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ABSTRACT

The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled
using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external
medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present
simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified
external media with ρext ∝ r−k for k = 0, 1, 2. The simulations are performed in two dimensions using the
special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a
conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford–McKee
solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion
into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically

with time (or radius) once the Lorentz factor Γ drops below θ−1
0 . For larger k values, however, the lateral expansion

is faster at early times (when Γ > θ−1
0 ) and slower at late times with the jet expansion becoming Newtonian and

slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic
expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium),
although the shape of the break is affected more by the viewing angle (for θobs � θ0) than by the slope of the
external density profile (for 0 � k � 2). Steeper density profiles (i.e., increasing k values) are found to produce
more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet
becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light
curve. However, for larger k values the jet decelerates more gradually, causing only a mild flattening in the radio
light curve that might be hard to discern when k = 2. Late-time radio calorimetry, which makes use of a spherical
flow approximation near the non-relativistic transition, is likely to consistently overestimate the true energy by up
to a factor of a few for k = 2, but likely to either overpredict or underpredict it by a smaller factor for k = 0, 1.
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1. INTRODUCTION

The dynamics of gamma-ray burst (GRB) outflows depends
on the density distribution of the ambient medium as well as on
the structure of the relativistic expanding ejecta (e.g., Meszaros
et al. 1998). Up to the deceleration epoch, where most of the
energy is transferred to the shocked external medium, the dy-
namics is regulated by the local radial structure of the ejecta,
while at later times (as the blastwave decelerates) it mainly
depends on its global angular structure. In the absence of char-
acteristic scales, self-similar, spherically symmetric solutions
exist (Blandford & McKee 1976, hereafter Blandford–McKee)
and they are widely used to interpret observational data on
GRB afterglows. However, even the simplest departure from
this ideal model could drastically modify the afterglow behavior.
Anisotropies in the GRB outflow, for example, affect the after-
glow light curve when the mean jet energy per solid angle within
the visible region evolves significantly. As the jet decelerates, the
relativistic beaming weakens and the visible region increases.
If the outflow is collimated into a narrow jet with reasonably
sharp edges, this occurs at the time when the bulk Lorentz factor
Γ equals the inverse of the jet half-opening angle θ0. A simple
analytic calculation using the usual scaling laws leads then to a

steepening of the afterglow flux decay rate, known as a jet break
(Rhoads 1997; Sari et al. 1999; Kumar & Panaitescu 2000). It is
however clear from numerical studies that such simple scalings
do not provide an accurate description of the afterglow (Granot
et al. 2001; Zhang & MacFadyen 2009; Meliani & Keppens
2010; van Eerten et al. 2010b; Wygoda et al. 2011; van Eerten
& MacFadyen 2011; van Eerten et al. 2012). Such numerical
studies have so far been limited to the case of a uniform exter-
nal density while the interaction of relativistic GRB jets with a
non-uniform medium remains poorly understood.

Motivated by this, here we study the dynamics of two-
dimensional axially symmetric impulsive jets propagating in
a spherically symmetric stratified medium of rest-mass density
ρ = Ar−k and the resulting afterglow emission. Since long du-
ration GRBs (Gehrels et al. 2009) have massive star progenitors
whose winds are expected to modify their immediate surround-
ings (Chevalier et al. 2004; Ramirez-Ruiz et al. 2005; van Marle
et al. 2008; Mimica & Giannios 2011), we consider both steady
and time varying stellar winds as possible surrounding or exter-
nal media for the GRB jet evolution. The case k = 2 corresponds
to a stellar wind for a massive star progenitor (Chevalier & Li
2000; Panaitescu & Kumar 2000; Ramirez-Ruiz et al. 2001; Wu
et al. 2005) with a constant ratio of its pre-explosion mass loss
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rate Ṁw and wind velocity vw, in which case ρ = Ar−2, where
A = Ṁw/(4πvw). However, since the dependence of Ṁw and vw

on the time tw before the stellar explosion that triggers the GRB
is highly uncertain, it is worth considering other values of k. For
example, if Ṁw ∝ taw and vw ∝ tbw then the location of a wind

element at the time of the explosion is r = twvw(tw) ∝ t1+b
w so

that tw ∝ r1/(1+b) and we have Ṁw ∝ ra/(1+b), vw ∝ rb/(1+b), and
ρ ∝ r−2+(a−b)/(1+b). For a constant wind velocity (b = 0) this
gives k = 2−a, which corresponds to k = 2 for a = 0 (constant
wind mass flux) and k = 1 for a = 1 (linearly increasing mass
flux with time).

A brief description of our numerical methods and initial
conditions for both jet and external medium models is given
in Section 2. Detailed hydrodynamic simulations of GRB
jets interacting with k = 1, 2 stratified media are presented
in Sections 3 and 4, where Section 3 is devoted to the jet
dynamics and the resulting afterglow emission is discussed in
Section 4. For completeness and comparison, the interaction
with a constant-density medium (k = 0) is also discussed,
although the reader is referred to De Colle et al. (2012) for
a review of the current state of hydrodynamical modeling with
k = 0. Our conclusions are summarized in Section 5.

2. NUMERICAL METHODS

2.1. Code Description and Initial Conditions

To study the dynamics of a GRB jet propagating in a
stratified external medium, we carry out a set of two-dimensional
simulations using the special relativistic hydrodynamic (SRHD)
version of the adaptive mesh refinement (AMR) code Mezcal
(De Colle et al. 2012). The Mezcal code integrates the SRHD
equations by using a second-order (in space and time, except
in shocks where it reduces to first order in space by a minmod
limiter) upwind scheme based on the relativistic Harten, Lax,
and van Leer (HLL) method (Schneider et al. 1993). The
equation of state (EOS), relating enthalpy to pressure and
density, is taken from Ryu et al. (2006), which approximates
the exact Synge (1971) EOS with an error of 0.5%. This EOS
properly recovers the correct values of the adiabatic index Γ
in the ultrarelativistic (Γ = 4/3) and Newtonian (Γ = 5/3)
regimes. The reader is referred to De Colle et al. (2012) for
a detailed description of the code and an extensive list of
numerical tests.

For the initial conditions, we use a conical wedge of half-
opening angle θ0, within which the initial radial profiles of
pressure, density, and Lorentz factor in the post-shock region
are taken from the spherical Blandford–McKee self-similar
solutions for a stratified medium:

ρ = Akr
−k . (1)

Two-dimensional simulations with k = 0 (homogeneous
medium), k = 1, and k = 2 (corresponding to a steady stellar
wind medium) are then evolved to study the lateral expansion
and deceleration of the jet.

To accurately study the dynamics near the jet break time,

an initial shock Lorentz factor of Γsh,0 =
√

2 × 20 and an
initial half-opening jet angle θ0 = 0.2 rad are selected, so that

Γsh,0 ≫ θ−1
0 . The isotropic equivalent energy is taken to be

Eiso = 1053 erg, corresponding to a total jet energy content of
Ejet = Eiso(1 − cos θ0) ∼ 2 × 1051 erg. The ambient medium is

assumed to have a density ρ0 = A0 = 1.67 × 10−24 g cm−3 (for
the case k = 0, which corresponds to ρ0 = n0mpc2 with n0 =

1 cm−3) and a pressure p = ηρ0c
2, with η = 10−10. The value of

η has no bearing on the outcome of the simulation as long as the
Mach number remains large, i.e.,M ∼ η−1/2vsh/c ≫ 1, where
vsh is the shock velocity. As the simulation continues to evolve
well into the Newtonian regime, this condition can be expressed
as vsh ≫ 3 (η/10−10)1/2 km s−1. The density profiles in the
cases k = 1, 2 are fixed here by assuming the jet break radius
(in the lab frame) to be the same for all k: Rj(k) = Rj(k = 0).
This can be rewritten (Blandford & McKee 1976) as

Rj =
(

(17 − 4k)Eiso

8πAkΓ2
j c

2

)1/(3−k)

=
(

17Eiso

8πA0Γ2
j c

2

)1/3

, (2)

where Γj =
√

2/θ0.

From Equation (2) we have Ak = A0R
k
j (17 − 4k)/17, so that

the density of the ambient medium is given by

ρ =
17 − 4k

17
A0

(

r

Rj

)−k

, (3)

which guarantees Rj to remain unchanged for varying k. With
this constraint, the value of the density at the jet break radius
ρ(r = Rj) differs, compared with the k = 0 case, by factors
of 13/17 and 9/17 for k = 1 and k = 2, respectively. In the
simulations presented in this paper, Rj = 9.655 × 1017 cm,
corresponding to a jet break time of tj = Rj/c ≈ 372 days.

The case k = 2 corresponds to a steady spherically symmetric
wind with Ṁ = 1.45 × 10−5 (v/103 km s−1) M⊙ yr−1, typical
for Wolf–Rayet stars (e.g., Chiosi & Maeder 1986).

The jet is expected to begin decelerating to non-relativistic
speeds at

tNR ≈
LSedov

c
=

(

(3 − k)Eiso

4πAkc2

)1/(3−k)

(4)

corresponding to tNR ≈ 970, 3800, and 11,000 days (in the lab
frame) for k = 0, 1, 2, respectively.

The simulations with k = 0, 1 employ a spherical com-
putational domain of radial and angular size (Lr , Lθ ) =
(1.1 × 1019 cm, π/2) while the simulation with k = 2 uses
(Lr , Lθ ) = (2.2 × 1019 cm, π/2). The inner boundaries are
located at (1.8, 1.2, 0.3) × 1017 cm for k = (0, 1, 2), respec-
tively. The AMR code uses a basic grid of (100, 6) cells in
the (r, θ ) directions, and 15 (k = 0, 1) or 16 (k = 2) lev-
els of refinement, corresponding to a maximum resolution of
(∆rmin, ∆θmin) = (6.71 × 1012 cm, 1.60 × 10−5 rad). To keep
the resolution of the relativistic thin shell ∆ ∝ t4−k approx-
imately constant, the maximum number of levels of refine-
ment Nlevels is decreased with time (De Colle et al. 2012) as
Nlevels = max[7, Nlevels,0 − (4 − k) log(t/t0)/ log(2)]. The sim-
ulations are halted after 150 years. We also carried out a higher
resolution simulation (for the k = 2 case) using a basic grid
of (1000, 16) cells in the (r, θ ) directions and 14 levels of re-
finement. The light curves computed from this simulation are
very similar to those obtained from the lower resolution run,
implying that convergence has been achieved.

The Mezcal code is parallelized using the “Message Passing
Interface” library, enabling the highest resolution simulation to
be run in about two weeks on a local supercomputer with 160
processors and the low resolution in about a quarter of that time.

2.2. Afterglow Radiation

To compute the afterglow radiation, we use the method
described in De Colle et al. (2012). As the main goal of the
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current calculations is to study the effect of the jet dynamics
on the afterglow light curves, a simple model is employed
to calculate the emanating radiation. We assume synchrotron
to be the primary emitting mechanism, while ignoring self-
absorption and inverse Compton scattering. The self-absorption
frequency, in particular, is given by vsa = 2.04 × 109 Hz and

vsa = 8.23 × 109t
−3/5

obs Hz for k = 0 and k = 2, respectively, for
our choice of the parameters (e.g., Granot & Sari 2002). A multi-
dimensional ray tracing code, necessary to properly handle the
self-absorption process, is currently under development and will
be presented elsewhere.

The microphysics processes responsible for field amplifica-
tion and particle acceleration are parameterized here by assum-
ing that the magnetic field everywhere in the shocked region
holds a fraction ǫB = 0.1 of the local internal energy density in
the flow, while the non-thermal electrons just behind the shock
hold a fraction ǫe = 0.1 of the internal energy, and have a power-

law energy distribution, N (γe) ∝ γ
−p
e , with p = 2.5. We also

assume the source to be at a redshift of z = 1, corresponding
to a luminosity distance of dL = 2.05 × 1028 cm. The local
emissivity P ′

ν ′ is taken to be a broken power law,

P ′
ν ′

P ′
ν ′,max

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(ν ′/ν ′
m)1/3 ν ′ < ν ′

m < ν ′
c ,

(ν ′/ν ′
c)1/3 ν ′ < ν ′

c < ν ′
m ,

(ν ′/ν ′
m)(1−p)/2 ν ′

m < ν ′ < ν ′
c ,

(ν ′/ν ′
c)−1/2 ν ′

c < ν ′ < ν ′
m ,

(ν ′/ν ′
m)(1−p)/2(ν ′/ν ′

c)−1/2 ν ′ > max(ν ′
m, ν ′

c) ,

(5)
with the following flux normalization and break frequencies,

P ′
ν ′,max = 0.88

512
√

2π

27

(

p − 1

3p − 1

)

q3
e

mec2
(ǫBe′)1/2n′

e , (6)

ν ′
m =

3
√

2π

8

(

p − 2

p − 1

)2
qe

m2
ec

5
ǫ

1/2

B ǫ2
e (e′)5/2(n′

e)−2 , (7)

ν ′
c =

27
√

2π

128

qemec

σ 2
T

(ǫBe′)−3/2

(

Γ

tz

)2

. (8)

In our simple prescription for electron cooling, which is similar
to the one used by Granot et al. (2001) and Zhang & MacFadyen
(2009), the electrons are assumed to have cooled at their
current local cooling rate over the dynamical time, which is
in turn approximated as t ′dyn ≈ tz/Γ, so that the expression in

Equation (8) is simply derived from

γc =
3mec

4σT ǫBe′t ′dyn

≈
3mecΓ

4σT ǫBe′tz
, ν ′

c =
3qeB

′γ 2
c

16mec
. (9)

In the simulations, 1000 outputs (i.e., “snapshots” of the
dynamics), spaced logarithmically in time, are saved. At each
snapshot the values of the hydrodynamic variables are provided
at the center of a computational cell. Once the emissivity is
computed for a particular cell, the flux (in the observed frame)
is assigned to a particular observed time and position on the sky
(see De Colle et al. 2012 for more details).

The intrinsic limitations of the radiation method are described
in detail in De Colle et al. (2012). In brief, the light curve
converges at all frequencies and times except for short tobs

(corresponding to regions with shock Lorentz factor �10)
where neither the very high resolution used in this paper is

sufficient to fully resolve the thin ultrarelativistic post-shock
region. Furthermore, the differences between our treatment of
the electron cooling and the results presented by Granot & Sari
(2002), together with tests of the radiation code, are described
in detail in De Colle et al. (2012). The simulation with k = 0, in
particular, gives afterglow light curves that are nearly identical
to those computed by Zhang & MacFadyen (2009).

In addition to the contributions to the afterglow radiation
computed by post-processing the results of the hydrodynamics
simulations, contributions from earlier lab frame times are
included, corresponding to the blast-wave decelerating from

Γ1 = Γ(χ = 1) = Γsh/
√

2 = 200 to Γ1 = 20. Here
χ (r/Rsh) = 1+2(4−k)Γ2

sh (1 − r/Rsh) is a self-similar variable
that quantifies the distance from the shock front (Blandford
& McKee 1976). These are computed using the same conical
wedge taken out of the Blandford–McKee self-similar solution
that is used for initializing our simulations. The mapping of
the Blandford–McKee solution is implemented by using a high-
resolution grid, starting at the position of the shock front (which
varies with time) and sampling the Blandford–McKee solution
at intervals of fixed ∆Γ = 0.01. The values of the proper density
ρ, internal energy density eint, four-velocity u, and self-similar
variable χ replace those coming from the simulations and are
taken from the Blandford–McKee self-similar solution at the
relevant lab frame time. In order to calculate the contributions
to the observed radiation, the mapped jet radial structure is
subsequently integrated over all angles (0 � θ � θ0; 0 � φ �
2π ). This procedure provides a reasonable description of the
afterglow radiation at earlier times and it is significantly more
accurate than ignoring the contributions from lab frame times
preceding the start of the simulation.

3. JET DYNAMICS IN A STRATIFIED MEDIUM

Detailed hydrodynamic simulations of the evolution of a GRB
jet in a stratified medium with k = 0, 1, 2 are presented in
Figures 1 and 2 where the density and velocity contours of
the expanding ejecta at various times are plotted. A transient
phase caused by the sharp lateral discontinuity in the ini-
tial conditions is observed in all cases as the shock expands
laterally and a rarefaction front moves toward the jet axis.
This initial phase, during which shearing instabilities are ob-
served to be prominent at the contact discontinuity (separating
the original Blandford–McKee wedge material and the later
shocked external medium), lasts for about a dynamical timescale
and is followed by the establishment of an egg-like bow shock
structure that persists throughout the simulations. The veloc-
ity quadrivector (Figure 2) shows strong stratification in the θ
direction. The expansion velocity of the jet remains mainly ra-
dial at most angles, with a non-relativistic angular component
being prominent at large angles. The substructures seen in the
velocity quadrivector along the z-axis at late times (generated
by the convergence of turbulent flow) carry a small fraction
of the energy and have a negligible effect on the light
curves.

Similar resulting bow shock structures are observed for k = 0,
1, and 2. However, because the rate at which mass is swept-up
is larger for smaller values of k, the bow shock lateral expansion
augments with increasing k. As clearly seen in Figure 3, the ratio
between the bow shock width and height as the ejecta expand
changes with k. This can be understood as follows. Small values
of k correspond to a larger increase in the swept-up external
mass and larger decrease in the Lorenz factor. For the spherical
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Figure 1. Temporal evolution of GRB jets in a stratified medium with k = 0, 1, 2 (top to bottom panels, respectively). The three plotted times, whose exact values
depend on k, have been selected so that the Blandford–McKee Lorentz factor in the post-shock region Γ(χ = 1) is equal to 10, 5, and 2 (left to right). Shown are
logarithmic lab frame density cuts in cm−3. Calculations were done in two-dimensional spherical coordinates with the axes corresponding to the r- and z-directions
in units of 1017 cm. The position of the shock front corresponding to a Γ(χ = 1) = 5 is the same for all k values, consistently with the normalization used in the
simulations (see Equation (2)).

(A color version of this figure is available in the online journal.)
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Figure 2. Same evolutionary sequence depicted in Figure 1 but for the absolute value of the velocity quadrivector. The superposed velocity field arrows are represented
by a gray-scale color scheme linear with respect to the 3-velocity, with dark corresponding to speeds ∼c and lighter to v ≪ c.

(A color version of this figure is available in the online journal.)

5



The Astrophysical Journal, 751:57 (14pp), 2012 May 20 De Colle et al.

Figure 3. Comparison between the bow shock structures depicted in Figure 1
for k = 0 (black), k = 1 (red), and k = 2 (blue). The two times have been
selected so that the jet has the same Lorentz factor of 10 and 5 in all simulations.
The evolutionary scale unit of 1/2 ct is indicated with a black transverse bar.
The origin of the axis is located at the right bottom corner and the jet’s main
direction of propagation is toward negative x. The simulations are normalized
with respect to ct .

(A color version of this figure is available in the online journal.)

case, in particular, M(< R) ∝ R3−k and Γ ∝ R−(3−k)/2, and the
same trend should persist for the non-spherical case.

The velocity quadrivector, u = Γv/c = Γβ, of the expanding
jets are shown in Figure 4 for three different angle-integrated
quantities: mass, energy, and emissivity. The mean value of
u is larger when weighted over the energy or emissivity than
over the shocked rest mass until t � 10 × tj . This clearly
illustrates, in agreement with previous analytical and numerical
results limited to the case k = 0 (Granot et al. 2001; Zhang
& MacFadyen 2009), that during the relativistic phase, most of
the shocked rest mass resides in relatively slow material at the
edges of the jet, while most of the energy is stored in the fastest
moving material near the head of the jet.

As illustrated in Figure 4, the Blandford–McKee and
Sedov–Taylor self-similar solutions fail to provide an adequate
description of the jet dynamics at tj � t � tNR(Eiso) with
the disagreement becoming less pronounced before tj and after
tNR(Eiso). Between these two limiting cases, −d log u/d log t
evolves at early and late times between the two asymptotic slope
values, as seen in the bottom panel of Figure 4. The evolution of
−d log u/d log t is, however, non-monotonic as it first increases
above (3−k)/2 and only then decreases down to (3−k)/(5−k).
This behavior is mainly caused by the faster decrease in Γ com-
pared to a spherical flow at t > tj due to the lateral expansion
of the jet. It also relates to the fact that the Blandford–McKee
solution depends on Eiso while the corresponding Sedov–Taylor
solution uses the jet’s true energy, Ejet and, as a result, the ratio

of u(t) for these two limiting cases is ∼θ−1
0 at t = tNR(Ejet) and

∼θ
−2/(5−k)

0 at t = tNR(Eiso) ∼ θ
−2/(3−k)

0 tNR(Ejet).
Figures 5 and 6 show the resulting R⊥(t), R‖(t), and θj (t) for

k = 0, 1, 2 and different recipes for estimating the transverse,
parallel, and angular size scales within the jet (e.g., when
averaged over mass, energy, and emissivity). For all values of k
the early lateral spreading of the jet, which starts around t ∼ tj ,
is observed to initially involve only a modest fraction of the total
energy, with the bulk of the energy reaching angles well above
θ0 at significantly later times.

For k = 0, previous numerical simulations and analytical
models assuming a small lateral expansion for t ∼ tNR (e.g.,
Granot et al. 2005) have shown that spherical symmetry is
approached on timescales much larger than tNR. In particular,
Figure 5 shows that the growth of R‖ is essentially stalled at
t ∼ tNR while R⊥ continues to grow as the flow gradually
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give the evolution of u within the jet when averaged over (rest-) mass, energy
(excluding rest mass), and over the emissivity (or contribution to the observed
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the corresponding u(t). The Blandford–McKee and Sedov–Taylor self-similar
solutions are plotted as black thin dashed lines together with the corresponding
−d log u/d log t slopes.

(A color version of this figure is available in the online journal.)

approaches spherical symmetry. This effect is less pronounced
for increasing k, since R‖ continues to increase even after
tNR(Eiso), albeit more slowly. This contributes to the faster
growth in θj for lower k-values at late times, contrary to the
opposite situation at early times (t � tj ). This causes GRB jets
expanding into steeper density profiles to approach spherical
symmetry at progressively later times as argued by Ramirez-
Ruiz & MacFadyen (2010) for k = 2.

Since the rate of lateral spreading of the jet increases as
Γ decreases (see, e.g., Equation (2) of Granot 2007) and

Γ(Rj ) = θ−1
0 is the same for all k, then the jet lateral spreading is

expected to increase with k for R � Rj (where Γ(R) decreases
with k for a given R), while the opposite should hold for R � Rj

(where, for a given R, Γ(R) increases with k). Such a behavior
is also seen in analytic models (Granot 2007; Granot & Piran
2012).
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rest mass.

(A color version of this figure is available in the online journal.)

Figure 5 also plots the temporal evolution of ΓR⊥/R‖ ≈ Γθj ,
which is observed to approach unity at t ≫ tj . This should be
compared with the results of semi-analytic models (e.g., Rhoads
1997; Sari et al. 1999; Kumar & Panaitescu 2000). These models
predict Γθj ≈ 1 at t � tj , and Γ to decrease rapidly with lab
frame time t, which is not observed here. In the simulations, Γ

decreases rather slowly with t (as a power law). The jet angular
size θj (see Figure 6), on the other hand, is observed to increase
only logarithmically with t for all k until the flow becomes
non-relativistic.

As shown in Figure 6, the weighted mean of θj over the
emissivity (and to a slightly lesser extent over the energy)
remains practically constant until t/tj ∼ a few, while the
weighted mean over the shocked rest mass is significantly larger,
in accord with earlier results (Granot et al. 2001; Piran & Granot
2001; Zhang & MacFadyen 2009). This indicates that, as argued
before, a large fraction of the swept-up external rest mass is
concentrated at the edges of the jet, while most of the energy
and emission lies near the head. Moreover, it implies that (as
discussed above and seen in the temporal evolution of δ depicted
at the bottom of Figure 5) the lateral expansion at early times,
t � tj , is significantly faster for larger values of k, while the
situation is reversed at late times.

Figure 7 plots the temporal evolution of the energy (excluding
rest energy) per solid angle, ǫ = dE/dΩ, as a function of the
angle θ from the jet symmetry axis, for k = 0, 1, 2. At t � 50 yr
the energy distribution appears nearly spherical for all k’s. At
earlier times, a clear k-dependence trend is observed, where the
energy spreads to larger solid angles faster for a more stratified
medium, but a correlation is less evident when one compares
ǫ(θ ) for different k-values at the same four velocity u rather than
the same lab frame time t.

Abundant confirmation is provided here that the dynamics
of GRB jets are greatly modified by the radial profile of
the surrounding circumburst density. Most analytic formalisms
(e.g., Rhoads 1999) derive an exponential lateral spreading with
lab frame time or radius at t > tj , which ultimately erases all
information about the initial jet opening angle and relies solely
on the true energy content of the jet: Ejet. No exponential lateral
expansion is observed in our study for k = 1, 2, consistent with
previous numerical work for expansion in a constant density
medium (Granot et al. 2001; Zhang & MacFadyen 2009; van
Eerten & MacFadyen 2011). As illustrated in Figure 6, the
evolution of the jet’s angular scale containing a constant fraction
of the total energy is logarithmic and is not self-similar as it
retains memory of the initial jet opening angle. The deviation
from the expected self-similar exponential lateral expansion
behavior (Gruzinov 2007) might be at least partly due to u
rapidly decreasing with the polar angle θ from the jet symmetry
axis, so that the flow is no longer ultrarelativistic (u ≫ 1) as
it has been previously assumed. Even with the expectation that
such a self-similar solution would be only very slowly attained
(Gruzinov 2007), the maximal Lorentz factor at the head of
the jet in this formalism is predicted to decrease exponentially
with time, which appears to be inconsistent with our numerical
results.

The resolution of this apparent inconsistency between ana-
lytic models and numerical simulations can be attributed to the
modest values of θ0 used in the simulations, which result in
the breakdown of the analytic models that assume Γ ≫ 1 and

θj ≪ 1 soon after the jet starts spreading sideways Γ < θ−1
0

and before it can reach a phase of exponential lateral expansion
(Wygoda et al. 2011; Granot & Piran 2012). In the small region

in which the analytical models are valid, 1 ≪ Γ < θ−1
0 , there

is reasonable agreement with simulation results (Wygoda et al.
2011). A generalization of these analytic models to any values of
Γ or θj (Granot & Piran 2012) shows reasonable agreement with
the results of simulations from the early ultrarelativistic stage
to the late Newtonian stage. Such generalized analytic models
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(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

predict that if the jet is initially extremely narrow then there
should still be an early phase of exponential lateral spreading.
However, these models make the simplifying approximation of
a uniform jet, while in practice u quickly drops with θ . This
causes a breakdown of the u ≫ 1 assumption used to derive the
self-similar solution, which is only slowly attained even under
ideal conditions (Gruzinov 2007).

4. AFTERGLOW LIGHT CURVES

Figure 8 shows the emerging light curves at frequencies
ranging from the radio to gamma-rays (ν = 109, 1011, 1013, 1015,
1017, 1019 Hz), and corresponding spectra at different observed

times tobs, for k = 0, 1, 2, including the effects of electron
cooling and the contribution from a mapped Blandford–McKee
solution (with 20 � max(Γ) � 200). Figure 9 shows the light
curves computed for ν = 109, 1013, and 1017 Hz, for the
two-dimensional simulation and the Blandford–McKee conical
wedge, as in Figure 8, but illustrating the contributions to the
light curve arising from the various evolutionary stages of the
blast wave, quantified here by considering the emission from lab

frame times where Γsh(t)/
√

2, given by the Blandford–McKee
solution, ranges between 10 and 20, 5 and 10, 2 and 5, 1 and
2, respectively. As expected, lower Lorentz factors contribute to
the observed flux at later times. A slightly more subtle effect is
that at the same observed time the flux at low frequencies comes
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Figure 8. Light curves at ν = 109, 1011, 1013, 1015, 1017, 1019 Hz (black, red, green, blue, purple, cyan, respectively; top panels) and spectra at
tobs = 0.1, 1, 10, 100, 1000 days (black/continuous line, orange/dotted, blue/dashed, purple/dash-dotted, yellow/dash-dash-dotted; bottom panels) for the models
k = 0, 1, 2 (top to bottom panels), calculated including electron cooling and the contribution from a mapped Blandford–McKee solution (with 20 � max(Γ) � 200).

(A color version of this figure is available in the online journal.)

from slightly later lab frame times t (corresponding to a lower
Blandford–McKee Lorentz factor Γsh(t)). This is because there
is a lower flux contribution from the sides of the jet compared
with the center, as reflected by the fact that the afterglow image
is more limb brightened at higher frequencies and less so at
lower frequencies (Granot et al. 1999; Granot & Loeb 2001;
Granot 2008), resulting in a smaller typical angular delay time
(tθ = R(t) ≈ Rθ2/2c) in the arrival of photons to the observer
(which is along the jet axis in these figures). As a result, the flux
at the same observed time tobs is dominated by larger lab frame
times t.

The spectra at different observer times are shown in Figure 8.
For all values of k, the spectra evolves from a fast cooling
(with νc < νm and Fν ∝ ν1/3, ν−1/2, and ν−p/2 for ν < νc,
νc < ν < νm, and ν > νc, respectively) to a slow cooling regime
(with νm < νc and Fν ∝ ν1/3, ν(1−p)/2, and ν−p/2 for ν < νm,
νm < ν < νc, and ν > νm, respectively). The characteristic
frequency νm quickly drops with time with an asymptotic slope
of −2.9, −2.6, −2 for k = 0, 1, 2, respectively (while one
expects νm ∝ t−(15−4k)/(5−k), which is relatively closed to our
result), while νc increases at late times as νc ∝ t , that is,
with a slope independent on the particular stratification of the
ambient medium (for comparison, in the Sedov–Taylor regime
one expects νc ∝ t (2k−1)/(5−k)).

As shown in Section 3, a jet moving in a stratified medium
(with k = 1 and k = 2) decelerates to sub-relativistic speed over

larger distances with respect to a jet moving in a homogeneous
medium (k = 0). The consequences of it on the light curve
are particularly evident at radio frequencies (Figure 9), where
the contribution from mildly and sub-relativistic material is
negligible in the k = 2 case and dominant in the k = 0 up
to t ∼ 103 days.

Figures 8 and 9 show a pan-chromatic dip or flattening in the
light curves at around half a day for k = 0, a third of a day
for k = 1, and significantly earlier for k = 2. This feature
is also seen in Figure 10, which shows the temporal index
α ≡ −d log Fν/d log tobs as a function of tobs, where the earliest
value of α is larger than expected analytically for a spherical
flow (or for a jet viewed along its axis, before the jet break
time). Figure 9 clearly illustrates the reason for this behavior. It
basically occurs at the point where the dominant contribution to
the observed flux switches from the Blandford–McKee wedge
with 20 � Γsh(t) � 200 to the simulation, which corresponds to
later lab-frame times. As pointed out and calculated in De Colle
et al. (2012) for the spherical case, the relaxation of the mapping
of the analytic Blandford–McKee self-similar solution to the
numerical solution and the finite resolution of the simulation
result in a dip in the Lorentz factor that is gradually recovered
as the shocked region becomes wider and thus better resolved
with time. This produces a dip in the light curve that gradually
goes away as the resolution of the simulation is increased (see
Figures 5–7 of De Colle et al. 2012). This feature is a numerical
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Figure 9. Afterglow light curves emanating at different Lorentz factors. The red, green, blue, and purple (dashed, dotted, dashed-dotted, and dashed-dotted-dotted)

lines are the contributions to the total light curve (in black) computed by using the outputs of the simulations at the lab frame times where Γsh(t)/
√

2 (as given by
the Blandford–McKee solution) ranges between 10 and 20, 5 and 10, 2 and 5, and 1 and 2, respectively. The cyan dash-dotted lines are the contributions from a
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2 � 200. The light curves include electron cooling.

(A color version of this figure is available in the online journal.)
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Figure 10. “Shape of the jet break,” i.e., temporal decay of light curve, given by α ≡ −d log Fν/d log tobs as a function of tobs, at three different frequencies, including
electron cooling.

(A color version of this figure is available in the online journal.)

artifact of the finite resolution of the simulation. Similar errors
in the light curves were also present in previous simulations for
the k = 0 case (e.g., our light curve in the case k = 0 is nearly
identical to that by Zhang & MacFadyen 2009 as depicted in De
Colle et al. 2012).

A smaller contribution (although not easily quantifiable) to
the pan-chromatic dip in the light curve is due to the particular
initial conditions chosen in this paper. In fact, as the jet initially
has sharp edges (a step function in the θ -direction), once the
simulation starts there is a relaxation period occurring in the
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Figure 11. Light curves corresponding to ν = 109, 1013, 1017 Hz (from top to bottom panels) for different viewing angles θobs (normalized to the jet initial half-opening
angle θ0) and external density profiles (k = 0, 1, 2), with (left panels) and without (right panels) electron cooling. The light curves corresponding to k = 0 and
k = 1 are multiplied by 1000 and 30, respectively. The light curves include the contribution from a mapped Blandford–McKee solution (with 20 � Γ � 200) and the
numerical simulation (with 1 � Γ � 20).

(A color version of this figure is available in the online journal.)

lateral direction on a dynamical timescale (as a rarefaction wave
propagates from the edge of the jet toward its center). This lateral
transient phase triggered by the sharp-edged jet is also imprinted
in the light curves around the time of the dip or flattening, and,
contrary to the limited resolution artifacts, is not expected to go
away as the resolution is increased. This artifact might be less
pronounced for initial conditions that are smoother in the lateral
direction (e.g., a jet with an initial Gaussian angular profile).

Apart from this early-time, artificial feature, there is the ex-
pected pan-chromatic jet break that is present at all frequencies
above νm and is observed between a day for k = 2 to several
days for k = 0. These jet break features are discussed in more
detail below.

4.1. Jet Breaks

Figure 10 plots the shape of the jet break, i.e., the temporal
decay index of the light curve, α ≡ −d log Fν/d log tobs, as a
function of observer time, tobs, for different observed frequencies
and k-values. We shall first discuss the pan-chromatic jet break
features at frequencies that are above the typical synchrotron
frequency at the time of the jet break, ν > νm(tobs,j). As shown
in Figure 10, the temporal decay of the light curve becomes
smoother for increasing k, as derived in analytic models (Kumar
& Panaitescu 2000, hereafter KP00). However, the steepening
in the light curve occurs within a significantly smaller observed
time period than that predicted by analytic models. Most of
the increase in α occurs over a factor of ≈3–5 in time for
k = 0 (compared with a decade in time predicted in KP00)

and within about one decade in time for k = 2 (compared with
four decades in time predicted in KP00). The relatively sharper
jet break (compared with analytic expectations) in a stratified
medium may permit the detection of such a jet break. We also
note that there is an “overshoot” in the value of the temporal
decay index α just after the jet break, which is more prominent
for lower k-values (in agreement with previous results; Granot
2007). After this overshoot α gradually decreases, and there is
also a noticeable curvature in the light curve as the flow becomes
mildly relativistic and eventually approaches the Newtonian
regime. The effects of electron cooling on the shape of the
jet break appear to be rather modest in most cases.

At low frequencies, ν < νm(tobs,j) (see Figure 10, upper
panel), there is only a very modest increase in α near tobs,j. On
the other hand, when the break frequency νm sweeps past the
observed frequency ν, a very sharp break is seen (i.e., increase
in α). Both features are present for k = 0, and we find here
that they also persist for higher k-values. Moreover, we also find
that this break is sharper for smaller k-values. This is because
the corresponding spectral break (at νm) is very sharp for our
simple broken power-law spectral emissivity model and is not
degraded by the contribution from multiple parts of the jet at
smaller k-values (in addition νm decreases somewhat faster in
time at tobs > tobs,j for smaller k-values). We expect that a
more realistic synchrotron emissivity function would result in a
significantly smoother spectral break at νm, which would in turn
lead to a correspondingly smoother temporal break.

Figure 11 shows afterglow light curves for three different
observed frequencies (ν = 109, 1013, 1017 Hz; top to bottom
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(A color version of this figure is available in the online journal.)

panels), external density profiles (k = 0, 1, 2), and viewing
angles (θobs/θ0 = 0, 0.5, 1), both with and without electron
cooling (left and right panels, respectively). Figure 12 shows
the corresponding values of the temporal decay index α for
ν = 1017 Hz. The dependence of the light curves as a function
of viewing angles is in qualitative agreement with the results
of van Eerten et al. (2010a) in the k = 0 case. For stratified
media, Figures 11 and 12 show that the shape of the jet break is
predominantly regulated by the change in viewing angle (within
the initial jet aperture, 0 � θobs/θ0 � 1) rather than by the
external density power-law index k (in the range 0 � k � 2).
For θobs = 0 most of the steepening occurs within a factor of
∼2–4 in time for k = 0, 1, 2 while for θobs/θ0 ∼ 0.5–1 it takes
∼1–2 decades for k = 0, 1, 2. This is particularly interesting
because previous analytical work have argued that the effect of
varying k should be significantly larger. It can also be seen in
Figure 12 that the jet induced steepening starts earlier and ends
later for larger k-values and for larger viewing angles (or θobs/θ0

values). Also, the overshoot in the value of α is larger for greater
k-values or θobs/θ0 values. The jet break time is also observed to
occur later for larger viewing angles at all values of k and varies
over a factor of ∼3–5 for 0 � θobs/θ0 � 1.

The change in the jet break duration with k is due to the
slower evolution of Γ with t or R ≈ ct as well as tobs for larger

k-values (Γ ∝ R(k−3)/2 ∝ t
(k−3)/(8−2k)

obs for a spherical flow).
For θobs = 0 and ν > νm(tobs,j), the jet break duration roughly
corresponds to the time it takes the beaming cone to grow past
the limb-brightened outer part of the image. If crudely neglecting
lateral spreading (since most of the emission near the jet break
time is from within the initial jet aperture; Piran & Granot
2001), so that the dominant effect is the “missing emission”
from outside the edges of the jet (Granot 2007), and requiring
that the beaming cone (of angle θ � 1/Γ around the line of
sight) grows by a factor of fk, then this would correspond to a

factor of ∼f
(8−2k)/(3−k)

k in observed time. However, the resulting

image is more limb brightened for smaller k-values (Granot &
Loeb 2001; Granot 2008), and, as a result, one might estimate
fk=0 ∼ 1.3, fk=1 ∼ 1.4, and fk=2 ∼ 1.5, which would result in
factors of ∼2, ∼3, and ∼5 in the observed time, respectively, in
rough agreement with our numerical results.

As to the effect of the viewing angle for a fixed value of k,
the addition to the duration of the jet break relative to θobs = 0
corresponds approximately to the time it takes the edge of the
beaming cone (1/Γ) to grow from θ0 to θ0 + θobs. Thus, for
θobs = θ0 this corresponds to a factor of 2 decrease in Γ or a
factor of ∼2(8−2k)/(3−k) increase in the observed time (i.e., factors
of ∼6, ∼8, and ∼16 for k = 0, 1, and 2, respectively). This is in
rough agreement with our numerical results. According to this
simple estimate, the duration of the jet break for θobs = θ0 and
k = 2 should be a factor of ∼(2f2)(8−2k)/(3−k) ∼ 34 ∼ 81 in
time, or almost two decades in observed time, also in agreement
with the results of our calculations.

4.2. Radio Calorimetry

Figure 13 shows the radio light curves (at ν = 109 Hz) for
k = 0, 1, 2 from our two-dimensional numerical simulations
of a double-sided jet, as well as for a spherical blast wave with
the same true energy and a double-sided cone of fixed half-
opening angle θ0 calculated from a spherical blast wave with
the same isotropic equivalent energy (where θobs = 0 in the two
non-spherical cases), and the initial time of the simulation is set
by the Blandford & McKee (1976) self-similar solution:

t ∼=
R

c
∼=

1

c

[

(17 − 4k)E

8πAkc2Γ2
sh

]1/(3−k)

. (10)

As expected, the light curves computed from a spherical
blast wave with the same isotropic energy and from the two-
dimensional simulation match reasonably well at early times.
For the double-sided jet, it can be seen that the bump in the light
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(A color version of this figure is available in the online journal.)

curve near the non-relativistic transition time, caused because
the counterjet (whose contribution is indicated by a dashed line)
becomes visible, is much more prominent for low values of k
and becomes significantly more modest for larger k-values. This
effect is caused by the more gradual deceleration of the jet for
larger k-values (as the same mass of external medium is swept-
up over a larger range in radii), which causes the counterjet to
become visible more gradually, resulting in a wider, lower peak
flux bump. In particular, for k = 2 it amounts to a fairly modest
and rather slow flattening of the light curve, which might be
hard to discern observationally. This might, however, not help
explain the lack of a clear flattening or rebrightening in the late
radio afterglow of GRB 030329 (e.g., Pihlström et al. 2007),
since in that case detailed afterglow modeling favors a uniform
external density (k = 0; van der Horst et al. 2008).

Comparison of the radio flux at late times from a double-
sided jet and from a spherical blast wave with the same true
energy near the non-relativistic transition time shows that they
are broadly similar but may differ by up to a factor �3. For
k = 0 and k = 1 the spherical analog slightly overpredicts
the flux before the contribution from the counterjet becomes
important, and underpredicts the flux once the emission from
the counterjet becomes dominant, while for k = 2 the spherical
analog consistently underpredicts the flux by up to a factor of
�3. This may result in a small but not negligible error in the

estimation of the true energy in the double-side jet assuming
a spherical sub-relativistic flow, as is commonly done in radio
calorimetry studies (Kaneko et al. 2007; Berger et al. 2003;
Frail et al. 2005; Gorosabel et al. 2006; Kulkarni et al. 1998),
both overestimating or underestimating the real true energy
depending on the stratification of the ambient medium and the
observer time.

5. DISCUSSION

We have studied the dynamics of GRB jets during the af-
terglow stage as they propagate into different external density
profiles, ρext = Ar−k for k = 0, 1, 2, using detailed hy-
drodynamic simulations. Our main results, which relate both
to the dynamics and the resulting afterglow emission, can be
summarized as follows.

For the same initial half-opening angle θ0 and external density

at the jet break radius (which is defined by Γ1(Rj ) = θ−1
0 ),

the lateral spreading is initially (at R < Rj ) larger for higher
k-values. This arises because at the same radius (or lab frame
time) the typical Lorentz factor is lower. At late times (R > Rj )
the situation is reversed, and the effective jet opening angle at
a fixed lab frame time is similar for different k-values. Since
for higher k-values a larger range of radii is required in order
to sweep-up the same amount of mass, the whole evolution
extends over a much wider range of radii and times. As a
result, the jet break in the afterglow light curve is smoother and
more gradual, the non-relativistic transition occurs later, and
the flow approaches spherical symmetry more slowly and over
longer timescales. The effective jet opening angle is observed
to increase only logarithmically with lab frame time (or radius)
once the jet comes into lateral causal contact (i.e., when Γ drops

below θ−1
0 ).

As long as the jet is relativistic, most of the energy and
emission are concentrated near the head of the jet while the
slower material at the edges carries relatively little energy
(even though it carries a substantial fraction of the swept-
up rest mass). This holds true for all k-values. Once the jet
becomes sub-relativistic, at t > tNR(Eiso), it quickly spreads
laterally and swiftly starts to approach spherical symmetry. The
energy weighted mean value of u(t) is observed to be of order
unity at t/tj ∼ 2 rather than at t ∼ tNR(Eiso), as one might
naively expect. We find that there is little k-dependence on the
temporal evolution of θj , so that irrespective of the external
medium radial profile, all of the expanding jets approach
spherical symmetry at similar times (∼1–1.5 decades after tj). A
similar conclusion can be reached from the calculated evolution
of R‖/R⊥ with t/tj .

We find that contrary to the expectations of analytic models,
the shape of the jet break is affected more by the viewing angle
(within the initial jet aperture, 0 � θobs/θ0 � 1) than by the
steepness of the external density profile (for 0 � k � 2). Larger
viewing angles result in a later jet break time and a smoother
jet break, extending over a wide range in time, and with a larger
overshoot (initial increase in the temporal decay index α beyond
its asymptotic value), which is observed to be more prominent
for lower k-values. Larger k-values result in more gradual jet
breaks, but the sharpness of the jet break is affected even slightly
more by the viewing angle as argued above. The counterjet
becomes visible around tNR, and for k = 0 this results in a clear
bump in the light curve. However, for larger k-values the jet
deceleration is more gradual and as a result a wider and lower
bump is produced, which becomes hard to detect for k = 2,
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where it reduces to a mild flattening in the light curve. This may
explain the lack of a clear counterjet signature in some late time
radio afterglow light curves of long duration GRBs, although the
dynamical complexity of their surrounding circumburst medium
seriously limits the validity of a non-evolving power-law density
profile (e.g., Ramirez-Ruiz et al. 2005).

Finally, we showed that the use of a spherical blast wave for
estimating the total energy of the jet, as is commonly done in
radio calorimetry studies, results in an error in the estimation of
the true energy content of the jet that depends on the stratification
of the ambient medium (being on average larger for k = 2).
In particular, in the case k = 2, the spherical blast wave
analogy consistently overestimates the true energy, while for
the cases k = 0 and k = 1 it produces and underestimate or
an overestimate depending on whether the estimation of the jet
energy is done before or after the non-relativistic transition time.
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