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Abstract
Large coherent MHD modes are observed to reduce the neutral beam current drive efficiency and 2.5 MeV neutron
emission in DIII-D by as much as ∼65%. These modes result in large (width w � 20 cm for minor radius a ≈ 60 cm),
stationary, single helicity magnetic islands, which might cause anomalous deuterium beam ion losses through orbit
stochasticity. An analytic estimate predicts that co-going, passing deuterons with E � 40 keV become stochastic
at island widths comparable to those in the experiment. A Hamiltonian guiding centre code is used to follow
energetic particle trajectories with the tearing mode modelled as a radially extended, single helicity perturbation. In
the simulations, the lost neutral beam current drive and neutron emission are 35% and 40%, respectively, which is
consistent with the measured reductions of 40 ±14% and 40 ±10%. Several features of the lost particle distribution
indicate that orbit stochasticity is the loss mechanism in the simulations and strongly suggest that the same mechanism
is responsible for the losses observed in the experiment.

PACS numbers: 52.25.Fi, 52.55.Fa

1. Introduction

Understanding fast ion confinement in the presence of
perturbing helical fields is important for predicting the
behaviour of energetic ions in future devices. Perturbations due
to coherent magnetohydrodynamic (MHD) modes can lead to
unwanted or unpredictable fast ion transport. Such anomalous
losses would degrade the plasma performance and may damage
the vessel wall and plasma facing components. In a reactor,
early losses of energetic ions could prevent ignition while
alpha particle losses would terminate the discharge during the
burning phase.

Coherent MHD instabilities can affect fast ion confine-
ment in several ways [1]. The strongest interaction is with
fast ion driven instabilities. For these modes, the frequency
of the observed mode is associated with some characteristic
frequency of the fast ion motion and the mode gains energy
at the expense of the fast ion population. Because the propa-
gating wave and the fast ion orbit resonate, some ions stay in
phase with the wave’s electric field, resulting in large spatial
transport.

Slowly rotating modes that are driven unstable by the
background plasma are conceptually different. In this case,
temporal resonances between the orbit and the mode are
unimportant. Nevertheless, the static helical magnetic field

perturbations associated with globally extended MHD modes
can still degrade fast ion confinement [2–5]. The n = 0
orbit shift (where n is the toroidal mode number) of the fast
particle motion couples to the added motion from the helical
perturbations, resulting in drift islands in the particle’s phase
space that can overlap and cause the particle’s motion to
become stochastic. In this article, this transport mechanism
is referred to as ‘orbit stochasticity’. Orbit stochasticity
is quite different from parallel transport along ergodic field
lines. For ergodic field lines, finite gyroradius effects reduce
the transport by effectively averaging over the fluctuations
[6], while for orbit stochasticity, the finite gyroradius is
responsible for anomalous transport. In theory, then, orbit
stochasticity can cause or enhance anomalous losses of fast
ions without affecting the confinement of the bulk ions. More
importantly, fast particles on passing drift orbits, which are
normally thought of as well confined, can be affected by orbit
stochasticity.

Even though this transport mechanism is theoretically
feasible and is suspected to have caused or enhanced fast ion
losses in tokamaks during a variety of experiments [1], detailed
experimental verification that orbit stochasticity causes fast
ion losses is sparse. Zweben et al suggested that orbit
stochasticity contributed to alpha particle losses on TFTR
[7]. In that study, alpha particle loss measurements taken
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during a DT discharge with coherent MHD activity were
compared with results from numerical simulations using a
guiding centre code. Simulations for a range of mode strengths
and MHD activity were consistent with orbit stochasticity, but
problems in categorizing the MHD activity, uncertainties in
modelling the vacuum field (which propagated into the loss
measurements) and the difficulty of modelling the perturbation
field made the agreement qualitative. A similar report
appears in ref. [8]. In a study using externally imposed helical
fields on DIII-D, no impact on fusion product confinement
was observed, consistent with theoretical estimates [9]. In the
Auburn torsatron, the effects of rotating, externally imposed
magnetic perturbations on ion confinement were consistent
with the predictions of intrinsic orbit stochasticity theory [10].

The comparison between theory and experiment described
in this article is the most detailed experimental verification
of orbit stochasticity as a mechanism for beam ion loss in a
tokamak performed to date. During experiments at DIII-D,
large, stationary MHD modes caused reductions in both the
2.5 MeV neutron production (�65%) and the central non-
inductive current (�55%) [11]. These data indicated losses
of deuterium beam ions from the core without the confinement
of the bulk species being affected. An analytic estimate shows
that orbit stochasticity was important for beam ions in this
discharge. Numerical simulations using a realistic equilibrium
and initial beam ion distribution show quantitative agreement
between neutron and current drive losses for magnetic island
sizes comparable to those seen in the experiment. Features
of the lost particle distribution function are consistent with
orbit stochasticity as the loss mechanism in the simulations,
implying that this same mechanism is responsible for fast ion
losses seen in the experiment.

This article is organized as follows. Details of
the experiment, including the loss measurements, the
measurements of the magnetic islands and a discussion of
experimental errors, are given in section 2. In section 3, an
analytic estimate of the island overlap criterion is used to
test if intrinsic orbit stochasticity is important for deuterium
beam ions in this discharge. The details and results from the
numerical simulations are given in section 4. Finally the
implications and conclusions from this work are given in
section 5.

2. Experimental data

Discharges from the neutral beam current drive (NBCD)
experiment [11] with strong MHD activity consistently had
much lower central non-inductive current drive and 2.5 MeV
neutron emission than expected theoretically. For this study,
a single discharge (shot 89384) from that experiment is
considered. The discharge is a double null diverted, H mode
deuterium plasma with 1.7 T toroidal field, a plasma current
of Ip � 0.55 MA, a major radius of R0 � 1.86 m at the
magnetic axis, an elongation of 2.0 and a triangularity of 0.8.
Near tangential (tangency radii Rtan = 0.76 m and 1.15 m)
deuterium beams inject ∼75 keV neutrals in the direction
of the plasma current. The electron density is measured
by Thomson scattering [12] and CO2 interferometer [13]
diagnostics, the electron temperature by Thomson scattering
and electron cyclotron emission (ECE) [14], and the carbon ion

temperature and density by the charge exchange recombination
(CER) diagnostic [15]. (Carbon is the dominant impurity in
this discharge.) The deuterium density and temperature are
inferred from the electron and carbon data using the TRANSP
code [16]. Representative profiles are shown in figure 1.

The goal in shot 89384 was to ramp up the plasma current
using NBCD and bootstrap current. Initially, a 500 kA ohmic
target plasma is created. At 1.2 s, the loop voltage V�, or
toroidal EMF, is fixed to limit the inductive current as the
beam power is slowly increased, to build up the non-inductive
current. Shown in figure 2 are the time evolution of the beam
power, Mirnov activity and 2.5 MeV neutron emission for the
discharge of interest, as well as data from a similar discharge
with lower beam power, shot 89389. As the beam power and
β (the ratio of the volume averaged plasma pressure to the
magnetic field pressure) are increased, a large MHD mode with
toroidal mode number n = 1 is detected by the Mirnov array at
∼1.95 s with a frequency of ∼21 kHz. No clear poloidal mode
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Figure 1. Radial profiles of (a) deuterium (solid) and electron
(dashed) density profiles, (b) deuterium (solid) and electron
(dashed) temperature profiles, and (c) carbon density profile for
discharge 89384 at 3.0 s. (The plasma profiles are very similar from
2.0 to 3.2 s.) The radial co-ordinate is the normalized square root of
the toroidal flux.
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Figure 2. Time evolution of (a) injected neutral beam power,
(b) magnetic fluctuation amplitude δBθ from a Mirnov coil at the
vessel wall and (c) 2.5 MeV neutron rate for discharge 89384 and a
lower beam power discharge with similar plasma parameters, 89389.
The neutron rate has been normalized to a 0-D code which includes
contributions from beam–plasma and thermonuclear reactions.
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Figure 3. (a) Relative phase and (b) cross power of the 19.8 kHz
fluctuation in the 32 channel ECE diagnostic data during discharge
89384 at 2.3 s. The diagnostic has a sightline along the midplane
and measures emissions along this chord. Channel 1 is located at the
outboard midplane, and the channels are separated by 2 cm along
the midplane chord. Phase shifts of 180˚ and high radiated power
are due to a large magnetic island (shaded region) centred at the
q = 2 surface with width w = 17 ± 2 cm. The radial location of the
q = 2 surface and the magnetic axis from a numerical equilibrium
are noted in the figure. The open circles represent measurements
whose coherency is too low to be statistically significant.

numbers are evident from analysis of the poloidal Mirnov array
data. No high frequency MHD activity (f � 50 kHz in the
lab frame), associated with beam driven instabilities, is evident
during this phase of the discharge. Between 1.5 and 2.5 s, the
energy confinement time τE stays level at ∼52 ms but starts to
drop at 2.5 s and continues down to ∼44 ms at around 3.5 s.

Phase shifts of 180˚ and relatively high power in the
19.8 kHz fluctuations from the ECE at 2.3 s (figure 3) are

evidence of a large island chain about the q = 2 surface. (The
dominant n = 1 mode from Mirnov data has a frequency of
19.8 kHz at this time.) This slice was selected since it has
the clearest identification of the island structure, but the phase
shifts near the q = 2 surface are evident continuously up until
2.8 s. (After 2.8 s, the character of the MHD activity changes.)
At 2.3 s, the island width is w = 17 ± 2 cm along the outer
midplane, compared with a nominal minor radius a = 59.9 cm.
CER [15] indicates that the plasma is rotating at ∼21 kHz at
this time, so these islands are stationary in the plasma frame.
The stationary island structures indicated by the ECE at this
frequency probably represent the same mode detected by the
Mirnov array, so the poloidal mode number inferred from the
ECE data is m = 2.

An independent measurement of the island width can be
extracted from the magnetics data. The Mirnov signal from a
probe at the vessel has a peak to peak amplitude of δBθ,wall �
3.6 × 10−4 T during the burst at 2.3 s. Using a multipole
expansion about the magnetic axis, the magnitude of the radial
component of the perturbation can be approximated by δBr �
1
2 |B̃θ |wall(rprobe/rpeak)

m+1, where rprobe is the distance between
the magnetic axis and the magnetic probe and rpeak � ρpeaka

is the distance between the magnetic axis and the minor radius
at which the mth poloidal harmonic peaks. (Note that ρpeak is
the radial location of the peak of the mth poloidal harmonic
in terms of the square root of the toroidal flux, ρ ∼ √

ψ .)
The peak value of the radial component of the (2,1) mode is
δBr/B = (4.1 ± 1.6)×10−3, with the uncertainty dominated
by the assumption that the mode’s radial structure can be
described by a multipole expansion. The saturated island
width can be approximated using this value and equation (5) in
ref. [17], resulting in a width w = 20 ± 10 cm. The uncertainty
associated with this measurement is large, so at best it serves
to check the consistency of the ECE data.

Low n, slowly growing MHD activity resulting in
stationary magnetic islands at the q = m/n surface is the
signature of a tearing mode. However, using a calculation of
�′ [18], the plasma is found to be conventionally stable for
low (m, n) MHD modes, even considering transients in β [11].
(�′ is the usual resistive MHD stability parameter [19].) Most
likely these tearing modes are destabilized by the pressure
gradient modification of the neoclassical bootstrap current
[20]. Assuming the existence of seed islands at some rational
surface, the plasma pressure gradient reinforces the bootstrap
current at the island location and acts as a free energy source
for the tearing mode. The relatively high electron temperature
(∼3 keV) and low density (∼5×1013 cm−3) make neoclassical
destabilization even more effective. (Similar pressure gradient
driven tearing modes were observed previously on DIII-D [21]
and TFTR [17].)

The NBCD and neutron emission from this discharge are
less than theoretically expected. The non-inductive current
profile is given in figure 4, along with predictions from the
TRANSP [16] and ONETWO [22] codes. (The inductive and
non-inductive parts of the current density are separated by
a technique which calculates the parallel electric field from
time dependent equilibrium reconstructions and assuming
neoclassical resistivity [23].) The bootstrap current is a
significant contributor to the non-inductive current but the
NBCD dominates in the core. The difference between theory
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Figure 4. Measured and predicted non-inductive current density
profiles for discharge 89384. The profiles are averaged over a 1 s
window, from 1.5 to 2.5 s. A calculation of the bootstrap current,
which is a large fraction of the non-inductive current, is also plotted.

and experiment for the NBCD current drive inside ρ � 0.30,
using a calculation for the bootstrap current, is 40 ± 14% for
the TRANSP prediction and 43 ± 14% for the ONETWO
prediction. The quoted uncertainty is due solely to the
random error in the measured non-inductive current profile;
not included are systematic uncertainties in the theoretical
predictions.

A significant reduction in the expected 2.5 MeV neutron
signal starts when the mode turns on at 1.95 s. During the burst
at 2.3 s, the neutron signal is ∼31% below a prediction from a
0-D code [24] that uses central plasma parameters to calculate
the classical beam–plasma and thermonuclear neutron rate, as
shown in figure 2. The signal is ∼40% below the prediction
from the TRANSP code, which uses full experimental profiles
and a numerical equilibrium from EFIT [25] to calculate a total
neutron emission rate that also includes beam–beam reactions.
TRANSP also finds that beam–beam reactions are significant
for this discharge (∼30% of the total, with the thermonuclear
contribution negligible), which explains the larger discrepancy
of the data with the TRANSP prediction than the 0-D code
prediction. For MHD quiescent discharges during the NBCD
experiment, both the neutron emission and the non-inductive
current profile compare well with the theoretical predictions.
The difference between the theoretical predictions and the
measured neutron rate is indicative of beam ion losses during
the MHD activity. Using an ensemble of discharges with
similar amplitude tearing modes to estimate the uncertainty,
the reduction in neutron rate relative to the classical prediction
is 40 ± 10%.

The plasma equilibrium is generated from a fit to the
magnetics, motional Stark effect (MSE) [26] and kinetic data
using the equilibrium fitting code EFIT. The MSE data used to
constrain the equilibrium did not correct for the radial electric
field Er , since those data were unavailable for this discharge.
(Er has been shown to affect the MSE measurements for high
performance discharges [27].) However, for these plasmas the
Er correction is expected to be negligible, causing only a shift
on the order of a centimetre in the location of the q = 2 surface.
A slightly different q profile would not alter the efficacy of orbit

stochasticity in the simulations (section 4.2). As discussed
below, uncertainties in other quantities are expected to be much
larger.

The uncertainties in the fast ion loss measurements and
to some extent the measurement of the island width are
the dominant sources of error in the comparison between
experiment and theory. The systematic errors associated with
the simulations discussed in section 4 are not expected to be
nearly as large.

Consider first the uncertainty in the fast ion loss
measurements. No direct measurements of the fast ion
losses are available for this discharge. The absolute amount
of fast ion losses is determined indirectly by obtaining a
prediction from a calculation based on experimental data (in
this case TRANSP) and then comparing this prediction with
the experimental measurements (the current drive and neutron
losses). Consequently there are uncertainties associated
with both the calculation of the expected value and the
measurements themselves which propagate into the overall
current drive and neutron losses. In the case of the total
current drive losses, the error bars on the measured non-
inductive current profile alone result in a ±14% uncertainty in
the total expected current; the systematic errors in calculating
the expected profiles are in addition to this amount. The
neutron losses fare better. By taking an ensemble of discharges
from the NBCD campaign with anomalous neutron losses
and considering the scatter in the ratio of the measured to
the predicted neutron emission, the measured neutron loss is
40 ± 10%, with the uncertainty including both systematic
errors in the modelling and uncertainties in the measurements.
The uncertainty in the island width is fortunately much smaller.
The tearing mode results in such large magnetic islands that
the signal to noise ratio in the ECE fluctuation data is excellent,
as the islands span about eight or nine channels along the
midplane. (These values translate to δρ = 0.26 ± 0.015
in flux co-ordinates.) The edge magnetics measurement of
the perturbation, even with its large error bars, serves as an
independent check that the width from the ECE measurements
is reasonable.

The current drive reduction, neutron reduction and island
width measurements are summarized in table 1, along with the
associated uncertainties.

3. Estimate of island overlap

Using some experimental data, the importance of intrinsic
orbit stochasticity in this shot can be estimated. An analytic
approximation of the island overlap criterion for co-going,
passing particles (the pitch λ ≡ v‖/v = 1 for such particles)
in the presence of a single helicity island can be obtained from
the q profile (figure 5) and the ECE measurements (figure 3).
The (2,1) island chain is centred on the q = 2 flux surface,
corresponding to a radial position of ρq=2 � 0.22, with a width
δρ � 0.26. (Technically, the island chain is offset towards
the outer midplane from the q = 2 surface and is centred on
the q = 2 drift surface, but in this estimate the offsets for
q = 2 and q = 3 drift surfaces are assumed comparable, see
equation (1).) The theory predicts that the perturbation results
in a primary island in the particle’s phase space at the q = 2
surface and sideband islands at the q = 1 and q = 3 surfaces
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Table 1. Range and uncertainties of various experimental measurements.

Physical quantity Nominal value Range Source of uncertainty

Current drive losses
Compared with TRANSP prediction 40% 26–54% Error bars on measured
Compared with ONETWO prediction 43% 29–57% non-inductive current profile

Neutron losses compared with 40% 30–50% Scatter of measured/predicted
TRANSP prediction values for range of discharges

Island width along midplane
From ECE 17 cm 15–19 cm Resolution of instrument
From magnetics 20 cm 10–30 cm Mostly from relationship

between δBθ,wall and δBr,peak
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Figure 5. Radial profiles of the scalar perturbation α and safety
factor q used in the numerical simulations. The perturbation has a
helicity m/n = 2/1 and is designed to peak at the minor radius
where q = 2.

(ρq=3 � 0.39). Since q > 1 for this discharge, only the q = 3
islands are considered. The widths of these drift islands in the
particle’s phase space are related to the magnetic island widths
through δρl � δρ

√|Gl(E, ε)|, where l denotes the island
harmonic label (l = 0 is the primary island, l = ±1, ±2, . . . ,

are sidebands) while Gl is the ‘coupling coefficient’ and is an
implicit function of energy E and inverse aspect ratio ε [5].
The coupling coefficients are normalized such that |Gl| � 1
and the phase space islands will never exceed the width of
the magnetic island. Using coupling coefficients calculated in
ref. [5], G0 � 0.95 and G1 � 0.25 for the case of ∼40 keV
deuterons in a large aspect ratio tokamak.

For the primary and sideband islands to overlap, the drift
island half-widths must be greater than the distance between
the centres of the drift islands, so the Chirikov island overlap
criterion can be stated as

1
2δρ(

√
|G0| +

√
|G1|) � |ρq=2 − ρq=3|. (1)

The sum of the drift island half-widths comes out to ∼0.19
and the distance between flux surfaces is ∼0.20, meaning the
overlap criterion is satisfied for ∼40 keV passing deuterons in
this discharge. Higher energy particles have a lower stochastic
threshold and most of the beam ions are on co-going, passing
orbits, so this calculation indicates that orbit stochasticity is a
good candidate for the loss mechanism in the experiment.

4. Numerical simulations

4.1. Methods and approximations

To study this transport mechanism numerically, the
Hamiltonian guiding centre code ORBIT [28] is used to follow
beam ion trajectories in a numerical equilibrium with static
magnetic islands to model the effect of the tearing mode.
The goal in the simulations is to obtain a ‘steady state’
distribution of fast particles from which current density and
neutron emissivity profiles can be deduced. Initially, a ‘birth’
population with a single energy is created, very similar to a
short beam pulse or ‘blip’. ORBIT is used to follow fast
ion trajectories, slowing down and pitch angle scattering in
a numerical equilibrium. The position, pitch and energy
of the confined population of ions are recorded at periodic
time intervals, resulting in a series of ‘snapshots’ of the
beam ion population. Then a steady state distribution of
ions is assembled by combining these snapshots of the birth
distribution as it evolved in time. To model the tearing mode, a
zero frequency, radially extended, single helicity perturbation
can be introduced in the simulations and allowed to act on the
evolving birth distribution over time.

The Monte Carlo birth particle population used in the
simulation (figure 6) is obtained from TRANSP calculations
of the beam deposition profile. The particles are assumed born
along the outer midplane, θ = 0. Note that, in the TRANSP
run, the particle population is calculated in the lab frame while
the simulations are performed in the plasma frame. However,
since the plasma rotation is <10% of the transit frequency
of the beam ions, the implied Doppler shift in the particle
velocities is negligible.

Both the current drive and the neutron measurements are
sensitive to the energetic portion of the beam ion distribution
function, so the simulations are run for a total of 18.2 ms, or
4200 transits for a centrally born 75 keV passing beam ion.
(The transit time for such a particle is τtrans = const � 4.3 µs.)
After 18.2 ms, the probability that a typical central beam ion
will produce a fusion reaction has dropped to <1/e of its initial
value [29], and the probability rapidly decreases as the ion
further decelerates.

Pitch angle scattering and energy slowing down are the
only collisional effects included in the simulations. Pitch
angle scattering is modelled using an energy conserving
Monte Carlo operator [30], while energy slowing down is
represented simply as an incremental change in energy over
a time step. The pitch angle scattering collision frequency νd
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and the energy loss rate νE (figure 7) are calculated for every
particle using interpolated experimental data (figure 1) in the
standard Coulomb collision formulas [31]. The equations of
motion are solved at fixed intervals of �t = τtrans/30; the
collision operators are applied directly afterward. Particles
are checked to ensure that any energy change is under 20%,
i.e. �E/E < 0.2.

The position, pitch and energy of the confined ions are
recorded at intervals of 100τtrans. Particles are considered
lost when they cross the plasma edge in the numerical
equilibrium. (Because drift orbits that cross the separatrix
do not necessarily intersect a wall, this boundary tends
to overestimate the losses; however, neglecting the ∼3 cm
gyroradius underestimates losses.) The steady state beam ion
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population is inferred from the combination of all 42 recorded
beam ion populations, which is equivalent to integrating the
confined distribution function in time over the run length, and
implies that beam fuelling is included in the model. Steady
state distributions derived using this method in cases with and
without a perturbation are shown in figures 8 and 9.

A simple analytical expression is used to model the tearing
mode in the simulations. The tearing mode is assumed to
have created a (2,1) island chain at the q = 2 surface. In the
Hamiltonian formulation of guiding centre motion, a magnetic
perturbation δB is introduced through a vector potential, δB =
∇ × αB, where B is the equilibrium field and α(ψp, θ, ζ )

is a scalar function of position. (The code uses the poloidal
flux ψp as its radial variable, with θ and ζ as the poloidal
and toroidal angles, respectively.) This form is sufficient to
describe the ∇ψp structure of static magnetic perturbations.
A perturbation of the form α(θ, ζ ) = α0 sin(nζ − mθ) results
in magnetic islands of width

δψp = 4
√

α0
q

q ′ (2)

with q = m/n and q ′ = dq/dψp, representing the local
shear [32]. This functional form describes the tearing mode
approximately [28] but is unsuitable numerically. Consider
instead [5]

α(x, θ, ζ ) = α0

(
x

x0

)m (
1 − x

1 − x0

)p

sin(nζ − mθ) (3)

where x = r/a and r is the minor radius along the outer
midplane (r ∼ √

2ψp/B). The quantity x0 is the minor radius
at which the mode peaks, and the quantity p ≡ m(x−1

0 − 1) is
specified such that the mode peaks near q = m/n. (The value
of p is rounded out to the nearest integer in order to speed up the
calculation.) This form of the perturbation is a good model for
the saturated, single helicity tearing mode: it extends globally
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there are ∼7.3 × 104 confined particles; the mode causes a loss of
∼20% of the particles.

858



Simulations of beam ion transport during tearing modes

160
180

200
220

50

0

50

0

100

200

300

400

500

600

X (cm)
Z (cm)

P
ar

tic
le

s

magnetic axis

160
180

200
220

50

0

50

0

100

200

300

400

500

600

X (cm)
Z (cm)

P
ar

tic
le

s

magnetic axis

160 180 200 220
0

200

400

600

X (cm)

(b) magnetic axis

 Z = 0

160 180 200 220
0

200

400

600

X (cm)

(d) magnetic axis

 Z = 0

(a)

(c)

δρ = 0.00

δρ = 0.26

Figure 9. Steady state beam distribution versus major radius X and vertical position Z, and versus major radius for the case (a, b) without a
perturbation and (c, d) with a perturbation of strength δρ � 0.26.

for low values of m and n; it peaks at the q = m/n surface; it
vanishes at the plasma edge (i.e. conducting wall); and it has
the appropriate xm dependence as x → 0. The tearing mode
is a global mode and the measured island is large, so small
‘bumps’ in the radial eigenmode structure are not expected.
The radial portion of the perturbation used in the simulations
is shown in figure 5.

Only a single helicity mode is modelled in the simulations.
The toroidal Mirnov array clearly shows that the dominant
mode is n = 1, and no higher frequency modes associated
with beam driven instabilities are present. The poloidal
mode number m = 2 is inferred only from the location
of the phase change in the ECE data (figure 3). Since the
discharge is an elliptical, toroidal plasma, other harmonics
must be present. Additional helicities could significantly
increase radial transport [5,7], and neoclassical tearing modes
can have higher poloidal mode numbers [18].

Determining the island width for a given perturbation
strength is tricky. Though the estimate in equation (2) is not
derived from the perturbation described by equation (3), it
remains a good approximation when the islands are relatively
small. So in the simulations, the island width for a given
perturbation strength is obtained from equation (2), with α

evaluated at the q = m/n = 2/1 flux surface. The island
width is translated from the poloidal flux co-ordinate used by
ORBIT, ψp, to the toroidal flux co-ordinate ρ used to analyse
and display data at DIII-D, and reported here as δρ. The
island width can also be obtained directly by considering a
Poincaré puncture plot of low energy ions (figure 10), though

discerning the outline of the island is difficult. Poincaré plots
compare well with estimates from equation (2), even at the
largest island sizes used in the simulations, so they are reported
in the results. (When the island half-width is comparable
to the radial distance from the magnetic axis to the q = 2
surface, the asymmetry in α (figure 5) becomes evident as the
inner radius essentially becomes fixed and only the outer radius
grows with the amplitude.) The perturbation strength that gives
the experimental island size δρ � 0.26 is δBr/B � 10−3,
which is smaller than the experimental value calculated from
the Mirnov data, δBr/B = (4.1 ± 1.6) × 10−3.

The current drive and reaction probabilities are inferred
from the confined ion population using expressions given
below. Experimental profiles of the electron and deuterium
density (ne, nD), the electron and ion temperature (Te, TD) and
the carbon density nC are utilized in the calculations (figure 1).

Instantaneously, each beam ion drives a current
proportional to

I = eνλ

{
1 − [1 − F(Zeff , ε)]

Zeff

}
(4)

where e is the charge constant, ν is the particle velocity, λ

is the particle pitch, Zeff is the average ion charge and ε is
the aspect ratio. The term in the curly brackets represents the
effect of including electrons; the trapping factor F accounts
for finite aspect ratio. In the collisionless regime, a good
approximation for this factor is F � (1.55 + 0.85/Zeff )

√
ε −

(0.20 + 1.55/Zeff )ε [33]. The total current is the sum of the
current contribution from all confined particles.
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The neutron rate is based upon computations of the
reaction probability per particle. From TRANSP, the neutron
signal is dominated by beam–plasma reactions but ∼30%
of the neutron emission comes from beam–beam reactions,
with the thermonuclear contribution being negligible. For
beam–plasma reactions, the reaction rate per beam ion is
nD〈σν〉b−p, where 〈σν〉b−p is the average value of the D–D
reactivity and can be approximated by [24] 〈σν〉b−p �
[1 + c1(E)TD/E]σν(ν). Here nD and TD are the
local deuterium density and temperature, σν is the D–D
fusion reactivity [34] evaluated at the beam ion speed,
and c1 is an energy dependent coefficient that accounts
for the enhancement in reactivity associated with finite ion
temperature. The beam–beam reaction rate is calculated as
follows. The Monte Carlo beam distribution is subdivided into
spatial shells of volume �V , with approximately NB � 10
beam ions per shell. The reactivity 〈σν〉b−b is calculated from
the relative velocities of the ions in this radial shell, including
several random values of gyrophase. The beam–beam rate
from the shell is then proportional to N2

B〈σν〉b−b/�V . The
total reaction rate due to the confined beam ions is the weighted
average of the beam–plasma and beam–beam rates.
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Figure 10. Poincaré puncture plots showing the magnetic surfaces
(a) without and (b) with the (2,1) mode present, and the drift
surfaces of 75 keV deuterons (c) without and (d) with the (2,1) mode
present. The island width is selected to be comparable to the
observed width in the experiment (δρ � 0.26).

4.2. Results

The calculated loss of particles, driven current and neutron rate
are shown as a function of perturbation amplitude in figure 11.
To within experimental uncertainties, the calculated reductions
in driven current (35%) and neutron rate (40%) are consistent
with the experimental measurements when the perturbation
equals the experimental island width (δρ = 0.26). Because
the probability of a fusion reaction is largest near the magnetic
axis and the losses are largest in the centre, the fractional
particle losses in the simulations are consistently much less
than the neutron rate losses. For the simulation results shown
in figure 11, the particle losses scale as δB2

r (with a correlation
coefficient of 0.995 for the linear regression fit).

With the tearing mode, the distribution has about 20%
fewer beam ions than without (figure 8(a)). The tearing mode
perturbation acts most effectively on passing particles, λ ≈ 1
(figure 8(b)). The mode causes a strong reduction in central
density (figure 9). For the case with a perturbation, the steady
slope of the energy distribution (figure 8(a)) shows that, though
the mode is most effective at removing particles near the birth
energy, it continues to cause losses as the injected particles slow
down. The spatial distribution in figure 9 indicates a significant
loss of fast ions at the peak location and some redistribution of
particles about the peak.

The lost particles at the radial peak of the distribution cause
the largest reduction in both the current drive and the neutron
rate (figure 12). The redistribution of particles intensifies the
losses in both quantities. The beam–beam reactivity is most
adversely affected, as almost ∼50% of beam–beam produced
neutrons are lost in the simulations. Note that the largest
reductions occur for ρ < 0.3, i.e. near the tearing mode.

Simulations were also performed using the classical
slowing down distribution function calculated by TRANSP
[16] as the initial distribution. No collisions were included in
those cases. Particle trajectories were followed for ∼18 ms,
and cases with and without a perturbation were considered.
The calculated losses of particles, current drive and neutron
rate were similar to the results of the more rigorous simulations
shown in figure 11.
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Figure 11. Total lost driven current (squares), neutron rate (circles)
and particles (crosses) for a range of island widths. The maximum
δBr/B on this plot is ∼10−3. Also pictured is the range in the
measured island width and the neutron loss data (shaded area).
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5. Discussion and conclusions

There are few known non-resonant transport loss mechanisms
for beam ions on DIII-D, and none can really explain the
data and the simulation results as well as orbit stochasticity.
The helical perturbation from the tearing mode might be
causing the fast ions to cross a loss boundary; however, this
mechanism is not expected to be important since the beam ions
are mostly passing and thus well confined. The MHD mode
could also be causing magnetic field lines to become ergodic.
Particles with a large component of velocity could follow
these field lines as they stream around the torus, resulting in
a net radial displacement and possibly enhanced losses. The
energy confinement times, however, for cases with and without
tearing modes are comparable, indicating little or no additional
anomalous electron transport. Also, the stochastic threshold
for the drift orbit surfaces is expected to be much lower than
for the magnetic surfaces [4]. Considering these factors, we
conclude that the tearing mode is not causing the field lines to
become ergodic.

The experimental observation of orbit stochasticity as
a viable transport mechanism for energetic ions has some
important implications. This mechanism is an additional
loss channel for normally well confined passing particles; the
findings strongly support the speculation in other studies that
this mechanism was responsible for anomalous and enhanced
losses [1]. That means that non-resonant MHD activity such
as the neoclassical tearing mode, normally expected to affect
only the bulk species and energy confinement, can degrade
the confinement of energetic ions as well if the modes are
large enough. On a positive side, orbit stochasticity has
been connected with a technique of removing intermediate
energy alpha particles in a reactor through the external

application of helical perturbations [35]. (The removal of this
‘helium ash’ is necessary for a self-sustaining burn.) These
results give credence to exploring this transport mechanism
systematically using externally applied perturbations, which
would be relevant to helium ash removal.

To summarize, this work was initially undertaken to study
NBCD losses, correlated with neutron losses, in the presence
of large tearing mode islands. An analytic estimate of island
overlap indicates that orbit stochasticity is important for beam
ions in this discharge and is the likely transport mechanism for
the observed losses. Simulations were conducted to study the
transport numerically. By accounting for the large beam–beam
contribution to the neutron rate, the total neutron losses in the
simulations are found to be consistent with measured losses
at island widths comparable to the experimental value. Also,
the NBCD losses are limited to ρ � 0.3 in the simulations,
qualitatively consistent with the data. In the simulations, the
helical perturbation affects high energy, circulating beam ions,
and the particle losses scale as δB2, as expected for orbit
stochasticity. This evidence strongly suggests that intrinsic
orbit stochasticity causes the transport of fast ions seen in the
experiment.
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