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The diocotron instability in a low-density non-neutral electron plasma is examined via numerical

simulations. For the simulations, a current-vortex filament model and a special-purpose computer,

MDGRAPE-2 are used. In the previous work, a simulation method based on the current-vortex

filament model, which is called ‘‘current-vortex method,’’ is developed. It is assumed that electric

current and vorticity have discontinuous filamentary distributions, and both point electric current

and point vortex are confined in a filament, which is called ‘‘current-vortex filament.’’ In this paper,

the current-vortex method with no electric current is applied to simulations of the non-neutral

electron plasma. This is equivalent to the traditional point-vortex method. MDGRAPE-2 was

originally designed for molecular dynamics simulations. It accelerates calculations of the Coulomb

interactions, the van der Waals interactions and so on. It can also be used to accelerate calculations

of the Biot–Savart integral. The diocotron modes reproduced by the simulations agree with the

result predicted by linear theory. This indicates that the current-vortex method is applicable to

problems of the non-neutral plasma. The linear growth rates of the diocotron instability in the

simulations also agree with the theoretical ones. This implies that MDGRAPE-2 gives the

sufficiently accurate results for the calculations of the current-vortex method. A mechanism of

merging of electron clumps is demonstrated by the simulations. It is concluded that the electric field

induced by the conducting wall makes the nonlinear stage unstable and causes the clumps to

merge. © 2003 American Institute of Physics. @DOI: 10.1063/1.1592516#

I. INTRODUCTION

Many features of non-neutral electron plasmas have

been investigated both experimentally and theoretically.1–6

Above all, one of the most ubiquitous phenomena is the dio-

cotron instability observed in a low-density (vpe
2

!vce
2 ) non-

neutral electron plasma column confined radially by a uni-

form axial magnetic field. The diocotron instability was first

examined theoretically by MacFarlane et al.7 and Levy

et al.,8–10 and observed experimentally by Webster,11 Kapet-

anakos et al.,12 and Peurrung et al.13 The linear theory for

the diocotron instability has been developed and well

understood.6,14 Thus we have chosen this phenomenon for

the qualitative and quantitative benchmark of our simulation

model ~current-vortex filament model! and simulation

method ~a special-purpose computer, MDGRAPE-2!.

As a simulation model, we use a current-vortex filament

model. We have developed a two-dimensional ‘‘magnetohy-

drodynamic’’ vortex method.15 We call it the current-vortex

method. The concept is based on the current-vortex filament

model.16–18 We assume that electric current and vorticity

have discontinuous filamentary distributions. Both the point

electric current and the point vortex are confined in each

filament, which is called the current-vortex filament. By in-

tegrating the magnetic induction equation and the vorticity

equation around a filament, we obtain time development

equations of the current-vortex filaments. It is analytically

shown that the two-dimensional equations of motion of low-

density non-neutral electron plasmas with the guiding-center

approximation coincide with those of the two-dimensional

nonmagnetized fluids, i.e., the Euler equations. Thus, we ap-

ply the current-vortex method in the limit of no electric cur-

rent to the two-dimensional electron plasmas. In this limit,

the method is equivalent to the traditional point-vortex

method.19–21

As a simulation method, we use a special-purpose com-

puter, MDGRAPE-2. If no electric current is assumed, the

current-vortex method needs the Biot–Savart integral to de-

termine a flow velocity from ~discretized! vorticities. Other-

wise, the method needs the additional Biot–Savart integral to

determine a magnetic field from electric currents. Unfortu-

nately, it takes a considerable time to calculate the Biot–a!Electronic mail: yyanagi@phys.h.kyoto-u.ac.jp
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Savart integral in simulations. To improve performance of

vortex simulations, one may needs special methods, such as

the vortex-in-cell code. However, we took a way to use a

special-purpose computer, MDGRAPE-2. It was originally

designed for molecular dynamics simulations, and acceler-

ates calculations of the Coulomb interactions, the van der

Waals interactions, and so on. We find that MDGRAPE-2

can accelerate calculations of the Biot–Savart integral. You

will see that MDGRAPE-2 is an ‘‘accelerator’’ not only for

molecular dynamics simulations but also for plasma simula-

tions.

The simulation results show that the model is valid for

the electron plasmas, because the diocotron modes observed

in the simulations are consistent with the theoretically pre-

dicted modes. The growth rates obtained by the simulations

agree with the growth rates of linear theory. This indicates

that MDGRAPE-2 gives sufficient precision for the simula-

tions.

The angular velocities of the particles are influenced by

the radius of the conducting wall. In the simulations of time

evolution of two circular clumps, it is found that the direc-

tion of E3B force exerting the backward clump is outward,

while the one exerting the forward clump is inward. The

angular velocity of the backward clump, which is determined

by the distance from the conducting wall, becomes larger

than the forward one. Thus the backward clump catches up

with the forward one from outside ~near the wall! and merges

with the forward one. It is concluded that the electric field

induced by the conducting wall makes the nonlinear stage

unstable and causes the clumps to merge.

In Sec. II, we present the simulation model, current-

vortex filament model, the simulation method and the initial

conditions. In Sec. III, we present simulation results. We

compare the results to linear theory. The merging properties

of the electron clumps produced by the diocotron instability

are discussed. In Sec. IV, we give conclusions.

II. SIMULATION MODEL AND METHOD

In Sec. II A, the basic equations for non-neutral plasmas

are given. In Sec. II B, the simulation model is discussed.

The two-dimensional equations of motion of non-neutral

plasmas with the guiding-center approximation coincide with

the two-dimensional Euler equations. Thus we use the previ-

ously developed simulation model, current-vortex method,

with no electric current. In this limit, our model reduces to

the traditional point-vortex method. In Sec. II C, a special-

purpose computer, MDGRAPE-2, is briefly reviewed, which

is used to accelerate the calculations of the Biot–Savart in-

tegral. In the last part of this section, we explain the initial

conditions of the simulations.

A. Basic equations

We use the following basic equations:

nemeS ]

]t
1~u•“ ! Du52“p2ene~E1u3B!, ~1!

]ne

]t
1“•~neu!50, ~2!

“•E5

ene

e0

, ~3!

vz5 ẑ•“3u, ~4!

B5B0ẑ, ~5!

where ne , me , e , p , and B0 are the number density of elec-

trons, the electron mass, the electron charge, the kinetic pres-

sure, and the uniform magnetic field in the z direction, re-

spectively. Notation vz is the z-component of the vorticity.

Notations u, B, and E are the flow velocity, the magnetic

field, and the electric field on the x – y plane. A unit vector in

z direction is denoted by ẑ. Equations ~1!, ~2!, and ~3! are the

equation of motion, the equation of continuity, and Gauss’

theorem, respectively.

In the present analysis, a cold-fluid guiding-center model

is adopted in which electron inertial effects are neglected.

The motion of a strongly magnetized electron fluid element

is determined from

ene~E1u3B!50. ~6!

In the electrostatic approximation, the electric field is deter-

mined by the scalar potential f, namely, E52“f , and Eq.

~6! gives

u52

1

B0

“f3 ẑ, ~7!

“•u50. ~8!

By means of Eq. ~4!, the vorticity vz reduces to

vz5

ene

e0B0

5

vpe
2

vce

52vD , ~9!

where vpe5(nee2/(e0me))1/2 and vce5eB0 /me . Notation

vD is the diocotron frequency. Equation ~9! means that the

vorticity is proportional to the electron density ne or the

diocotron frequency vD .

On the other hand, two-dimensional flow velocity is de-

termined by the Euler equation. Namely, the flow velocity is

obtained by the stream function c,

u52“c3 ẑ. ~10!

It follows from Eq. ~7! that the scalar potential f is related to

the stream function, c5f/B0 .8,10 The electron fluid motion,

therefore, can be determined by the two-dimensional Euler

equations.

B. Simulation model

Here we explain the current-vortex method used in the

simulations. We use the two-dimensional ideal magnetohy-

drodynamic equations,

]vz

]t
52~u•“ !vz1~B•“ ! j z , ~11!

]Az

]t
52~u•“ !Az , ~12!

“•u50, ~13!
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E1u3B50, ~14!

B52 ẑ3“Az , ~15!

vz5 ẑ•“3u, ~16!

j z5

ẑ

m0

•“3B, ~17!

where Az and j z are the z-components of the magnetic vector

potential and the electric current density, respectively. The

mass density is normalized to unity.

We assume that the electric current and the vorticity

have discontinuous filamentary distributions, and the point

electric current and the point vortex are confined in each

filament coaxially. In other words, the electric current and

the vorticity always align and form the current-vortex fila-

ments. It follows that the electric current density j z(r,t) and

the vorticity vz(r,t) are denoted by

j z~r,t !5(
i

J i~ t !d~r2ri~ t !!, ~18!

vz~r,t !5(
i

V i~ t !d~r2ri~ t !!, ~19!

where d(r) is Dirac’s two-dimensional delta function. The

notation ri(t) is the position vector of the ith current-vortex

filament, J i(t) and V i(t) are the total electric current and the

circulation inside the ith filament. Equations ~18! and ~19!
directly show that there is the current-vortex filament at

ri(t).

We rewrite the vorticity Eq. ~11! and the magnetic in-

duction Eq. ~12! in terms of the filamentary representations

~18! and ~19!. By integrating the resulting equations over a

circle area whose center and radius are rk and e, respectively,

we obtain solutions concerning the specific filament, say the

kth filament. The solutions are given by

drk

dt
5u~rk ,t !2

Jk~ t !

Vk~ t !
B~rk ,t !, ~20!

dVk~ t !

dt
50, ~21!

dJk~ t !

dt
50, ~22!

where

u~rk ,t !5(
iÞk

V i~ t !“G~rk2ri!3 ẑ, ~23!

B~rk ,t !5(
iÞk

J i~ t !“G~rk2ri!3 ẑ, ~24!

and G(r) is the two-dimensional Green function that obeys

“
2G~r!52d~r!. ~25!

Equations ~20!, ~21!, and ~22! give the equation of motion of

the kth filament, the conservation laws of the circulation and

the total electric current inside the kth filament, respectively.

The equations determine the time evolutions of the current-

vortex filaments. In the limit of J i(t)50, Eqs. ~20!–~24! re-

duce to the following normalized equations:

drk

dt
5u~rk ,t !, ~26!

dVk~ t !

dt
50, ~27!

u~rk ,t !5(
iÞk

2pV i~ t !“G~rk2ri!3 ẑ. ~28!

The factor 2p in the Biot–Savart integral ~28! is introduced

to cancel out the factor 1/(2p) in the Green function. We use

these normalized equations in the simulations, because the

equations to determine the time evolution of two-

dimensional non-neutral electron plasmas with guiding-

center approximation have the same form as the two-

dimensional Euler equations for nonmagnetized fluids. To

incorporate the effect of the conducting wall around the elec-

trons, we use the method of images.22

C. Simulation method

Equation ~28! is the Biot–Savart integral. One must no-

tice that it takes a considerable time to calculate the Biot–

Savart integral in simulations. Usually the calculation time is

proportional to N2, where N is the number of mesh points. In

this work, we use a special-purpose computer,

MDGRAPE-2, to accelerate the calculations of the Biot–

Savart integral. A photograph of MDGRAPE-2 is shown in

Fig. 1. MDGRAPE-2 is a standard PCI board that can be

installed even on Pentium III based PCs. It was originally

designed for molecular dynamics simulations, and acceler-

ates the calculations of the Coulomb interactions, the van der

Waals interactions, and so on.23 The calculation speed of

MDGRAPE-2 depends on the number of particles that inter-

act with each other and the number of boards installed on a

PC. This is due to the communication time between the host

CPU and PCI board. If the number of particles exceeds 105,

the communication time is not negligible. In such a case, it is

possible to implement the well known fast algorithms, such

as the vortex-in-cell method and the pseudoparticle multipole

method, on MDGRAPE-2 to reduce the communication

FIG. 1. A photograph of MDGRAPE-2 is shown.
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time.21,24 For our case, however, the maximum number of the

particles is 104 and there is not enough merit to implement

the fast algorithm. Thus we simply use MDGRAPE-2 to ac-

celerate the calculation of Biot–Savart integral in the tradi-

tional point-vortex method. In this case, the maximum cal-

culation speed still reaches 120 GFlops, if the number of

particles is 105 and the number of MDGRAPE-2 boards is 4.

It is about 8 times faster than the fastest vector-type super-

computer with one processor. The method how to calculate

the Biot–Savart integral on MDGRAPE-2 is given in Ref. 15.

D. Initial conditions

An initial configuration of the electrons is shown in Fig.

2. A perfectly conducting wall is located at Rw . Outer and

inner radii of the distribution of electrons are denoted by R0

and R1 , respectively. The electron distribution is represented

by the sum of point vortices in the simulations. The maxi-

mum number of point vortices is 104. Each point vortex has

circulation 0.15Gs . The outer radius of the electron distribu-

tion is R0550Ls . Here the notations Gs and Ls are intro-

duced for normalization. The average vorticity v̄z is obtained

by

v̄z5

0.15Gs3104

p~50Ls!
2 51.9131021

Gs

Ls
2 . ~29!

In this case, the diocotron frequency vD5vpe
2 /(2vce) is de-

termined by the average vorticity as vD5v̄z/2. The value of

the diocotron frequency becomes

vD5

ene

2e0B0

5

1

2
v̄z59.5531022

Gs

Ls
2 . ~30!

Thus the vorticity is proportional to the electron number den-

sity. In the simulations, we set T5Ls
2/Gs51 for normaliza-

tion, where T means the time in the simulation. Time step is

DT51024. All the length scales in the simulations are nor-

malized by R0 from now on.

III. SIMULATION RESULTS OF DIOCOTRON
INSTABILITY

A. Time evolution of annular electron distribution

In Figs. 3–5 time evolutions of the electron distributions

at T50, 40, 80, 120, 160, and 200 are shown. There are two

main parameters in these simulations. One is a ratio of inner

to outer radii of the electron distribution R1 /R0 , which is

chosen as 0.6 in Fig. 3, 0.8 in Fig. 4, and 0.9 in Fig. 5. The

other is a radius of the conducting wall Rw , which is chosen

as 1.1R0 in ~a!, 1.6R0 in ~b!, and ` in ~c! in Figs. 3 and 4,

and ` in Fig. 5.

The simulation results show that the linearly most un-

stable modes are 2 at T5120 in ~a!, 3 at T580 in ~b!, 3 at

T580 in ~c! in Fig. 3, 4 at T580 in ~a!, 5 at T580 in ~b!, 5

at T580 in ~c! in Fig. 4, and 9 at T580 in Fig. 5. The

unstable modes obtained by the simulations agree with the

FIG. 3. Time evolutions of the electron distributions at T50, 40, 80, 120,

160, and 200 are shown. Initial inner radius of the distribution of electrons

is R150.6R0 . Conducting wall is located at Rw5 ~a! 1.1R0 , ~b! 1.6R0 , and

~c! `, respectively.

FIG. 2. An initial condition of the simulations is shown. A perfectly con-

ducting wall is located at Rw . Outer and inner radii of the distribution of

electrons are denoted by R0 and R1 , respectively.

FIG. 4. Time evolutions of the electron distributions at T50, 40, 80, 120,

160, and 200 are shown. Initial inner radius of the distribution of electrons

is R150.8R0 . Conducting wall is located at Rw5 ~a! 1.1R0 , ~b! 1.6R0 , and

~c! `, respectively.

FIG. 5. Time evolution of the electron distribution at T50, 40, 80, 120,

160, and 200 is shown. Initial inner radius of the distribution of electrons is

R150.9R0 . Conducting wall is located at Rw5` .
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theoretical results shown in Table I. It indicates that the

current-vortex method is qualitatively valid for problems of

the non-neutral electron plasmas.

It is interesting that the final stage after the linear growth

stage strongly depends on the radius of the conducting wall

Rw . In Fig. 3, mode 1 appears in ~a!, while the electron

distributions exhibit center-peaked broad profiles in ~b! and

~c!. In Fig. 4 also, the modes observed in the final stages are

2, 4, and 5, respectively. These results indicate that the con-

ducting wall strongly affects the electron motions inside it.

We discuss the merging properties of the electron clumps in

Sec. III C.

B. Growth rate

To check if the simulation results are quantitatively

valid, we compare the growth rates of the diocotron instabil-

ity obtained by the simulations to the analytical ones.

The growth rate of the diocotron instability has been

reported by Davidson et al.6,14 They assume the annular elec-

tron distribution, which is the same condition as the one we

use in the simulations. A dispersion relation for complex

eigenfrequency v is given by

S v

vD
D

2

2b,

v

vD

1c,50, ~31!

where vD5vpe
2 /2vce5nee/(2e0B) and

b,5,F12S R1

R0
D

2

G1F12S R1

R0
D

2,

G S R0

Rw
D

2,

, ~32!

c,5,F12S R1

R0
D

2

GF12S R1

Rw
D

2,

G2F12S R0

Rw
D

2,

G

3F12S R1

R0
D

2,

G . ~33!

For our case, there is no central conductor. Thus the terms

that arise from the charges on the central conductor are omit-

ted in Eqs. ~32! and ~33!. The solutions of Eq. ~31! are

v5
1
2 vD~b,6Ab

,

2
24c,!. ~34!

If 4c,.b
,

2 , the solutions are complex, which correspond to

instability. Using Eq. ~34!, detailed instability properties can

be investigated for the specific electron distribution.

Time evolutions of the Fourier coefficients of vz for Fig.

3 is shown in Fig. 6, for Fig. 4 in Fig. 7 and for Fig. 5 in Fig.

8, respectively. The curved lines indicate the values of the

coefficients obtained by the simulations, and straight lines

indicate the growth rates obtained by linear theory. We can

see that the slopes of the curves during the linear growth

stage are approximately the same as those of the straight

lines. The exact values are plotted in Fig. 9. The growth rates

obtained by the simulations agree with the growth rates of

linear theory. This indicates that MDGRAPE-2 gives the suf-

ficient precision for the simulations.

FIG. 6. Time evolutions of the linearly most unstable Fourier coefficients

are shown that correspond to Fig. 3. The azimuthal mode numbers are 2 in

~a! and 3 in ~b! and ~c!.

TABLE I. Unstable modes obtained by the linear theory in descending order

of the growth rate are shown.

R1 /R0 Rw Unstable modes

0.6 1.1 2

0.6 1.6 3,2

0.6 ` 3

0.8 1.1 4,3,5

0.8 1.6 5,4,6

0.8 ` 5,4,6

0.9 ` 9,8,10

FIG. 7. Time evolutions of the linearly most unstable Fourier coefficients

are shown that correspond to Fig. 4. The azimuthal mode numbers are 4 in

~a! and 5 in ~b! and ~c!.

FIG. 8. Time evolution of the linearly most unstable Fourier coefficient is

shown that corresponds to Fig. 5. The azimuthal mode number is 9.
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C. Boundary effect

Here we discuss the boundary effect on the electron

clumps. We focus on the results shown in Fig. 4. The figure

shows that the merging of the clumps is strongly influenced

by the radius of the conducting wall. More mergers occur if

the wall radius is smaller. To see the merging properties

quantitatively, we plot time evolutions of angular positions

of particles in Fig. 10.

In Fig. 10~a!, initial particles are selected from the elec-

tron distribution in Fig. 4~a!, T50 at u5np/10, r50.93R0

where n50,1,.. . ,19. In the same manner, initial particles in

Figs. 10~b! and 10~c! are selected from Figs. 4~b! and 4~c!,
respectively. A bundle of lines indicates a clump. Note that

the ordinate has the period of 2p. Slope of a line indicates

angular velocity of a particle. Durations of the linear growth

stages are obtained from Fig. 7. They are T540– 80 in ~a!
and T535– 60 in ~b! and ~c!. In these durations, the slopes

of the lines in Fig. 9, which are initially the same, gradually

change, depending on the wall radius. Thus it is found that

the transition from the linear growth stage to the nonlinear

stage yields the change of the slopes. In Figs. 10~b! and

10~c!, the slopes of the lines are approximately constant dur-

ing the nonlinear stage. It indicates that the nonlinear stage is

stable and clumps rotate in the nearly constant angular ve-

locity. On the other hand, the slopes of the lines in Fig. 10~a!
are still varying in the nonlinear stage, that indicates the

nonlinear stage is unstable. This is due to the smaller wall

radius compared with those in Figs. 10~b! and 10~c!. Al-

though the details are omitted here, we have carried out the

other simulations, where we use the electron distributions at

T5160 in Figs. 4~b! and 4~c! with the conducting wall relo-

cated at Rw5R0 as initial conditions. In these simulations,

the clumps no longer keep their initial shapes and merge with

each other. The final distributions become broad ones. Thus

we conclude that the electric field induced by the conducting

wall makes the nonlinear stage unstable and causes the

clumps to merge.

Next, we consider a mechanism by which two clumps

merge. In Fig. 11, we show time evolution of two circular

clumps. The number of particles in each clump is 1000,

which is the approximate number of particles in each clump

in Fig. 4~c! at T5200. The centers of the two clumps are

initially located at (x ,y)5(0.7R0 ,0) and (0,0.7R0). The ini-

tial radii of the clumps are 0.2R0 each. The conducting walls

are located at r5R0 in ~a! and r5` in ~b!. Note that the

time interval between the snapshots is 4 in Fig. 11, while the

ones of the other figures are 40. In Fig. 11~a!, we can see that

the two clumps merge rapidly near the wall. As is shown in

Fig. 11~b!, the circular two clumps without the conducting

wall move like binary stars if the motion of the clumps is

restricted in a two-dimensional plane. In addition, we have

checked by the simulations that only one clump surrounded

by the conducting wall survives stably. Its shape remains

FIG. 9. Both growth rates obtained by the simulations and linear theory are

plotted. The leftmost three data correspond to the growth rates at 1/Rw50.

To prevent the data from overlapping with each other, we plot them in the

different positions.

FIG. 10. Time evolutions of angular positions of particles are plotted. The initial positions of the traced particles in ~a!, ~b!, and ~c! are at u5np/10, T

50, (n50,1,2,.. . ,19) in Figs. 4~a!, 4~b!, and 4~c!, respectively.

FIG. 11. Time evolutions of two circular clumps are plotted. The two

clumps are located at (x ,y)5(0.7R0 ,0) and (0,0.7R0). The initial radii of

the clumps are 0.2R0 each. The conducting walls are located at r5R0 in ~a!

and r5` in ~b!.
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almost circular. In this case, however, the two clumps merge

by the electric field induced by the conducting wall. Thus we

conclude that the merging of the two clumps are driven by

the electric field induced by each other. The direction of the

E3B force exerted on the forward clump in the counter-

clockwise rotation is inward, while the force on the back-

ward clump is outward. Here we use the terms ‘‘forward’’

and ‘‘backward’’ in regard to the direction of orbital rotation.

The angular velocity of the backward clump, which is deter-

mined by the radial electric field that depends on the distance

from the conducting wall, is larger than that of the forward

clump, because the distance from the backward clump to the

conducting wall is smaller than that from the forward clump.

Thus the backward clump catches up with the forward one

from outside ~near the wall! and merges with the forward

one.

IV. CONCLUSIONS

In this paper we have shown the simulation results of

non-neutral electron plasmas. The simulation model we use

is the current-vortex method. In the simulations we use

MDGRAPE-2 to accelerate calculations of the Biot–Savart

integral.

In the limit of no electric current, the current-vortex

method coincides with the traditional point-vortex method,

and is qualitatively valid for the non-neutral plasma simula-

tions, because the most unstable modes are reproduced cor-

rectly by the simulations. The growth rates observed in the

simulations also agree with the theoretical ones, which indi-

cates that MDGRAPE-2 gives sufficient precision for the

simulations.

It is concluded that the electric field induced by the con-

ducting wall makes the nonlinear stage unstable and causes

the clumps to merge. In the simulations of time evolution of

two circular clumps, it is found that the direction of E3B

force exerting the backward clump is outward, while the one

exerting the forward clump is inward. The angular velocity

of the backward clump, which is determined by the distance

from the conducting wall, becomes larger than the forward

one. Thus the backward clump catches up with the forward

one from outside ~near the wall! and merges with the forward

one.

In the present analysis of the merging properties, we

limit ourselves to the two-clump system. However, the merg-

ing properties of N-clump system is still unclear. The stabil-

ity analysis of vortex arrays has been presented by

Campbell.25 The result may give us a clue to study the non-

linear behavior of the electron clumps.
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APPENDIX: INITIAL PERTURBATIONS INCLUDED IN
INITIAL CONDITIONS OF SIMULATIONS

First, we show two simulation results in Fig. 12. The

values of Rw and R1 in ~a! are ` and 0.8R0 , respectively,

which are the same as Fig. 4~c!. Those in ~b! are ` and

0.9R0 , respectively, which are the same as Fig. 5. Note that

the linearly most unstable mode is 5 in Fig. 12~a! and 9 in

Fig. 12~b!, while the obtained mode is 4 and 8, respectively.

This is due to the initial perturbations. The particles inside

the annular electron distributions in Figs. 3–5 are arranged

as in Fig. 13~b!. On the other hand, the particles in Fig. 12

FIG. 12. Time evolutions of the electron distributions at T50, 40, 80, 120,

160, and 200 are shown. Initial inner radii of the distributions of the elec-

trons are R15(a) 0.8R0 and ~b! 0.9R0 , respectively. Initial arrangements of

the particles used here are shown in Fig. 13~a!.

FIG. 13. Initial arrangements of the particles are shown.
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are arranged as in Fig. 13~a!. For the cases shown in Fig. 12,

mode 4 and its higher harmonic modes gain more initial

energy than the other modes, such as 3, 5, and so on. The

values of the initial energy in some mode numbers are shown

in Fig. 14. In this figure, the values are normalized by the

initial energy of mode 4 in the case of Fig. 13~a!. It is found

that the initial energy of modes 4 and 8 in the case of Fig.

13~a! is much larger than the other ones. Thus, modes 4 and

8 dominate because they are initialized with much greater

amplitude. We conclude that the unstable modes are very

sensitive to the initial energy included in the initial condition.
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