen in any
simulation. By t = 35 s, no thin disk is present. In Figure 11 we
show the value of Ξmod defined in Equation (44) throughout the
simulation in Runs 1, 4, and 6; it does not drop below ∼0.77.
Only in Run 4 is a genuinely thin accretion disk present, and
there it is limited to small radii. The outer radius of the thin disk
decreases as the neutrino luminosity drops (see Section 3.3).
We attribute the observed moderate thinning of the accretion
flow to the cooling of the flow by the photodisintegration of
helium nuclei into free nucleons, and in Run 4, the additional
contribution of neutrino cooling is also significant.

3.3. Energy Transport

To understand the energetics of the accretion flow in a
collapsar, we need to consider the transport of mechanical,
thermal, and nuclear binding energy, as well as the loss to
neutrino emission. Before turning to energy transport, we

Figure 10. Absolute value of the radial velocity, vr (black, solid), Keplerian velocity including pseudo-relativistic corrections and self-gravity (red, dotted), and vφ

(green, dashed) as a function of radius in Run 1 at t = 18 s (left) and at t = 30 s (right), just as material begins to circularize. Note that the rotational velocity is
approaching the Keplerian velocity at the inner radii. Once material has become rotationally supported, there is a dramatic drop in vr . At radii 4000 km � r < rshock,
the radial velocity is positive, indicating an outflow.

(A color version of this figure is available in the online journal.)
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Figure 11. Value of the correction factor Ξmod applied to the temperature to account for the possibility of a reduced vertical scale height in, from left to right,
Runs 1, 4, and 6 (see Section 2.6). This correction factor does not drop below ∼0.77 in any of the simulations, indicating that geometric thinning of the accretion flow
is a relatively weak effect. The correction is only applied in regions where acent > 0.5 apres, which occurs only for r < 1000 km; thus Ξmod = 1.0 for r > 1000 km.

(A color version of this figure is available in the online journal.)

Figure 12. Neutrino luminosity integrated over the entire computational domain
in representative Runs 1, 4, and 6 (see Section 2.4). The peak in luminosity
occurs shortly after the formation of the accretion shock. Note that we do
not capture neutrino emission from the region r < 25 km, where much
neutronization and peak neutrino luminosity is expected to occur in the first
few seconds after the formation and collapse of the iron core. The total neutrino
luminosities integrated over the entire simulation in Runs 1, 4, and 6 were 2.7,
419.3, and 83.9 × 1051 erg, respectively.

(A color version of this figure is available in the online journal.)

discuss the neutrino losses, which turn out to be not significant
in the regime we consider.

The integrated neutrino luminosity is dominated by the emis-
sion from the inner ∼100 km. The luminosity as a function of
time in the representative Runs 1, 4, and 6 is shown in Figure 12.
In simulations with α = 0.1, neutrino luminosities integrated
over the entire computational domain peaked immediately fol-
lowing shock formation at ∼(1–200) × 1051 erg s−1. The peak
luminosity lasted anywhere from less than a second in the runs
with high peak luminosities to a few seconds in the runs with
low peak luminosities. After the peak, the luminosity decays

first very rapidly until it has dropped to ∼1050 erg s−1, and then
continues to decay approximately exponentially by several or-
ders of magnitude to settle at ∼(10−6 to 10−5) erg s−1 after
∼50 s. The sharp luminosity peak is an artifact of the abrupt
nature of shock formation in our 1.5D dimensional treatment
and is probably not physically significant. The total energy that
would be deposited by an absorption of the emitted neutrinos,
which we do not calculate, is negligible.

Now turning to energy transport, we examine the radial trans-
port of all forms of energy, the thermal and kinetic energies, the
nuclear binding energy, and the gravitational potential energy.
The gravitational potential energy is a nonlocal functional of
the mass distribution. However, ignoring relativistic effects, one
can define the gravitational potential energy per unit volume to
be ρ(ΦBH + (1/2)Φs), where ΦBH is the gravitational potential
of the black hole which we define via ΦBH(r) ≡

∫ ∞
r

gBH(r ′)dr ′

with gBH given in Equation (9) and Φself is that of the self-
gravity of the star. Then, ρvrΦ, where Φ = ΦBH + Φself , can be
interpreted as the flux of gravitational energy advected by the
fluid, but one must additionally include the flux of gravitational
energy transported by self-gravity (see, e.g., Binney & Tremaine
2008, their Appendix F), which equals

Fgrav,self = 1

8πG

(

Φself∇
∂Φself

∂t
− ∂Φself

∂t
∇Φself

)

. (54)

This term is significant only in the outer envelope of the star. The
rate with which the sum total of these energies is transported
radially is given by

Ė = 4πr2

[

ρvr

(

ǫ + ǫnuc +
P

ρ
+

1

2
v2

r +
1

2

ℓ2

r2
+ Φ

)

+ Fgrav,self

− ρνℓ
∂Ω

∂r
+ Fconv + Fnuc,mix

]

, (55)

where the convention is such that Ė > 0 implies the transport
of positive energy outward, opposite from the convection
employed in the definition of the mass accretion rate Ṁ . Here,
−ρνℓ∂Ω/∂r is flux of energy transported by the viscous stress.

Specific entropy as a function of radius at several times
in Runs 1 and 2 is shown in Figure 5. After the formation
of the accretion shock and the rotationally supported flow,
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Figure 13. Smoothed entropy ssmooth per baryon in units of the Boltzmann
constant (kB) at various times in the low-viscosity Run 4 (cf. Figure 5). Unlike in
the other runs, here a negative specific entropy gradient is not seen immediately
after the fluid comes into radial force balance. Even by t = 30 s the fluid is still
stable against convection; neutrino cooling prevents the early rise of convective
instability. Once the neutrino luminosity begins to drop around t = 33 s, entropy
in the post-shock region begins to rise, bringing about strong entropy inversion.
By the end of the simulation, Run 4 has the largest value of entropy seen in any
of the simulations.

(A color version of this figure is available in the online journal.)

viscous dissipation heats the fluid, thus producing a negative
entropy gradient in the shock downstream. The negative specific
entropy gradient extends almost to the shock front, and thus the
energy injected at small radii can travel to raise the entropy
of the entire post-shock region. Figure 13 shows the specific
entropy in Run 4. Here, the high neutrino luminosity after the
accretion shock has formed keeps the entropy in the post shock
region relatively low. For the first ∼10 s after shock formation,
no specific entropy inversion is seen, and the fluid is stable
against convection. When the neutrino luminosity begins to drop
around t ≈ 33 s, the entropy rises, a negative specific entropy
gradient appears in the post-shock region, and convection starts
transporting the viscously dissipated energy outward.

Figure 14 plots the net transport rate Ė and the various con-
stituent terms in Run 2 at t = 30 s; the radii and other ob-
servables quoted in the remainder of this section will be spe-
cific to this particular simulation snapshot and will vary across
different simulations and different times within a simulation.
Approximate radial independence of the energy transport rate,
∂Ė/∂r ≈ 0 for 200 km � r � 4000 km, where the transport

rate is positive Ė ≈ 1050 erg s−1 > 0, is indicative of quasi-
steady-state accretion. At larger radii, r � 5000 km, where
the inner inflow gives way to an outer outflow—a precursor
of the brewing explosion—no quasi-steady state is present and
the fluid variables evolve on the dynamical time in the wake of
the expanding shock. At small radii, r � 100 km, where one

expects a steady state, the curve Ė(r) exhibits a small positive
gradient, as well as a sawtooth consistent with that seen in the
accretion rate Ṁ(r). The constancy of the plotted energy trans-
port rate is contingent on an accurate cancellation of the other
transport terms. We suspect that the observed nonconstancy is

Figure 14. Total and partial energy transport rates in Run 2 at t = 30 s
(see Section 3.3 and Equation (55)). The curves show Ė (black), the en-
thalpy advection rate 4πr2vr (ρǫ + P ) (red), the kinetic energy advection rate
2πr2vrρ(v2

r + ℓ2/r2) (green), the gravitational potential energy transport rate

4πr2(ρvrΦ + Fgrav,self) (dark blue), the rate of energy transport by the viscous

stress −4πr2ρνℓ∂Ω/∂r (pink), the rate of thermal energy transport by con-
vection 4πr2Fconv (green), the nuclear energy transport rate associated with
convective compositional mixing 4πr2Fnuc,mix (gray), and the nuclear binding
energy advection rate 4πr2vrρǫnuc (orange). Negative values are indicated by
dotted lines.

(A color version of this figure is available in the online journal.)

arising from relatively small inconsistencies in the discretization
or gravitational source terms in FLASH and in the calculation
of the gravitational energy during post-processing.

At r � 1000 km, the inward advection of thermal and kinetic
energy dominates over the outward transport by convection
and the viscous stress. Therefore, the innermost flow is an
advection-dominated accretion flow (ADAF; Narayan & Yi
1994, 1995; Blandford & Begelman 1999). At r � 1000 km, the
outward transport of thermal energy by convection dominates
the inward transport by advection and this region is thus a
convection-dominated accretion flow (CDAF, see, e.g., Stone
et al. 1999; Igumenshchev et al. 2000; Blandford & Begelman
2004). Inward nuclear binding energy advection and nuclear
compositional mixing both act to transport the total energy
outward if one counts the negative nuclear binding energy in
the total energy budget. Convection transports energy from the
ADAF–CDAF transition radius where the magnitude of the
enthalpy advection flux ∼|vr (ρǫ + P )| equals the convection
flux Fconv to the shock radius rshock. In Figure 14 the former is
at rADAF ≈ 1000 km and the latter is at rshock ≈ 3.5 × 104 km.
In Run 1 and similar runs, rADAF increases very slowly from
∼1000 km to ∼2000 km from shock formation until t = 100 s.
In Run 4, the radius is ∼200 km throughout the simulation, and
in Run 6, the radius grows from ∼5000 km to over ∼104 km in
the course of the simulation.

We suspect that the location of rADAF determines the amount
of energy that can be carried to the shock front, and that in
turn, the ADAF–CDAF transition radius is primarily a function
of the convective efficiency ξconv and the viscous stress-to-
pressure ratio α. Simulations with larger values of ξconv resulted
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Figure 15. Abundances of the common elements summed over all isotopic species at (left to right) t = 0, 15, 25, 50 s in Run 1.

(A color version of this figure is available in the online journal.)

in stronger shocks and larger amounts of unbound material. The
convective compositional mixing parameter ξconv,mix had little
effect on the final outcome of our simulations. Turning to the
viscosity parameter, Run 3 with a large values of α produced
a somewhat less energetic shock with less unbound material
at the end of the simulation. Run 4, the simulation with the
lowest viscosity, produced the most energetic explosion, even
in the presence of more pervasive cooling by neutrino emission
and by photodisintegration in the low-α regime; these flows
are denser and hotter (see, e.g., Popham et al. 1999; Chen &
Beloborodov 2007). In Milosavljević et al. (2012), we show that
rADAF is expected to be smaller under low viscosity conditions
because the advective luminosity is proportional to vr , which
is proportional to α. This trend is reproduced in the present
simulations.

3.4. Nuclear Composition of the Flow

Our simplified treatment of nuclear compositional transfor-
mation, which entails relaxation to NSE on a temperature-
dependent timescale, is designed to track the impact of nuclear
photodisintegration and recombination on the thermodynamics
of the flow. However, it does not allow the computation of the
ultimate nucleosynthetic output in the presence of out-of-NSE
burning. Thus, the results presented here can only be understood
in light of the limitations of the method.5 It is also worth recall-
ing that we do not calculate neutronization that could modify
the proton-to-nucleon ratio Ye.

In the hottest, innermost accretion flow, photodisintegration
of heavy nuclei saps energy that could otherwise be transported
by convection to larger radii to energize the shocked envelope.
However, once the nuclei are broken down, convective mixing
can dredge up free nucleons to larger and cooler radii, where
they can recombine and heat the fluid locally. Figure 6 shows
the mean atomic mass Ā as a function of radius at various
times in Run 1 and Run 2. The mean atomic mass drops
below 4 in the innermost (200–300) km. The positive gradient
in Ā seen in portions of the convective region would in
the Ledoux picture enhance the convective energy flux, but
our Schwarzchild treatment of convection does not capture
this effect. We argue in Section 2.9 that since the nuclear

5 Metzger (2012) modeled accretion disks associated with the mergers of
white dwarfs and neutron stars or black holes. He found that nuclear processes

taking place at temperatures T � 4 × 109 K may lead to significant heating in
the resulting outflows. The relaxation to NSE we employ underestimates the
heating due to out-of-NSE nuclear recombination.

timescale is shorter than the convective timescale at radii where
Ledoux convection implies an enhanced energy transport, the
nuclear compositional transformation inside convective cells,
not considered in the Ledoux treatment, should dominate.
Lacking a theory of convection in this regime we adhere to
the simpler Schwarzschild parameterization.

In Figure 15, we show the mass-weighted abundances of the
most common elements in our simulations in Run 1 at various
times. By t = 30 s, again, the inner 200 km is made up almost
entirely of free nucleons in nearly equal portions, as Ye ≈ 0.5
everywhere. The effect of convective compositional transport
of the reprocessed nuclear species—the free nucleons, helium,
and iron—from the hot innermost accretion flow is seen in the
power-law tails extending to near the location of the shock in
the right panels.

Although in our calculations we do not allow the evolution
of Ye, we can still speculate about the effects of neutronization.
Chen & Beloborodov (2007) computed the structure of time-
independent accretion disks around Kerr black holes including
the effects of pair capture and neutronization. In their models
with α = 0.1, the same as our fiducial viscous stress-to-pressure
ratio, at the radii where ρ ∼ 107 g cm−3, corresponding to
the density in the innermost disk in our simulations, they find
Ye ≈ 0.5, the same as in our non-neutronizing treatment. In
their models with α = 0.01, however, Chen & Beloborodov
(2007) find that at densities corresponding to the innermost disk
in our simulations, significant neutronization was in effect and
Ye dropped well below neutron–proton equality. It is therefore
possible that in the very innermost regions of the disks in our
Run 4 with a low viscosity α = 0.025, the true value of Ye should
be lower than we assume. This would modify the abundances
and thermodynamics of the portion of the flow in NSE. The key
question of consequence for the viability of the mechanism
we propose for the production of luminous supernovae is,
will the neutron-rich material pollute larger radii and drive a
tendency toward the synthesis of iron instead of 56Ni? Because
this neutronization only seems to be most significant in the
hottest innermost regions, where neutrino cooling is efficient and
the flow is predominantly rotationally supported, it is possible
that most of the neutron-enhanced material would be advected
into the black hole. This is a quantitative question that can be
answered only with multidimensional simulations.

In Figure 16, we show the location of rNSE, the largest radius
at which nuclear compositional transformation, in the form of
gradual convergence toward NSE, is taking place in our Run 1.
This is the only region in which our calculations will capture
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Figure 16. Location of rNSE, the largest radius at which nuclear compositional
transformation, in the form of gradual convergence toward NSE, is taking place
in our Run 1; this radius is closely approximated with the radius where the
temperature crosses ≈3 × 109 K.

nucleosynthesis and photodisintegration. Effectively, it is the
radius at which T > 3 × 109 K. Early in the simulation, the hot
stellar core accretes into the black hole, and rNSE quickly drops
from ≈3000 km to ≈800 km. After the shock forms, additional
heating in the shock and by viscous dissipation rapidly increases
rNSE and it peaks at ≈4000 km. As the density and temperature
drop and the viscous heating rate decreases, the inner regions of
the star begin to cool, and rNSE declines again.

In Figure 17, we show the total mass of various nuclear species
in the entire simulation domain as a function of time. The most
notable change is the dip in the mass of iron-group elements.
The initial decrease in the iron-group mass is the accretion of
the core of the star onto the black hole. After shock formation, a
rapid increase in the amount of free nucleons is seen, in addition
to production of additional helium and iron-group elements. In
Table 2, we show the total amount of newly fused Fe-group
elements present at the end of the simulation, which fall in the
range of 0.02 M⊙–0.09 M⊙. Since we do not calculate the out-
of-NSE burning in convectively dredged up material, at least
a fraction of the extended helium tail seen in Figure 15 could
be expected to burn into iron and thus the iron-group mass in
Figure 17 and Table 2 can be interpreted as a lower limit.

3.5. Prospects for Explosion

The total thermal and mechanical energy, which we also refer
to as the total binding energy, present on the grid was computed
for each simulation via

Ebind =
∫ rmax

rmin

ρ

(

ǫ +
1

2
v2

r +
1

2

ℓ2

r2
+ ΦBH +

1

2
Φself

)

4πr2dr

(56)
and is shown in Figure 18. A positive binding energy indicates
a potential for explosion. Runs 1, 2, 3, 4, 5, 8, and 9 acquired
a positive total binding energy Ebind ∼ (3.5–6.2) × 1050 erg
by the end of the simulation, indicating the potential for
explosion. These runs have ξconv � 2 in common. Run 7

Figure 17. Mass of the most common elements summed over isotopic species
in Run 1 as a function of time. Here, Fe represent all the isotopes of the iron
group. At the start of the simulation, there is a large dip in the amount of iron
group elements, due to the accretion of the iron core. After shock formation,
∼0.05 M⊙ of iron group elements are synthesized.

(A color version of this figure is available in the online journal.)

with ξconv = 1 reached marginally unbound condition with
Ebind ∼ (0.5–1) × 1050 erg. Run 6 with ξconv = 0.5 remained
gravitationally bound throughout the entire simulation.

The total unbound mass in each simulation was calculated by
summing the masses of any fluid element with a positive value of
Ebind and a positive radial velocity. The total unbound masses in
each simulation defined by this diagnostic are shown in Table 2.
This criterion does not take into account any interaction that
unbound and bound material might have subsequent to the mea-
surement. This criterion also neglects future energy gain or loss
from nuclear processes. The location and velocity of the outward
moving accretion shock is shown in Figure 8. In exploding mod-
els, the typical shock velocities were (2000–4000) km s−1. In
Run 4 and Run 6, the shock stalled or slowed, and later restarted
once or several times. In Figure 19, we show the evolution of
various Lagrangian mass coordinates in Run 1 throughout the
simulation. Once the shock moves beyond ∼4000 km, the in-
falling material obtains a positive velocity once it reaches rshock.

These results suggest that a high convective efficiency is
required for sufficient transfer of energy from the inner accretion
flow to the envelope to unbind the envelope. Simulations with
higher values of ξconv had relatively larger shock velocities and
amounts of unbound mass at the ends of their simulations, and
Run 4 with a lower α had the largest value of Ebind. Run 8
with reduced initial specific angular momentum produced an
explosion comparable to that seen in the fiducial model.

4. OBSERVATIONAL SIGNATURES
AND PROGENITOR TYPES

Modeling of light curves and spectra of supernovae associated
with LGRBs has yielded information about the nature of these
explosions. The mass of 56Ni present in the supernova ejecta
is easily estimated from the light curve by fitting simple
radioactive decay models. The velocity of the ejecta is inferred
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Figure 18. Total binding energy on the simulation grid in Runs 1 and 2–9.
Simulations in which the convective efficiency factor, ξconv � 0.5, reached
a positive total binding energy by the end of the simulation. The large, brief
dips in energy visible in some simulations around the time of shock formation
are primarily due to cooling by neutrino emission. The large dip seen in
Run 4 is also predominantly due to neutrino cooling and has a minimum of
Ebind = −1.5 × 1052 erg.

from observed line widths. Then, in a standard approach, the
kinetic energy and mass of the ejecta are derived by comparing
the inferred 56Ni yield with that implied by one-dimensional
hydrodynamic models in which a spherical shock wave is
introduced by hand (by the action of a hypothetical “piston”)
into the progenitor’s envelope.6 This approach relies on the
hypothesis that 56Ni is produced at the shock front, for which
the shock must be very strong.

Our simplified simulations suggest an alternative scenario in
which nucleosynthesis takes place in the accretion flow in the

6 In “piston” and “thermal bomb” models, an explosion is mimicked by
injecting a large kinetic or thermal energy into a narrow shell over a relatively
short �1 s time interval (e.g., Jones et al. 1981; Woosley & Weaver 1986;
Arnett 1987; Shigeyama et al. 1987; Woosley et al. 1988; Thielemann et al.
1990; Woosley & Weaver 1995; Limongi & Chieffi 2003; Chieffi & Limongi
2004; Young & Fryer 2007; Fryer et al. 2008; Kasen & Woosley 2009; Maeda
& Tominaga 2009; Joggerst et al. 2010; Dessart et al. 2011).

Figure 19. Evolution of the Lagrangian mass coordinates in Run 1 (black, solid).
The location of rshock is also shown (red, dashed). The bifurcation between an
inner inflow and an outer outflow occurs at r ∼ 4000 km. This corresponds to
a mass coordinate of ∼5.6 M⊙.

(A color version of this figure is available in the online journal.)

interior of the star, similar to the wind-nucleosynthesis models
(e.g., Beloborodov 2003; Pruet et al. 2003, 2004; Nagataki et al.
2006; Surman et al. 2006; Maeda & Tominaga 2009; Metzger
2012). Our results, however, suggest that the accretion flow is
long lived, lasting tens or hundreds of seconds or longer, and
so the nucleosynthesis can be sustained at lower densities than
in the wind models, and its products can be delivered to the
envelope by vigorous convection.

We also find that a supernova-like shock wave may be pow-
ered by the sustained input of accretion energy, without ener-
gization by neutrino energy deposition. The dynamics of the
accretion-energy-powered shock wave is fundamentally differ-
ent from that powered by a piston. It remains to be explored
whether the accretion scenario will call for a modification of the
standard approach to modeling the light curves and spectra of the
supernovae that could be yielding black holes. We are thus some-
what reluctant to compare our results directly with observational
inferences obtained with existing supernova models. Previous
work has attributed kinetic energies of ∼(2–50)×1051 erg to su-
pernovae associated with LGRBs (see, e.g., Woosley & Bloom
2006; Hjorth & Bloom 2011, and references therein). Our mod-
els come short of these energies, but they are consistent with
the low energy end among the more typical Type Ib and Ic
supernovae (see, e.g., Table 4 in Hamuy 2003). Unfortunately
the simplified treatment of nuclear compositional transforma-
tion does not allow us to predict the 56Ni synthesized in our
models. We can only say that supernovae powered by collapsar
accretion should exhibit a high degree of mixing of hydrostatic
and explosive elements.

The shock velocities at t = 100 s, when the shock is still in
the interior of the envelope, in the models that achieve explo-
sion, are vshock ≈ 4000 km s−1. This is a half or smaller fraction
of the commonly cited values for shock velocities measured
in the observed supernovae. Of course, leading to the break-
out of the stellar surface, the shock accelerates as it traverses
the negative density gradient. The mass-weighted rms free
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expansion velocity inferred from the total energy at the end of the
simulation is vFE ∼ (2Ebind/Munbound)1/2 ∼ 3000 (Ebind/0.5 ×
1051 erg)1/2(Munbound/5 M⊙)−1/2 km s−1, again lower than usu-
ally quoted for the observed supernovae.

Our initial model of choice was the Mstar ≈ 14 M⊙
W-R model star 16TI of Woosley & Heger (2006), evolved
to pre-core-collapse from a 16 M⊙ main-sequence progenitor.
The model 16TI is commonly used in LGRB investigations
(e.g., Morsony et al. 2007, 2010; López-Cámara et al. 2009,
2010; Lazzati et al. 2010, 2011a, 2011b; Lindner et al. 2010;
Nagakura et al. 2011a, 2011b), but it has been suggested that
the progenitors of supernovae with confirmed association with
LGRBs must be associated with the core collapse of more mas-
sive stars, perhaps with masses in the range of (25–60) M⊙ or
higher (e.g., Podsiadlowski et al. 2004; Smartt 2009, and ref-
erences therein). However, predictions regarding the nature of
the final remnant in such explosions are sensitive to the highly
debated details of the explosion mechanisms in core collapse
supernovae. Observational studies of the spatial distribution of
Type Ic supernovae and GRBs in galaxies suggest that the re-
spective progenitors should be at least ∼25 M⊙ and ∼43 M⊙
(Raskin et al. 2008; see also Larsson et al. 2007). It is of inter-
est to note that simulations of neutron-star-powered explosions
have been successful only in the lowest mass progenitors. The
accretion powered mechanism we propose will operate in more
massive progenitors that produce black holes. It is reasonable to
speculate that in progenitors more massive than in our model, or
with different internal structure, the explosion energies would
be much higher than we find, more in line with the high energies
of the LGRB supernovae. The long-term accretion in massive
collapsar progenitors deserves further study.

5. CONCLUSIONS

We have conducted a series of hydrodynamic simulations of
the viscous post-core-collapse accretion of a rapidly rotating
∼14 M⊙ W-R star of Woosley & Heger (2006) onto the central
black hole that we assumed was in place at the beginning of
the simulation. The spherically symmetric simulations with
rotation were carried out for 100 s and resolved the radii down to
25 km, including the range of radii where the collapsing stellar
material circularizes around the black hole. The simulations
tracked cooling by neutrino emission and the relaxation to NSE
in the hot inner accretion flow. The simulations also tracked
convection and convective compositional mixing in the mixing
length theory approximation. Finally, the simulations tracked
viscous angular momentum transport and the associated heating
in the flow. To explore the sensitivity to model parameters, we
varied the initial angular momentum profile, convective energy
transport and compositional mixing efficiencies, and the viscous
stress-to-pressure ratio α. Our main findings are as follows.

Lacking sufficient angular momentum to be rotationally
supported around the black hole, the inner mass coordinates
of the stellar envelope accrete unshocked onto the black hole.
At t ∼ 20 s, or later with reduced initial angular momentum, the
first mass shell able to circularize around the black hole arrives.
Once material becomes circularized, an accretion shock forms
as the mass shells in near free fall interact with the rotationally
supported material.

This shock front travels outward, leaving behind a mostly
pressure supported, shock heated, convective stellar envelope.
Only a very small fraction of the mass is predominantly
rotationally supported; the rotationally supported, geometrically
thick disk connects smoothly to the pressure supported, shock-

heated envelope. The structure and energetics of the flow are
governed by accretion mechanics. The energy dissipated by the
viscous stress at the innermost radii, the radii smaller than some
critical rADAF, is advected into the black hole. The innermost
flow is thus an ADAF. At larger radii, convection transports the
dissipated energy outward, into the stellar envelope and toward
the expanding shock front, implying that the outer flow is a
CDAF. The delivery of energy from ∼rADAF to the envelope
proceeds for tens of seconds, and the total energies delivered
are sufficient to produce supernovae, albeit not as energetic as
the ones inferred in association with LRGBs.

We found that the final energy deposited into the envelope
strongly depended on the efficiency of convective energy trans-
port and depended somewhat on the viscous stress-to-pressure
ratio α. These two parameters strongly influence the location of
the ADAF/CDAF transition, as we have explored with crude
analytical arguments in Milosavljević et al. (2012). The low-α
model has a hotter disk with more pervasive cooling by neu-
trino emission and nuclear photodisintegration, sapping energy
from the final explosion. However, the low-α disk also has an
ADAF/CDAF transition at a smaller radius, potentially allow-
ing for a higher convective luminosity.

For sufficiently high convective efficiencies, the stellar enve-
lope was capable of obtaining positive total thermal and mechan-
ical energies ∼0.5 × 1051 erg, shock velocities ∼4000 km s−1,
and unbound masses ∼6 M⊙. We suggest that the accretion
powered mechanism, which is distinct from and possibly mutu-
ally exclusive with the standard neutron-star-powered “delayed-
neutrino” mechanism, could explain low-luminosity Type Ib and
Ic supernovae, but multidimensional study is needed to pin down
the true efficiency of convective energy transport and to estimate
the expected 56Ni yield.
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