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ABSTRACT

Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin–Helmholtz instability in
the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with
heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected
near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop’s external layers,
leaving their denser inner parts without a heating mechanism.
Aims. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in
a coronal loop.
Methods. Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint
driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward
models for our simulation using the FoMo code.
Results. The developed transverse wave induced Kelvin–Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and
cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a con-
sequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its
maximum values near the footpoints, while the viscous heating rate at the apex.
Conclusions. We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially
providing a heating source in the inner loop region. Despite the loop’s fully deformed structure, forward modelling still shows the
structure appearing as a loop.

Key words. magnetohydrodynamics (MHD) – Sun: corona – Sun: oscillations

1. Introduction

Heating of coronal loops by transverse magnetohydrodynamic
(MHD) waves has been an extensively studied topic ever since
the proof of their ubiquity in the solar atmosphere (Aschwanden
et al. 1999; Tomczyk et al. 2007). The main theory of wave
damping is resonant absorption for the case of standing modes
(Ionson 1978; Goossens et al. 1992, 2011; Arregui et al. 2005;
Terradas et al. 2010) and its analogous mechanism of mode cou-
pling (Pascoe et al. 2010; De Moortel et al. 2016) for propagating
waves. In both mechanisms the energy of the large-scale oscilla-
tion is transferred, through resonance, to local azimuthal Alfvén
modes. In the case in which multiple frequencies are excited,
smaller scales are created through phase mixing (Heyvaerts &
Priest 1983; Soler & Terradas 2015). By including dissipation
mechanisms, such as resistivity or viscosity, resonant absorp-
tion and mode coupling can lead to heating (Ofman et al. 1998;
Pagano & De Moortel 2017).

However, the effects of wave heating by global oscillations
were believed to be confined in the resonant layer. As shown
in Cargill et al. (2016), this localised heating is not capable of
sustaining a fixed density gradient between the loop and the envi-
ronment. Radiative cooling will inevitably lead to draining of

? A movie attached to Fig. 1 is available at http://www.aanda.org

the loop’s denser inner parts, unless additional heating mecha-
nisms are considered. A possible solution could be the use of a
broad-band driver for transverse waves. In such a case (Ofman
et al. 1998), we would see the development of multiple narrow
resonance layers. These layers can move across the loop cross-
section as the density profile changes, but heating would still be
concentrated in near-discrete locations.

The previous issue could also be potentially addressed by
the Kelvin–Helmholtz instability (KHI) for standing modes in
closed coronal structures (Heyvaerts & Priest 1983; Zaqarashvili
et al. 2015). Its existence is predicted by three dimensional sim-
ulations in straight flux tubes for driver generated azimuthal
Alfvén waves (Ofman et al. 1994; Poedts et al. 1997), impulsively
excited standing kink modes (Terradas et al. 2008; Antolin et al.
2014; Magyar et al. 2015; Magyar & Van Doorsselaere 2016;
Howson et al. 2017), and footpoint driven standing kink modes
(Karampelas et al. 2017). The KHI creates a turbulent layer at
the loop edges, where resonant absorption and phase mixing can
effectively transfer energy to smaller scales. However, even if
enough energy is provided to the system, its heating would still
be mainly localised in the edge of the loop.

Recently, decayless low-amplitude kink oscillations have
been discovered in coronal loops (Nisticò et al. 2013;
Anfinogentov et al. 2015). The KHI could play an important
role in this physical phenomenon, since the observations sug-
gest that the decayless waves are also standing waves with an
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average amplitude of ∼0.2 Mm, but lower than 1 Mm. Antolin
et al. (2016) have proposed line-of-sight (LOS) effects due to the
KHI and limits in the spatial resolution of our observations, as
the cause of this observed decayless motion. Another proposal
is the development of standing waves through a driving mecha-
nism near the loop footpoints (Nakariakov et al. 2016), like those
simulated in Karampelas et al. (2017).

In the current study, we have expanded on our previous work,
aiming to model the low-amplitude, decayless kink waves in
active region coronal loops, driven by footpoint motions. In our
previous study (Karampelas et al. 2017), we had concentrated on
the longitudinal dependence of the heating rate by the transverse
wave induced Kelvin–Helmholtz (TWIKH) rolls. Here, however,
we have concentrated on an interesting result about the spatial
evolution of a loop cross section for standing kink waves gener-
ated by footpoint drivers. In particular, we are going to study the
effects of the TWIKH rolls on the cross-sectional density profile
and the location of wave heating in the cross section of the loop.

2. Numerical model

We simulate footpoint-driven transverse waves in a 3D straight,
density-enhanced magnetic flux tube, in a low-β coronal environ-
ment. Our setup follows the work of Karampelas et al. (2017),
with a loop length L = 200 Mm and radius R = 1 Mm. The
loop density is equal to ρi = 2.509 × 10−12 kg m−3, and the loop
temperature is Ti = 9 × 105 K. The index i (e) denotes inter-
nal (external) values. The magnetic field is Bz = 22.8 G and the
plasma β = 0.018. The density profile consists of the continuous
function:

ρ(x, y) = ρe + 0.5 (ρi − ρe)

1 − tanh

 √x2 + y2

R
− 1

 b


 , (1)

where x and y denote the co-ordinates in the plane perpendicular
to the loop axis, z along its axis. For b = 20 the inhomogeneous
layer has a width ` ≈ 0.3R. The density ratio of ρe/ρi = 1/3,
inspired by observational data in Aschwanden et al. (2003), leads
to swift transfer of energy from transverse to azimuthal motions.
In Karampelas et al. (2017) it was found that the dynamics of
the oscillations are not sensitive to the value of the temperature
ratio. In the current setup we have effectively modelled a coronal
loop during its cooling phase, by choosing a gradient of Ti/Te =
1/3. The external and internal Alfvén speeds are equal to υAe =
2224 km s−1 and υAi = 1284 km s−1.

As in the previous study, we have used the MPI-AMRVAC
code (Porth et al. 2014), with an effective resolution of
512 × 256 × 64. Since our domain dimensions are (x, y, z) =
(16, 8, 100) Mm, the cell dimensions are 31.25 × 31.25 ×
1562.5 km. The numerical resistivity is estimated to correspond
to a Lundquist number of S ≥ 2.1 × 104.

As before, the tube is driven from the footpoint (z = 0 Mm)
with the kink period of P ' 2L/ck ' 254 s (Edwin & Roberts
1983). The driver velocity, at the bottom boundary, is uniform
inside the loop and time varying as follows:

{vx, vy} = {v(t), 0} = {v0 cos (2πt/P) , 0}, (2)

where v0 km s−1 is the peak velocity amplitude. We considered
two different cases, one for a driver with a peak velocity of v0 =
2 km s−1, and one with v0 = 0.8 km s−1. Outside the loop, the
velocity follows the relation:

{vx, vy} = v(t)R2
{

x2 − y2

(x2 + y2)2 ,
2xy

(x2 + y2)2

}
, (3)

Fig. 1. Density structure of the flux tube, for a driver with v0 = 2 km s−1.
Snapshots are taken for times t = 0, 3.5 P, 7.5 P, and 10 P, where P '
254 s is the driver period. The loop length is L = 200 Mm and the loop
radius is R = 1 Mm. An animation of this figure, showing the oscillation
for our model, is available online.

with a smooth transition region between the two areas, match-
ing the outer layer of the cylindrical tube. Following Karampelas
et al. (2017), we also set the velocity component parallel to the
z axis (vz) antisymmetric at the bottom boundary, to prevent
mass flow through it. The driver sets the values for vx and vy
at the bottom boundary, while all the other quantities obey a
Neumann-type, zero-gradient condition there. Using the given
driver frequency ensures that the superposing propagating waves
(originating from each footpoint) form the fundamental stand-
ing kink mode for our tube. Taking advantage of the symmetric
nature of the kink mode, we kept vz, Bx, and By antisymmetric
in the x–y plane at the top boundary (apex, z = 100 Mm), while
all the other quantities are symmetric. Furthermore, through the
symmetric nature of our driver we set vy and By antisymmet-
ric in the x–z plane, while the other quantities are symmetric.
Therefore, we only simulated one fourth of our tube, as shown
in Fig. 1. In the rest of the boundaries, a zero-gradient condition
was used for all the quantities.

3. Results

For the rest of our analysis we focus on the sub-region of
our computational domain, defined by 0 ≤ z ≤ 100 Mm, |x| ≤
2.33 Mm and y ≤ 2.33 Mm, where the resolution is the high-
est. We ran a simulation for a total time of ten driving periods
(10 P ∼ 2540 s).

The loop apex, which is the location of the antinode of the x-
velocity, is Kelvin–Helmholtz unstable, as expected from theory
(Heyvaerts & Priest 1983; Zaqarashvili et al. 2015). As we see in
Fig. 2, the KHI manifests at the apex. In addition to that, we have
the formation of spatially extended eddies, the TWIKH rolls. A
similar feature can be seen in Fig. 3, where we show the den-
sity cross-section of our tube at the apex for the driver with peak
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Fig. 2. Snapshots of density (10−12 kg m−3) of the flux tube cross-section
at the apex (z = 100 Mm), for a driver with v0 = 2 km s−1. P ' 254 s is
the driver period.

Fig. 3. Same as Fig. 2, but for a driver with v0 = 0.8 km s−1.

velocity v0 = 0.8 km s−1. The TWIKH rolls are now less promi-
nent, due to the smaller driver velocity amplitude, which leads
to slower increase of the shear velocities at the apex. However,
letting the driver act for more periods also leads to a deformed
cross section at the apex.

By performing forward modelling with the FoMo code
(Van Doorsselaere et al. 2016), we observe the manifestation of
strand-like structures due to the out-of-phase movements of the
TWIKH rolls, which we also see in Fig. 1. These strands, resem-
bling those in Antolin et al. (2016) for the impulsively excited
standing kink waves, are depicted in Fig. 4. Here, we present
snapshots of the emission intensity for the Fe XII 193.509 Å line,
at times t = 0, 3.5 P, 7.5 P, and 10 P. In our setup, the chosen
line is better suited to detect the hotter plasma at the loop edge
(Antolin et al. 2017). The colour-scale is limited between the
minimum and the maximum intensity values of the integrated
intensity of the simulations. We consider a LOS plane perpen-
dicular to the loop axis and we set the LOS angle perpendicular
to the oscillation direction equal to 0◦. By choosing the given
LOS angle and studying only the emission intensity, we avoid
any missed emission from performing forward modelling in only
half the loop cross-section.

In Fig. 5, we plot the average density, temperature, resistive
heating rate (Hres) and the heating by shear viscosity (traced here
by square z-vorticity, ω2

z ), as functions of distance from the cen-
tre of mass, both at the apex and near the footpoint. Initially, the
values of Hres and ω2

z are zero, and remain small for the first few
periods. At the apex, both the density and temperature spread
across the cross section, as a result of the extended TWIKH rolls,
effectively widening the loop boundary layer. Near the footpoint,
suppression of the KHI results in less mixing, which is evident
from the corresponding density and temperature profiles. The
resistive heating rate peaks near the footpoint, in agreement with

Fig. 4. Forward modelling images of the integrated emission intensity
(in erg cm−2 s−1 sr−1) of the tube for the 193.509 Å line. The observer
is at a 0◦ LOS angle, perpendicular to the oscillatory motion. Half the
loop length is modelled (z = 0–100 Mm). The driver peak velocity is
v0 = 2 km s−1, and P ' 254 s is the driver period.

Karampelas et al. (2017). On the other hand, the viscous heat-
ing rate peaks near the loop. Radially, both of them are initially
confined to the resonant layer, but later spread out over the entire
loop cross section, as we can see in Fig. 6 for the ω2

z at the apex
and the Hres at the footpoint, for snapshots at t = 7.5 P.

4. Discussion and conclusions

Looking at the loop cross section at the apex (Fig. 2), it is
interesting to see the gradual deformation of the loop, as the
simulation reaches its final stages. In the current model, the site
of the highest deformation is located in the area near the loop
apex, because the vx, vy velocity antinode and Bx, By magnetic
field node appear there. Previous works have shown that TWIKH
rolls create a wide turbulent layer both for impulsive (Magyar
& Van Doorsselaere 2016) and driven (Karampelas et al. 2017)
standing modes. Here our previous simulations were performed
for an extended duration (tmax = 10 P). The extended TWIKH
rolls result in a completely deformed loop cross section, where
extensive mixing is taking place across the entire loop. Thus the
loop cross section at the apex becomes fully deformed. Studying
the results in Fig. 3 (and as is intuitively clear), we see that the
driver amplitude plays an important role in the development of
the KHI and the evolution of the loop cross section. However, we
find that the loop cross section also evolves to a fully deformed
state, even for the very small driver amplitude (v0 = 0.8 km s−1).
Therefore, it is probably safe to assume that coronal loops have a
deformed cross section, if they are driven by transverse footpoint
motions for a sufficiently long time.

The turbulent nature of the cross section has a profound
impact on the radial structure of the loop. As we see from
the top panels of Fig. 5, the density and temperature profiles
near the apex seem to get smoothed over time, in these angle-
averaged radial density and temperature profiles. This effect is
most prominent between 50 and 100 Mm (apex). Near the loop
footpoint, however, the smearing of density and temperature
profiles is less, because the TWIKH rolls are absent there.

The deformation of the loop cross section due to the KHI
instability affects the spatial distribution of the resistive and
viscous heating rate. Despite the smooth appearance of the den-
sity and temperature in Fig. 5, the damping of the kink wave
continues to take place. The resonant layer is now turbulently
fragmented into many current sheets or shear layers in the veloc-
ity, because of the KHI eddies over the whole cross section. The
resistive heating peaks near the footpoints, as we see in Fig. 5.
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Fig. 5. Profiles of the average density, temperature, resistive heating rate Hres and vorticity ω2
z as a function of the distance from the centre of mass.

The driver peak velocity is v0 = 2 km s−1, and P ' 254 s is the driver period. The top row shows the profiles at the apex (z = 100 Mm). The bottom
row shows the profiles near the footpoint (z = 1 Mm).

Hres, which is dominated by the diffusion of the Jz current den-
sity (Karampelas et al. 2017), is initially concentrated in the
resonant layer. Later, it spreads over the whole tube cross section
(Fig. 6), even if the loop is not highly deformed near the foot-
point. Instead, this is due to the deformed cross section near the
loop top affecting the imprint of the current near the footpoint.
Likewise, the viscous heating rate is spreading through the entire
cross section because of the turbulent deformation (Fig. 6). How-
ever, in contrast to the resistive heating rate, it finds its maximum
near the loop apex.

In our current experiments, there is not enough energy input
at the footpoint to balance the energy losses which are to be
expected from the plasma (by e.g. optically thin radiation or
heat conduction). However, in principle the plasma could be
heated if a sufficient energy flux is provided by the driven
boundary. The key point of this paper is that this heating (be
it resistive or viscous) can take place in the entire cross sec-
tion of the loop, because of its fully deformed nature. While
it was earlier refuted by using drivers with a broad-band spec-
trum, the decade-old argument (Ofman et al. 1998; Cargill
et al. 2016) that wave heating can only take place in spe-
cific layers in the loop is thus not even true for monoperiodic
drivers.

Despite the fully deformed state of the loop cross sec-
tion, the forward modelling of our simulation (Fig. 4) still
maintains a loop-like appearance. The only qualitative changes
compared to the forward model of a “laminar” loop (i.e. a
straight cylinder) is that (1) strand-like features are formed (as
previously pointed out by Antolin et al. 2014), and (2) the over-
all intensity is increased and spread over a larger layer. The
latter is because of the adiabatic expansion during the mix-
ing of the interior and exterior plasma (as previously shown
by Antolin et al. 2016; Karampelas et al. 2017). However, the
coronal loop structure is clearly distinguishable from its sur-
rounding plasma, and its oscillation remains visible at later
times. Thus, the observational identity of a fully deformed
loop remains intact, and should be detectable when studying
relevant phenomena, such as the decayless loop oscillations
from Anfinogentov et al. (2015).

The fact that the heating by the transverse waves occurs in
the entire, deformed loop cross section, provides impetus to more

Fig. 6. Snapshots of the vorticity ω2
z at the apex (top) and of the resistive

heating rate Hres near the footpoint (bottom), for the driver with v0 =
2 km s−1. P ' 254 s is the driver period. The white lines on both panels
represent the density contours at the corresponding heights, showing the
circumference of the dense loop.

detailed wave heating models, going beyond the qualitative argu-
ments presented in this paper. The introduction of a realistic
atmosphere and thermal conduction in future setups, the inclu-
sion of physical dissipation terms, such as anomalous resistivity,
and the use of stronger drivers could provide a viable loop heated
by transverse waves in its entirely deformed cross section, further
addressing the issues brought up by Cargill et al. (2016).
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