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ABSTRACT

In this paper we present the results of time-dependent simulations of the dipolar axisymmetric
magnetospheres of neutron stars carried out within the frameworks of both relativistic mag-
netohydrodynamics (MHD) and resistive force-free electrodynamics. The results of force-free
simulations reveal the inability of our numerical method to accommodate the equatorial cur-
rent sheets of pulsar magnetospheres, and raise a question mark about the robustness of this
approach. On the other hand, the MHD approach allows us to make significant progress. We
start with a non-rotating magnetically dominated dipolar magnetosphere and follow its evolu-
tion as the stellar rotation is switched on. We find that the time-dependent solution gradually
approaches a steady state that is very close to the stationary solution of the pulsar equation
found in 1999 by Contopoulos, Kazanas & Fendt. This result suggests that other stationary
solutions that have the Y-point located well inside the light cylinder are unstable. The role of
particle inertia and pressure on the structure and dynamics of MHD magnetospheres is studied
in detail, as well as the potential implications of dissipative processes in the equatorial current
sheet. We argue that pulsars may have differentially rotating magnetospheres which develop
noticeable structural oscillations, and that this may help to explain the nature of the subpulse
phenomena.
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1 I N T RO D U C T I O N

Pulsar magnetospheres are complicated electrodynamic systems
that involve the acceleration of charged particles by the rotationally
induced electric field, electron–positron pair production, and the
bulk outflow of magnetospheric plasma through the light cylinder.
Pair production presumably occurs on a scale that is significantly
smaller than the magnetospheric scale (the latter is determined by
the light cylinder radius � lc = c/�). This suggests that the global
structure of pulsar magnetospheres may not depend on the details of
the pair production mechanism, which may enter the problem only in
the form of boundary conditions. The simplest assumption is that the
plasma supply is sufficiently plentiful to allow the magnetohydro-
dynamic (MHD) description throughout the whole magnetosphere.
Although this may not be so in the case of slowly rotating or weakly
magnetized pulsars (Hibschman & Arons 2001), it still makes sense
to regard the MHD solution as a zero approximation model and a
good reference point.

Although pulsar magnetospheres are generically three-
dimensional, it is still reasonable to start with a much simpler
axisymmetric case, as it involves most of the basic physical
elements of the general case. Michel (1973) and Scharlemann
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& Wagoner (1973) first analysed the structure of a stationary
axisymmetric pulsar magnetosphere in the limit of force-free
electrodynamics where both the pressure and the inertia of the
magnetospheric plasma are assumed to be vanishingly small.
They found that in this case the problem reduces to the following
second-order partial differential equation (PDE), which is now
called the pulsar equation:
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Here x = �/� lc and y = z/� lc are the cylindrical coordinates nor-
malized to the radius of the light cylinder and � is the magnetic flux
function. This equation also involves the poloidal current function,
A(�), which is unknown. If this function is somehow specified,
the pulsar equation becomes a linear elliptic equation. However, the
question of what actually determines the electric current function
is not that obvious and is still debated (Mestel 1999; Beskin 2005).
The physical meaning of these functions is quite simple: � = �/2π,
where �(x , y) is the magnetic flux through the axisymmetric cir-
cular loop given by x = constant, y = constant; and A = 2I/c,
where I (x , y) is the total electric current flowing through the same
loop. It is also worth mentioning that, if we set Aφ(x = 0) = 0, then
� = Aφ , and that, in a steady state, A = Hφ , where Aφ and H φ are
the covariant azimuthal components of the vector potential A and
the magnetic field H in the non-normalized basis of cylindrical or
spherical coordinates.
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Another important feature of this equation is the mathematical
singularity at the light cylinder. It was argued by Ingraham (1973)
that the condition of smooth passage through this surface together
with the appropriate boundary conditions determine the unique elec-
tric current function of the pulsar equation. (This property makes
the problem somewhat similar to the classical eigenvalue problem
in the theory of differential equations.) Ingraham (1973) even pro-
posed an iterative algorithm for finding this function. In the same
year Michel (1973) did actually find an exact solution to the pulsar
equation in the case of a split-monopole magnetic field that passed
through the singular surface both continuously and smoothly. Al-
though Michel did not use Ingraham’s approach, his result supported
Ingraham’s idea and raised expectations for finding smooth contin-
uous solutions in more complicated realistic cases, like for example
the magnetosphere of a rotating dipole, as well. [The recent observa-
tions of magnetospheric eclipses in the binary pulsar J0737−3039
have confirmed that the dipolar model may indeed be quite accurate
(Lyutikov & Thompson 2005).]

The electric current of Michel’s (1973) solution has the same
sign within the magnetosphere, with the exception of the equato-
rial current sheet that provides current closure. Further analysis by
Ingraham (1973) and Michel (1974) suggested that, if the force-
free solution for an axisymmetric rotating dipole existed, then far
beyond the light cylinder it should still closely resemble the split-
monopole one. However, in the near zone the structure of the dipolar
magnetosphere was expected to be qualitatively different. Indeed,
close to the star the effects of its rotation are relatively small and so
must be the difference between the solutions for the rotating and the
non-rotating magnetospheres. As a result, a so-called ‘dead zone’
should exist where the magnetic field lines remain closed and the
magnetospheric plasma corotates with the star.

However, the problem of finding the self-consistent global solu-
tion for dipolar magnetospheres turned out to be rather involved,
even for the axisymmetric case of aligned rotator. For a very long
time, the only attempts to construct such solutions involved the
utilization of prescribed electric current functions. Such solutions
would either exhibit kinks at the light cylinder or violate the con-
ditions of the force-free approximation at some relatively short dis-
tance from it (e.g. Michel 1982; Beskin, Gurevich & Istomin 1993).
The breakthrough came only recently when Contopoulos, Kazanas
& Fendt (1999, hereafter CKF) finally managed to solve the prob-
lem numerically. In this solution, the dead zone continues all the
way to the light cylinder where the so-called ‘Y-point’ appears in
the magnetic field structure, whereas beyond the light cylinder it
has the same topology as the split-monopole solution including an
infinitely thin equatorial current sheet. The return current of the
equatorial current sheet splits at the Y-point into two current sheets
that flow along the surface separating the dead zone from the open
field zone. An additional finite-width layer of return current exists
just outside of the dead zone and around the equatorial plane.

Uzdensky (2003) carried out an asymptotic analysis of the force-
free solutions in the vicinity of the Y-point. It turned out that in
the presence of separating current sheets, similar to those found
in Contopoulos et al. (1999), the electromagnetic field becomes
infinitely strong at the Y-point. Uzdensky (2003) argued that this is
unphysical and questioned the correctness of the CKF solution. As
an alternative he considered the case with no current sheets, i.e. the
case where the electric current returns within the equatorial layer
of the open field zone only. In this case the electromagnetic field
does not diverge at the Y-point, but just outside of this point the
electric field becomes stronger than the magnetic field, signalling a
breakdown of the force-free approximation. No such complications

were found for the Y-point located inside the light cylinder. In fact,
in this case the separating surface crosses the equator at the right
angle so that the Y-point turns into a ‘T-point’.

Gruzinov (2005) also analysed the force-free solution in the vicin-
ity of the Y-point located at the light cylinder in the presence of cur-
rent sheets and confirmed that in this case the electromagnetic field
diverges at the Y-point. His analytical solution exhibits an angle of
77.3 degrees between the equatorial plane and the separating sur-
face at the Y-point. In order to verify this, Gruzinov (2005) repeated
the calculations of CKF with much higher spatial resolution, and
the results seemed to confirm the development of a singularity
with the expected inclination angle of separatrices.

The next potentially very important step was made by Goodwin
et al. (2004), who realized that the dead zone does not have to extend
all the way to the light cylinder but can be much smaller. Such solu-
tions select their own electric current functions, smaller dead zones
corresponding to weaker currents. In fact, the first solutions of the
pulsar equation, which described both the equatorial current sheet
and the dead zones that were located deep inside the light cylinder,
were found by Lyubarskii (1990). However, these solutions utilized
a prescribed electric current function and, as a result, exhibited the
breakdown of the force-free approximation – at a certain distance
from the light cylinder the electric field became stronger than the
magnetic field. Goodwin et al. (2004) also included finite gas pres-
sure inside the dead zone and showed that this allows solutions that
remain non-singular at the Y-point even when this point is located
on the light cylinder. In this case their solution gives an inclination
angle of the Y-point of 56.5 degrees. However, the inertia associated
with the gas pressure has not been taken into account, and thus the
self-consistency of such an approach is questionable. This idea of
Goodwin et al. (2004) was further explored by Timokhin (2005),
who constructed numerical solutions for force-free magnetospheres
with the Y-point located within the light cylinder (with no finite
gas pressure in the dead zone). He also pointed out that the pulsar
spin-down rate depended not only on the size the light cylinder but
also on the size of the dead zone, and if the ratio of these scales
were to evolve with the pulsar age then this could explain why the
observed braking index of pulsars is smaller than the value derived
from the models with the dead zone extending all the way up to the
light cylinder.

Another interesting twist has been added by Contopoulos (2005),
who argued that during pulsar evolution the potential gap separating
the star surface from the polar-cap magnetosphere grows in magni-
tude leading to a slower rotation of the open field lines compared to
the star and the dead zone. In such a case, there is no a single light
cylinder for the whole magnetosphere. Instead, the dead zone has its
own light cylinder that is located inside the light cylinder of the polar
cap. To illustrate this point, Contopoulos (2005) constructed a set of
numerical models of pulsar magnetospheres of this kind. The evo-
lution of the angular velocity of the polar-cap magnetosphere with
pulsar age may also result in lower values of the pulsar’s braking
index.

In spite of this remarkable progress, the method of pulsar equa-
tion has its obvious limitations. It does not address the question
of the stability of the steady-state solutions, and it does not allow
us to study possible non-stationary phenomena in pulsar magneto-
spheres. Moreover, the numerical techniques that have been used to
solve the pulsar equation may turn out to be rather difficult to adapt
to the fully three-dimensional problem of the oblique rotator. The
obvious way of approaching these problems is to relax the station-
arity condition and to solve the original system of time-dependent
equations. Although force-free electrodynamics has been used to
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model various astrophysical systems since the 1970s, the focus was
entirely on the steady-state equations. Only recently have the time-
dependent equations been subjected to a systematic study (Uchida
1997; Gruzinov 1999; Punsly 2003; Komissarov 2002a). As a result
it has been found that they form a simple hyperbolic system of con-
servation laws in many respects similar to relativistic MHD but only
with the fast and the Alfvén hyperbolic waves (Komissarov 2002a).
Thus, a variety of standard numerical methods can be used to deal
with these equations. The very first numerical simulations of this
kind, of the monopolar magnetospheres of black holes, seemed to
confirm the suitability of this approach (Komissarov 2001). How-
ever, further applications to somewhat more complex magnetic con-
figurations revealed its limitations, as the force-free approximation
would often break down following the development of strong current
sheets (Komissarov 2002a,b; Spitkovsky 2004; Asano, Uchida &
Matsumoto 2005). These results suggested the need to look for a
more general mathematical framework that would allow current
sheets to be handled via the introduction of new channels of back-
reaction of plasma on the electromagnetic field. One of the most suit-
able options is the framework of resistive relativistic MHD. How-
ever, this approach remains rather poorly studied even now. Ideal
relativistic MHD is a somewhat easier option and, thanks to recent
efforts by several groups, significant expertise has been obtained in
developing numerical methods for this system. This approach al-
lows us to take into account the thermodynamic pressure of plasma
heated in the current sheets, but the dissipation of electromagnetic
energy is entirely due to numerical resistivity, which is not fully
satisfactory.

Another alternative is resistive force-free electrodynamics with
physical or artificial resistivity. If the current sheets of pulsar magne-
tospheres are indeed dissipationless, then this approach might work
provided that the utilized Ohm’s law allows evolution towards a
dissipationless force-free state. The recent time-dependent simula-
tions by Spitkovsky show that this approach may indeed be quite
productive (the results were presented in the summer of 2005 at the
conference on the ‘Physics of Astrophysical Outflows and Accre-
tion Discs’, Kavli Institute for Theoretical Physics, Santa Barbara,
CA.)

In this paper we report the results of new time-dependent axisym-
metric simulations of rotating dipolar magnetospheres of neutron
stars within the frameworks of resistive force-free electrodynam-
ics and ideal relativistic MHD. We only consider the case where
the whole magnetosphere rotates with the same angular velocity,
and thus our results are not relevant to the model of Contopoulos
(2005). This model will be the subject of a separate study. Note that
throughout the paper the graphic data are shown in dimensionless
units where the magnetic dipole moment μ = 1, the angular veloc-
ity of the star � and the speed of light c = 1. Hence the cylindrical
radius of the light cylinder � lc = 1.

2 C O M M O N F E AT U R E S O F T H E

S I M U L AT I O N S

Using the standard notation of the 3+1 approach, the metric form
of a general space–time can be written as

ds2 = (β2 − α2) dt2 + 2βi dxi dt + γi j dxi dx j , (2)

where γ i j is the metric tensor of ‘the absolute space’, α is the lapse
function, and β is the shift vector. For most purposes in the physics
of pulsar magnetospheres the flat space approximation suffices and
one can enjoy the benefits of a global inertial frame where α = c
and β i = 0 (see however Beskin 1990; Muslimov & Tsygan 1990).

This is exactly what was adopted in the numerical models of pul-
sar magnetospheres described in the Introduction and in this study
as well. However, the computer codes used in the simulations are
designed to work with rather general axisymmetric and stationary
space–times. Moreover, in the case of an oblique rotator, the frame
rotating with the star seems to be more suitable as the solution may
become stationary in this frame. In such a case β is no longer van-
ishing and in the basis of spherical spatial coordinates

βr = βθ = 0, βφ = c� sin2 θ r 2

and hence

α2 = c2 and β2 = c2�2 sin2 θ r 2,

where � is the angular velocity of the frame.
In our simulations, the computational grid covers the axisymmet-

ric domain (r , θ ) = [r in, r out] × [0, π], so no symmetry condition
is enforced at the equatorial plane. The cell size in the r-direction
is such that the corresponding physical lengths in both directions
are equal, �r = r�θ . The ‘radiative’ outer boundary, r = r out, is
always located so far away from the star that the light signal does
not cross the computational domain by the end of the simulations –
this ensures that waves produced near the star do not get reflected
off the outer boundary at any rate.

As the Courant stability condition requires �t < �r/c, the suit-
able time-step for the outer part of the computational domain is
much larger than that for its inner part. This allows us to reduce the
computational cost of simulations via splitting the computational
domain into a set of rings such that the outer radius of each ring is
twice its inner radius and to advance the solution for each kth ring
with its own time-step, �tk, such that �t k+1 = 2�tk. Thus, one in-
tegration step of ring k corresponds to two integration steps of ring
k − 1, four integration steps of ring k − 2 and so on. As a result,
the outer regions of the computational domain are progressively less
expensive in terms of CPU time. This approach has already been
successfully applied in recent MHD simulations of pulsar wind neb-
ulae (Komissarov & Lyubarsky 2004).

The initial solution describes a non-rotating magnetosphere with
exactly dipolar magnetic field,

B φ̂ = 0,

Br̂ = 2μ cos θ/r 3,

B θ̂ = μ sin θ/r 3,

(3)

where μ is the magnetic dipole moment. At time t = 0 the stellar
rotation is suddenly switched on via an appropriate inner boundary
condition. The simulations then proceed till it becomes clear whether
or not the time-dependent solution relaxes to a steady state on scales
comparable with the light cylinder radius. Steady-state solutions that
are found in such a way are automatically stable to axisymmetric
perturbations with wavelengths exceeding the cell size.

3 E L E C T RO DY NA M I C M O D E L

3.1 Equations

Following Komissarov (2004a) we write the vacuum Maxwell’s
equations as

∂i (
√

γ Bi ) = 0, (4)

(1/c) ∂t Bi + ei jk ∂ j Ek = 0, (5)

∂i (
√

γ Di ) = 4π
√

γ κ, (6)
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−(1/c) ∂t Di + ei jk ∂ j Hk = (4π/c)J i . (7)

Here γ = det(γ i j ) is the determinant of the metric tensor of the
absolute space, and ei jk = √

γ εi jk is the Levi–Civita tensor of the
absolute space (ε 123 = 1 for right-handed systems and ε123 = −1
for left-handed ones). The electric field, E, and the magnetic field,
B, are defined via

Ei = 1
2 αei jk

∗F jk (8)

and

Bi = α ∗Fit . (9)

Here ∗Fμν is the Faraday tensor of the electromagnetic field, which
is simply dual to the Maxwell tensor Fμν :
∗Fαβ = 1

2 eαβμν Fμν, (10)

where

eαβμν = √−g εαβμν (11)

is the Levi–Civita alternating tensor of space–time.
The differential equations (4)–(7) are supplemented with the fol-

lowing constitutive equations (Komissarov 2004a):

cEk = αDk + eki jβ
i B j , (12)

cHk = αBk − eki jβ
i D j , (13)

J k = (α/c) j k − κβk . (14)

Note that (1) the components of all the vectors and tensors appearing
in these equations are measured in the non-normalized coordinate
basis, {∂i}, of spatial coordinates; (2) D, B, j and κ are the electric
field, magnetic field, electric current density and electric charge
density as measured by a local observer at rest in the absolute space.
The four velocity of this observer is

nν = 1

α
(c, β i ).

In the inertial frames of flat space–time, E = D and B = H.
The final equation that is needed to close the system is Ohm’s

law. In strongly magnetized plasma the conductivity is no longer
isotropic and under rather general conditions

j = σ‖ D‖ + σ⊥ D⊥ + jd, (15)

where

jd = κc
D × B

B2
(16)

is the drift current. Unless the magnetosphere has a scarce supply
of electrically charged particles, i.e. is ‘charge starved’, the parallel
conductivity is very large, which leads to a small residual parallel
component of the electric field,

σ‖ → ∞, D‖ → 0. (17)

However, the strong magnetic field of pulsar magnetospheres effec-
tively suppresses conductivity across the magnetic field lines (unless
the electric field is even stronger than the magnetic one; this may
be the case inside some current sheets). So we can put

σ⊥ = 0 if B2 > D2. (18)

As shown in Komissarov (2004a), in this limit we approach the
approximation of force-free electrodynamics.

Within current sheets this simple prescription is unlikely to hold.
On the one hand, in the area of high current density one may expect
strong anomalous resistivity leading to significantly reduced σ‖. As

a result, the current sheet may become unstable to the tearing mode
of reconnection (Lyutikov 2003). Since our intention at this point is
merely to see if we can construct idealized numerical solutions that
are more or less force-free and thus can be compared with the steady-
state solutions of the pulsar equation, we will ignore this physical
effect for the time being. On the other hand, the mere symmetry
of the aligned rotator magnetosphere suggests that sooner or later
the magnetic field of the force-free solution will become very small
in the equatorial plane beyond the light cylinder, thus leading to
unavoidable breakdown of the D2 < B2 condition of the force-free
approximation. In such a case of relatively weak magnetic field the
conductivity is expected to become much less anisotropic and we
will assume that

σ⊥ = σ‖ 	 1 if B2 < D2. (19)

Notice that the expression (16) for the drift current should also be
modified in this case, as it implies that the drift speed

vd = c
D × B

B2
(20)

becomes higher than the speed of light. We have tried several mod-
ifications for vd, including

vd = c
D × B

max(B2, D2)
, (21)

which is likely to underestimate vd in the current sheet, and

vd = c
D × B

|D × B| if B2 < D2, (22)

which certainly overestimates it. The actual value of the conductivity
in the current sheet remains a free parameter.

To find numerical solutions of Maxwell’s equation, in particular
the solutions that are presented in the next section, we used the
Godunov-type numerical scheme described in Komissarov (2004a).

3.2 Numerical simulations

The most striking and at first somewhat perplexing result of our elec-
trodynamic simulations of pulsar magnetospheres is demonstrated
in Fig. 1 – contrary to what is found in the steady-state solutions
of the pulsar equation, the magnetic field lines remain close even
outside of the light cylinder. Moreover, the solution seems to be
rather insensitive to the details of the model for σ ⊥ and remains
qualitatively the same even in the case σ ⊥ = 0 (in fact, the solutions
exhibited convergence in the limit σ ⊥ → 0).

The question of whether the field lines extending beyond the light
cylinder should open up or not is in fact rather involved. One of the
arguments often put forward in its discussion concerns the require-
ment for the speed of charged particles that fill the magnetosphere
to remain smaller than the speed of light. In the drift approximation
the charged particles move along the rotating magnetic field lines
like beads on a wire – their motion is a composition of the rota-
tional motion of the field line (the ‘wire’) and the sliding motion of
the particle (the ‘bead’) along the field line. Within the light cylin-
der the speed of the rotational motion is less than the speed of light
and the bead does not have to slide along the wire, but this is no longer
the case beyond the light cylinder. Here the total speed of the bead
can remain less than c only if it also slides along the wire and only
if the wire is twisted in the azimuthal direction. (In such a case the
sliding motion may help to reduce the azimuthal component of the
bead velocity.) These conditions may well be satisfied everywhere
along the open field lines but not along the closed ones. Indeed,
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Figure 1. Representative force-free solution. The contours show the mag-
netic flux surfaces and the colour image shows H φ . Notice that the magnetic
field lines are closed even beyond the light cylinder, � lc = 1.

such field lines cannot have an azimuthal component in the equa-
torial plane because of the symmetries of the problem. Thus, one
may expect spinning up of the charged particles till their inertia be-
comes important and the centrifugal force opens up the closed field
lines.

On the other hand, the drift approximation itself may break down
and the charges may start moving across the magnetic field well
before their inertia becomes dynamically significant. One can look
at this breakdown of the drift approximation from another perspec-
tive. Beyond the light cylinder the electric field of a force-free so-
lution becomes stronger than the poloidal component of the mag-
netic field and thus stronger than the total magnetic field in regions
where the azimuthal component of the magnetic field vanishes. Such
a strong electric field is capable of ‘tearing’ charged particle off
the magnetic field lines and driving strong electric current across
the magnetic field. This is a micro-physical argument but there
is an equally compelling macroscopic one. Full opening of mag-
netic field lines implies an infinitely thin equatorial current sheet
with an infinitely high electric current density. Even very small
but finite resistivity will destroy this ideal configuration and re-
sult in a steady-state current layer of finite thickness and closure
of some of the magnetic field lines in this layer. Thus, the only
meaningful question is how many field lines will be closed in this
layer.

In order to explain the remarkable indifference of our solutions to
the value of σ⊥, it is instructive to consider a much simpler problem
of a one-dimensional current sheet. Here we adopt an inertial frame
with Cartesian coordinates so that D = E and H = B. Assuming
that B = (0, By, 0) and E = (0, 0, Ez), and using the following
model for the cross-field conductivity,

σ⊥ =
{

σ0 if E2 > B2,

0 if E2 � B2,
(23)

we find the following solution:

B y =

⎧⎪⎨⎪⎩
−B if x < −1/σ0,

Bσ0x if −1/σ0 < x < 1/σ0,

B if x > 1/σ0,

Ez = B.

This solution exhibits a number of interesting features. First of all
it is stationary. Secondly, the magnitude of σ 0 effects only the width
of the current sheet. This may explain the observed convergence
of the magnetospheric solutions in the limit σ⊥ → 0. Finally, the
electromagnetic energy flows into the current sheet with the speed
of light and disappears inside of it. This property clearly exposes
the nature of Ohm’s law (15) with prescription (23) or similar and
outlines the limitations of its applicability. Indeed, in a real plasma
Ohmic dissipation would cause strong heating and increase the gas
pressure in the current sheet. This pressure would slow down the
inflow of plasma into the current sheet and significantly modify its
structure. However, this factor, as well as the plasma inertia, are
completely ignored in our version of Ohm’s law.

The fact that our numerical magnetospheric solution remains
qualitatively the same even in the limit σ⊥ = 0 suggests that the
numerical resistivity of our scheme takes over in this limit. Different
numerical schemes have different dissipative properties and this may
explain why the recent electrodynamic simulations of Spitkovsky
(which have been presented at various astrophysical meetings) ex-
hibit opening up of the field lines beyond the light cylinder and
development of the dissipationless equatorial current sheet.

The properties of the current sheets of real pulsars are determined
by a number of competing micro-physical processes that might be
rather difficult to account for in a macroscopic model. Our exper-
iments with the simplistic generalized Ohm’s law (15)–(22) show
that it facilitates the development of strongly dissipative current
sheets. Since the dissipated energy of the electromagnetic field is
not stored in any dynamical component and simply vanishes from
the system, this model could only be relevant for magnetospheres
with effective radiative cooling. The strong γ -ray emission from
some pulsars may be interpreted as an indication of strong radiative
current sheets (see the Discussion). Unfortunately, such emission is
not a common feature of pulsars.

4 M H D M O D E L

The difficulties that we have encountered in dealing with current
sheets in force-free electrodynamics have forced us to return to the
framework of full relativistic MHD even if the pulsar magneto-
spheres are expected to be magnetically dominated everywhere else
and in spite of the fact that the system of MHD equations becomes
stiff in this regime. The MHD approximation takes into account not
only the gas pressure but also its inertia, which may become im-
portant both far away from the star, in the wind zone, and near the
light cylinder. Ideally we should also incorporate a physical model
for electrical resistivity, which would allow us to conduct a proper
study of the dissipation within the equatorial current sheet, but it
makes perfect sense to start with the simpler framework of ideal
MHD.

4.1 Equations

The system of ideal relativistic MHD includes: the continuity
equation

∂t (α
√

γ ρut ) + ∂i (α
√

γ ρui ) = 0, (24)
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where ρ is the rest-mass density of matter and uν is its four velocity;
the energy–momentum equations

∂t

(
α
√

γ T t
ν

) + ∂i

(
α
√

γ T i
ν

) = 1
2 ∂ν(gαβ )T αβα

√
γ , (25)

where T νμ is the total stress–energy–momentum tensor; the induc-
tion equation

(1/c) ∂t (Bi ) + ei jk ∂ j (Ek) = 0; (26)

and the divergence-free condition

∂i (
√

γ Bi ) = 0. (27)

The total stress–energy–momentum tensor, T μν , is the sum of the
stress–energy–momentum tensor of matter,

T μν

(m) = wuμuν − pgμν, (28)

where p is the thermodynamic pressure and w is the enthalpy per
unit volume, and the stress–energy–momentum tensor of the elec-
tromagnetic field,

T μν

(e) = 1

4π

[
Fμγ Fν

γ − 1
4

(
Fαβ Fαβ

)
gμν

]
, (29)

where Fνμ is the Maxwell tensor of the electromagnetic field. In the
limit of ideal MHD,

Ei = ei jkv
j Bk/c, (30)

where vi = ui/ut is the usual three velocity of plasma.

4.2 Numerical method

The MHD simulations were carried out using a Godunov-type
scheme that is described in Komissarov (1999, 2004b). However,
we had to introduce some additional features in order to overcome
a number of challenging problems specific to the case of highly
magnetized plasma.

The MHD equations become stiff in magnetically dominated do-
mains, and this is exactly the case for the main volume of pulsar
magnetospheres where the energy density of matter is many orders
of magnitude less than that of the electromagnetic field. There is
no hope of reaching such conditions with our numerical method.
However, the electromagnetic part of the MHD solution should not
be very different even when the energy ratio is artificially increased
up to 0.1–0.01; errors of the order of a few per cent are quite accept-
able at this stage of the investigation. In fact, the results of force-free
and MHD simulations of the monopolar magnetospheres of black
holes strongly support this conclusion (Komissarov 2001, 2004b).
In those MHD simulations, additional plasma was pumped in the
regions where its energy density had reached a certain lower limit.
Here, we apply a similar trick. The actual condition is

wW 2 � a(1) B2, (31)

where W is the Lorentz factor of plasma and a (1) is a small constant;
we used a (1) = 0.01. When this condition is broken, we increase
both ρ and p in the same proportion so that wW 2 = a (1) B2.

However, dipolar magnetospheres are more challenging com-
pared to monopolar ones because of the faster decline of magnetic
field strength with distance from the star and the existence of dead
zones. Within the dead zones the magnetospheric plasma is sup-
posed to be in static equilibrium. Thus, the component of the cen-
trifugal force acting along the magnetic field lines has to be balanced
by some other force. It has been argued that the dead zone plasma
is charge-separated and the force balance is achieved by means of a
small parallel component of the electric field (e.g. Holloway & Price

1981; Mestel 1999). However, the recent eclipse observations of the
binary pulsar JO737−3039 allowed direct measurement of the par-
ticle density in the dead zone of one of the components (Lyutikov &
Thompson 2005). It has turned out to be many orders of magnitude
higher than the expected density of the charge-separated plasma.
Whether such a high density is specific for binary systems only,
as proposed in Lyutikov & Thompson (2005), or typical for single
pulsars as well remains to be seen. In any case, the charge-separated
dead zones cannot be modelled within the MHD approximation
where the required force balance can only be achieved by means of
gas pressure. This would require the gas pressure to increase along
the magnetic field line and reach a maximum in the equatorial plane.
On the contrary, the magnetic pressure of a dipolar magnetosphere
decreases with distance as r−6 and thus the ratio of magnetic to gas
pressure has to decline even faster than r−6. Given the requirement
on the dead zone to remain magnetically dominated everywhere,
this implies very high pressure ratio near the star surface – much
higher than our numerical scheme can accommodate. To overcome
this problem one could consider the case where the star radius is only
2–3 times smaller than the radius of its light cylinder, but this would
have a rather strong effect on the structure of the magnetosphere.
This is why we have preferred a different strategy.

Its idea is to reduce, somewhat arbitrarily, the dynamical effect
of the centrifugal force on the motion of plasma near the star so
that it does not destroy the nearly force-free equilibrium across the
magnetic field lines within the dead zone. One way of achieving this
is to reset the gas pressure and its rest-mass density to some rather
low ‘target’ values, ps and ρ s, within the dead zone every time-step.
At the same time one may reset the flow speed along the magnetic
field lines to zero, just as it should be in equilibrium. However, the
dead zone is not a well-defined region in the case of time-dependent
magnetospheres. Instead, one could apply the same procedure to a
volume that is guaranteed to include, if not the whole dead zone,
then at least its inner part. For example, we used a sphere of radius
r s � � lc. However, this leads to another complication – in the open
field region bounded by the sphere there emerges a strong rarefac-
tion wave, so strong that the code crashes. Fortunately, this can be
avoided if, instead of resetting the target values, one introduces a
relaxation towards them with the relaxation time gradually increas-
ing towards the boundary of the relaxation domain. We evolved p,
ρ and v‖ according to the following equations:

dv‖
dt

= −b(1)v‖, (32)

dp
dt

= −b(2)(p − ps), (33)

dρ

dt
= −b(2)(ρ − ρs), (34)

where

b(1)(r ) = b(0) f (r ), (35)

b(2)(r , θ ) = b(1)| cos θ |, (36)

f (r ) =
{

(rs − r )/(rs − r∗) if r < rs,

0 if r > rs,
(37)

where b(0) is constant and r∗ is the star radius. As one can see, the
relaxation time becomes infinite at r = r s. The results presented
below correspond to r s = � lc. However, we have also tried smaller
values of rs in order to verify that this does not lead to qualitatively
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different results. (We discuss the effects of reducing rs in Section 5.)
The dependence of b(1) on the azimuthal angle was introduced in
order to reduce the possible adverse effect on the current sheet should
it be formed inside the light cylinder. The actual value of b(0) is to be
found by the method of trial and error. Finally, we use the following
targets for the pressure and density:

ps = a(2)ρsc2, ρsc2 = a(1) B2, (38)

where a (1) = 0.01 and a (2) = 0.001.
In these simulations, the computational grid covered the axisym-

metric domain (r , θ ) = [0.1, 50] × [0, π], and hence the star radius
was set to r ∗ = 0.1. In order to speed up the calculation we started
with a relatively low-resolution grid, 124 × 61, and then increased
the resolution twice after the solution seemed to have reached a
steady state on the scale of several � lc. Hence the final grid had
496 × 244 cells.

4.3 Results

The initial solution described a non-rotating magnetosphere with
dipolar magnetic field (equation 3), vi = 0, ρ = ρ s and p = ps. At
t = 0 the star rotation is switched on and a torsional Alfvén wave is
emitted from its surface. As it propagates away, a larger and larger
portion of the magnetosphere is set into rotation and develops an
electric current system. This process is illustrated in Fig. 2, where
the contours show the magnetic field lines and the colour image
shows the distribution of H φ = 2(I + I d)/c, where I is the total
electric current and Id is the total displacement current through the
circular contour of cylindrical radius � = r sin θ . Unity corresponds
to H φ = μ�2c−2.

Behind the wave the solution gradually approaches a steady state.
Fig. 3 shows the inner region of this steady-state solution at t = 55,
the termination time of the simulations. The structure of the mag-
netic field lines suggests that the dead zone extends all the way up to
the light cylinder. Beyond the light cylinder the poloidal magnetic

Figure 2. The evolution of a spun-up dipole. This figure shows the solution at t = 5 (left) and at t = 20 (right). The contours show the magnetic flux function,
log10 �, and the colour image shows H φ = 2(I + I d)/c, where I is the electric current and Id is the displacement current.

field becomes radial, as expected (Ingraham 1973; Michel 1974).
Some magnetic field lines are closing up beyond the light cylinder
but they do so within the equatorial current sheet due to the finite
artificial resistivity in the numerical scheme – it is easy to see the
transition between the dead zone and the current sheet within which
the magnetic field lines are highly stretched in the radial direction.
The colour image in the top left panel of this figure shows the dis-
tribution of H φ . Since in a steady state the displacement current
vanishes, we have Hφ = 2I/c = A. This image confirms our con-
clusion on the extension of the dead zone, which is seen in the image
as a toroidal structure with H φ = 0. (Indeed, within the dead zone
the poloidal currents do not flow and H φ must be zero.) The jumps
in H φ occurring at the boundary of the dead zone and along the
equator are indicators of thin sheets of return current. This image
also shows, though not as clearly, that H φ and hence I reach max-
imum amplitude at some finite distance from the equatorial plane.
This indicates the presence of an additional layer of return cur-
rent that surrounds the equatorial current sheet and the dead zone
(Contopoulos et al. 1999).

The current sheets are most prominent in the right panel of Fig. 3,
which shows the distribution the poloidal current density, J p, multi-
plied by r 2. One can also see that the thickness of the current sheets
near the Y-point is about (0.5–0.6)� lc and that the equatorial current
sheet extends inside the light cylinder by approximately the same
distance.

From time to time it has been suggested that particle inertia may
actually become dynamically important near the light cylinder, thus
rendering the force-free approximation as unsuitable. The argument
develops like this. Provided the magnetospheric plasma simply coro-
tates with the star, its speed would exceed the speed of light beyond
the light cylinder. This does not occur because of the rapidly in-
creasing inertial mass of this plasma near the light cylinder. This
leads to a very strong centrifugal force that causes the plasma to
flow across the light cylinder, thus opening up the magnetic field
lines and sweeping them back. However, this is not what occurs in
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26 S. S. Komissarov

Figure 3. Inner part of the solution at t = 55. Top left: The contours show the magnetic flux function, �, and the colour image shows H φ . Top right: The
contours show the magnetic flux function, �, the arrows show the flow velocity, and the colour image shows the magnitude of the poloidal electric current density
multiplied by r2. Bottom left: The contours show the magnetic flux function, the arrows show the flow velocity, and the colour image shows log10(wW 2/B2).
Bottom right: The contours show the magnetic flux function, the arrows show the flow velocity, and the colour image shows B2.

our simulations. Indeed, the top left panel of Fig. 3 shows that, very
much in agreement with the force-free models, H φ is constant along
the magnetic flux surfaces even when they cross the light cylinder.
Moreover, this conclusion is fully supported by the data presented
in the bottom left panel of Fig. 3, which shows the distribution of
wW 2/B2, the quantity that can be used to describe the relative im-

portance of the inertial effects as well as of the gas pressure. One
can see that it remains very low everywhere outside of the equatorial
current sheet, including the light cylinder.

There is, however, one location in the force-free solution of
Contopoulos et al. (1999) where the inertial effects are expected
to become important. It is the so-called Y-point, i.e. the point where
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the dead zone approaches the light cylinder. Indeed, since the dead
zone corotates with the star, then plasma particles attached to its
field lines rotate with a speed reaching the speed of light at the
Y-point. Moreover, one may argue that the divergence of the mag-
netic field strength at the Y-point discovered by Gruzinov (2005)
also suggests a breakdown of the force-free approximation. This
fully agrees with the data presented in the bottom right panel of
Fig. 3, which shows the distribution of B2 in our MHD solution.
Although the plot shows a local minimum at (z, � ) = (0, 0.85) and
then some growth of B2 in the direction of the Y-point, this growth
never develops. Moreover, in our solution the poloidal magnetic
field lines approach the Y-point at an angle of 
50 degrees to the
equatorial plane (see Fig. 3), which is significantly lower than 77.3
degrees predicted by Gruzinov (2005) and quite close to the value
of 56.5 degrees found in Goodwin et al. (2004). In addition to the
inertial effects, the relatively high thickness of the current sheets
near the Y-point (the right top panel of Fig. 3) and finite gas pres-
sure also contribute to these discrepancies between our simulations
and the force-free solution. Our results, however, do not prove that
the asymptotic force-free solution for the Y-point is irrelevant. It
seems possible that for sufficiently high magnetization and small
resistivity the exact MHD solution will first approach the force-free
asymptote found by Gruzinov and then deviate from it on smaller
scales. This, however, requires further investigation.

Fig. 4 shows H φ as a function of � at r = 1.1 and allows us to see
these details of the current system more clearly. This distribution is
very similar to the one given in fig. 4 of Contopoulos et al. (1999).
The minimum has

�min 
 1.02
μ�

c
and Amin 
 1.12

2μ�2

c2
.

The left panel of Fig. 5 shows the distribution of the magnetic
flux function � in the equatorial plane of the final solution. As
a consequence of the finite artificial resistivity in our numerical
scheme, the magnetic field lines continue to close up even beyond
the line cylinder, and this shows itself via a systematic decline of
� at r > 1. Thus, it is not so straightforward to determine the
fraction of opened field lines in this solution. One way to describe
it quantitatively is by giving the value of the flux function exactly

Figure 4. Plot of H φ as a function of the magnetic flux function � on the
sphere r = 1.1 at time t = 55.

at (θ = π/2, r = 1). This gives us

�yp 
 (1.37–1.38)
μ�

c
. (39)

On the other hand, Fig. 5 shows that the decline of � significantly
slows down at r > 2 where � reaches the value of

�open 
 (1.26–1.27)
μ�

c
. (40)

These numbers should be compared with the values c� open/μ� =
1.23 in Contopoulos (2005) and Timokhin (2005), 1.27 in Gruzinov
(2005) and 1.36 in Contopoulos et al. (1999).

The right panel of Fig. 5 shows the total flux of energy through
a sphere of radius r, which should be constant in a steady-state
solution. One can see that it is indeed more or less constant, with
the exception of 1 < r < 2 where the energy flux slightly increases.
This increase is a permanent feature that arises because our scheme
is not strictly conservative. In order to evaluate the spin-down power
of the star, we used the energy flux through a sphere of radius r = 1,
thus ignoring the non-physical increase of total luminosity beyond
r = 1. This gives us

L 
 1.1
μ2�4

c3
, (41)

which is in a very good agreement with the result by Gruzinov
(2005).

Fig. 6 shows the distribution of the angular velocity of magnetic
field lines, �f. In the exact steady-state force-free solution the mag-
netic field lines rotate with same angular velocity as the star,

�f = �. (42)

However, in our solution, �f noticeably deviates from � inside
the layer coincident with the current sheet between the open field
lines and the dead zone (see Fig. 6). The most likely reason for
this is the enhanced numerical resistivity in the current sheet. The
comparison of solutions with different numerical resolution (Fig. 6)
shows that the thickness of the layer significantly decreases with
resolution. However, the amplitude of the perturbations does not
seem to depend on the resolution.

Fig. 7 shows that, far away from the star, the distribution of
poloidal field lines is very similar to the split-monopole one. This is
exactly what was concluded in the pioneering papers by Ingraham
(1973) and Michel (1974) on the force-free magnetospheres. More
recently, the centrifugally driven outflows in split-monopole mag-
netospheres have been studied within the cold MHD approximation.
According to these studies the Lorentz factor of centrifugally accel-
erated plasma at the fast critical point is

W = σ 1/3, (43)

where σ is the so-called magnetization parameter, which is defined
as the ratio of the Poynting flux density to the rest mass–energy flux
density at the footpoint of the magnetic field line (Beskin 1997). For
outflows that are initially Poynting-dominated, σ 
 σ̃ , where σ̃ is
the ratio of the total energy flux density to the rest mass–energy flux
density. In contrast to σ, σ̃ can be measured at every point of the
field line, as it is constant along it. Fig. 8 shows the distributions of
σ̃ , W and the ingoing speed of the fast wave in the radial direction
along the ray θ = 1 rad. From these data we find that along this ray
σ 
 77 and the fast point is located at r 
 6.8 where W 
 4.3. On
the other hand, we can use the above value of σ in order to calculate
the Lorentz factor at the fast point directly from equation (43) – this
gives us W = 4.25. Thus, the split-monopole model provides quite
a good model for the wind zone of an aligned magnetic dipole.
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28 S. S. Komissarov

Figure 5. Left: The magnetic flux function, �, in the equatorial plane as a function of r at time t = 55. Right: The total energy flux through a sphere of radius
r at time t = 55.

Figure 6. The angular velocity distribution at t = 55 within the light cylinder at r = 0.2 (left) and at r = 0.7 (right). The dot-dashed, dashed and solid lines
show the solutions with 61, 122 and 244 cells in the θ -direction.

Another interesting feature of Fig. 7 is the significantly higher
value of the Lorentz factor of the outflow within the equatorial cur-
rent sheet. This suggests that the mechanism of the flow acceleration
is somewhat different there. The obvious suspect is heating due to
resistive dissipation of the electromagnetic energy. The high value of
the Lorentz factor in the current sheet suggests that its contribution
to the global energy transfer can be quite significant.

The left panel of Fig. 9 shows the evolution of the wind luminosi-
ties with distance from the star by the end of the simulations. The
total luminosity is more or less constant apart from noticeable per-
turbations around r = 17, 30 and 45. The big bump around r = 45
is related to the leading front of the wind. The perturbations around
r = 17 and 30 are related to the grid refinement events – each time
the computational grid is refined the numerical solution evolves to a
slightly different state, most of all in the inner region of the compu-
tational domain. This triggers noticeable waves propagating away
from the star. The electromagnetic luminosity, which is shown in

Fig. 9 by the dashed line, gradually decreases with distance, thus
indicating the ongoing conversion of electromagnetic energy into
hydrodynamic energy. This is supported by the evolution of the
hydrodynamic luminosity of the wind, which is shown by the dash-
dotted line. One of the interesting features of this line is its rapid
initial rise, which suggests particularly effective energy conversion.
The nature of this conversion is clarified in the right panel of Fig. 9,
which shows that the current sheet accounts for about 70 per cent of
the total hydrodynamic luminosity at r = 10 and this corresponds
to about 15 per cent of the total wind luminosity. This clearly points
to Ohmic heating in the current sheet as being the main source of
energy conversion.

5 D I S C U S S I O N

There is not much to discuss in connection with our force-free sim-
ulations of pulsar magnetospheres. We simply have not been able
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Figure 7. The wind zone structure of a dipolar magnetosphere. The contours
show the field lines of poloidal magnetic field. The colour image shows the
distribution of log10 W .

to make the required progress using this framework because of the
inability to handle the equatorial current sheet. For this reason we
will focus in this section almost entirely on the results of our MHD
simulations and their possible implication for pulsar physics.

One of the key goals of this study was to determine whether
the MHD equations allow stable, or quasi-stable, steady-state so-
lutions for dipolar axisymmetric magnetospheres of neutron stars.
This problem has become particularly interesting since the discov-
ery of a whole family of steady-state force-free solutions continu-
ously parametrized by the location of their Y-point (Goodwin et al.
2004; Timokhin 2005). Our results indicate the existence of a unique
steady-state MHD solution to the problem, and this solution is very
close to the force-free stationary solution of the pulsar equation with
Y-point located at the light cylinder – the original solution of the pul-
sar equation found by Contopoulos et al. (1999). Why this solution
is preferable to those whose Y-point is located well inside the light

Figure 8. The variation of a number of key parameters along the ray θ = 1. Left: The local magnetization parameter σ̃ . Middle: The wave speed of the ingoing
fast wave in the radial direction (the speed of light c = 1). Right: The Lorentz factor of the wind.

cylinder has already been explained in Contopoulos (2005). If the
resistivity is not vanishingly small, then, even if the initial solution
had the dead zone buried well inside the light cylinder, it would take
only a finite time for the antiparallel field lines of the current sheet
between the Y-point and the light cylinder to reconnect and form
closed loops that become part of the dead zone. The reconnection
should also occur beyond the light cylinder, but there the outflow is
super-Alfvénic, so the net outcome of the reconnection is likely to
be the development of magnetic islands carried by the wind away
from the star (Uzdensky 2004). The rate of reconnection depends
on the actual resistivity in the current sheet, and in our simulations
the resistivity is purely artificial. However, the ultimate outcome
is unlikely to be different. Indeed, since the particle inertia on the
closed field lines located well inside the light cylinder of pulsar
magnetospheres is extremely small, there is no restoring force that
would make these field lines open up again. This is supported by the
fact that the total electromagnetic energy of the force-free magneto-
sphere is minimum when the Y-point is located on the light cylinder
(Timokhin 2005).

At this point it makes sense to discuss whether the relaxation pro-
cedure applied within r s = � lc (see Section 4.2) could somehow
promote the expansion of the dead zone towards the light cylin-
der. As we have already pointed out in Section 4.2, all relaxation
times gradually increase towards infinity as r → r s. Thus, near the
light cylinder the effect of the relaxation procedure on the flow is
increasingly small. Moreover, the relaxation time for the gas pres-
sure becomes infinite at θ = π/2. This would allow the buildup of
gas pressure required to support the equatorial current sheet should
it exist within the light cylinder. However, in order to resolve this
issue fully, we carried out additional simulations with the radius of
the relaxation sphere pushed down to r s = 0.7� lc. Fig. 10 allows
comparison of the two solutions with regard to the location of the
Y-point. The colour image in this figure shows the distribution of
Hφ ; the solid lines show the magnetic surfaces for the model with
r s = 0.7� lc; whereas the dashed lines show the magnetic surfaces
for the model with r s = � lc. As one can see, more field lines open
up for smaller rs, and this is caused by the increased dynamical
role of the centrifugal force. However, the location of the Y-point
remains basically the same. Thus, our relaxation procedure cannot
be considered as the reason for the dead zone extending all the way
up to the light cylinder.

Contopoulos (2005) also pointed out that the open field lines of
pulsar magnetospheres may rotate at a slower rate than the closed
field lines of the dead zone as a result of the finite potential gap of
the polar cap. In particular, he speculated about the possibility of
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30 S. S. Komissarov

Figure 9. Conversion of the electromagnetic luminosity into the hydrodynamic luminosity of the wind. Left: The total luminosity (solid line), the electromagnetic
luminosity (dashed line), and the hydrodynamic luminosity (dot-dashed line) of the wind at t = 55. Right: The angular distribution of the total luminosity at
r = 10. The solid line and the dot-dashed line show the total luminosity and the hydrodynamic luminosity within the polar cone of angle θ respectively; the
dashed line shows the total flux density in the radial direction.

Figure 10. Comparison of solutions with relaxation domains of different
sizes. The colour image shows H φ and the solid lines show the magnetic
flux function for the model with r s = 0.7� lc. The dashed lines show the
magnetic flux function for the model with r s = � lc.

a significant growth of the polar gap due to a sudden decrease of
the particle injection rate in the gap in order to explain explosive
phenomena like the 2004 December 27 burst in SGR 1806−20. Al-
though it is not clear what could cause such a sudden incident of
‘charge starvation’, it was suggested long ago that a slow systematic
evolution of the polar gap could result from the gradual spin-down
of the star (Sturrock 1971; Ruderman & Sutherland 1975). Thus,
differentially rotating magnetospheres are not just interesting theo-
retical models but can have great relevance for real pulsars.

Contopoulos (2005) found force-free stationary numerical solu-
tions for such magnetospheres in the simple case of a uniformly
rotating polar cap and a uniformly rotating dead zone, which was
assumed to corotate with the star. [In fact, the dead zone may also
have a potential gap that separates electric charges of opposite sign,
but it is expected to be rather small (Holloway & Price 1981).] These
solutions have two light cylinders – a smaller one for the dead zone
and a larger one for the open field lines – and the dead zone extends
all the way up to its light cylinder. Contopoulos (2005) argued that,
although there existed solutions with a smaller dead zone, they were
not sustainable due to reconnection in the part of the equatorial cur-
rent sheet that runs between the Y-point and the light cylinder of the
dead zone.

In fact, the numerical models constructed by Contopoulos (2005)
are likely to be globally unstable to reconnection too. Indeed, in
these models the equatorial current sheet continues inside the light
cylinder of an open magnetosphere and magnetic reconnection oc-
curring in this region should lead to creation of new closed field
lines. However, this case is somewhat more involved. Let us imag-
ine that such reconnection has indeed occurred. The field lines that
have just closed down are now beginning to spin-up and corotate
with the dead zone. However, they extend beyond the light cylin-
der of the dead zone and for this reason they cannot corotate with
it – as they spin up they begin opening up again. Once they have
been opened up, they begin to slow down, thus creating conditions
for the next closing down event, and so on. This simple analysis
suggests that such differentially rotating magnetospheres cannot be
stationary and have to develop oscillations. The typical time-scale
of such magnetospheric oscillations seems to be determined by the
spin-up time, which must be comparable with the time required for
an Alfvén wave to cross the distance between the light cylinder of
the dead zone and the star back and forward. Since the Alfvén speed
is relativistic and the magnetic field has a significant radial compo-
nent, the crossing time has to be comparable with the rotational
period of the star. The reconnection rate is more likely to affect the
amplitude of these oscillations rather than their time-scale, a quicker
reconnection leading to a larger fraction of magnetic field lines in-
volved in this process of closing down and opening up. We want
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to speculate that these oscillations may be relevant to the origin of
the subpulses of radio pulsars (e.g. Manchester & Taylor 1977). For
periodic magnetospheric oscillations we would have a phenomenon
reminiscent of beating waves – this may explain the so-called drift-
ing subpulses. However, one may also expect quasi-periodic and
even chaotic oscillations, and they would result in a much more
complicated behaviour of subpulses.

Our MHD solution has a number of interesting features that could
not possibly be found in the ideal force-free solution of Contopoulos
et al. (1999). Some of them do not depend much on the details of
resistivity, like, for example, the centrifugal acceleration of the wind
outside of the current sheet. Others, like the Ohmic dissipation and
the wind acceleration in the equatorial current sheet, do, and we
have to exercise a reasonable degree of caution when interpreting
them – MHD simulations with only artificial resistivity can provide
at most a qualitatively correct description of such features. How-
ever, it is interesting that the dissipation of electromagnetic energy
in the equatorial current sheet has already been considered as a
promising explanation of the high-luminosity γ -ray emission from
young pulsars (Lyubarskii 1996; Kirk, Skjæraasen & Gallant 2002).
Given the fact that these γ -rays carry away a significant fraction of
the spin-down power, up to 10 per cent in the most extreme exam-
ples (Thompson 2001), and that pulsar magnetospheres are highly
magnetically dominated, an efficient dissipation of Poynting flux
somewhere in the magnetosphere is needed to explain these obser-
vations, and the equatorial current sheet is one of the most natural lo-
cations for such dissipation. In particular, Lyubarskii (1996) argued
that this high-energy emission originates from the current sheet just
beyond the dead zone (this is exactly where our simulations show
most effective Ohmic dissipation). The polarization observations of
the optical emission from the Crab pulsar support this idea. This
emission is found to be polarized parallel to the rotation axis at the
peaks of the pulses and between the pulses (within the pulses the
polarization vector rotates, which may be attributed to the rotation
of the magnetosphere). This shows that the magnetic field of the
emitting region is predominantly perpendicular to the rotation axis,
as it should be if this radiation is generated in the equatorial current
sheet.
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