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ABSTRACT

The multi-conjugate adaptive optics (MCAQ) systems proposed for future giant telescopes will require new,
computationally efficient, concepts for wavefront reconstruction due to their very large number of deformable
mirror (DM) actuators and wavefront sensor (WFS) measurements. Preliminary versions of such reconstruction
algorithms have recently been developed, and simulations of MCAO systems with 9000 or more DM actuators
and 33000 or more WFS measurements are now possible using a single desktop computer. However, the results
obtained to date are limited to the case of open-loop wavefront reconstruction, and more work is needed to
develop computationally efficient reconstructors for the more realistic case of a closed-loop MCAO system
that iteratively measures and corrects time-varying wavefront distortions. In this paper, we describe and
investigate two reconstruction concepts for this application. The first approach assumes that knowledge of the
DM actuator command vector and the DM-to-WFS influence matrix may be used to convert a closed-loop
WFS measurement into an accurate estimate of the corresponding open-loop measurement, so that a standard
open-loop wavefront reconstructor may be applied. The second approach is a very coarse (but computationally
efficient) approximation to computing the minimum variance wavefront reconstructor for the residual wavefront
errors in a closed-loop AO system. Sample simulation results are presented for both concepts with natural
guide star (NGS) AO and laser guide star (LGS) MCAO systems on 8- and 32-meter class telescopes. The
first approach yields a stable control loop with closed-loop performance comparable to the open-loop estimation
accuracy of the classical minimum variance reconstructor. The second approach is unstable when implemented
in a type I servo system.

Keywords: Multi-conjugate adaptive optics, wavefront reconstruction, extremely large telescopes

1. INTRODUCTION

Astronomical multi-conjugate adaptive optics (MCAQ) systems on future giant telescopes will require new
approaches for wavefront reconstruction on account of their very high number of wavefront sensor (WFS)
subapertures and deformable mirror (DM) actuators, not to mention the wide range of natural- and laser guide
star constellations currently under discussion.!™® Conventional techniques for computing (applying) wavefront
reconstructors in terms of explicit matrix inversions and multiplications will not be applicable, since their
calculation requirements scale as approximately the sixth (fourth) power of the telescope aperture diameter.
Fortunately, good progress has recently been made in developing more efficient reconstruction algorithms using
advanced techniques from computational linear algebra.””” Wavefront reconstruction simulations of MCAO
systems with 8000 or more DM actuators and 33000 or more WFS measurements are now possible using currently
available personal computers, and the results obtained are comparable to what would be achieved with the ideal
minimum variance, or “optimal,” reconstructor.®

However, the results reported to date have been limited to the open loop case, where an idealized MCAOQO
system measures, estimates, and corrects the turbulence-induced phase distortion in an instantaneous snapshot.
Futher advances will be needed to model and implement MCAQO wavefront reconstruction for the more realistic

Further author information: (Send correspondence to B.L.E)
B.L.E.: E-mail: brent@noao.edu, Telephone: 1 (520) 318-8589
C.R.V: E-mail: vogel@math.montana.edu, Telephone: 1 (406) 994-5332

206 Astronomical Adaptive Optics Systems and Applications, edited by Robert K. Tyson,

Michael Lloyd-Hart, Proceedings of SPIE Vol. 5169 (SPIE, Bellingham, WA, 2003)
0277-786X/03/$15 - doi: 10.1117/12.506580

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



closed loop case, where the AO system iteratively measures and corrects time-varying turbulence distortions.
The standard minimum variance reconstructor optimized for the open-loop case may perform poorly, or even
diverge, when naively applied in a closed-loop AO system.

A variety of existing methods have already been developed for closed loop wavefront reconstruction, but none
of these appear to be applicable to the case of a very high-order MCAO system.?'! The classical least-squares
wavefront reconstructor (defined as the pseudo-inverse of the DM-to-WFS influence matrix) provides acceptable
closed-loop performance for conventional AO systems, but yields disappointing results for MCAO without
some type of regularization on account of the large number of very poorly observed wavefront modes. Two
possible approaches to regularizing the reconstructor include (i) singular value decomposition'? and (ii) using a
constrained minimum variance reconstructor to filter the reconstructed phase estimate based upon atmospheric
turbulence statistics.” Both of these approaches have achieved good results in closed-loop simulations of MCAO
systems with up to approximately 1000 DM actuators, but they scale poorly to larger problems because of the
explicit matrix multiplies and inversions that are required to compute the reconstructor. The last observation
also applies to Kalman filtering and other predictive filtering techniques.!® !

We seek to develop new wavefront reconstruction and control algorithms that are (i) applicable to general
MCAO guide star and DM configurations (ii) stable in closed loop, (iii) provide near “optimum” performance,
(iv) sufficiently efficient to enable simulations of MCAO on future giant telescopes, and (v) practical in terms
of their requirements for calibration measurements, atmospheric measurements, and other a priori data.

This paper summarizes our first progress towards these objectives. We have developed and tested two
closed-loop wavefront reconstruction concepts for high-order MCAQ systems on future giant telescopes. Both
of these methods are modifications to the computationally efficient implementation of the classical minimum
variance reconstructor previously developed for the open loop case. The first concept assumes that accurate
knowledge is available for the DM-to-WFS influence matrix and the current figure of the DM’s, and (in effect)
uses this calibration data to convert closed-loop WFS measurements into the corresponding open-loop values.
The classical open-loop minimum variance reconstructor is then applied to this data, and the reconstructed
wavefront aberrations are temporally filtered before they are fit to DM actuator commands.

The second approach is a coarse (but computationally efficient) approximation to the minimum variance
wavefront reconstructor for the residual wavefront errors in a closed-loop AO system. The second-order statistics
of these residual wavefront errors, which must be known to compute the regularization term for the minimum
variance reconstructor, are approximated by assuming that the only source of error is the temporal latency in
the AO control loop.

These two wavefront reconstruction concepts will be referred to as Pseudo-Open Loop Control (POLC) and
Approximate Closed-Loop Regularization (ACLR) for the remainder of these paper. The two methods may in
fact be “blended” by forming a weighted linear combination of the pair of quadratic cost functions defining the
two approaches.

We have implemented and tested these wavefront reconstructors in first-order (linear) simulations of closed-
loop natural guide star (NGS) AO and laser guide star (LGS) MCAO systems on 8- and 32-meter class telescopes.
Each MCAO wavefront reconstruction requires approximately 10 (330) seconds for simulations with D = 8 m
(D = 32m) on a dual-processor desktop computer, and simulations lasting a few hundred to a few thousand
closed loop iterations are feasible with some patience. POLC is stable in closed loop, at least for the case
where the calibration data needed to convert closed-loop WFS measurements into the corresponding open-
loop values are known exactly. Performance is very similar to open-loop simulation results achieved with the
classical minimum variance reconstructor, since the wavefront control error due to the latency in the AO control
loop is relatively small for the sample astronomical MCAO scenario we have considered. By comparison, the
ACLR algorithm diverges in closed loop for both conventional AO and MCAO simulations, although the rate
of divergence is slower than for the standard minimum variance reconstructor optimized for the open loop case.

All of the results and observations presented here are based on preliminary simulations that should be
considered numerical experiments. More work is needed to formally evaluate the numerical stability of these
algorithms and their sensitivity to parameter variations. This can be accomplished by explicity computing the
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transfer- and impulse response functions for each control law, which should be feasible for problems with up to
about 1000 DM actuators.

The remainder of the paper is organized as follows. Section 2 reviews the classical open-loop minimum
variance estimator and very briefly describes prior work to develop computationally efficient forms of this
algorithm. Section 3 presents our basic Z-transform model for the dynamics of a closed loop AO system
and summarizes why the minimum variance estimator derived for open-loop wavefront reconstruction is not
necessarily satisfatory, or even stable, for this case. Section 4 describes the two wavefront reconstruction and
control approaches we have investigated. Section 5 outlines the sample simulation problems we have considered,
and section 6 presents the numerical results obtained. Section 7 is a brief summary.

2. MINIMUM VARIANCE WAVEFRONT RECONSTRUCTION

The objective of the minimum variance wavefront reconstruction algorithm is to determine a DM actuator
command vector, a, that best compensates for an atmospheric turbulence profile, z, in the sense of minimizing
the mean-square phase variance, o2, associated with the residual wavefront error, ¢. These quantities are related
by the formulas

¢ = H,z— H,a, (1)
o = ¢'We. (2)

Here H, and H, are the influence matrices that relate the turbulence profile and DM actuator command vector
to the resulting wavefront in the aperture plane, and W is a positive semidefinite matrix determined by the
shape of the aperture. The reconstruction algorithm is a linear operator E applied to the WFS measurement
vector s, i.e.

a= FEs. (3)

In the open-loop case, the WFS measurement vector s is related to the turbulence profile z by the equation
s =Gz +n, 4)

where the matrix G is the turbulence-to-WFS influence matrix, and the vector n is the WFS measurement
noise. The above model may be formulated to apply to both conventional AO and MCAO systems. In the
latter case, the vectors a, s, and ¢ are composed of several sub-vectors corresponding to distinct DM’s, WFS’s,
and points in the field-of-view, respectively.

In this notation, the minimum variance reconstructor E, that minimizes the expected value of o2 is defined
by the condition
E, = arg mbin Jme(E) = arg mbin (0 + kl|a]?). (5)

The angle brackets, (---), denote an ensemble average over the statistics of the turbulence profile z and the
WEFS noise vector n, and k is a very small regularizing term included to yield a unique value for E,.

When Eq.’s (1) through (4) are substituted into the formula for Jp,,(E), it follows that this merit function
is quadradic in the coefficients of the reconstruction matrix. Using standard least squares techniques, the value
of the minimum variance reconstructor E, may be evaluated as'3

E* = Fsza (6)

F, = (H'WH,+kI)  H'WH,, (7)
-1

B, = |67 (") G+ (aa”) ] G () (8)

(We have assumed that the random variables « and n are zero-mean). The matrix E, first obtains an Estimate
Z of the atmospheric turbulence profile 2, and the matrix F, then determines the best-Fit actuator commands
for this estimate. Other representations of the minimum variance reconstructor are also available, and this
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algorithm has long been a standard technique for evaluating and optimizing the performance of AO and MCAO
systems via analysis and simulation.” 1415

For later purposes, we note that an identical wavefront reconstruction is obtained by using the maximum
likelyhood (ML) estimate z, of the turbulence profile z if the random variables x and n are assumed to be
normally distributed. The probability density functions of these quantities are then defined by

= L exp [—u” (z2T) T u
Pl = v (@2m)N= det((z2T)) b [ ) /2] 7 ©)
P,(v) = 1 exp |:—'UT (nnT>_1 U/Z] , (10)

/@m)N det((nnT))

where the dimensions of x and n are equal to N, and N,, respectively. The ML estimate z, is the value of
u that maximizes the joint probability of the turbulence profile and the implied estimate s — Gu of the WFS
measurement noise n. More formally,

x. = argmax P (u)P,(s — Gu)
u

arg mgn I (u)
= argmuin [uT <:z::r;T>71 u+ (s — Gu)T <nnT>71 (s — Gu)} , (11)
which can be solved using the usual quadratic minimization to obtain
T = Eys. (12)
Next, the actuator command vector a yielding the best fit to the ML turbulence estimate x, is given by

a = argmin[(Hy2, — Hou)"W(H,z. — Hou) + klaf?]
= F,x,. (13)

These representations for £, and F,, will be used in section 4 below as the starting point to develop reconstructors
for the closed-loop case.

Severe computational difficulties arise in explicitly evaluating the matrix multiplies and inversions appearing
in Eq.’s (6) through (8) for simulations involving future giant telescopes, since the number of adds and multiples
required scales as the third power of the number of DM actuators and WFS measurements. This is proportional
to the sixth power of the telescope aperture diameter if the density of DM actuators and WFS subapertures is
held fixed. Fortunately, more sophisticated methods borrowed from computational linear algebra may be used
to implement the minimum variance reconstructor without explicitly evaluating it as a full matrix. Briefly,
these algorithms provide efficient solutions to linear systems of the form

Au = Bv (14)

without actually inverting the matrix A, provided that the matrices A and B possess an appropriate structure
(sparse, circulant, or Toeplitz; block matrices with blocks possessing one of these properties; or low-rank per-
turbations to such matrices). Previous papers have described how the minimum variance reconstructor may be
efficiently implemented by successively solving the systems = E,s, a = F,T using these techniques.®~ 71617
For the purposes of this paper, it is enough to note that (i) such methods have been developed for both natural
guide star (NGS) and laser guide star (LGS) MCAO systems, and that (ii) the applicability of sparse matrix
methods depends upon finding a good sparse approximation to the term <J;:1:T>_1 appearing in Eq. (8). We ap-
proximate this matrix as «CTC, where « is a scale factor and C is a discrete Laplacian operator that computes
the Curvature of the turbulence profile at each point on the propagation grid.
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3. MODELING THE CLOSED-LOOP CASE

Although the open-loop minimum variance wavefront reconstructor is frequently used to characterize the ideal
performance of an AO system configuration, it is has generally not been used for real-time control in actual
AO control loops. In Section 2, the minimum variance reconstructor was derived from the assumptions that (i)
the WFS measurement vector s was obtained in open loop, without benefiting from any correction due to the
prior command to the DM, and (ii) the DM command vector a is computed from scratch each cycle from a new
WFS measurement. Neither of these conditions applies in a closed loop AO system, where a classical model
incorporating the impact of the temporal dynamics takes the form

) = Gux(z) — Gea(z) + n(z),
z) = Eus(z),

)

)

= g(2)r(2),
= F,z(z).

The variable z indicates the application of the z-transform to the time histories of the quantities s, x, a, n, and
Z. The term G,a(z) in the first equation represents the partial correction applied to the WFS measurement by
the DM command. The new variable r denotes an estimate of the Residual phase errors computed at each cycle
by applying the reconstruction matrix E, to the closed-loop WFS measurement. Finally, g(z) is a scalar-valued
temporal filter applied to the output of the wavefront reconstructor before the phase estimate Z is fit to DM
actuator commands and applied to the deformable mirror. Because g(z) is scalar valued the filter could just as
well have been applied to the DM actuator commands, but we prefer to filter the phase estimate to maintain
consistency with the standard implementation of existing modal AO systems.

The classical minimum variance reconstructor will not necessary perform as expected in this dynamical
system. As an elementary example, consider the case where the turbulence profile  and the WFS measurement
noise n are fixed, and the temporal filter g(z) is a type I controller that corrects constant errors. In this case,
the AO control system will converge to steady state when the condition

E,s(t)=0 (19)
is satisfied. For the minimum variance reconstructor as defined in Section 2, this is equivalent
GT (nnT>_1 Ga.a=GT <nnT>_1 (Gex +n). (20)

This is not consistent with the open-loop minimum variance solution, and is in fact completely independent
of atmospheric turbulence statistics. A new approach is needed to regularize the wavefront reconstruction
algorithm in closed loop.

4. EFFICIENT APPROACHES TO CLOSED-LOOP WAVEFRONT
RECONSTRUCTION

We have now developed and tested several variants of the classical minimum variance reconstructor with a goal of
obtaining improved performance in a closed loop AO system. The emphasis has been to find a computationally
efficient algorithm with acceptable performance, as opposed to an optimal solution (e.g., a Kalman filter) that
would be impractical to implement for a very high order MCAO system. The following subsections describe the
concepts we have considered.

4.1. Pseudo-open loop control (POLC)

This approach is based on the assumption that perfect a priori knowledge is available for the DM actuator
command vector a and influence matrices GG, and G, and that the closed loop control problem can be reduced
to the open loop case by appropriately combining the current DM command, the most recent turbulence
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estimate, and current WFS measurement of the residual errors. In analogy with Eq. (11) for the classical
minimum variance reconstructor, the cost function Jpe for this concept is defined by the formula

r = argmuin Ipote(w)
= argmuin {[s +Goa— Go(@ +u))" <nnT>71 [s 4+ Gua — Go(Z +u)] + (T +u)” <JJ$T>71 (@ + u)} (21)

Heuristically, the term s+ G,a appearing above is the estimate of the open-loop WFS measurement correspond-
ing to the closed-loop measurement s. The term Z + u is the estimate for the current turbulence profile after
the previous estimate Z is updated by the estimate u of the current residual error. Eq. (21) is consequently the
direct implemention of the classical minimum variance (or ML) reconstructor in a closed-loop AO system.

To solve Eq. (21) for the residual error r, it is convenient to express the cost function in the form
Tyotc(w) = (s + DF — Gou)™ (nnT) (s + DZ — Gou) + (F +w)™ (w2 (@ +u), (22)
where (on account of Eq. (18)) the matrix D is defined by the equation
D =G,F, — G,. (23)

The value of r that minimizes J,,. may then be evaluated as
_ 1\ L _ _ _
r= (Gf (nn™) ! Gy + (zz™) 1) [Gf (nn™) Yot (Gf (nn™) 'D- (zz™) 1) EE] . (24)

This formula is highly similar to the standard open-loop minimum variance reconstruction algorithm, with the
addition of the second term within the square brackets that depends upon the previous value of the turbulence
estimate Z. This modification does not degrade the computational efficiency of the algorithm, since this term
may be evaluated using sparse matrix operations.

The POLC algorithm has several attractive features, including its computational efficiency and very close
relationship to the classical minimum variance reconstructor. On the other hand, it is not yet clear how sensitive
this approach may be to uncertainties in the values of a and G, due to hysteresis, calibration errors, and other
implementation error sources. For this reason we have also investigated a second approach that is a genuinely
closed loop control algorithm.

4.2. Approximate closed-loop regularization (ACLR)

The idea behind this approach is to adjust the atmospheric turbulence covariance matrix (zz”) appearing
in the definition of the classical minimum variance estimator so that it approximates the statistics of the
residual reconstruction errors remaining in a closed-loop AO system. Ideally, we would like to compute and
apply the optimum Kalman filter for this problem, but we are strongly concerned that this approach will be
computationally impractical for very high order MCAO systems on future giant telescopes. Our approach is
to use an approximate covariance matrix that yields a computationally efficient reconstruction algorithm; we
hope that this approximation to the regularizing term is close enough to yield satisfactory performance in closed
loop, but this assertion needs to be verified via Monte Carlo simulations.

Our first approximation to the atmospheric turbulence covariance matrix is based upon the assumption
that the dominant source of residual wavefront error in the closed-loop AO system is time delay. The dynamic
behavior of the AO control loop is governed by the equation

a(z) = Frg(2) Ex [Gex(2) — Gaa(2) +n(2)] - (25)
Solving for the DM actuator command vector a(z) obtains

a(z) = [I + Fxg(Z)EzGa]71 Frg(2)E, [Gxx(z) + n(z)] (26)
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for the closed-loop transfer function between the turbulence profile z and the DM actuator command vector a.
To eliminate all sources of wavefront error besides time delay, assume that n(z) = 0, fitting error is negligible
(dima = dimz and G, = (), and that the wavefront reconstruction algorithm has been perfectly calibrated
(FLE,G, = I). These simplifications yield the result

2(z) —a(z) = [L+g(2)] " 2(2) (27)

for the residual error in the AO control loop. Simplifying further, this can be approximated as a simple time
delay of the form

z(t) —a(t) ~ z(t)—z(t—r1)
Tz'(t)
= zq4(t), (28)

where 7 is the characteristic time delay for the AO control loop.

~
~

Using this time-delay-only model for the residual wavefront error in a closed-loop AO system, the merit
function for defining the minimum variance (or ML) reconstruction algorithm becomes

Jactr (1) = (s — Gpu)T (nnT>71 (s — Gpu) +u” <:Ed$§>71 w. (29)
The estimate of the residual phase error r at each control loop cycle is given by

r = argmin Jye(u)
u

(Gf (nnT>_1 G, + (mdw§>_1) B GT (nnT>_1 s. (30)

This takes the same form as the standard open-loop minimum variance estimator with the turbulence covari-
ance matrix (zz”') replaced by (zqz} ), and the reconstruction algorithm will be computationally efficient to
implement if we can find a good sparse approximation to the inverse of the latter matrix.

Since x4 is proportional to the time derivative of x, it follows from the Taylor (or frozen flow) hypothesis that
the spatial power spectrum of z4 is proportional to k?x~'1/3 = k=5/3 if the direction of the wind is assumed to
be random and uniformly distributed from 0 to 27. In the same manner that we approximated £~ /3 as k=4
for the open-loop minimum variance estimator,'® we now propose to approximate the spatial power spectrum
of 4 with a k=2 power law. It may be shown that this is equivalent to approximating the inverse covariance
matrix (mdmg>7l as aDT D, where « is a scale factor and D is a discrete (and sparse) form of the gradient
(or Differentiation) operator. The resulting wavefront reconstruction algorithm has the same computational
efficiency as the open-loop minimum variance MCAQ reconstruction algorithm developed previously because
the regularization terms aDTD and aCTC are equivalently sparse. Of course, Monte Carlo simulations are
sorely needed to evaluate how the all of the approximations made in deriving the regularization term impact
its stability and performance.

4.3. A blended reconstruction algorithm

The pair of merit functions Jpec(u) and Joer(w) that determine the pair of reconstruction algorithms described
above are so similar that it is irresistable to consider them as special cases of the “blended” merit function

Jy(u; ) = adpore(u) + (1 — ) Jaerr (u). (31)
This function is still quadratic in u, and one final least squares minimization argument yields the result
ro o= argml}n Jp(u; @)
= [Gf <nnT>71 G, +a (:m;T>71 +(1—a) <mdmg>7l] B

X [Gf (nnT>_1 s+« (Gf (nnT>_1 D — (:m:T>_1) 5:\] . (32)

212 Proc. of SPIE Vol. 5169

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 1. Atmospheric turbulence profile used for AO simulations. This table lists the altitudes, relative turbulence
weights, and windspeeds for a six-layer atmospheric turbulence profile derived from thermosonde and generalized SCI-
DAR measurements at Cerro Pachon, Chile. The overall profile was scaled to yield ro = 16 cm at A = 0.5 ym. The
corresponding isoplanatic angle is g = 12.85 urad, and the Greenwood frequency is f; = 27.5Hz.

Layer | Altitude, km | Layer weight | Windspeed, m/s
1 0.00 0.652 5.0
2 2.58 0.172 13.0
3 5.16 0.055 20.0
4 7.73 0.025 30.0
5 12.89 0.074 20.0
6 15.46 0.022 10.0

5. SIMULATION TEST CASES

This section summarizes the atmospheric and AO parameters we have used in initial closed-loop simulations of
the above wavefront reconstruction algorithms for sample NGS AO and LGS MCAO system configurations on
8- and 32 meter class telescopes.

Table 1 summarizes the atmospheric turbulence profile used in these simulations. This profile is a six-layer
fit to thermosonde and generalized SCIDAR measurements collected at Cerro Pachon, Chile, the site of the
Gemini-South telescope.'® The profile has been scaled to obtain a r¢ of 16 cm at a wavelength of 0.5 yum, which
corresponds to roughly median seeing. The value of the isoplanatic angle 6y is 2.65 arc sec, or 12.85 urad. The
wind velocities have been selected to match the general shape of the median wind profile at Cerro Pachon, and
provide a representative Greenwood Frequency, f,, of 27.5 Hz.

The AO parameters for the 8- and 32 meter MCAO systems tested against this atmospheric profile are, for
the most part, borrowed from the baseline design for a MCAO system at Gemini-South.* The science field-of-
view to be corrected is a one-arc-minute square. AO system performance is sampled at the center, edges, and
corners of this square field, and the field-averaged residual mean-square phase error is estimated by combining
the errors at these nine evaluation points using Simpson’s rule in two dimensions. Three deformable mirrors
are located conjugate to ranges of 0.0, 5.15, and 10.30 km, which are modest adjustment to the Gemini-South
values of 0.0, 4.5, and 9.0 km. The interactuator spacings on the three mirrors are equivalent to 0.5, 0.5, and
1.0 m at the telescope primary mirror.

The three DM’s are controlled using measurements from five higher-order wavefront sensors viewing sodium
laser guidestars at a range of 90 km. For the 8-meter MCAO system, the 5 guidestar are located at the center
and four corners of the 1 arc-minute-square science field of view. For the 32-meter MCAO system, the 4 outer
guidestars have been radially displaced outwards to a distance of v/2-46 = 65 arc sec from the center of the field
to measure a larger fraction of the higher turbulence layers. The subaperture width for each WF'S is equivalent
to 0.5 m at the telescope primary mirror. The full aperture tilt modes of the LGS WFS measurements are
unreliable since the exact positions of the guidestars on the sky are variable and unknown, so four natural guide
stars located at the midpoints of the edges of the field are all included for full aperture tip/tilt sensing. (This
deviation from the 3 NGS proposed for Gemini-South yields symmetric performance over the square field of
view, which simplifies the performance analysis.)

We have also simulated a conventional 8-meter natural guide star (NGS) AO system with a single DM, a

single on-axis guidestar, and the same actuator/subaperture densities. For this case, the atmospheric model
was simplified to a single phase screen in the aperture plane with a wind velocity of 10 m/sec.

There are a total of 2240 (33320) LGS WFS measurements for the MCAO simulations with D = 8m
(D = 32m), and the total number of DM actuators is 789 (8449). For the NGS AO simulation, there is a total
of 448 WF'S measurements and 257 DM actuators.
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The simulations assume a higher-order WFS measurement error of 0.02 arc seconds RMS, which corresponds
to a bright guide star and is perhaps 2 or 3 times smaller than the best we might hope to achieve for sodium
LGS MCAO with reasonable laser powers and beam qualities. The noise levels for the NGS tip/tilt sensors have
been scaled down by the ratio of the subaperture size to the full aperture diameter (i.e., a factor of 8/0.5=16
for D = 8m or a factor of 64 for D = 32m) to yield the same phase difference measurement error across the
full aperture.

Finally, the simulation cycle time was 1/800 seconds, which matches the baseline design for the Gemini-
South MCAO system. The servo filter g(z) determining the temporal dynamics of the AO control loop was
defined by the finite difference equation

Z(n) = 32(n — 1) + 1%(n — 2) + 3r(n — 2), (33)
which is equivalent to the transfer function
T(z) =122(1- 12— 12°)""r(2) (34)
in the z-transform domain. Note the use of the term r(n — 2), not r(n — 1), appearing in Eq. (33) above; this
extra cycle of temporal latency in the control loop is an approximation to the additional time delay induced
by reading out the WFS detectors. The corresponding closed-loop impulse response function for a single-input,
single-output servo system (where x is the input disturbance and r = & — 7 is the residual error and the sensor
measurement) would be

B(2)[2(z) = 32%/(1-32)
= 123 (z/2)" (35)
n=0

It can be shown that the -3dB (0dB) closed loop bandwidth for this control law is about 30 (50) Hz, modestly
higher than the Greenwood frequency of 27.5 Hz used in the simulation.*

6. SAMPLE SIMULATION RESULTS

This section summarizes a sample of the initial closed-loop simulation results we have obtained for the 8- and
32-meter class NGS AO and LGS MCAO systems described in section 5 above. In these early adventures we
have been more interested in evaluating the stability properties, relative performance, and execution times for
the reconstruction algorithms, as opposed to fully characterizing and optimizing the performance of AO systems
used as test cases.

Fig. 1 plots the simulation results obtained for the simplest case considered, a NGS AO system with 257
actuators and 448 WFS measurements on an 8-meter telescope. The figure plots the log of the mean-square
phase variance vs. time for (i) the input wavefront disturbance, (ii) the residual wavefront error for the standard
minimum variance reconstructor applied naively in closed loop, (iii) the residual wavefront error for the ACLR
(approximate closed-loop regularization) reconstruction algorithm, and (iv) the residual wavefront error for the
POLC (Pseudo open-loop control) reconstructor. Reconstructors (i) and (iii) are unstable and diverge after
no more than 50 to 100 iterations, even though they initially provide a near-optimal solution after the first
few cycles. It may be interesting to note that the ACLR algorithm diverges significantly less rapidly than the
standard minimum variance reconstructor, but we have not yet investigated whether alternate forms of this
approach might yield stable performance. In contrast, the performance achieved with the POLC approach is
stable and near optimal. This is as should be expected in a problem with (i) a relatively low wind speed and
(ii) ideal knowledge of the DM command vector and the DM-to-WFS influence matrix.

Fig. 2 illustrates the closed-loop MCAO simulation results obtained with the POLC reconstruction algorithm.
Just as with the NGS AO case, the algorithm is stable and yields performance that is very similar to the open-
loop estimation accuracy of the standard minimum variance reconstructor.

The time required per reconstruction is about 10 and 330 seconds for the 8 and 32 meter MCAO simulations,
respectively. This is for 10 complete iterations of preconditioned conjugate gradients,>™” which could probably
be reduced somewhat with negligible impact upon performance.
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Figure 1. Closed-loop simulation results for an 8-meter NGS AO system

This figure plots the mean-square phase estimation error vs. time for an order 16> NGS AO system and three different
wavefront reconstruction algorithms as described in sections 4 and 5 above.

7. SUMMARY AND PLANS

The very high-order MCAOQO systems now being proposed for future giant telescope will require new wavefront
reconstruction concepts due to the large number of DM actuators and WFS subapertures. Current methods for
computing stable wavefront reconstructors for closed-loop AO system have computational complexity O(n?),
and consequently do not appear to be applicable. In this paper, we have investigated two approaches to adapting
the standard minimum variance reconstructor, which is optimized for wavefront estimation in open loop, into
a computationally efficient form that will remain stable and provide acceptable performance in closed loop.
The first approach, pseudo-open loop control (POLC), assumes that accurate knowledge of the DM actuator
commands and the DM-to-WFS influence matrix is available to transform closed-loop WFS measurements into
the corresponding open-loop values so that the standard minimum variance reconstructor may be applied. The
second method, approximate closed-loop regularization (ACLR), adapts the regularization term appearing in

the definition of the minimum variance reconstructor to (approximately) represent the residual errors in a closed
loop AO system.

The POLC reconstruction algorithm obtained stable results and good closed-loop performance in initial
simulations of NGS AO and LGS MCAO system on 8- and 32-meter telescopes. The ACLR algorithm is unstable,
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Figure 2. Closed loop simulation results for 8- and 32-meter MCAO systems

This figure plots the mean-square phase estimation error vs. time for the pseudo open loop control (POLC) reconstruction
algorithm and the 8- and 32-meter MCAO system configurationsdescribed in section 5 above. The results are plotted on
two time scales for each system to better illustrate the convergence behavior and long-term stability of the control loop.

although it diverges more slowly than the standard minimum variance reconstruction algorithm applied naively
in closed loop.

We now plan to assess the sensitivity of the POLC reconstruction algorithm to a variety of calibration
errors, including: non-common path wavefront aberrations with non-Kolmogorov statistics, variations in WFS
tilt measurement gain due to changes in atmospheric seeing and the dimensions of the laser guide stars, and
DM-to-WFS misregistration errors. We will then install the new reconstructor into a wave optics propagation
simulation for futher study of MCAO system performance issues on ELT’s, including the impact of extended
laser guide stars.
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